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Hyperorthogonal family of vectors
and the associated Gram matrix

Bent FUGLEDE

Abstract. A family of non-zero vectors in Euclidean #-space is termed hyperorthogonal
if the angle between any two distinct vectors of the family is at least w/2. Any
hyperorthogonal family is finite and contains at most 2n vectors. It decomposes uniquely
into the union of mutually orthogonal imreducible subfamilies. An equivalent formulation
in terms of the associated Gram matrix is given.

Mathematics Subject Classification (2010). 15A03, 15A63.

Keywords. Gram matrix, hyperorthogonal, spherical § -code.

Let n and p be natural numbers. The standard inner product of two vectors
v,w € R" is denoted by (v,w), and the corresponding norm of v by
vl = (v, v)'/2.

Definition 1. A p-taple (vy,...,v,) of vectors in R” 3 {0} is said to be
hyperorthogonal if

(vi,v;) =0 for any two distinct 7, j € {l,..., p}.

The vectors of a hyperorthogonal p-tuple are of course distinct. A p-tuple
(vi.....vp) [of vectors] in R" \ {0} is hyperorthogonal if and only if the

normalized vectors v; /| vi||, i € {1,..., p}, form a hyperorthogonal p-tuple (of
points) on the unit sphere %, in R", in the sense that the spherical distance
d(v;,v;) = w/2 for any two distinct 7, j € {1,..., p}.

It is shown in Theorem 1 that an irreducible hyperorthogonal p-tuple in
R”\ {0} of rank r is maximal if and only if p = r + 1. According to Theorem 2
every hyperorthogonal p-tuple decomposes uniquely into the union of mutually
orthogonal irreducible hyperorthogonal subtuples. A hyperorthogonal 27 -tuple on
%, is the same as the union of an orthonormal basis (vy,...,v,) for R"” and
its negative (—vy,...,—vy). Furthermore, there is no hyperorthogonal p-tuple
in R"\ {0} with p > 2n.
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We close by considering the p x p matrix A = ({v;,v;)) associated with a
hyperorthogonal p-tuple (vq,...,v,). Such matrices are characterized by being
positive semidefinite with diagonal entries > (0 and off-diagonal entries < 0. In
a corollary to Theorem 2, an equivalent decomposition of such a matrix A is
obtained.

The concepts and results obtained in this paper naturally extend to the case
of p-tuples of vectors in F \ {0}, where £ denotes any n-dimensional vector
space over R, endowed with an inner product.

The present concept of hyperorthogonal p-tuples enters in an elementary proof
of a characterization of certain positive projections related to Jordan algebras, given
in [3].

Further related results are mentioned at the end of the paper.

Definition 2. A hyperorthogonal p-tuple (vy,...,v,) in R™\ {0} is termed
maximal hyperorthogonal, or just maximal, if it cannot be extended to a
hyperorthogonal (p + 1)-tuple by adjoining a vector (necessarily non-zero) from
the linear span lin{vy,...,v,) of (vy,...,v,).

A single vector v € R"” \ {0} trivially forms a hyperorthogonal 1-tuple. It is
not maximal because the antipodal pair (v, —v) is a hyperorthogonal 2-tuple in
lin(v) = Rw.

Definition 3. A p-tuple (vy,...,vp) in R™\ {0} is said to be reducible if some
g among its vectors, with ¢ € {1,..., p — 1}, are orthogonal to the remaining
p —q vectors.

Remark 1. An irreducible (i.e. not reducible) hyperorthogonal p-tuple (vy, ..., vp)
in R” A {0} is maximal if (and only if) it cannot be extended to an irreducible
hyperorthogonal (p -+ 1)-tuple by adjoining a vector v € lin(vy,...,vp). In fact,
if (v1,...,vp,v) were a reducible hyperorthogonal (p + 1)-tuple then v would
be orthogonal to vq,...,v,, and hence v = 0.

Example 1. The vertices vy, ..., v,41 of a regular n-simplex in R"” centered at
0 form a maximal irreducible hyperorthogonal (n + 1)-tuple in R” \ {0}. Indeed,
the angle between two of the vertices is 2 arccos% > % (if n = 2), which also
implies irreducibility. Maximality follows from the implication (i) » (ii1)) = (i1)
in Theorem 1 below since p = n + 1 here and since (vy,...,vy+1) clearly has
full rank #.

A pair of vectors (v, w) in R"”\ {0} is termed antipodal if there exists a real
number o < 0 such that w = ov. An antipodal pair in R” % {0} is the same as
a maximal hyperorthogonal 2-tuple in R” \ {0}, and is moreover irreducible.
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Remark 2. If a hyperorthogonal p-tuple (vy,...,vp) in R” \ {0} contains an
antipodal pair, say (v, v2), then the remaining vectors vs, ..., v, are orthogonal
to vy and vp. If (vq,...,v,) is moreover irreducible then p = 2, and we just
have an antipodal pair.

Lemma 1. Let (vy....,vp) be a hyperorthogonal p-tuple in R" \ {0} of rank r
and having no antipodal pair containing v,. For any vector v € R” let v’ denote
the orthogonal projection of v on the orthogonal complement (Rvp)l- of Ru,
in R". Then (vy,... vy, ) is hyperorthogonal of rank r — 1. If (v1,...,vp) is

(a) maximal or (b) irreducible,
then so is (v],....v,_;).

1

Proof. Cleatly n,p > r =2, forif r =1 then (v, vp) would be an antipodal

pair. Assuming as we may that |v,| = 1, we have
(1) v, = v; — (v;. vp)v, fori < p.
In view of (1) the p-tuple (vi,..., v;;_l, Up) has the same rank 7 as (vy,...,0p).
Being orthogonal to v, # 0, (vi,...,v;,_l) therefore has rank r — 1. Since
(v1,...,vp) is hyperorthogonal it follows from (1) that so is (v’l,...,v;_l)
because
(2) (v, ) = {vi, ) — (vi, up){vj. vp) 0
for distinct 7, j < p.

(a) Suppose that (vy,...,v,) is maximal. For maximality of the hyperorthogonal
(p—1)-tuple (vi,...,v,_y), suppose that, on the contrary, there exists a non-zero
vector v € lin(vy,. .., v;,_l) such that (v]..... v;,_l, v) is hyperorthogonal. Then

v is orthogonal to each v; — v] (which belongs to Rv,, by (1)), and hence
(v,v;) = (v, v}) <0 fori e{l,...,p—1},

by hyperorthogonality of (v],. ..,v;,_l, v). Thus (vi,...,vp,v) is hyper-
orthogonal in R” 3\ {0} along with (vq,...,vp) and (v1,...,Vp—1,v), in view
of (vp,v) = 0. Furthermore,

v € lin(v], . ..,v;,_l, vp) = lin(vy, ..., Vp—1, Vp),

by (1). This contradicts the maximality of (vq,...,vp).
(b) Suppose that (vq,...,vp) is imreducible. If (vi,..., v;,_l) is reducible we
may assume that, for example, vj,..., v(’] are orthogonal to U;+1’ e v;,_l for

some g € {1,..., p—2}. We then show that (when thus including v,) either

(3) (Ul,---avq)J—(Uq+1a---,vp—lavp)
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or

4) W1, .00V, Up) L (Vggts - -5 Up—1).

For i e{l,...,g} and j €{g+1,...,p— 1} we have in fact in view of (1)
by hyperorthogonality of (vy,...,vp)

(5) 0 > (vi, vj) = (vf, v;) + (vi, vp){vj, vp) = 0

because v] L U} and that {v;,vp) <0 and (v;,vp) < 0, again by hyperorthogo-
nality of (vi,...,vp). Thus the equality signs in (5) prevail, and so (v;,v;) =0
for i <g < j < p—1, and the non-negative number (v;,vp){vj,vp) therefore
equals 0. Hence either {(v;,v,) =0 forevery i € {1,...,q}, orelse {v;,v,) =0
forevery j e{g+1,..., p—1}. In the former case, (3) holds in view of (5)
with equality signs, as just established; and similarly in the latter case, (4) holds.
In either case, this contradicts the irreducibility of (vy,...,vp). O

Remark 3. If vq.....v, are normalized, that is, if they lie on X,, it is natural
to replace the orthogonal projection v’ of any v € %, on R"7! = (Ru,)*
with v # Zu, by the spherical projection v° (the point of the “equator”
Zu—1 = (Ru,)~ N, nearest to v). Clearly v° = v/||v’||, and hence Lemma 1
remains valid when v/ is replaced by v}, i < p.

Theorem 1. Let (vy....,v,) be a hyperorthogonal p-tuple in R™\ {0} of rank
r.Then r = 1, and if (v1,...,vp) is irreducible then either p =1 or p =r+1.
Any two of the following three properties imply the third:

i) (vi,....vp) is irreducible,
(i) (v1,....vp) is maximal,
(i) p=r—+ 1.

Proof. Clearly p,n > v > 1. It follows that, if p = 1, then » = 1 and
hence p = r. Furthermore, the singleton (vq) is not maximal, the antipodal pair
(vy, —v1) C lin(vy) being hyperorthogonal. Thus (ii) and (iii) fail, and there is
nothing more to prove when p = 1. We therefore assume that p > 2.

Suppose that (i) holds. Assume for a moment that (vy,...,v,) is a union of
antipodal pairs. By Remark 2 these are mutually orthogonal, and by irreducibility
there is just one antipodal pair. Such a pair is maximal, and p =2, r = 1,
whence (ii) and (iii) hold. We may therefore assume for example that (v;,vp)

is not an antipodal pair for any i € {1,..., p—1}. It follows that r > 2, for
if » =1 then (vq,v,) would be an antipodal pair. By Lemma 1 the projection
(V1 vpy) of (v1,...,9p—1) on (Rv,)* is an irreducible hyperorthogonal

(p — 1)-tuple of rank » — 1. This shows by induction that p — 1 equals either
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r—1 or r because p = 2 implies either r = 1 or r = 2, the former in case
(vq,vy) is antipodal, and the latter if not. Thus (i) implies that either p =71+ 1
or p =r. If in addition (vy,...,vp) is maximal then so is (v],. ..,v;,_l) by
Lemma 1(a), and hence by induction p—1 = (r—1)+1, thatis p = r+ 1. This
is because p = 2 now implies » = 1, and hence p = r 4+ 1, a hyperorthogonal
pair of rank 2 being clearly non-maximal. Thus (i) A (ii) = (iii).

To show that (i) A (iii) = (ii), suppose that, on the contrary, (vy,...,Up)
is not maximal. We shall then prove that p # r + 1, that is, p = r. There
exists a non-zero vector v € lin(vy,...,vp) such that (vy,...,vp,v) is an ir-
reducible hyperorthogonal (p -+ 1)-tuple, cf. Remark 1. In particular, (v, v,) < 0.
Clearly (v1,...,vp,v) has unchanged rank r. If (v,v,) were an antipodal pair
then {vi,vp) = 0 for i € {l,..., p — 1}, cf. Remark 2, in contradiction with
the irreducibility of (vq,....vp) since p > 2. Thus actually (v,v,) is not
antipodal, nor is (v;,vp) for any i € {l,...,p— 1}, for then p +1 =2 by
Remark 2 applied to the irreducible (p 4 1)-tuple (vy....,vp, v). Consequently,
Lemma 1 applies to the hyperorthogonal (p + 1)-tuple (vy,...,vp—1,v,0p) of
rank 7, while keeping v,. It thus follows by Lemma 1 that (v’l,...,v;_l,v’)
is hyperorthogonal. Because v € lin(vy,...,vp) and that v, = 0 we have
v’ € lin(v},...,v,_;), and we conclude from the supposed non-maximality of
(D1sssesty) that (07, v;,_l) likewise is not maximal. According to Lemma 1
as it stands it follows from (i) that (v{,...,v,_;) is irreducible and has rank
r — 1. By induction, p —1 = r — 1, and hence indeed p = r. This is because
p =2 now implies r = 2 = p, a hyperorthogonal pair (v{, v2) of rank 1 being
antipodal and hence maximal. The conclusion p = r contradicts (iii), and so
(v1,...,vp) must actually be maximal, that is, (i) A (iii) = (ii).

The remaining implication (ii) A (1i1) => (1) will be established after the proof
of (7) below. ]

For Assertion (d) of the following theorem, see alternatively [3], Theorem 2.
Assertion (c) shows that p =< 2n holds for any hyperorthogonal p-tuple in
R” % {0}. In particular, there is no infinite hyperorthogonal family, as is also clear
because 2, is compact.

Theorem 2. Let (vi....,vp) be a hyperorthogonal p-tuple in R"\{0} of rank 7.

(a) There exists a decomposition of {1, ..., p}, unique up to permutation, into
nonvoid subsets Ji, ..., J, with m € {1,..., p} such that the corresponding
hyperorthogonal subtuples (v;:j € Ji) with k € {1,...,m} are irreducible and

(if m = 2) mutually orthogonal in R".

(b) These hyperorthogonal subtuples are all maximal if and only if (v1,...,vp)
itself is maximal.
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(c) We have
(6) p<r+4+m and p<2r <2n.

Furthermore, (v1,...,vp) is maximal if and only if p = r+m and hence p > 2.

(d) If p =2n and hence v = m = n then (V1,...,Vp) Is maximal, and
is the union of n antipodal pairs (necessarily mutually orthogonal if n = 2).
If, in addition, each v; is normalized then (vi,...,V2,) Is the union of an
orthonormal base for R", say (vy,...,vy), and its opposite orthonormal base
(—v1,...,—vp). Conversely, any such union is maximal hyperorthogonal on %,
and has rank n.

Proof. (a) The existence part follows right away in view of Definition 3. For
uniqueness of the decomposition, write briefly V' for (vy,. ..,vp), and V; for
(vj:j € Jx), so that we have a decomposition V = Ji' ; V4 of V into mutually
orthogonal subtuples V. For any other such decomposition V = J; W; of V
into mutually orthogonal subtuples W; of V', suppose for some k& and / that
Vi N W; # @ . Then

Wy = (Ve W) UV A\ V) N g)

defines a decomposition of W; into two mutually orthogonal subtuples V; N W
and (V \ V) N W; of W; and hence of V because Vi L V \ V. Since W;
is irreducible and Vi N W; # @ we must have (V \ Vx) N Wy = @, that is
W; C V. By interchanging the roles of 1 and W; in this argument we also
have Vy C Wy, and so V3 = W;. Thus any two V; and W; are either disjoint
or identical. This means, however, that the two decompositions V =1 J, V4 and
I = J, W; must be the same (up to permutation).

(b) With the above abbreviations we show by contradiction that ¥ is maximal
if and only if each Vj is so. For the “only if” part, suppose that some Vj is not
maximal. There exists then v € lin Vj such that (v) UV, remains hyperorthogonal,
that is, v # 0 and {v,v;) <0 for all j € Ji. This contradicts the maximality
of V because v € linlV and that (v) U V remains hyperorthogonal. Indeed,
for any [ € {1,...,m} with / # k, V; is orthogonal to V; and therefore
v € lin Vi, whence (v;,v) = 0 for every j € J;, and altogether (v;,v) <0
for any j € {l,..., p}. — For the “if” part, suppose that V is not maximal.
Then there exists v € lin V' such that (v) UV remains hyperorthogonal, that is,
(v.vj) <0 forall je{l,...,p}. For any k£ € {1,...,m} denote by v’ the
orthogonal projection of v on lin Vg. Then (v) U V; remains hyperorthogonal,
in contradiction with the maximality of V. Indeed, for any j € J; we have
vj € Vi, hence v—v' L v;, and so {v’,v;) = (v, v;} < 0. Furthermore v’ # 0,
for otherwise v = v — v’ L vj, hence v L lin(v;:j € Ji) = linV;, and so
v = v’ by definition of v’, in contradiction with v # 0.
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(c) For the second inequality (6), denote pr = #J; and r; = 1tk V. Clearly
p =i pr and r = ), 1y, the latter because the Vj are mutually orthogonal.
Since Vj is irreducible it follows by Theorem 1 that py < i 4+ 1, and hence

m m
() p= p<m+ ) n=m+r =2,
k=1 k=1

the latter inequality because each 7 > | and hence = m. By Theorem 1, all the
irreducible subtuples Vj; are maximal if and only if pr = rp +1 for all &k <m,
which in turn, by addition, is equivalent to p = r+m since anyway pr <rip+1,
as already noted. Thus, by (b), V is maximal if and only if p =7r +m. And
if V' is maximal and reducible then m > 1 and hence p =r 4+ m > r 4+ 1,
thus establishing by contradiction the remaining implication (ii) A (iii)) = (i) in
Theorem 1.

(d) I p =2n, and hence n = r < m by (6), then by (7) with equality it
follows from (c) that V' is maximal, and we have m = r, hence rp = 1 for
every k € {l,...,m}; furthermore, py = rx + 1 = 2 for every k because V
1s irreducible and maximal, by (b), and thus each of the m = r = n subtuples
V¢ is an antipodal pair, as noted after Example 1. The final assertion in (d) is
easily verified. ]

Exercise 1. Determine all hyperorthogonal (2n — 1)-tuples on %,, for example
for n = 3. (Hint: begin by determining the non-maximal ones.)

We continue identifying a p-tuple (v1,...,v,) of vectors in R" with the
n X p matrix V' with columns vy,...,v,. We only consider matrices with real
entries. The transpose of a matrix V is denoted by V'. The following lemma
concerning the associated Gram matrix V'V is well known.

Lemma 2. (a) For any n x p matrix V. = (v1,...,vp) of rank v, the pXp
matrix
(8) A= V'V = ({vi, )i jeqt,... p}

is positive semidefinite and has rank r.

(b) Conversely, every positive semidefinite p X p matrix A of rank v has the
form (8) with V an r x p matrix, necessarily of rank r.

Proof. (a) A is obviously symmetric: {v;,v;) = (v;,v;), and positive semidefi-

nite:
P

P P P
E (vf,vj)xl-xj = ( E XiV§, E xjvj) = H E XjU§
i=1 i=1

ij=1 i=1

2
>0
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for xq,...,x, € R. Clearly 1k A <1k V = r. For the proof that ik A > r we
may assume for example that vq,...,v, are linearly independent. The principal

submatrix
def

B = ({v:,v5))i,j<r
of A then has full rank r. Otherwise there would be an r-tuple (cy,...,¢,) €
R” N\ {0} such that Z;:l cj{vi.vj) = 0 for every i < r, and hence
(Zle CjUj,Z;:l cjvj) =0, that is, ¥ ;_,c;v; = 0, in contradiction with the
linear independence of vq,...,v,.

(b) There exists an orthogonal p X p matrix £2 such that

QIAQ = A = diag(A1,...,Ap),
with A; > 0 for i <r and A; = 0 for i > r because tkA =1k4d = r.
Consider the 7 x p matrix U obtained from diag(~/A1....,~/A,) by adjoining
after it p — r columns equal to 0. Then U'U = A, and the r x p matrix

def

V=URQ
has the same rank » as U, and satisfies V'V = Q'UUQ = Q'AQ =4. [

Remark 4. For any n > r, (8) of course remains valid after the r X p matrix
V in the proof of Lemma 2 has been extended by adjoining n —r new rows
equal to 0, whereby rk V' remains equal to r. Also note that it was shown in
the proof of Lemma 2 that every positive semidefinite p x p matrix A of rank
r has a principal submatrix B of full rank 7.

Lemma 3. For n,p > 1 let V = (vy,...,vp) be an n X p matrix with column
vectors vq,...,vp in R*\ {0}. Let

.....

be the associated Gram matrix, cf. Lemma 2, obviously with diagonal entries
> 0. Then

(a) V is hyperorthogonal if and only if the off-diagonal entries of A are all
< 0.

(b) V is irreducible if and only if A is irreducible in the sense that one
cannot decompose {1,..., p} into two nonvoid disjoint parts Jy and Jy such
that ajj = 0 fOF ieJ; and J e Js.

(c) V is maximal (hyperorthogonal) if and only if A (with all off-diagonal
entries < 0) 1s maximal in the sense that one cannot adjoin to A a new last
column a € R"T and the corresponding last row a* in such a way that the
extended (p+ 1) x(p+ 1) matrix has all diagonal entries > 0, all off-diagonal
entries <0, and is positive semidefinite with the same rank as A.



Hyperorthogonal family of vectors and the associated Gram matrix 39

Proof. Assertions (a) and (b) are easily verified. For (c), suppose first that V' 1is
hyperorthogonal, but not maximal. There is then a column vector v € R\ {0} such

that the #x(p+1) matrix W with columns vy, ..., vp, v remains hyperorthogonal
with unchanged rank r (namely v € lin(vy,...,vp)). In view of Lemma 2,
BE=W'W

is an extension of A to a positive semidefinite (p + 1) X (p 4+ 1) matrix of rank
r with diagonal entries > 0 and off-diagonal entries < (1, by (a). This shows
that A is not maximal in the stated sense.

Conversely, suppose that A is not maximal. There is then a column vector
b € R? with coordinates b; < 0, and a number ¢ > 0, such that the symmetric

(p+ 1) x(p+1) matrix
a b
(¢ )

remains positive semidefinite with rank 7. In particular, the first p rows of B
have rank r (not just rank < r because rk A = r ). The system of linear equations

P
Y i = by,
i=1

i € {l,....p}, therefore has a solution (xq,....x,). The linear combination
_ P A :
v=)i_;Xjv; satisfies

P P
©) (i, v) = ) (v, vdx; = ) ayx; =b; <0
F=i J=1
for i € {1,.... p}, showing that the (p + l)-tuple (vi,...,vp,v) is hyper-
orthogonal along with (vy,...,vp). Note at this point that v # 0, for if v =0
then b =0, by (9), and since ¢ > 0 this would imply that Tk B =1+ 1k A4,
which is false. We have thus shown that indeed (v{,...,v,) is non-maximal if
A 18 so, thereby completing the proof of (c). ]

In view of Lemma 3 we have the following equivalent version of Theorem 2.

Corollary 1. Let A = (aij)i, jeq1,...py be a positive semidefinite p X p matrix of
rank v with diagonal entries > O and off-diagonal entries < 0.

anen

(a) There exists a decomposition of {1, ..., p}, unique up to permutation, into
nonvoid subsets Ji,...,Jdy with m € {1,..., p} such that the corresponding
positive semidefinite principal submatrices Ap = (ai;)i jes, with k € {1,...,m}

are irreducible and (if m > 2) mutually orthogonal in R”", in the sense that
ai; =0 for all (i,j) € Jp x J; and distinet k,1 €{1,... ,m}.
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(b) These positive semidefinite principal submatrices Ay are all maximal if
and only if A is itself maximal.

(c) We have
p=r4+m and p <2r.

Furthermore, A is maximal if and only if p =vr +m and hence p > 2.

(d) If p = 2n, and hence r = m = n, and if the diagonal entries of A
equal 1, then A is maximal, and (up to a permutation of rows and the same
permutation of columns) A equals the block matrix

_ In _In
where I, denotes the n x n unit matrix. Conversely, this block matrix A has

rank n and is maximal with diagonal entries | and off-diagonal entries O or
—1.

In (d), the requirement that the diagonal entries of A equal 1 of course
amounts to the columns of V' from Lemma 2 being normalized. For (10) note

that, by Theorem 2, the columns of V' therefore are vy,...,v,, —V1,...,—Up
in terms of an orthonormal base (vy,...,vy) for R”. If instead we order the
columns of V as vy, —vq,v2,—V2,...,0,—v, then A becomes the diagonal

block matrix

A =diag(E. E,....E) with E = (_11 _11) .
Exercise 2. Determine all positive semidefinite (27 — 1) x (2rn — 1) matrices of
rank 7 with diagonal entries 1 and off-diagonal entries < 0.

Related results. The author owes to the Editors the following observations.

The inequality » > p —m of the last corollary is contained in Lemma 4 of
Section 3.5, Chapter 5 of [1].

Unit vectors vy,...,v, in R” with equal inner products {v;, v;) for distinct
i,j in {l1,..., p} have been studied in [4]. For example, given an integer d > 1,
if (vi,vi) =1 and (v;,v;) = —1/d for i # j., then p <n 4 [n/d]; see [4],
Theorem 4.2.

Given a subset S of the real interval [—1,1], a spherical S-code is a
subset V' of the unit sphere in R” such that (v,v’) € § for any pair (v,v’)
of distinct vectors in V. In particular, a spherical [—1,0]-code is precisely a
hyperorthogonal set of unit vectors. Bounds on cardinalities of spherical S -codes
have been established in [2] and more recent papers.
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