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Alternative invariants for the embedded resolution
of purely inseparable surface singularities

Herwig HAUSER and Dominique WAGNER™

Abstract. We propose two local invariants for the inductive proof of the embedded

resolution of purely inseparable surface singularities of order equal to the characteristic.
The invariants are built on a detailed analysis of the so called “kangaroo phenomenon”

in positive characteristic. They thus measure accurately the algebraic complexity of an

equation defining a surface singularity in characteristic p. As the invariants are shown to
drop after each blowup, induction applies.

Mathematics Subject Classification (2010). 14B05, 14E15. 14J17, 13HO05, 32545.

Keywords. Surfaces, resolution, singularities, positive characteristic, blowups.

Contents
1 Introduction . . . . . . . . . . . . . . 178
2 Context . . . . ... 181
3 Besults o ¢ s 2 5 2 5 5 55 6 6 6 % 5 8 5 8 55 58 F 8 658,455 885835 184
4 The resolution invariant . . . . . . . . . . . . . . . . . ... ... ... 187
5 Logical structure of the proof of Theorem 1 . . . . . . . . . ... ... 195
6 Proof of Theorem 1 . . . . . . . . . . . . . . ... .. ... ...... 199
? ProofofCorallary | : s 5 s s o s s msssmssmaesmens w5834 207
8 Monomial case . . . . . .. ... 210
9 A second resolution invariant . . . . . .. ... .. ... ... ... 211
10 Alternative approach for surface resolution in positive characteristic . . 218
RelCrenTes o v o 5 % 5 5 ¢ 5 5 % & 8 5 € 5 & § 5 8 ' § 5 % €8 5% 58 % 44 8 & 4 221

*Partially supported by projects P21461 and P25652 of the Austrian Science Fund FWF, by the
Austrian—Spanish cooperation program Acciones Integradas, by the University of Innsbruck and by
a grant from L’Oréal Austria, the Austrian Commission for UNESCO and the Austrian Academy of
Sciences.



178 H. Hauser and D. WAGNER

1. Introduction

In this paper, two alternative invariants for the embedded resolution of two-
dimensional hypersurface singularities in arbitrary characteristic are constructed.
The first invariant is built on the now classical invariant from characteristic zero,
consisting of a string of integers given by the local order of the defining equation
and of the orders of the subsequent coefficient ideals (after having removed
the exceptional factors). As hypersurfaces of maximal contact need not exist in
positive characteristic, these orders have to be defined in a different way to make
them intrinsic. The correct choice is the maximum of the order of the coefficient
ideal over all choices of local regular hypersurfaces. The orders are thus well
defined, i.e., independent of any choices.

By examples of Moh it is known that this invariant may increase under blowup
with respect to the lexicographical order; see [38] and [39]. Actually, its second
component, the order of the first coefficient ideal, may increase at points where the
first component has remained constant. The increase occurs at so called kangaroo
points (in Hauser’s terminology; they are called merastaric points by Hironaka).
Moh was able to bound the possible increase from above, and Hauser gave a
complete classification of kangaroo points; see [21] and [24].

Relying on these results, we show in the present paper (for purely inseparable
two-dimensional hypersurfaces of order equal to the characteristic) that the
sporadic increase of the invariant is dominated by larger decreases before or
after the critical blowup. It thus decreases in the long run. Actually, to smooth
the argument and to avoid considering packages of blowups, we subtract from
the second component of the invariant in very specific situations a bonus (a real
number taking values 0, &, 6 or 1 +6 with 0 <e <§ < ).

This bonus is modeled so that the modified invariant decreases under every
blowup (see Theorem 1). It thus interpolates the “graph” of the original
characteristic zero invariant by a monotonously decreasing function (see Figure 1).

Our second invariant is built on a different measure, the height. This is a
natural number which counts in an asymmetric way the distance of a hypersurface
singularity from being a normal crossings divisor. The symmetry is broken by
the consideration of local flags which accompany the resolution process. They
reduce the necessary coordinate changes to a “Borel” subgroup of the local
formal automorphism group of the ambient scheme: the changes are friangular in
a precise sense. This, in turn, allows us to define the height as a minimum over all
coordinate choices subordinate to the flag. Moreover, the local blowups given by
choosing an arbitrary point in the exceptional divisor can be made monomial after
applying at the base point below a suitable linear triangular coordinate change
belonging to the subgroup. Combining these techniques one obtains an explicit
control on the behavior of the height under blowup.
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Ficure 1

Modification of the classical invariant (solid line) by the bonus (dashed);
vertically the 2™ component of the invariant, horizontally the number of blowups

After completion of the present paper we became aware through Cutkosky’s
recent preprint [15] that an invariant similar to the height had already been
considered by Abhyankar in a series of papers from the sixties, see e.g. [2].
His more valuation theoretic approach is very complicated. Cutkosky simplifies
considerably Abhyankar’s constructions and thus achieves a lucid exposition of
the induction argument. For a comparison of the invariants, see in particular
Definition 7.3 in [15].

Experimentation shows that the height may also increase under blowup, as was
the case for the order of the coefficient ideal. But Moh’s bound applies again. In
fact, the bonus which has to be subtracted to make the resulting invariant always
drop is now much easier to define than before. It is 0, ¢ or 1 4+ § according
to the situation, with 0 < & < § < 1. As a consequence we can show quite
directly that the vector of (modified) heights (of the subsequent coefficient ideals)
drops lexicographically under blowup (again in the case of purely inseparable
two-dimensional hypersurface singularities of order equal to the characteristic).

Both types of invariants as well as the respective definitions of the bonus
provide a quite concise approach to the resolution of surface singularities. They
thus form a substitute for Hironaka’s invariant from the Bowdoin lectures [26],
which is central in the recent works in positive characteristic of Cossart, Jannsen,
and Saito [12] on the embedded resolution of surfaces of arbitrary codimension
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and of Cutkosky [17] and Cossart and Piltant [13] and [14] on the non-embedded
resolution of three-dimensional varieties. All these proofs use Hironaka’s invariant
for surfaces. See also [20] for many concrete examples. A different proof for the
resolution of surface singularities (of any codimension) has been established by
Benito and Villamayor [5] using generic projections. Inspired by this approach,
Kawanoue and Matsuki [35] gave yet another proof, based on their concept of
leading generators and the construction of an associated resolution invariant.

It is appropriate to compare the invariants proposed in this article with
Hironaka’s. All three can be defined through the Newton polyhedron of the
singularity. They are made intrinsic by astute choices of local coordinates, and
thus serve as genuine measures of the complexity of the singularity, not depending
on any casual instance or choice.

Advantages of the invariants. (1) They are very natural and easy to handle.
(2) Their construction is systematic. This permits us to investigate possible
extensions to higher dimensions (though there are then various options of how
to design them). (3) They do not increase even if the center was chosen too
small (i.e., a point instead of a curve). This is not the case with Hironaka’s
invariant which requires to blow up in a center of maximal possible dimension.
In contrast, for our invariants, the centers of blowup will always be a collection
of isolated points, except if the first coefficient ideal is a monomial (the v-quasi-
ordinary case; this is a purely combinatorial sitvation). (4) The symmetry break
in the definition of the second invariant may result fertile in the future. The
proofs show that this is an efficient way to control blowups. It is built on the
asymmetric decomposition of projective space (typically, the exceptional divisor
of a point blowup) by affine spaces of decreasing dimensions. We thus partition
the exceptional divisor by locally closed subsets instead of covering it by open
affine subsets. The flags take into account this decomposition. (5) The bonus is
based on a detailed analysis of the kangaroo phenomenon. The increase of the
not yet modified invariant a la Moh under blowup can be shown to come along
with a complementary improvement of the Newton polyhedron: it approaches a
coordinate axis. Exploiting this incidence, first observed by Dominik Zeillinger
in his thesis [46], the definition of the bonus comes quite automatically. (6) The
proofs that the (modified) invariant drops are completely straightforward and thus
— at least in principle — extendable to higher dimension.

Drawbacks of the invariants. (7) The maximal order of the coefficient ideal
over all coordinate changes, called here the shade of the singularity (which
coincides in the purely inseparable case with the residual order of Hironaka),
1s not upper-semicontinuous when considering non-closed points. Hironaka calls
this phenomenon generic going up. It causes technical complications in higher
dimensions. (8) The introduction of the bonus is not completely satisfactory.
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It ensures that the modified invariant drops after each blowup, but its definition
could be more conceptual, avoiding case distinctions. (9) The extension of the
results and techniques to the embedded resolution of threefolds — this is known
to be the critical case for positive characteristic — is not obvious. There seem to
appear additional complications which are not entirely understood yet.

Our exposition concentrates on purely inseparable hypersurface singularities
of order p (which represent the first significant case.) If the order is a larger
p-th power pk ., k =2, the reasoning becomes more complicated. For instance,
the bonus (defined in Section 4) has to be modified from 1 + § to pk_1 + 4.
A similar argument as developed in this paper shows that a sequence of point
blowups reduces to the case where the width (see Section 4) has become < pF~1.
This case, however, seems to be much more intricate than the case kK = 1 where
the width is just 1. It is the subject of ongoing research.

Acknowledgements. The authors wish to express their thanks to Dominik
Zeillinger for sharing generously his ideas. Thanks to Tobias Beck, Clemens
Bruschek, Santiago Encinas, Daniel Panazzolo, Georg Regensburger, Dale
Cutkosky, Josef Schicho and Hiraku Kawanoue for several helpful comments
and many stimulating conversations.

2. Context

Hironaka’s proof of resolution of singularities in characteristic zero in [31] is built
on induction on the dimension of the ambient space. This descent in dimension
persists as the key argument also in the later simplifications of Hironaka’s proof
by Villamayor [43] and [44], Bierstone and Milman [7], Encinas and Hauser [18],
Bravo, Encinas, and Villamayor [8], Wlodarczyk [45], and Kollar [36]. To an
ideal sheaf 7 in an n-dimensional, smooth ambient scheme W one associates
locally at each point @ of W a smooth hypersurface V' of W through @ and
an ideal sheaf 7 in V, the coefficient ideal of 7 in V at a, which translates
the resolution problem for Z in W at ¢ into a resolution problem of 7 in V.
Once J is resolved — this can be assumed to be feasible by induction on
the dimension n — there is a relatively simple combinatorial procedure to also
resolve 7.

Let us recall here that there exist various proofs for (embedded, respectively
non-embedded) resolution of surfaces in arbitrary characteristic. Abhyankar’s
thesis [1] from 1956, Lipman’s proof in [37] via pseudo-rational singularities
for arbitrary 2-dimensional excellent schemes (but dispensing of embeddedness),
and Hironaka’s proof from his Bowdoin lectures [26], where an invariant is
constructed from the Newton polyhedron of a hypersurface. This proof is used
in the recent work of Cossart, Jannsen, and Saito [12] on embedded resolution
of two-dimensional schemes, Cutkosky’s compact writeup [15] of Abhyankar’s
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scattered proof of non-embedded resolution for threefolds in positive characteristic
> 5 (hypersurface case), and the papers [13] and [14] of Cossart and Piltant,
where the result is established with considerably more effort for arbitrary reduced
three-dimensional schemes defined over a field of positive characteristic which is
differentially finite over a perfect subfield.

Moreover lately there have been new developments in the area of resolution
of singularities of algebraic varieties of any dimension over fields of positive
characteristic. For instance, several promising new approaches and programs
have been presented during the conference “On the Resolution of Singularities”
at RIMS Kyoto in December 2008. In [32], [27], and [29] Hironaka studies
differential operators in arbitrary characteristic in order to construct generalizations
of hypersurfaces of maximal contact. The main difficulty is thus reduced to the
purely inseparable case and kangaroo/metastatic points. Hironaka then asserts
that this type of singularities can be resolved directly; see [28] and [30]. There
is no written proof of this available yet. Further Kawanoue and Matsuki have
published a program for arbitrary dimension and characteristic; see [33] and [34].
Again differential operators are used to define a suitable resolution invariant. The
termination of the resulting algorithm seems not to be ensured yet. Additionally
there is a novel approach to resolution by Villamayor and his collaborators
Benito [6], Bravo [9], and Encinas [19]. It is based on projections instead
of restrictions for the descent in dimension. A substitute for coefficient ideals
1s constructed via Rees algebras and differential operators, called elimination
algebras. It provides a new resolution invariant for characteristic p (which
coincides with the classical one in characteristic zero). This allows one to reduce
to a so called monomial case (which, however, seems to be still unsolved, and
could be much more involved than the classical monomial case).

A more axiomatic approach to resolution has been proposed by Hauser
and Schicho [25]: the various specific constructions of the classical proof in
characteristic zero are replaced by their key properties. These in turn suffice
to give a purely combinatorial description of the entire resolution argument in
form of a game (a viewpoint which originally goes back to Hironaka). To get
a complete proof of resolution then one only has to show, and this is done by
elementary algebra, that objects with the required properties do exist.

In the course of Hironaka’s reasoning of resolution of singularities in
characteristic zero it is crucial that the local descent in dimension commutes
with blowups in admissible centers (= smooth centers contained in top(Z)) at all
points of the exceptional divisor ¥’ where the local order of 7 has remained
constant. More explicitly, this signifies that the coefficient ideal of the weak
transform 7" of Z at a point &’ of Y’ where the order of 7 has remained
constant equals the (controlled) transform of the coefficient ideal of 7 at a
(for the involved notions of coefficient ideal, weak and controlled transforms;
see [18]).
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The commutativity of the local descent to coefficient ideals with blowups
1s essential for proving that — always in characteristic zero — the order of the
coefficient ideal 7 of Z does not increase at points where the order of 7 has
remained constant. (It is easy to see, using that the center is contained in top(Z),
that the order of 7 itself cannot increase.) Therefore the pair (ord,(Z), ord, (7))
does not increase under blowup when considered with respect to the lexicographic
order.

The clue for this to work is the existence of hypersurfaces of maximal contact
in characteristic zero. They are special choices of hypersurfaces V' containing
locally top(Z) at @ and ensuring that the strict transform V® of V contains
again the top locus of the weak transform Z' of Z, provided the maximum
value of the local orders of 7 has remained constant. Moreover, it is required
that this property persists for ZY and V' under any further admissible blowup.
In particular, the various transforms of IV contain all equiconstant points, i.e.,
points of the subsequent exceptional loci where the local order of the transforms
has remained constant (at the other points, induction on the order applies).

This argument fails in positive characteristic. There are ideals in characteristic
p > 0 (first given by Narasimhan in [41] and [42], then also studied by
Mulay [40]), whose top locus is not locally contained in any smooth hypersurface.
Consequently, when just taking any smooth hypersurface through the point a, its
transforms under blowups eventually lose the equiconstant points of 7 (see [21]
for the reason for this and a selection of examples). Hence the induction on the
dimension breaks down in a first instance, because the descent in dimension does
no longer commute with blowups in the above way.

In an attempt to overcome this flaw, one could choose after each blowup locally
at equiconstant points a’ of the exceptional locus Y’ a new local hypersurface V'
(instead of the transform V*® of V') and try to compare the resulting coefficient
ideal with the one below in V. In trying to do this, one has to choose carefully
the hypersurfaces V' and V’. The first should have transform V*' containing all
equiconstant points ¢’ in Y’ (for reasons not apparent at the moment), so that
only a local automorphism at @’ is necessary to obtain V' from V™. Moreover,
V' should have the same property as V' — but again only for the next blowup,
not for all subsequent ones.

Additionally, a second condition is imposed on V. It is related to the
construction of the resolution invariant. Usually, this invariant is a vector whose
entries are the local orders of certain ideals: the first component is the order of
1 at a, the second the order of the coefficient ideal 7 of Z at a in V (after
having factored from it possible exceptional components). But this second order
may depend on the choice of V', and we are better led to choose only such V
for which the order of the coefficient ideal takes an intrinsic value.

In characteristic zero, another coincidence occurs. Hypersurfaces of maximal
contact maximize the order of the coefficient ideal over all choices of local,
smooth hypersurfaces. Thus, this order is intrinsic. In [45], Wlodarczyk introduced
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a version of coefficient ideal whose analytic isomorphism class does not depend
on V', so that its local order is automatically intrinsic. The maximality leads
naturally to the notion of weak maximal contact, which was introduced in [18]:
the local, smooth hypersurface V' through & has weak maximal contact with 7
if the order of the coefficient ideal 7 of Z in V is maximized over all smooth
local hypersurfaces. This notion depends, of course, on the selected definition of
coefficient ideal.

Maximality of orders can be traced back in many papers, and was especially for
Abhyankar [3] a decisive requirement. He achieved it in characteristic zero by so
called Tschirnhaus transformations, an algebraic construction of local coordinate
changes yielding hypersurfaces slightly stronger than hypersurfaces of maximal
contact (the resulting hypersurfaces are called osculating in [18]).

3. Results

The present paper originates from the observations indicated in Section 2.
It exhibits, still for surfaces, but with the perspective of application to higher
dimensional schemes, a characteristic free approach to hypersurfaces of weak
maximal contact and their related coefficient ideals. It was observed by Moh
in [38] and [39] that the order of the coefficient ideal of an ideal sheaf in
a hypersurface ol weak maximal contact may indeed increase in characteristic
p > 0 — this was already known to Abhyankar (see [2] and [15]) — and he was
able to bound the increase. And in fact, the increase is small. If Z is a principal
ideal of order p (the characteristic) at a given point, the increase of the order of
the coefficient ideal is at most 1 (always considered at equiconstant points of 7
in Y', the only points of interest). This is not too bad, but, conversely, sufficient
to destroy any kind of naive induction.

In the present paper we investigate this increase closer in the case of surfaces.
It is known from Hauser’s work that an increase can occur only rarely, and that
the sitvations where an increase happens are very special and can be completely
characterized [21]. However, it cannot be excluded that the increase repeats an
infinite number of times. This would not rule out the existence of resolution in
positive characteristic, but it would show that the characteristic zero resolution
invariant formed by the orders of the successive coefficient ideals cannot be used
directly in characteristic p.

The point of the present paper is that, at least for surfaces, the same resolution
invariant as in characteristic zero can be used also in characteristic p. It suffices
to modify it slightly in some very specific circumstances to make it work again.
The trick lies in subtracting occasionally a bonus from the invarant. This is
a correction term (taking values 1 4+ &, 6, & or 0 for once chosen constants
0 <& < § < 1) which makes the modified invariant drop lexicographically after
each blowup —with a few exceptions, so called quasi-monomials, where a direct
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resolution of the surface can be given (a quasi-monomial occurs if the coefficient
ideal 1s a product of the monomial exceptional factor with a polynomial of order
1 at the given point, see Section 4 for the precise definition).

The classical resolution invariant — consisting of orders of successive coefficient
ideals — and its modification will be treated in Section 9 of this paper. Instead
we will define and work primarily with a new resolution invariant which was
constructed in the thesis [46] of Zeillinger. As in the case of the classical
characteristic zero resolution invariant, its components are related to the successive
coefficient ideals. But instead of measuring the respective orders, we will associate
to each of these ideals a certain “height.” It measures in an asymmeitric manner
the distance of a hypersurface singularity from being a normal crossings divisor.
We prefer this new resolution invariant because its correction term is easier to
define and the induction argument becomes simpler.

The critical case is the purely inseparable equation

G =x + F(y,z2)

with ord(G) = p. The present paper, therefore, concentrates on this situation.
This smooths the exposition, and avoids technical complications which occur if
one wants to extend the argument to arbitrary equations of surfaces (one would
have to work with coefficient ideals as defined in [18] and [16]). Coefficient
ideals correspond geometrically to the projection of the Newton polyhedron of G
from the point x4 onio the vz -coordinate plane (for more details we refer
to [38] and [21] and Remark 6 in Section 4) and yields a resolution problem
which has exactly the same features as the purely inseparable equation.

The surfaces we are considering are embedded in a smooth three-dimensional
algebraic variety over an algebraically closed field K. In general, such a variety
does not admit a covering by open subsets isomorphic to open subsets of A3 .
To simplify the situation we pass to étale neighborhoods and thus work in the
completion of the local rings. This makes the construction of invariants easier and
allows us to restrict to the case that the completion of the local ring at a point is
the quotient of a formal power series ring in three variables modulo a principal
ideal. For simplicity of notation we will assume that this ideal is generated by a
polynomial, ie., that the surface is locally embedded in A3 . The constructions
in the general case are similar.

Therefore we will restrict to the case that /' and G from above are elements of
a polynomial ring R over an algebraically closed field of positive characteristic.
Coordinate changes of the form x +— x 4 v(y,z) can be used to eliminate
p-th powers from the polynomial ¥ without changing, up to isomorphism, the
geometry of the algebraic variety defined by G . Therefore it is natural to work
in the quotient 0 = R/R? of R by the subring R” of p-th powers. Especially,
the problem of the resolution of ( can be transferred to the problem of the
monomialization of F modulo Rf. It appears to be surprisingly difficult to
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extract substantial information on the complexity of the singularities of G from
the knowledge of F up to p-th powers. Of course, any reasonable measure of
complexity should not increase under blowup in smooth centers.

The invariant constructed by Hironaka [26] is built on coordinate independent
data extracted from the Newton polyhedron of the defining equation in local
coordinates. It has the drawback that its improvement under blowup relies on the
choice of an admissible center of maximal possible dimension. Said differently,
when a smooth curve can be chosen as center (because the surface has constant
order along the curve), it has to be chosen, otherwise the invariant may go up
under blowup. It is precisely this restriction which makes it very hard, if not
impossible, to generalize the invariant and the induction argument of Hironaka
to threefolds.

Our resolution invariants will also be constructed from the Newton polyhedron
of G 1n a coordinate independent manner. The first is primarily based on the
measure “height”, which reflects in an asymmetric way the distance of the Newton
polygon of F from being a quadrant. The second builds on the characteristic zero
invariant. In very specific situations — according to special positions of the Newton
polygon in the positive quadrant — these invariants are adjusted by subtracting a
“bonus”.

We shall give a precise formulation and a systematic proof of the following
statement (cf. Theorem 2 in Section 5 and Section 6). The assumption of pure
inseparability is not crucial.

Theorem 1. Let X be a singular surface in A>, defined over an algebraically
closed field of characteristic p > O by a purely inseparable equation of the form

G(x,y,z) = xP + F(y,2)

where F is a polynomial of order = p at 0. Let 1: A3 = A3 be the blowup
of A3 with center the origin, and let w:A% — A2 be the induced blowup of
A? = 0 x A% with exceptional divisor E. Let f be the residue class of F
modulo p-th powers and assume that [ is not a quasi-monomial.

(1) There exists a local invariant i,( f) such that for any closed point ' in E
one has

i (f) <ia(f),
where f' denotes the equivalence class of the transform F' of F modulo

p-th powers.

(ii) Finitely many point blowups transform [ in any point of the exceptional
divisor into a monomial or make the order of G drop below p.
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The invariant i,(f) is defined in Section 4. It can be shown that the set
of closed points ¢ € A% in which f € 0 = R/R” is not monomial consists
of at most finitely many points. Once f is monomial, there exists a simple
combinatorial method to decrease the order of G by finitely many further point
and curve blowups. Note that in contrast to Hironaka’s invariant, which requires
to choose in every step of the resolution algorithm a center of maximal possible
dimension, we always blow up in a point until f is monomial. Only in this
situation curve blowups are possibly needed in order to lower the order of .
Hence we achieve a proof of the following result.

Corollary 1. Finitely many blowups of points and smooth curves will decrease
the order of any purely inseparable singular two-dimensional hypersurface whose
maximum of local orders is less or equal to the characteristic of the ground field.

Singularities of an arbitrary surface X = V(G) in A} with ord(G) < p
can be resolved using the usual resolution algorithm from characteristic zero.
Therefore, Theorem 1 and Corollary 1 imply the following statement.

Corollary 2. Finitely many suitable blowups of points and smooth curves yield
an embedded resolution of a purely inseparable two-dimensional hypersurface
X whose maximum of local orders is less or equal to the characteristic of the
ground field (i.e., the strict transform is smooth and the total transform is a
normal crossings divisor.)

4. The resolution invariant

In the last section we already indicated why resolution of purely inseparable
surfaces G = x? + F(y, z) with ordg(G) = p boils down to the monomialization
of I/ modulo R?, where R denotes the coordinate ring of the affine plane A%
and R? its subring of p-th powers. Therefore we will in the sequel restrict to
the study of polynomials F(y,z) modulo p-th powers.

Denote by R, the localization of R at a closed point ¢ of A? and R,
its completion with respect to the maximal ideal. A regular parameter system
(y,z) of ﬁa will be called a system of local coordinates of R at a. Any
choice of local coordinates (y,z) induces an isomorphism of R, with the
formal power series ring K][[y,z]] corresponding to the Taylor expansion of
elements of R at & with respect to y and z. Therefore, for any residue class
f € R/R?, there is a unique expansion F = Zaﬁ cm‘[gyo“z‘B of f in K|y, z]]
with (o, 8) € N?\ p-N?. This corresponds to considering N? with “holes™ at
the points of p-N?. We shall always distinguish carefully between elements f
in R/R¥ and their representatives F as expansions F(y,z) in K|[|y, z|| without
any p-th power monomials. The dependence of F on the coordinates y and z
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1s always tacitly assumed without extra notation. The passage to the completion
1s necessary to dispose of a flexible notion of isomorphism.

A local flag F in A? at a is a regular element 7 of R, (cf. [23]). Coordinates
(y,z) are called subordinate to the flag if z and h generate the same ideal
in K[[y,z]]. We denote by C = Cr the set of subordinate local coordinates.
Subordinate coordinate changes are automorphisms of K[|y, z]] which preserve
subordinate coordinates. They are of the form (v,z) — (v + v(y.2),z - u(y,z))
with series v(y,z),u(y,z) € K[[y,z]] satisfying d,v(y.0) # —1 and u(0,0) #
0.

We will first define measures which capture the “distance” of the expansion
F(y,z) of f € R/R? at a with respect to fixed subordinate coordinates (y,z)
from being a monomial — up to multiplication by units in K[[y, z]]. Afterwards
these measures will be made coordinate independent in order to establish a local
resolution invariant i,(f) for residue classes f € R/R”.

The Newton polygon N = N(F) of an element F € K]||y,z|| is the
positive convex hull conv(supp(F) + Ri) of the support supp(F) = {(«, ) €
N2\ p-N?:cug # 0} of F. Newton polygons will be depicted in the positive
quadrant of the real plane R?, the y-axis being chosen vertically, the z-axis to
the right (see Figure 2).

7
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5 4
()\II\QIII\QI\II
5 10
Ficure 2

Newton polygon of an element F € K[[y, z]]/K[[y, z]]¥ with p = 5.
The monomials of K[[y,z]]? are indicated by “holes” o at the points of p-N?2.

Let A C N2\ p-N? be the set of vertices of the Newton polygon N of
I, i.e., the minimal set such that N = conv(A + Ri). The order of I at O is
defined as

d(F) = mi ;

)= R MR
i.e., as the order of F as a power series in K|[[y,z]]. Note that ord(F) takes
the same value for all coordinates (y,z) € C, it thus depends only on f and
a. It will be called the order of f € R/R? at a, denoted by ord,(f). The
initial form fg of f at a is the residue class of f modulo m¢*!, where
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d = ord,( f) and m denotes the maximal ideal of R at a. Given y and z it
is induced by the homogeneous form Fy of lowest degree ¢ of the expansion
Fof fosay F=F;+ Fg41+ ..., with Fy # 0. Furthermore denote by

dy(F) = mi
LU= s

the order of F with respect to y (symmetric definition for ord,(F)). This is
just the order of vanishing of F along the curve y = 0. We call

dee (F) =
eg, (F) (J,%%}QA o

the degree of I with respect to y (symmetric definition for deg,(F)).

Remark 1. Let (o, 8) be the vertex of N whose first component has the largest
value among all vertices of A. Then the series ﬁ(y, z):=z"P.F(y,2) € K[|y. z]]
is regular with respect to the variable y, with pure monomial y%. By the
Weierstrass Preparation Theorem F (v,z) equals, up to multiplication by a unit
U(y,z) € K][[y.z]]*, a distinguished polynomial P e K]|[z]|[y] of degree
« with respect to the variable y, ie., P(yv,z) = U(y,z)- F(y,z), where
P =y%+c1(2)y* 1 +---+cu(2), ¢; € K||z]], denotes a polynomial of order «
at 0 with respect to y. As « may be larger than the order of F, the coefficients
¢;(z) may have order < i at 0. Up to multiplication by a unit in K[|y, z]]*,
also F(y,z2) =28 - F(y,2) = U(y.2) ' 28 . P(y.z) is a polynomial of degree
o with respect to the variable y. Therefore it is justified to call « the degree of
F with respect to y. Note that we also have deg,(F) = ord, (ﬁ(y, 0)).

=
1

Ficure 3
The values deg,, (F), ord, (F) and height(F) of a polynomial F
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We define the height of F as
height(F) = deg, (F) — ord, (F).

This value clearly depends on the coordinates. It describes the vertical extension
of the bounded edges of the Newton polygon (see Figure 3) and will constitute
(up to a correction term) the first component of our resolution invariant.

Remark 2. Set & = ord,(F) and § = ord,;(F), so that F factors into F(y,z) =
y*zP . H(y,z) with some polynomial H which does not vanish identically along
the two curves y = 0 and z = 0. Then, clearly, height(F) = deg, (F)—ord, (F)
is just the order of H(y,0) at 0, ie., the order at O of the restriction of H to
the flag F defined by z = 0.

Analogously, we define the width of F as
width( F) = deg,(F) — ord, (F),

where deg, (F') = max(, gyes B and ord;(F) = ming gyes p. We call F a
quasi-monomial if width(F) =1 and ord, (F) = 0. The respective singularities
admit a simple resolution, see Remark 12 in Section 6.1. A similar notion appears
in Hironaka’s recent program for the resolution of singularities in characteristic
p > 0; see [27].

It N is a quadrant, we set the slope of F equal to slope(F) = oo. Otherwise,

we define it as
45

slope(F) = (B2 — B,

where (o, f1) and (w2, f2) denote those elements of A whose first components
have the highest respectively second highest value among all vertices of 4 (see
Figure 4). It 1s thus —a; times the usual slope of the segment connecting the two
points (a1, B1) and (w2, B2). It will be the second component of our resolution
invariant.

As we will see in Section 6.1, especially in Lemma 3 and in the example given
in Remark 11, the height can increase under blowup in some special situations.
To correct this drawback, we will have to consider the position of the Newton
polygon: call F adjacent if ord,(F) = 0, close if ordy(F) =1, and distant if
ordy (F) > 2. The bonus of F is set equal to

01 — 02

1 +4 if F adjacent,
bonus(F) = q¢ it F close,
0 if F distant,

where 6 and & denote arbitrary constants 0 < & < 6 < 1. Note that all these
definitions break the symmetry between y and z. Then we define the infricacy
of F as

intricacy( £') = height(F) — bonus(F).
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Ficure 4
slope(F) of F

We now associate these items in a coordinate independent way to residue
classes f in R/R? . For any choice of local coordinates (y,z) at @ € A?, take the
unique expansion F = Zozﬁ c,‘m‘fgy"iz‘8 of f in K[[y,z]] with (a, 8) € N2\ p-N2.
Let F be a local flag at a fixed throughout, and C = C» the set of subordinate
local coordinates (y,z) in R at a. Note that the highest vertex ¢ = (o, §)
of N = N(F) does not depend on the choice of the subordinate coordinates,
i.e., that any coordinate change subordinate to the flag F leaves this vertex
invariant. Hence deg, (F) takes the same value for all subordinate coordinates.
For f € R/R? with expansion F = F(y,z) at a with respect to (y,z) € C
we set

height ( /) = min{height(F):(y,z) € C}
= deg, (F) — max{ordy(F): (y,z) € C}
and call it the heighr of f at a. This number only depends on f, the point a
and the chosen flag F .
We say that f is monomial at a if there exists a (not necessarily subordinate)
coordinate change transforming F into a monomial y®z® times a unit in

K||y. z]]. Note that this is in particular the case if height,(f) = 0 (whereas the
converse is not true).

Remark 3. A simple computation shows the following statement: if f is adjacent
and not monomial at «, then height,(f) is at least equal to 2.

By definition, bonus(F') takes the same value, bonus,( f), for all coordinates
realizing height,(f), because ord, (F) does. We conclude that

intricacy,( f ) = height,( ) — bonus,( f)
= min{height(F) — bonus(F): (y,z) € C}
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only depends on f € R/R¥?, the point ¢ and the chosen flag F. This will
be the first component of our local resolution invariant. It belongs to the well
ordered set Ng , = N —4-{0,1} —-{0,1}. As we mostly consider fixed points
we omit the reference to a and simply write

intricacy( f) = height( /) — bonus( f).

The second component of our local resolution invariant is given by
slope, ( f) = max{slope(F): (v, z) € C with height(#) = height_( f)}.

It is called the slope of f and also only depends on f € R/R¥, the point
a and the chosen flag . Again we omit the reference to @ and simply write

slope(f).

The local resolution invariant of f € R/R? at a with respect to the chosen
flag F is defined as

ia(f) = (intricacy, (1), slope, (f)).

We consider this pair with respect to the lexicographic order with (0,1) < (1,0),
and call it the adjusted height vector invariant of f at a. Sometimes we shall
write i,(f,F) in order to emphasize the dependence on the flag.

Remark 4. Note that height ( /) and slope,( f), which are the main ingredients
of our local resolution invariant, and the primary measure ordy((G) are all of the
same type (see Figure 5). The order of G(x,y,z) at a point b equals in the
purely inseparable case G = x# 4+ F(y,z) with ord(F) = p the height of the
Newton polyhedron N(G) C N? with respect to the variable x, cf. Figure 5.
Furthermore the coefficient ideal of G(x, y, z) with respect to x = 0 is generated
by the polynomial F(y,z). And height( ) measures the (minimal) height of the
Newton polygon N(F) C N2 of the polynomial F with respect to the variable
y. Finally the slope of I* can be thought of as a certain height of the Newton
polygon in N of the coefficient ideal of F in y = 0.

Remark 5. Apparently, Abhyankar has considered an invariant which is similar
to our i,(f); see Section 7 in [2] and Definition 7.3 in [15]. He treats the more
general case of arbitrary monic polynomials of order a power of the characteristic.
In the case of purely inseparable polynomials of order p, his case distinction
1s very close in spirit to ours (though there are more cases in [2]); his bonus,
however, is slightly smaller {(equal to 1 if ¥ 1is adjacent, and 0 otherwise),
which implies that the invariant drops less often (but the definition still ensures
that it does not increase). The case of constancy of the resolution invariant may
therefore occur more often; this requires to take into account additional invariants
to show that the situation improves under blowup.
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ord(G)

height(F)

FiGuRre 5
The measures ord(G), height(#) and slope(F')

Remark 6. There also appears a similarity to the invariant of Hironaka [26]
and [22]. Let g be an element of the coordinate ring § of A3 and let
G = ¥ (v,z)x' be the expansion of g with respect to a local coordinate
system (x,y,z) at the point » € A3 Let d be the order of g at b. After
a generic linear coordinate change we may assume that ¢z(0,0) # 0. Due
to the Weierstrass Preparation Theorem there exists an invertible power series
u(x,y,z) such that u-g = x4 4+ 3, _,cl(y.z)x'. Now let N,,(G) € Q2
be the projection with center (d,0,0) of the Newton polyhedron N(G) of G
onto the yz-plane. Note that this projection extends the induction argument to
arbitrary surface equations and their associated first coefficient ideal instead of
dealing only with purely inseparable surface equations. Let « = (oy, ;) and
f = (By.B:) denote those vertices of N,.(G) whose y-components have the
largest respectively second largest value among all vertices of N,.(G) (in case

that G is not monomial). Furthermore let syg = zi :“g;’ € Q_ be the usual slope

of the segment from o to §. Then Hironaka defines the following rational vector

Tb.(x.y.)(G) = (0rdg(g), oy, Sup, 0ty + @z) € QY.
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To obtain a coordinate free definition, choose subordinate coordinates for the
chosen flag which maximize (o, wy,Sy8. %y + @) with respect to the lexi-
cographic order. Now the resolution invariant is given as ip = fp(xy.2) =
(ordg(g). oy, Sap. 0y + @), where (x,y,z) denote such maximizing subordinate
coordinates. Additionally to the difference in the definition of the invariants in
the approach of Hironaka and ours, another crucial distinction lies in the choice
of admissible centers. More precisely, whereas we always blow up in a point
until G is of the form G = x? + y"z" A(y,z) with A(0,0) # 0 (and then also
allow smooth curves as centers) or until ord((;) has dropped, Hironaka has to
distinguish in each step whether the top locus of g contains a smooth curve or
just consists of isolated points. In order to show the decrease of the invariant, he
then has to choose the largest possible smooth center. This restriction makes it
difficult to generalize the method and the invariant to higher dimensions.

Remark 7. The resolution invariant could also be defined differently. First, instead
of adding ¢ and & to the bonus, one could take the intricacy minus O or 1,
but add to it a new component, which captures the adjacency. Its value would
be —2 for being adjacent, —1 for being close, and 0 otherwise. The treatment
of quasi-monomials would have to be revised.

Secondly, one could take the minimum of the height over all coordinates,
and not just those subordinate to a flag. In fact, the minimum has always to be
realized before the blowup, so the restriction to triangular coordinate changes is
of no help. However, for the slope (which is a maximum), subordinate coordinates
may be necessary. Observe here that for arbitrary polynomials of order p, one
has to take first a maximum to define a suitable coefficient ideal and then its
height. For instance, one could first maximize the exceptional factors and then
take the resulting height as a minimum.

Thirdly, back in the purely inseparable case, if we assume having factored an
exceptional monomial from F, one could take the height as the minimum over all
coordinate changes. But then, applying a generic linear change (v, z) — (v, z+{y)
we would always fall back on the order (say, in the terminology of Hironaka,
the residual order). So it seems that the height is not so far away from the order
of the coefficient ideal.

Finally, let us comment on the choice of the bonus. The crucial datum which
bounds the height or the order after blowup under a translational move is the
“volume” of the initial form Fy; of F, say the number d —r —s where y'z*
denotes the maximal monomial which can be factored from F; in suitable
coordinates (not from F'). By the characterization of wild singularities we know
that an increase of the height or order can only occur when d is a multiple of
the characteristic. In this case, = 0 does not occur, since z¢ is a p-th power
and does not count. But if Fy is not a monomial (and still 4 is a multiple of
p), also the monomial yz¢~' can be eliminated by a linear coordinate change,
so that the volume of F; is always <d —2 —s if a preliminary » would be
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0 or 1 (say, if Fy in given coordinates is adjacent or close). This argument
is not valid if 4 is not a multiple of p, but in this case no increase of the
height or order occurs (nevertheless, if the height or the order remain constant, a
secondary measure has to be considered and shown to decrease. This is still an
open question. )

All this suggests to measure in the bonus the difference of the height/order
of the initial form Fy and the height/order of F. Here, the congruence of d
modulo p comes into play, as well as the location of Fy with respect to the
Z-axis.

5. Logical structure of the proof of Theorem 1

We sketch in this section the reasons for the decrease of the adjusted height
vector under point blowup, i.e., the proof of Theorem 1 (the details come in the
next section). Due to the definition of the invariant, this will immediately imply
the local monomialization of F(y,z) modulo p-th powers, from which there is
an easy combinatorial way to decrease the order of the purely inseparable surface
equation ¢ = xf + F(y,z) by finitely many further point and curve blowups
(Section 8). Together with the study of the non-monomial locus in Section 7, this
will also establish Corollary 1.

Before explaining the overall strategy we specily the statement of Theorem 1.
Let a be a closed point of A2 and let F be a fixed local flag in A% at a. Let
m: A% = A2 be the blowup with center a and exceptional divisor £ = 7~ 1(a).
The flag F at a induces in a natural way a flag F’ at any closed point &’ of
E by setting

i JF¥ fat € BN,
E ifad ¢ ENFS,

where F° denotes the strict transform of F under & (for more details see [23]).

Denote by R’ the respective Rees algebra of the coordinate ring R of AZ2,
say

R = @ w*,
k>0

where m denotes the maximal ideal of R defining a. Denote by f' € R'/R'?
the strict transform of f under m, defined as the equivalence class of the strict
transform F’ of a representative F of f. It is a simple task to check that f’
is well defined, i.e., does not depend on the various choices. Thus we dispose of
the adjusted height vector iy (f', F’) of f’ at all points ¢’ of E. Theorem 1
then reads as follows.
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Theorem 2. (i) Let F be a polynomial in two variables v,z over an algebraically
closed field of characteristic p > 0. Denote by f the residue class of F modulo
p-th powers and assume that [ is not a quasi-monomial at a given closed point
a of A2. Fix a local flag F in A% at a. Let 1:A% — A2 be the point blowup
with center a and exceptional divisor E = w~Ya). For any closed point a' in
E, denoting by f' and F' the transforms of f and F in A2, the adjusted
height vector i,(f, F) of f at a with respect to F satisfies

ia(f". F) <ia(f. F).

(i) Let X be a reduced two-dimensional closed subscheme of a smooth three-
dimensional ambient scheme W of finite type over an algebraically closed field
of characteristic p > 0. Let b be a singular closed point of X of order p.
Assume that X is defined in local coordinates of W at b by a purely inseparable
equation of the form

G(x,y.z) = x + F(y,z2).

Finitely many point blowups transform X into a scheme which, locally at
any point of order p above b, can be defined by an equation G(x,y,z) =
x? + F(y,z) with F a monomial.

Remark 8. It is easy to see that it doesn’t make any difference in proving
Theorem 1 if we work with the strict transform f’ or the total transform f*
of f under the point blowup 7, because their Newton polygons differ just in a
displacement by p units in either the y - or the z-direction (depending on the point
a’ of E). The measure height is hence the same for both transforms. Moreover
such a displacement may only increase the adjacency and consequently decreases
the intricacy, i.e., intricacy(f’) < intricacy( f*). Furthermore the measure slope
1s, as we will see, only needed in the horizontal move (see below) and in this
situation slope( f’) = slope( f*) holds. And since computations are simpler when
using the total transform f*, we will show that i, (f*) < i,(f), which then
immediately implies iy (f') <iz(f).

Remark 9. The transformation of the equation of our original surface G(x,y,z) =
x? 4+ F(y, z) under blowup of A3 ina point b = (b1, a), fulfilling ords(G) = p,
can be read off from the transformation rule for F under the point blowup =
of A% in a as follows. Let (y,z) and (x,y,z) be regular parameter systems
of the local rings R, and S; of A% at a and A3 at b. Furthermore, de-
note by F(y,z) respectively G(x, y,z) the expansions at ¢ and b of elements
f € R/R? and g € § with respect to the chosen local coordinates. With g*
and g’ € §’ we denote the total respectively strict transform of g € §, where S’
denotes the Rees-algebra of S corresponding to the blowup of A3 in b. The

chart-expressions for the total transform of G under the blowup r:;ii?( — A%
with center »h = 0 look as follows:
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x-chart: G*(x,y,z)=xP- (1l +x"PF(xy,xz));
y-chart: G*(x,y,z) =y? - (x? + y PF(y,y2));
z-chart: G*(x,y.z)=z? - (x? +z7PF(vz,2)).

The x-chart can be discarded since the strict transform of the surface does not
pass through its origin which is the only point of the x-chart not contained in
the y- or z-chart. In the y-chart (and symmetrically in the z-chart) either
ord(g’) < ord(g) = p and we are done, or ord(g’) = ord(g) = p, say
ord(y=? F(y,yz)) = p, hence G'(x,y,z) = x + y P F(y, yz) is of the same
type as G. Since multiplying F(y,yz) by y~# again has only the effect of a
displacement when regarding the corresponding Newton polygons, it is sufficient
to study the total transform of F under the blowup 7 of A% with the two chart
expressions F*(y,z) = F(y,yz) and F*(y,z) = F(yz,z).

Fix subordinate coordinates (y,z) € Cx at the closed point a € A%{ realizing
the height of f, ie., satisfying

height(F) = height( 1),

where F(y,z) denotes the expansion of f € R/R? with respect to ¥y and z.
Let @’ € E = 7~ !(a) be a point above a. There then exists a unique constant
t € K such that the blowup R, — R/, is given either by

v, 2)F— (yz+1z,z) o (y,z)— (¥, y2).

Accordingly, and distinguishing between ¢ = 0 or not, f * has expansion F* in
R, = K][[y.z]], where (y,z) now denote local coordinates subordinate to the
induced flag F' at o', given by the following formulas:

(T) translational move: F*(y,z)= F(yvz +1tz,z), t € K*,

(H) horizontal move:  F*{(y,z) = F(yz,z),
(V) vertical move: F*(y,z) = F(y,yz).

The naming of the moves (H) and (V) stems from the corresponding
transformations of the Newton polygons. Note that there could be several different
subordinate coordinates in Cx realizing the height of f . If possible, we will
choose among all these minimizing subordinate coordinates a pair (y,z) € Cr
in which the blowup R, — R’, is monomial (moves (H) and (V).

The subtlety of the proof that the adjusted height vector drops under blowup
for all points a’ € £ is due to the fact that the three moves change the Newton
polygon in pretty different ways. The invariant has to drop lexicographically under
all these moves. The key ingredients for this are the following ones.
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Under translational moves, the height can at most increase by 1 (by Moh’s
bound), and if it does, the Newton polygon was not adjacent before the blowup
(by Hauser’s description of the kangaroo phenomenon), but must be adjacent
afterwards (by the definition of the height).

Under horizontal moves, the height cannot increase (because the vertices of
the Newton polygon move horizontally), the adjacency remains the same (for
the same reason). Moreover, in a sequence of horizontal moves, the height must
eventually drop (because the slope decreases in each move for which the height
remains the same).

Under vertical moves, the height decreases at least by 2 (by a simple
computation, with the exception of quasi-monomials), and the polygon may quit
being adjacent or close.

From these observations it is straightforward to see how the bonus has to
be defined (in dependence of the adjacency) so that one obtains a decrease of
the adjusted invariant under each blowup. Take value 0 for f distant, & for f
close, 1 4+ 4 for f adjacent, with & < §. This choice yields an adjusted height
vector that interpolates the “graph” of the original height vector over a sequence
of blowups by a strictly decreasing function. Induction applies!

Let us see this argument in more detail. Let ¢ and ' be fixed, and recall
that intricacy(f) = height( f) — bonus( f); see Section 4. If there don’t exist
subordinate coordinates at a realizing the height of f and so that the blowup
is monomial (i.e., if the translational move (T) is forced), then one always has

intricacy( f*) < intricacy( f),
where f* denotes the equivalence class modulo p-th powers of the transform
F'(y,z) = F(yz +1z,2)

with 7 # 0.

Next assume that one can choose subordinate coordinates (y, z) at ¢ realizing
the height of f such that &’ is one of the two origins of A?, say cases (H)
or (V) given by monomial substitutions occur. We then have

intricacy( f*) = height({ f*) — bonus( /™) < height(F*) — bonus(F*)
< height(F) — bonus( F)
= intricacy( f ),

except for very special situations where f is a quasi-monomial (these can be
resolved directly; see Section 6.1). Moreover, excluding these exceptions, the
inequality is strict for move (V). In case of equality

intricacy( f*) = intricacy( 1)
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when applying move (H), we use the second component of the invariant and
show first that

slope(F™*) < slope(F) < slope(f).

Realizing slope( f*) is by definition done by maximizing slope(F*) over all
coordinate choices subordinate to the flag G at a’. It has to be shown that the
necessary coordinate change ¢’ at @’ stems from a coordinate change ¢ at a
subordinate to J (see Section 6.2). Or said differently, one has to prove that the
following diagram commutes, where (v,z) denote local subordinate coordinates
at ¢ and where the blowup n: R, — ﬁ;, is given by (v, z) + (yz,z) (inducing
subordinate local coordinates to the flag J” at a’ on R;,)

and ¢'(y,2) = (y + A(2).2), ¢(y.2) = (y + A(z) - z.z) with 4 € K[[z]].

The general behavior of the height is illustrated in Figure 6: it may increase
in one step (but only under translational moves), but decreases in the long run
of the resolution process.

6. Proof of Theorem 1

We show in Section 6.1 that the first component of the adjusted height vector
io(f) = (intricacy( f ), slope( f)) does not increase under point blowup (except
for quasi-monomials). In Section 6.2 it is shown that if the intricacy remains the
same, the second component of i,(f) decreases.

6.1. Non-increase of the intricacy. The key argument in proving Theorem 1 is
the following one.

Proposition 1. Ler f be an element of O = R/R?, which is not a quasi-
monomial at a given closed point a of A%. Fix a local flag F in A® at a and
denote by F' the induced flag at o' € E. Let F € K||y, z]| be the expansion of
| with respect to subordinate coordinates (y,z) € Cr realizing the height of f .
Furthermore let F*(y, z) be one of the transformations F*(y,z) = F(yz+tz,z),
with t € K, or F*(y,z) = F(y,yz) and let f* be the corresponding element
in R'/R'P. Then
intricacy( f*) < intricacy(f).
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FIGURE 6
Possible behavior of the height under blowups
(7 denotes height( /), k& the number of blowups);
an increase can only occur under translational moves

Moreover, if the translational move (T) is forced, or if theve exist subordinate
coordinates realizing the height of f such that the blowup R, — R/, is given
by move (V), then

intricacy( f*) < intricacy(f).

Recall that adjacent series ¥ with width(F) = 1 are called quasi-monomials.
Quasi-monomials are not resolved directly, but if F is such, the order of G is
decreased by line blowups. Note that by the minimality of the height, there is no
need to realize the height of f* in R'/R?. The proof of Proposition 1 falls
naturally into three parts corresponding to the three different moves (T), (H),
and (V) defined in Section 5.

(T) Translational moves. The goal of this paragraph is to show Proposition 1
for the translational move F*(y,z) = F(yz +¢z,z) with { € K*. In particular
we prove: the intricacy decreases if there don’t exist minimizing subordinate
coordinates such that ¢’ € E is one of the origins of the two charts of the
blowup. Since situations where a translational move is required are the most
delicate ones, this section provides the main arguments for proving Theorem 1.
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In the following d = ord( f) denotes the order of f in @ and fy its initial
form. Furthermore the parity par(d) of d is set as 1 if d =0 mod p, and O
otherwise.

In the sequel it will be assumed throughout that there don’t exist subordinate
coordinates at @ realizing the height of f such that the blowup R, — ﬁ; , 18
monomial. Or said differently, there don’t exist minimizing subordinate coordinates
at a such that ¢’ € E is one of the origins of the two charts of the blowup. In
this situation the total transform f* of f under the blowup = is given as the
equivalence class of the transform F*(y,z) = F(yz +1tz,z), where t € K*, of
a representative F(y,z) of f with height(F) = height( /). Fix such minimizing
subordinate coordinates (y,z) € C» and denote by F(y,z) in the sequel always
the expansion of f with respect to these chosen coordinates.

Remark 10. It can be easily verified that the situation ord,(F*) > ord,(F)
cannot occur. This is due to the fact that the transformation (y,z) — (yz+1z,z)
with 1 # 0 can be decomposed into a linear subordinate coordinate change
(y,z) = (v + 1z, z) followed by a horizontal move (y,z) + (yz,z). Due to the
minimality of height(F) (which corresponds to the maximality of ord,(F)), the
first one does not increase the order with respect to the variable y. The second
transformation clearly preserves it.

Moreover, in the case that ord,(F*) = ord,(F) the same argumentation
shows that there exist subordinate coordinates realizing the height of f such
that the blowup can be rendered monomial. By the assumption at the beginning
of this section, one would thus choose these new minimizing coordinates and
would hence be left with the examination of a horizontal move (see Paragraph (H)
below).

Altogether this shows that for the study of translational moves it suffices to
investigate the situations where ordy (F*) < ordy (F).

The proof of Proposition 1 in the case of translational moves is divided into a
series of lemmata. Recall that the adjacency adj(F) of F is 2, 1 or 0 according
to F being adjacent, ordy (F) = 0, close, ordy (F) = 1, or distant, ord,(F) = 2.
By definition, adj(F) takes the same value, adj( /), for all coordinates realizing
height( /'), because ord,(F) does.

Lemma 1. Every F satisfies
height(F) = deg, (F) — 2 + adj(F).
Proof. This is clear from the definitions. O

The next result is due to Moh (cf. Proposition 2, p. 989 in [38], or Theorem 3
in [21]).
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Lemma 2. Let F; be homogenous of degree d. Set F;(y,z) = Fgiy +-ta,z)
with t # 0. Then
ordy (F) < height(Fy) + par(d).

Proof. (a) First we consider the case par(d) = 1. Let Fy have height(Fy) =k
and represent it as

k
Faln )= ) ey igtH
=0

with ¢; € K, ¢co,cp # 0, kymon € N, k < m and m 4+ n = d. Set
v = ordy(F;).

First observation. The term y"™ %z" divides Fy, hence F;‘ e 2 [y 4 i,
By assumption m +#n € p-N and (m —k,n + k) ¢ p-N?, which implies
m—k ¢ p-N. Therefore

ByF;' € z*(y + rz)y" 1
Second observation. There exists a polynomial D with D(0,z) # 0 and
Ff(y.2) =y" D(y,2).

Since v ¢ p-N (otherwise the monomial y¥z¢~¥ occurring in the expansion of

F;‘ would be a p-th power and thus ord, (¥ ;‘ ) > v), it follows that
W Ff =vy' ' D(y,2) + y°8,D(y.2) # 0,

and therefore
I FFe(yy .

Combining these two observations leads to

WEF ez y +ez)"F ny)yrh
But 7 #£ 0 and thus

O FF e z™y +1z)"F 1 (y)P7
Since ord(F;') =m +n and ByF; # 0 it follows that

n+m—k—-14+v—-1<m+n-1.
Hence v <k + 1 as required.

(b) In the same manner as in (a) one can see that in the case par(d) = 0
one gets F;’ € z"{y +tz)"* and F;’ € (y)?. Combining this and using 7 # 0
results in

Flezy+1zy"*.(y)"

From this it follows that v < k. O



Embedded resolution of surface singularities in positive characteristic 203
Lemma 3. Ler F*(y,z)= F(yz +1tz,z) with t #0 and d = ord(F). Then
deg, (F*) = height(Fy) + par(F).

Proof. Write F as F(y,z) = Fg(y,z) + H(y,z) with H € K|[[y,z]] and
ord(H) > d. Furthermore represent Fy as in the proof of Lemma 2. Since
t #0 one gets for F*

k
F*(y,z) = Zc,-(yz +t2)™ 2" 4 H(yz + 2, 2)
i=0

e
= Zd-Zc}yj + H(yz +1z,z).

[0 =:B(y.2)

=:A(y.2)

It is obvious that ord(4) > d = m 4+ n and ord,(B) > d. Moreover the last
lemma implies ord,(A4) < height(Fgz) + par(d) = k + par(d). Therefore there
exists an integer j € {0,1,...,k + par(d)} such that c?;. # 0. Let [ be the

smallest. Then A can be written as A(y,z) = z¢ Z?i:l c}yf. It follows that
deg, (F*) =1 =k + par(F) = height(Fy) + par(F). ]
Remark 11. The inequality of the previous lemma is sharp! Take for example

p=2and F(y,z) = y°z + y3z° + y3z®. Then we have height(F;) = 2 and
F*(y,z) = F(yz +1-z,z) with deg,(F*) =3 (see Figure 7).
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Ficure 7

F(y,2) =¥z +y3z% 4+ y3z% with height(F) =2
and F*(y,z) = F(yz +1-z,z) with deg,(F*) =3
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Proposition 2. Let [ be an element of R/RP. Suppose there don’t exist
subordinate coordinates realizing height(f) such that the blowup R, — R/,
is monomial. Then

intricacy ,, ( f*) < intricacy ,( f).

Proof. Due to Remark 10 it is sufficient to show the result for the following
situations:

£ r*
distant —  distant
distant — close
distant — adjacent

close — adjacent

Combining Lemmata 1 and 3 gives
intricacy( f*) < height( F*) — bonus(F™*)
< (deg, (F") — 2+ adj(F™)) — bonus(F*)
< (height(Fy) + par(d)) — 2 + adj(F™) — bonus(F™*)
< height(F) — (2 — adj(F*) + bonus(F*) — par(d)) =: (A).

Since by assumption & < §, one can deduce that in the four situations described
above
(A) < height(F) — bonus( F)

holds. Consider for instance the situation where F is close and F* is adjacent.
In this case (A) = height(F) — (1 4+ § — par(F)) < height(F) — e = intricacy( f)
as required. O

(H) Horizontal moves. The goal of this section is to prove that the intricacy
does not increase for the horizontal transform F*(y,z) = F(yz,z). We assume
that (y,z) € Cr are chosen in a way such that height(F) = height( f) and
such that the total transform f* of f under the blowup 7 has expansion
F*(y.z) = F(yz,z) in R}, = K[|y, z]]. It is obvious that
height( F*) < height(F)
(with height(F*) < height(F) if the Newton polygon N(F) of F contains an
edge whose angle with the horizontal line is bigger than or equal to 45°). And,
clearly, by moving horizontally the adjacency and hence the bonus remain the
same. This immediately implies that
intricacy( f*) = height( f*) — bonus( /™) < height(F*) — bonus(F™)

< height( ') — bonus(F) = intricacy( f)



Embedded resolution of surface singularities in positive characteristic 205

is fulfilled for all f € Q.

(V) Vertical moves. In this section it will be shown that under vertical
moves elements f € ¢ = R/R? which are not quasi-monomials satisfy
intricacy( f') < intricacy( f). Assume that the subordinate coordinates (v, z) € Cr
are chosen so that height(F) = height( f). The total transform f* of f is given
as the equivalence class of the transform F*(y,z) = F(y,vz) of F. As the
intricacy 1s a minimum it suffices to show that

intricacy(F*) < intricacy (F).

Since F is not a monomial we know that height(#) > 0, from which a one-line
computation yields

height(F*) < height(F) — 1.

By the definition of the bonus it follows that intricacy(F*) < intricacy(F) except
possibly if F is adjacent and height(F*) = height(#) — 1. This equality only
occurs if width(F) = deg,(F)—ord;(F) equals 1, ie., if F is a quasi-monomial.

Remark 12. In the case of width 1, we may assume, by prior line blowups with
center the z-axis, that ord;(F) < p. This combined with width(#) =1 and F
adjacent implies that F has a pure y-monomial y™ with m < p (cf. Figure 8).
But m = p is not possible because F has its exponents in N2\ p- N2, and
m < p implies that the order of f (and hence () has dropped below p. So
quasi-monomials are handled by applying suitable line blowups. We conclude that
under vertical moves either the order of G drops or intricacy( f') < intricacy( f).

’ A
we |[o e 0o | o el
] ONCEY - i - N(FT)- -
C>I IX%”. .I I.Q.I \. I.I E)\ T IQ\ T \QI 1T
5 o - 5 wm -

FIGURE 8
Configuration where the intricacy increases under blowup
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6.2. Decrease of the invariant. In order to prove Theorem 1 it remains, due to
Proposition 2 of Paragraph (T) in Section 6.1, to show that all f € Q = R/R?
that are not quasi-monomials (which can be resolved directly, see paragraph (V)
of Section 6.1) fulfill

(1) (intricacy( f*), slope( f*)) <iex (intricacy( /), slope( f)),

where f* is given as the equivalence class of one of the transforms F*(y,z) =
F(yz,z) or F*(y,z) = F(y,yz) of a representative F(y,z) of f with
height(F') = height( f).

For the purpose of proving (1), fix throughout this section subordinate
coordinates (y,z) at a realizing the height of f such that ¢’ € E is one of the
origins of the two charts of the blowup z. Then the total transform f* of f
under 7 is one of the transforms F*(y,z) = F(yz,z) or F*(y,z) = F(y,yz)
of F(y,z).

Due to Proposition 1 of Section 6.1, all elements f € ( which are not
quasi-monomials satisty intricacy( f*) < intricacy( /). Hence one is left with the
case that

(2) intricacy( f*) = intricacy( f).

Since (2) does not occur when applying translational or vertical moves, it suffices
to consider the horizontal move F*(y,z) = F(yz,z). It is obvious that then (2)
can only happen if the Newton polygon N(F) of F consists just of edges whose
angle with the horizontal line is smaller than 45°. But in this case the vertices of
N(F) with the highest respectively second highest first component transform into
vertices of the Newton polygon N(F*) of F* with the same property. Moreover,
then
slope(F*) = slope(F) — ay < slope(F),

where (oq, f1) denotes the vertex of N(I') whose first component has the highest
value among all vertices of A. Now assume that slope(f*) > slope(F™*). Then
there exists a coordinate change ¢’ which is subordinate to the flag G at @’ such
that

height(¢'(F*)) = height(F*) and slope(p'(F™)) > slope(F*).

One can assume that ¢’ is of the form
¢ (y,2) — (y + A2).2)

with A € K||z]|], ord(A) > 1 (if would A depend also on y, the respective
terms have no effect on the slope). Let ¢ be the coordinate change subordinate
to the flag F at a given by

p:(y,2) —> (y + z- A(2),z).
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Then the computation

@' (F*(y.2)) = ¢'(F(yz,2))
= F((y + A(2))z, 2)
= (F(y + zA(2), 2))*
= (p(F(y,2))"

shows that the necessary coordinate change ¢’ at ¢’ stems from the coordinate
change ¢ at a and that when applying ¢ and ¢’ the blowup remains mono-
mial. In other words, if one realizes slope(f*) after applying the blowup by
slope(@’(F*)), then slope(¢(F)) automatically realizes slope(f). And conse-
quently slope( f*) < slope(f). This proves Theorem 1.

7. Proof of Corollary 1

Recall that our strategy for improving the singularities of a purely inseparable
two-dimensional hypersurface

G(x,y,z) = x* + F(y,z)

of order equal to the characteristic is the following one: as long as the equivalence
class f of F in Q = R/R? is not a monomial in a certain point b = (by,a)
in A with ordy(G) = p, we blow up A3 with center Z = {h}. Due to
Theorem 1 this point blowup improves the situation (except in the case that
f is a quasi-monomial, which can be resolved directly, cf. Section 6.1) in
the sense that iy (f') < is(f) for all points ¢’ € E = 7~ (Z) above a,
where i,(f) = (height,( /) —bonus,( f),slope,( f)) denotes the local resolution
invariant defined in Section 4. One can hence deduce by induction that point
blowups eventually lead to height,(f) = 0, ie., that f is monomial. This is a
combinatorial situation: in Section 8 it is shown that in this case the order of the
surface can be decreased by finitely many further point and curve blowups.

To ensure that finitely many point blowups suffice to transform f in every
point @ € V(G) into a monomial, it will be shown in this section that there
are only finitely many closed points b = (by,a) on V(G) where f is not
monomial in ¢ (and ordp(G) = p). This establishes the termination of the
algorithm described above.

The result will be proven in two steps. First it is shown — already for arbitrary
dimensional purely inseparable hypersurfaces X with order equal to p — that
the subset of X containing those points b where the coefficient ideal is not
monomial (and the order of X in b is equal to p) is Zariski-closed. Afterwards
this result will be used to prove that in the surface case there are only finitely
mamny such points.
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Proposition 3. Let G(x,y1,...,¥n) = XP4+F(yy,...,yn) with F € K[y1,..., Vn]
and where F is not a p-th power. Denote by y the n-tuple of variables
(¥1,---> Yn). Then the set of closed points b = (0,a1,...,a,) € A}g"” such that
there exist a local formal coordinate change ¥ at b of the form

(X, 1, Ve) o (X = HY), a1(y), - an(Y),
where H € K||y]] and

(V155 yn) = (@), - en(Y)
is an element of Auw(K|[y]]). and a unit u € K||y||* with the property that

Gy (x,y) +b) = xP +u(y)-»*

for some vector p € N"\ p-N", is Zariski-open in {0} X A%.

Proof. The assertion of the proposition is clearly equivalent to the statement that
the following set is Zariski-open in A% :

mon(F) := {a € Ak:there exist ¢ € Aut(K|[[y]]). H € K[[y]]. u € K[[»]]"
such that for some § € N\ p-N",

Fl(y) +a) = u(y)-y# + H(»)P).

Note that if a series A € K|[|y]] factors into a monomial times a unit U € K|[|y]|*,
Le.,

A(y) =U(y) - ¥?,

where at least one of the components of y is not a multiple of the characteristic
p of the ground field K, then there exists a coordinate change = € Aut(K|[[y]])
such that

A(z(y)) =y
This is due to the fact that a unit U/ € K[[y]]* has an r-th root UY" in K[[y]]*
if (v, p) =1 (and can for example be deduced from Lemma 4.2 in [10]). Since

the image of a p-th power under an automorphism 7 € Aut(K[[v]]) is again a
p-th power, the set mon(F) can be rewritten as

mon(F) = {a € A%:there exist ¢ € Aut(K|[y]])., H € K|[y]]
such that for some § € N"\ p . N",

Fle(») +a) = y* + H»)?).

We will prove that this set is Zariski-open in A% by following a construction
which will be explained in detail in the forthcoming article [11]. Consider for a
fixed point a € A" the equation

(%) Flo(y) +a) = y* + H(»)”.
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By Artin’s approximation theorem [4] it follows that if for some vector S €
N7\ p-N" there exist solutions @(y) = (@1(y),..., @, (y)) and H(y) of ()
in the ring K[[y]] of formal power series, then there already exist solutions
o(y) = (@1(y),...,0n(y)) and H(y) of (%) in the henselisation of K]y],
i.e., in the ring K{y)) of algebraic power series in n variables, such that both
solutions agree modulo (y)¢ for a chosen constant ¢ € W. Note that if one
chooses ¢ = 2, then the property for @ to be an automorphism is also ensured
for ¢. Since H and the components «; of ¢ are elements of K{{y), they are
regular functions on an étale neighborhood 6,: (V,v) — (A%,a) of a = 6,(v).
Now consider the monomial locus mon( (., a) of

O(y) := Fle(y) +a) — H(y)’

in V, ie., the set of points v/ € V such that there exist local coordinates
w = (Wy,...,wy) at v’ with Q(w + v") = w? in @va = K|[w]] for some
y € N7 In [11] it is proven that mon((Q,a) is a Zariski-open subset of V.
Due to Oyvr = OAn 0., UV € mon(Q,a) implies that F(w + 6,(v")) =
w’ + H(w + 6, (v’))P Note that at first sight it seems to be possible that
y € p-N"_ and in this case 6,(v’) wouldn’t be an element of mon(F). But if all
components of y are multiples of p then F(w+6,(v")) = w¥+ H(w+0,(v"))?
would be a p-th power, which contradicts our assumption (since F(w) € K|w]
is a p-th power if and only if F(g(w) + ¢) is for all ¢ € Aut(K|[|w]]) and
all ¢ € A% ). Consequently 6,(v") is contained in mon(F). By the openness of
étale morphisms it follows that 8,(mon((Q,a)) is an open subset of mon(F).
This procedure can be carried out for all points @ € mon(F). Then the set

) utmon(Q.a))

a€mon(F)

clearly equals mon(F) and is as a union of Zariski-open sets itself Zariski-
open. O

Proposition 4. Ler f be an element of R which is not a p-th power. Then the
closed points a € V() C A% in which f has order orda(f) > p and in which
| is, when considered as an element of R/R?, not monomial, are isolated (in
particular, finite in number).

Proof. Note that the set of closed points ¢ € A% in which f € R/R?\ {0} is
monomial, is equal to the set mon(F) (with n = 2) introduced in the proof of
the last theorem, which was shown to be Zariski-open. Its complement in A%
— which equals the set of points of A%( in which f is not monomial — is hence
Zariski-closed. We are only interested in those points @ € A% \ Fyon in which the
order of f € R is bigger or equal to p (which clearly implies that a € V(f)),
thus in the points of the intersection

(A) 1= (A% \ Fuon) N{a € A%:ord,(f) = p}.
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By the upper-semicontinuity of the order function it is clear that also the second
of these two sets is a Zariski-closed subset of A% . Consequently, the points «
in (A) form an algebraic subset of A2. Moreover, the set (A) is a subset of
the singular locus Sing(X) of X = V(f) C A%. And since any algebraic curve
has only finitely many singular points, the set (A) consists of at most finitely
many points. ]

8. Monomial case

The goal of this section is to decrease the order of the purely inseparable equation
G=x+ F(y,z2)

with ordo(G) = p in every point of the singular surface X = V(G) C A3} by
a finite sequence of blowups to a value which is smaller than p. In Section 5,
especially in Remark 9, we explained why a point blowup of such a surface
can be reduced to a point blowup of the plane curve F(y,z) =0 modulo p-th
powers. Moreover, in Section 6 it was shown that a finite number of point blowups
transforms F in every point » of X with ordy(G) = p into a monomial times
a unit (or makes the order of G drop). This is done by using a local resolution
invariant associated to F. To decrease the order of G one can therefore assume
that G 1is of form
G(x,y,z) = x4+ y"z"A(y, 2)

with (m,n) € N>\ p-N?, m+n > p and A(0,0) # 0. After a formal
coordinate change one can furthermore assume that A(y,z) = | (for a detailed
argumentation of this, see the proof of Lemma 3 in Section 5). Once F is
monomial, there is an immediate combinatorial way to lower the order of G,
which will be described in the sequel (this is a classical argument which works
in any dimension).

Let (v,z) and (x, y,z) be regular parameter systems of R, and S, where
R, and S) denote the completion of the localization of the coordinate ring R
of A% at the point a respectively the coordinate ring § of A3 at b = (by,a).
Furthermore let F(y,z) and G(x,y,z) be the expansions of f € R/R? and
g € 5 with respect to the chosen local coordinates.

The center of the next blowup is defined by means of the top locus top(G)
of X . Recall that top(G) consists of those points » € X where the local order
of G attains its maximal value. Thus

top(G) = {b € X:ordp(G) = p}.

We may assume that the top locus has no self intersections (otherwise further
point blowups have to be applied to ensure this condition). Then there are three
different cases according to the values of m and #.
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(1) Case m > p. This implies that G € (x,y)? and hence the z-axis is
included in the top locus of V(G). In this case we choose locally the z-axis as
the center of the blowup. This yields in the x-chart a variety which is smooth
in all of its points and in the y-chart G*(x,y,z) = y# - (x? + y"Pz") with
m — p < m. Hence induction can be applied until m < p.

(2) Case n = p. Symmetrically, we choose locally the y-axis as center and
apply induction until n# < p.

Iterate this process until both  and n are less than p.

(3) Case m < p and n < p. In this sitvation we choose as center the origin
of A%, which is in this case the only element of the top locus of V(G). This
yields in the x-chart a variety which is smooth in all of its points. In the y -chart,
and analogously in the z-chart, one gets G*(x, y,z) = y#(x? + y"T"=Fz") with
m+n— p <m, and therefore induction on (m,n) works.

Altogether this yields that G 1s given, after finitely many blowups where
the centers have to be chosen in the manner described above, locally in every
(singular) point of V(G) by

G(x,v,z) = xP 4+ F(y,z)

with ord(F) < p.

Remark 13. In order to achieve an embedded resolution of the purely inseparable
two-dimensional hypersurface X, it 1s necessary that in every step of the resolution
algorithm the chosen center is transversal to the already existing exceptional
divisor. In this section it was shown that the only higher dimensional centers
which are possibly required during our algorithm, are the y- and the z-axis of
A3 . If the already existing exceptional divisor is not yet transversal to one of
the chosen axis, then one first has to apply point blowups in order to achieve
transversality.

9. A second resolution invariant

In this section we will define a second local resolution invariant which also works
for surfaces in characteristic p. It is a modification of the classical resolution
invariant used in characternstic zero. Furthermore we will prove that this invariant
also drops lexicographically under point blowups (except for a specific quasi-
monomial, which can be resolved directly) and hence can be used alternatively
to prove Theorem 1 and Corollary 1.
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9.1. Delinition of the second invariant. Let R be the coordinate ring of
the affine plane A% over an algebraically closed field K of characteristic p.
Furthermore let R, be the localization of R at a closed point @ of A% and

o~

R, its completion. We fix for the entire section a local flag F in A% at a. By
(y,z) we denote local coordinates subordinate to F and by F = F(y,z) the
expansion of an element f € O = R/R? in K[|y, z]|. Moreover let N = N(I)
be the Newton polygon of F and A C N2 its set of vertices.

Denote by ord;(F) = ming gyea B the order of F with respect to z (see
Figure 9). Then the shade of F is defined as

shade(F) = ord(F) — ord, (F) — ord, (F).

It is thus the maximal side length of all equilateral axes-parallel triangles which
can be inscribed in ((ordy (F), ord;(F)) —HR?,_) \N(F) (see Figure 9). Or in other
words, if y™z" is the maximal monomial which can be factored from F(y,z) and
H(y,z) = y™™z7"F(y, z), then shade(F) = ord(H). The shade thus measures
the distance of F from being a monomial up to units. It will constitute together
with a correction term the first component of our new resolution invariant.

ord (F)| -

II\\\\\IIIIII\\\\'\\<

shade(F) . Ordy (F)

rr1rrrr17rrrrrrrrrrrrrr 1717 17T 17T1TT1]
=

FiGure 9
ordy, (#), ord;(F), and shade(#) of F

The second component of our new resolution invariant will be defined as
follows. If N 1is not a quadrant, we set the dent of F as the vector

dent(F) = (2q — a2, B2 — B1),

where (o, 1) and (&, 8;) denote those elements of A whose first component
have the highest respectively second highest value among all vertices of A. The
first respectively second component of this vector will be denoted by updent(F)
and indent(#) and called the updent respectively indent of F.

It is clear that height(F,;) = shade(F;). Therefore Lemma 3 of Section 6.1
tells us that also the shade can increase in characteristic p > 0 under blowup
at most by 1. But the modification of the measure shade(f) in order to get a
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decreasing resolution invariant is more involved. Recall that the adjacency adj(F')
of F isequal to 2, 1 or 0 according to F being adjacent, ord, (F) =0, close,
ordy (F) = 1, or distant, ord, (F) > 2. The defect of F is defined as follows.

If shade(F) = deg,(F) — ordy(F), the defect of F is defined to be
1l + 6 for F being adjacent, & for F being close and 0 otherwise. If
shade(F) = deg,(F) —ordy(f) — 1, the defect of F is set equal to § for
F being adjacent and 0 otherwise. And if shade(F) < deg,(F) —ordy (f) — 2,
the defect of F is defined as 0.

In all cases &,4 denote arbitrarily chosen positive numbers between 0 and 1
with £ < §.

The defect is a correction term that takes into account — additionally to the
position of the Newton polygon N(F) with respect to the z-axis — also the
occurrence of edges in N(F) whose angle with the horizontal line is bigger
than 45°. This is similar to the correction term bonus defined earlier. Note that
the definition breaks the symmetry between y and z. In Figure 10 some possible
configurations of N(F) and the corresponding values of defect( F) are illustrated.

defect(F) =& defect(F) =0 defect(F) = ¢

B

Ficure 10
Some examples for defect(F)

Now these measures will be associate in a coordinate independent way to
residue classes f in R/R?. Denote by C = Cr as usual the set of subordinate
local coordinates (v, z) in R, . Since the highest vertex ¢ = («, B) of N = N(F)
does not depend on the choice of the subordinate coordinates, deg,(F) and
ord,(F) take the same value for all elements in C. Recall that also the value
ord(F) is independent of the choice of subordinate coordinates and is called the
order of f € R/RFP.

For f € R/R? with expansion F = F(y,z) at a with respect to (v,z) € C
we set

shade,( f) = min{shade(F):(y,z) € C}
= ord(F") — ord, (F) — max{ord, (F): (v.z) € C}

and call it the shade of f. This number only depends on f, the point ¢ and
the chosen flag F.
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We say that f is monomial at a if there exists a local (not necessarily
subordinate) coordinate change transforming F into a monomial y*z# times a
unit in K[y, z]]. Note that this is in particular the case if shade,(f) = 0 (which
is equivalent to height,(f) = 0).

Since adj(F) takes the same value, say adj,( f), for all coordinates realizing
shade( f), it is a simple matter to check that also defect(F) takes the same
value, say defect,(f), for all these coordinates. Therefore the complicacy

complicacy,( f) := shade, ( ) — defect,(f)
= min{shade( F') — defect(F): (v,z) € C}

only depends on f € R/R?, the point ¢ and the chosen flag F. This will be
the first component of our new local resolution invariant. We will leave out the
reference to the point @ when a is fixed and simply write

complicacy( /) = shade( ) — defect( f).

The second component of our new local resolution invariant will be

dentg (f) 1= (updent, (f), indenta (1)),

where updent(F) is minimized and afterwards indent(F) is maximized over
all subordinate coordinates (y,z) € C for which the expansion F(y,z) fulfills
shade(F) = shade,( f). It also only depends on f € R/R?, the point ¢ and
the chosen flag F. Again we omit the reference to a and simply write dent(f).

The new local resolution invariant of f € R/R? at a with respect to F is
then defined as

Ja(f) = (complicacy, (1), denta (1)),

considered with respect to the lexicographic order with (0, 1) < (1,0). Note that
Ja(f) is an element of a well-ordered set.

9.2. Non-increase of the complicacy under blowup. In order to prove Theo-
rem 1 for the resolution invariant defined in Section 9.1, we start by showing the
following proposition.

Proposition 5. Let [ be an element of R/R?, which is not a (specific) quasi-
monomial, and let F € K||y,z]] be its expansion with respect to subordinate
coordinates (y,z) € Cr realizing the shade of f. Furthermore let F*(y,z) be
one of the transformations F*(y,z) = F(yz +tz,z) or F*(y.z) = F(y,yz)
and f* the corresponding element in R'/R'P. Then

(3) complicacy( f*) < complicacy( /).
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Moreover, if either the translational move (T) is forced, or there exist subordinate
coordinates realizing the height of f such that the blowup R, — ﬁ; , I8 given
by move (V), then

complicacy( f*) < complicacy( f),

where F*(y,z) = F(yz 4+ tz,z) with t #£ 0.

The proposition above will again be proven separately for the three different
moves (T), (H), and (V) defined in Section 5.

(T) Translational moves. Assume that there don’t exist subordinate coordinates
at a realizing the shade of f such that the blowup is monomial. In this situation
the total transform f* of f under the blowup = is given as the equivalence
class of the total transform F*(y,z) = F(yz + fz,z) where t € K*, of a
representative F(y,z) of f with shade(F) = shade( ). Fix such minimizing
subordinate coordinates (y,z) € Cr and denote by F(y,z) in the sequel always
the expansion of f with respect to these chosen coordinates.

Denote by & the order of f and by f; its initial form. The parity par(d)
of d is defined as in Section 6.1, ie., set equal to 1 if 4 =0 mod p, and 0
otherwise.

Since height(F;) = shade(Fy), Lemmata 2 and 3 of Section 6.1 can be
immediately applied to the shade of F; respectively f;. One hence gets

deg, (F*) < shade(Fy) + par(d).

Remark 14. Note that the above inequality nevertheless only implies a possible
increase of the shade if the Newton polygon N(F*) of I'* consists only of
edges whose angle with the horizontal line is smaller or equal than 45°, ie.,
if height(F*) = shade(F*) (see Figures 7 and 11). And moreover, it for sure
decreases in the case that N(F™) contains edges with slope smaller than —2,
ie., if we have height(F™*) — shade(F™) > 1.

Due to Remark 10 of Section 6.1 it follows that it remains to consider the
following situations.

v i

distant

—  distant
distant — close
distant — adjacent
close — adjacent

Investigating these four cases in detail, one can show similarly as in the proof
of Proposition 2 in Section 6.1 that

complicacy( f*) < complicacy( f).
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Ficure 11
F(y.z) with shade(F) =2 and F*(y,z) = F(yz+1-z,z) with deg, (F*) =3,
but shade(F*) = 1 < 2 = shade(F)

(H, V) Horizontal and vertical moves. The goal of this section is to prove
Proposition 5 for the two monomial transformations F*(y,z) = F(yz,z) and
F*(y,z) = F(y, yz).

Assume for this purpose throughout this section that (v, z) are subordinate
coordinates realizing shade(F) = shade( f) such that the total transform f* of
f under the blowup R, — R!, is given as the equivalence class of one of the
transforms F*(y,z) = F(yz, z) respectively F*(y,z) = F(y,yz) of F.

In Section 6.1 we already proved the analogous statement for the measure
intricacy defined in Section 4. And since the argumentation runs here quite similar,
we will skip some computational parts of the proof of Proposition 5.

First note that for both, the horizontal and the vertical move, the inequality
shade( F*) < shade( F) holds for all series F € K[[y, z]]. We start by establishing
Proposition 5 for the horizontal move. It is not too hard to check that if N(I")
contains at least one edge whose angle with the horizontal line is bigger than
45°, i.e., if (deg,(F) — ordy(F)) — shade(F) = 1, then defect(F) € {0,4} and
shade(F*) < shade(F) — 1. This immediately implies

shade(F*) — defect(F*) < shade( ) — defect( ) = complicacy( f).

We are hence left with series & whose Newton polygon consists only of edges
whose angles with the horizontal line are smaller or equal than 45°. Some further,
but easy, considerations show that in this case the inequality

shade( F*) — defect(F*) < shade( /') — defect( /) = complicacy( f)

is always fulfilled. And since all coordinate changes subordinate to the flag F
leave the highest vertex of N(F™) fixed, inequality (3) follows.

Now we will turn to the vertical move F*(y,z) = F(y, vz). We will assume
that N(I") contains at least one edge whose angle with the horizontal line is bigger
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than 45° (otherwise N(F*) is already a quadrant). It can be seen easily that then
defect( F) is either 0 or §. In the case that defect(#) = 0, inequality 3 follows
immediately. Therefore, let defect() = 1. This implies that I is adjacent and
shade(F) = (deg,(F) —ordy (F)) — 1. Furthermore it is a simple matter to check
that if N(F) contains an edge whose angle with the horizontal line is smaller
or equal than 45°, then shade(F*) < shade(F) — 1, hence no increase of the
complicacy can happen. So we are left with the case that N(F) contains only
edges whose angles with the horizontal line are bigger than 45°. It is a simple
matter to check that then an increase of the complicacy is only possible if F is
of the form

F(y,2) =z"-(cy* +d2) + H(y,2)

with m e N, ¢,d € K™ and H € K|[[y,z]] with N(H) C N(F)\ A. Obviously
this series 1s a special quasi-monomial (see Section 6.1) and hence can be
transformed into a monomial times a unit by a finite number of further blowups,
indeed here only one further blowup (and possibly a subsequent coordinate change)
is necessary.

Together with the investigation of translational moves in the last section this
proves Proposition 5.

9.3. Decrease of the invariant. To show that j( /) = (complicacy( f), dent(f))
decreases for all f € 0 = R/R? which are not quasi-monomials, it remains
due to Proposition 5 to prove the inequality

(complicacy( /™), dent( ) <jex (complicacy( f),dent( f)),

where f* corresponds to one of the transforms
F*(y.z)= F(yz,z) or F*™(y,z) = F(y.yz)
of a representative F(y,z) of f with
shade(F) = shade( f) and updent(F) = updent( f),

in the case that

(A) complicacy( f*) = complicacy( f).

Fix for this purpose subordinate coordinates (y,z) € C» with shade(F) =
shade( /) and updent(F) = updent(f) such that the transform f* of f is
given as the equivalence class of one of the series F*(y,z) = F(yz,z) or
F*(y,z) = F(y,yz).

We will first concentrate on the horizontal transformation F*(y,z) =
F(yz,z). In this case one can show similarly as in Section 6.2 that under
assumption (A ) the inequality

dent( f*) < dent( f)
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holds. Now we will treat the vertical move F*(y,z) = F(y,yz). It is easy to
see that (A) can only occur if the Newton polygon N(F) consists just of edges
whose angle with the horizontal line is bigger than 45°. But in this case the
vertices of N(F) with the highest respectively second highest first component
transform into vertices of the Newton polygon N(F*) of F* with the same
property. Hence it follows easily that updent( /™) < updent(F*) < updent(F).

10. Alternative approach for surface resolution in positive characteristic

In this section we will indicate an alternative approach for resolution of surfaces
which are defined by purely inseparable equations over an algebraically closed
field K of positive characteristic. It i1s based on a theorem which characterizes in
any dimension completely the shape of the initial form of those purely inseparable
polynomials for which the shade increases under a translational blowup (see
Theorem 1, Section 5, and Theorem 2, Section 12, in [21]). We will briefly recall
the theorem without giving its proof.

Theorem 3. Let w:(W.q') — (W, q) be a local point blowup of W = AT™
with center Z = {q} the origin. Let (x,wy,, ..., wy) be local coordinates at q
such that

G(x,w) = x? + w" - F(w) € Ow,

has order p and shadeq(w”-ﬁ) = ordq(ﬁ) at g with exceptional divisor w™ = ().
Let G’ and F’ be the strict transforms of G respectively F = w' - F(w) at
g € E = 7= Y(Z). Then, for a point ¢ € n~1(q) to be a kangaroo point for
G, ie., fulfilling

ord,(G') = ord,(G) and shade, (F') > shade,(F),
the following conditions must hold at q.
(1) The order ord(F) = |r| + ord,(F) is a multiple of p.
(2) The exceptional multiplicities r; at q satisfy
P+ o+ T = (gp(r) — 1) - p,

where O < 7; < p denote the residues of the components r; of r =
(Fm, ..., r1) modulo p and @p(r) = #{i <m:r; # 0 mod p}.

(3) The point g’ is determined by the expansion of G at q. It lies on none of
the strict transforms of the exceptional components w; = 0 for which r; is
not a multiple of p.
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(4) The initial form of F equals, up to linear coordinate changes and multipli-
cation by p-th powers, a specific homogenous polynomial, which is unique
for each choice of p, r and degree.

The point g prior to a kangaroo point will be called antelope point. Note that
for surfaces (m = 2) condition (2) of the last theorem can be reformulated as

r,r2 20 mod p and 7 +7; < p.

Consequently, condition (3) implies that the point ¢ has to leave both exceptional
components in order to arrive at a kangaroo point. Together this yields that
an increase of the shade can only occur when applying a ftranslational move
subsequent to at least one horizontal and one vertical move. Therefore we will
analyze how the shade changes under such moves prior to the jump at the
kangaroo point.

Suppose that before this increase of the shade at the kangaroo point, already
u horizontal and v vertical moves have taken place (in a specific order, with
u,v > 1). Assume for sake of simplicity further that F(y,z) has at the very
beginning of these series of blowups been a binomial, i.e., has been of the form,

F(y,z) = y"z° - (ey* + dz") € K[y, 2]}/ K[[y?. 27]]

with r,.s e N, k,/ € N,y and ¢,d € K. Clearly a series of 1 horizontal and
v vertical moves contains at least one subsequence where a horizontal move
is followed by a vertical one or the other way around. Denote by F the
transform of F under the moves prior to the first of these subsequences, where
0<c¢<u+v. Note that F© is of the form

F(C)(y,Z) — yrfzsf ) (nykf + d.lef)

with #/,s" k', I’ e N and ¢’,d’ € K. Since we are considering moves prior to
an increase at the kangaroo point, it follows that shade(F)) = min(k’,1’) > 0.
Without loss of generality assume further that afterwards first a horizontal move
and then a subsequent vertical move is applied to F( (clearly the case of
applying the moves in the reverse order works symmetrically). Now consider the
transforms of F( under these two moves, i.e., F€tD(y z) = F©(yz z) and
Fet2(y 7y = FletD(y y7); see Figure 12.

In the case that N(F©*2) is not a quadrant, which especially presumes that

(%) shade(F©) =k’ <!’ and I'—k' <k,

the shade of F*2 is given by shade(F€*2)) = min(2k' — 1", 1’ — k). But due
to () it follows easily (see Figure 13) that

¥

k 1
shade(F¢+2) < 5 =5 shade(F ).
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The transforms of F‘} under a horizontal and a vertical move
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Ilustration of inequalities («) and the value of shade(#(12))

In the case that shade(F () has already been smaller or equal to the half of
shade(F), i.e., shade(F©) < % -shade(F), we are done since we have already
seen that the shade can’t increase under monomial moves and it thus immediately

follows that

1
shade(F#+)) < shade(F©) < 5" shade(F),

where F®+?) denotes the transform after the u horizontal and the v vertical
moves prior to the increase at the kangaroo point. So it remains to consider the

case shade(F©)) > %-shade(F ). But in this situation one has
o) (c+2)y = )y < |
shade(F ) < shade(F ) = 5 shade( F*') < 5" shade(F),

since clearly shade(F () < shade(F).

It is not hard to see that the previous inequalities also hold for an arbitrary
series F(y,z). This proves the following proposition, which is also already

indicated in [21].
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Proposition 6. Ler w: (A3, b)) — (A3, D) be a local point blowup with center
Z = b} and (x, y, z) local coordinates at b such that G(x,y,z) = x4+ F(y,z)
has order p at b. Let b’ be a kangaroo point for G and b its antelope point.
Further let be given a sequence of point blowups prior to m in a three-dimensional
smooth ambient space for which the subsequent centers are equiconstant points.
Let b° be the last point below the antelope point b where none of the exceptional
components through b has appeared yet. Then, the shade has dropped between
b° and the antelope point b of the kangaroo point b’ at least to its half.

The increase at the kangaroo point by 1 1s therefore, except in the case that
the shade at the point 5° is equal to 1 or 2, in the long run dominated by the
decrease of the shade in the prior blowups. By (), one immediately sees that
in the first case no increase of the shade is possible. If the shade at the point
h° is equal to 2, this is not possible either. This can be checked by an easy
computation using the special shape of I in this case.
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