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On the structure of endomorphisms of projective modules

Daniel FERRAND and Dan LaksovT

Abstract. Taking as a model the completed theory of vector space endomorphisms, the
present text aims at extending this theory to endomorphisms of finitely generated projective
modules over a general commutative ring; now analogous results often require totally
different methods of proof.

The first important result is a structure theorem for such modules when the characteristic
polynomial of the endomorphism is separable. The second topic deals with the minimal
polynomial, whose mere existence is shown to require additional hypotheses, even over a
domain. In the third topic we extend the classical notion of ‘cyclic modules’ as the modules
which are invertible over the ring of polynomials modulo the characteristic polynomial.

Regarding the diagonalization of endomorphisms, we show that a classical criterion
of being diagonalizable over some extension of the base field can be transferred nearly
verbatim to rings, provided that diagonalization is expected only after some faithfully flat
base change. Many results that hold over a field, like the fact that commuting diagonalizable
endomorphisms are simultaneously diagonalizable, hold over arbitrary rings, with this
extended meaning of diagonalization. The Jordan-Chevalley-Dunford decomposition, shown
as a particular case of the lifting property of étale algebras, also holds over rings.

Finally, in several reasonable situations, the eigenspace associated with any root of the
characteristic polynomial is shown to be given a more concrete description as the image
of a map. In these situations the classical theory generalizes to rings.

Mathematics Subject Classification (2010). Primary 13C10, 15A30; Secondary 14A05,
14825, 15-01, 15A04, 15A18, 15A21.

Keywords. Projective modules; characteristic polynomials; eigenspaces; étale algebras;
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Introduction

The principal aim of the present text is to extend the theory of endomorphisms
of vector spaces to endomorphisms of finitely generated projective modules, as
far as possible. Our motivations arise from situations in algebra and geometry
which need global properties while the classical theory is too much concentrated
above a one-point scheme to be adequate.

For example, we often meet families of linear maps u#; which depend on
parameters s, and this situation is usually described as a vector bundle 7: £ — §
over the space S of the parameters, together with a map u#: £ — E inducing
on each fiber E; = 7~ 1(s) a linear map u;: E; — E, of vector spaces. Roughly
speaking, the Gelfand point of view then leads us to associate with the space §
a commutative ring A of functions on S (continuous, or algebraic, etc.), and the
vector bundle £ is similarly described as a projective A-module of finite type,
say M. To a point s € § 1s thus associated a maximal ideal m of A4, and the
map us is equal to the map M/mM — M/mM induced by u.

The consideration of the generic matrix leads to a situation of the same kind:
in this case S is the spectrum of the ring A = Z[X;;] with n? independent
variables, and the endomorphism of A" is given by the matrix with entries
the X ij-

In a sense the present work is intended to understand how the classical notions
vary in a family of endomorphisms. What we might reasonably expect is not
always true even under strong hypotheses. We encounter, for example, square
matrices with a constant eigenvalue, whose eigenspace is a projective module
of rank 1 which is not free. In the above geometric perspective this means that
there is no (continuous, algebraic, etc.) section ¢ of m with o(s) a non-zero
eigenvector of u, for all s.

However, this work adds nothing to the problem of moduli of vector space
endomorphisms, which is different (see, for example, [MS]).



On the structure of endomorphisms of projective modules 133

The power of the classical theory over a field K comes essentially from two
facts:

— every K -module is free,
— every ideal in K|[T] is principal,
two obviously missing properties over a general commutative ring.

Concerning the lack of bases, we are led to restrict ourselves, from the
outset, to modules of finite type which are locally free, that is, which are
projective. This restriction ensures us the existence of the characteristic poly-
nomial, which indeed plays a central role in this article. More problematic,
as we shall see, is the mere existence of the minimal polynomial because it
should be the generator of an ideal in A[T], which is not always principal.

The fact that the ideals in A|7’| are as a rule non principal renders it impossible
to decompose the module into a direct sum of cyclic modules. However, some
results which are usually deduced from this decomposition remain true in general.
For example, we show that the characteristic polynomial always divides some
power of the minimal polynomial, when the latter exists; but this requires a
completely different argument, which rests on the so-called “spectral mapping
theorem” (Theorems 3.6 and 5.5; see Corollary 5.6).

Practically all the results over a field which depend on a hypothesis involving
some extension of the base field extend verbatim over a ring A under a hypothesis
which is analogous, but relative to some faithfully flat algebra A — A’. For
example, the classical property of a monic polynomial p to have distinct roots in
some extension of the base field, that is to be separable, has to be translated into
the property that the A-algebra A[T]/(p) is étale. This explains why étaleness
1s everywhere recurrent in the text.

Our hypotheses are supported by the following rings attached with an
endomorphism u: M — M of a projective module of finite type over a ring A:
first we have the ring B = A[T|/(py), where p,, is the characteristic polynomial
of u, and there is also the sub- A-algebra A|u| C End4(M) generated by u. The
Cayley-Hamilton theorem asserts that there is a surjective morphism of A -algebras

p: B — Alul:

in particular, M may be seen as a B-module. The kernel of p is a nilpotent
ideal.

The first important result is that the B-module M is invertible when B
is finite étale over A. More generally, being an invertible B-module appears
to be the appropriate generalization of the classical notion of ‘cyclic module’.

Secondly we deal with the existence and properties of the minimal polynomial,
defined as the generator of the ideal Ker(p), when it exists, i.e. when A[u| is
projective as an A-module. We also indicate some situations where this holds,
for example, when A is integrally closed.
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Then we work out the analogue of the diagonalization of endomorphisms.
Classically it involves the minimal polynomial, which is a priori lacking in
our context. Therefore we must rather consider the weaker condition of being
“absolutely semi-simple”, that is of being diagonalizable over some extension of
the base field. This property can be transferred nearly verbatim to rings under
the form: Afu| is étale over A. With this meaning of the word ‘diagonalizable’,
two commuting endomorphisms which are “diagonalizable”, are shown to be
simultaneously “diagonalizable”.

We also show that the Jordan-Chevalley-Dunford decomposition holds over
rings, simply because it is shown to be a particular case of the lifting property
of étale algebras. In fact, the decomposition ¥ = u; + u, is here equivalent to
the existence of a quotient B/J, étale over A, where J is a nilpotent ideal.

Finally, we discuss eigenvectors and eigenspaces. We show that in several
reasonable situations the eigenspace associated to any root A of the characteristic
polynomial of # can be given a concrete description as the image of a map close
to the cotranspose of u — A. In these situations the classical theory generalizes
o rings.

One conclusion of this work is that extending over a ring the linear results
which are classical over a field forces us to weaken both the hypothesis and the
conclusion by restricting them to be true only locally for the Zariski, or étale,
or even Ipqc topology. After all, we already meet this constraint when working
over a field which is not algebraically closed.

In what follows, all rings are supposed to be commutative with unity.

1. Preliminaries on idempotents, and open and closed subsets

In this section we collect for the convenience of the reader some classical results
on idempotents and open and closed subsets of the prime spectrum of a ring. We
follow the usval notation: see for example [AC], II, 4; in particular, for an ideal
I of arng A, V({) denotes the set of prime ideals of A containing [ it is
closed in Spec(A4).

1.1. Lemma. Let 7:C — Cy be a surjective morphism of rings, and let
U be the closed subset of Spec(C) image of the map n*:Spec(Cy) — Spec(C).
Then the following properties are equivalent:

i) The set U is open and, as a morphism of schemes, w* is an open
immersion: this means that, for all prime ideals p containing I = Ker(xw), the
map w,: Cy, — (Cy), is an isomorphism, ie. I, = 0.

ii) The ideal Ker(m) is generated by an idempotent e in C and one has
U = Vi(e); such an idempotent is unique.
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ii1) The ring C has a quotient C — Cy such that the morphism C — CyxCy
is an isomorphism of rings.
iv) The morphism m defines a structure of projective C -module on Cy.

Proof. 1) = 1ii) By definition, one has U = V(I), where I = Ker(x).
By assumption, there is an ideal J in C such that Spec(C) is the disjoint
union of V(I) and V(J). Since @ = V()N V({J) = V(I + J), there are
two elements ¢ € I and b € J such that 1 = a + b. Moreover, since
Spec(C) = V(1)U V(J) = V(IJ), the elements of IJ are nilpotent, and
thus (ab)™ = 0 for some integer m.

The element u = a™ + b™ is not contained in any prime ideal of C, and
thus it is invertible in C. We let ¢ = a™/u and ¢’ = b"/u. Then 1 = e+ €’
and ee’ = 0; thus e is an idempotent contained in 7/, and ¢’ = 1 —e is an
idempotent contained in J. Hence we have inclusions U = V() C V(e) and
V{(J) C V(l—e). Since, moreover, both pairs of closed subsets [V ({), V(J)] and
[V(e), V(1—e)] are partitions of Spec(C), these partitions are equal. In particular
one has V(I) = V(e). In order to check that Ce = I we can localize at the
prime ideals p of C. In fact, Ce C I and hence (Ce), C {,. If p contains [
we have [, = 0 by assumption, whence (Ce), = I, = 0. If, on the other hand,
p does not contain [ then e ¢ p is invertible in Cp, and C, = (Ce), = ;.

Uniqueness of e: starting from an equality Ce = Cey, the product by
l —e gives 0 = C(l —e)eq, that is e; = ee;. By symmetry we get ¢ = ey.

ii) = i) The image of 1 —e in C/eC is 1, thus we have a surjective
morphism Cy_, — C/eC. It is in fact an isomorphism since its kernel
(eC)1—e is zero due to the relation (1 —e)(eC) = 0. Moreover the morphism
Spec(Ci—¢) — Spec(C) is an open immersion.

ii) = iii)) One has C; = C/eC; let Cy = C/(1 —e)C. Then we obtain
a factorization C = Cy x C; such that U/ is the image of the morphism
Spec(C1) — Spec(C) defined by the projection C — Cy.

iii) = iv) Clear.

iv) = ii) Since C; is a projective C -module, the C -linear surjection =
admits a C -linear section, that is a map 0:C; — C such that 7o = Id. By
definition of the action, we have c¢.cy = 7w(c)ey for any ¢ € C and ¢; € Cy.
Hence co(c1) = o(m(c)cy). This applies in particular to ¢ = o(1) and ¢; =1,
from which we see that o(1) is an idempotent. Now applying the equality

to ¢y = 1 and ¢ € Ker(wr) we get co(l) = 0, and hence ¢ = ce, where
e = 1—o(l) is also idempotent. Conversely, the relation ¢ = ce implies that
m(c) = 0 since (o (1)) = 1. Thus Ker(x) is generated by e. O

1.2. Definition. A ring C is said to be connected if Spec(C) is connected
as a topological space.
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The above lemma shows that a ring C 1s connected if and only if it contains
no idempotent other than 0 and 1.

1.3. Proposition. Let C be a ring, and let P be a projective C -module of
finite type. Then the support of P is closed and open in Spec(C). Equivalently
there is a unigue idempotent e in C such that Annc(P) = eC ; moreover, P is
a C/eC -module which is projective. In particular, if the support of P is equal
to Spec(C), then Anng(P) = 0.

More generally, for any integer d, the set of prime ideals p such that
tkp(Pp) = d is closed and open. In particular, if C is connected, the map
p — 1k, (Pp) is constant, and thus the rank of P is well defined.

Proof. Since P 1is of finite type the formation of the ideal Annc(P)
commutes with localization, and the support of P is the closed set V(Anng(P)).
Let C; = C/ Anng (P). According to the implication iv) = ii) of Lemma 1.1,
we have to prove that C; is a projective C-module. For doing so we
use twice Theorem 1 of [AC], II, 52: P is projective if and only if for
every maximal ideal m of C, there exists + € C \ m such that P, is a
free C;-module; but for such a ¢ we have (Cq1); = C;/Annc,(P;) = 0
it P, = 0, and (Cy); = C; otherwise; in any case it is indeed a free
C; -module.

Finally, the set of primes p such that rk,(P,) = 4 is the support of the
wedge product A?(P), which is closed. Hence the set of primes p such that
tk,(Pp) = d is open and closed. O

1.4. Proposition. Let C — C' be a morphism of commutative rings such
that C' is a non-zero projective C -module of finite type. If C is connected, then
there exists a surjection of rings C' — C" such that C" is a non-zero projective
C -module, and C" is connected.

Proof. Since C is connected, it follows from Proposition 1.3 that each
non-zero quotient ring C” of C’ which is C -projective has a strictly positive
well-defined rank over C; such a quotient C” with minimal rank is connected.
In fact, by Lemma 1.1, an idempotent of C” would produce a decomposition of
C” into a product of rings C” = CJ x C{. If they both were non zero, each
factor would have a strictly smaller rank. ]

1.5. Proposition. Let p(T) be a monic polynomial in A|T|, of degree n.
Denote by t the class of T in B = A|T|/(p). Then

i) The characteristic polynomial p; g(T) of multiplication by t on B is
equal to p(T). If p(T) splits over A as p(T) = [1;_((T — A;), then, for all
polynomials f(T) in A|T], we have
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prans(T) = [ [(T = f(4)).
i=1

ii) Let A[T| — C be a surjective morphism of rings. Then C is a projective
module over A, of constant (finite) vank, if and only if the kernel of this
morphism is generated by a monic polynomial q(T'); we thus have an isomorphism
AlT|/(g) = C. The morphism A|T| — C factors as A|T| - B — C if and
only if the polynomial g(T) divides p(T).

i) Assume that the ring B decomposes as a product B = By x By,
with By of constant rank over A. Then the polynomial p factors as
a product p(T) = po(T)pi(T) of two monic polynomials, with isomor-
phisms A[T|/(pi) =~ B;, and these polynomials are comaximal, that is,
poA[T] + p1 A[T] = A[T].

Proof. 1) On the A-module basis 1.7,..., "1 of B, multiplication by / is
represented by the companion matrix of p(T), whose characteristic polynomial
is well known to be equal to p(7), as a standard calculation shows. This is
also a direct consequence of the Hamilton-Cayley theorem, which states that
pe.p(t) = 0; hence p divides p; p, and both polynomials have the same degree.

If p(T) =(T—Ay)---(T—A,) in A[T], an A-module basis for B is given
by

Lt—A, U —AD)(—A2), ..., (U —Aq) - — Ap1) -

On this basis multiplication by 7 is represented by a triangular matrix with the
elements Aq,...,A, on the diagonal. Thus multiplication by f(¢) is represented
by a triangular matrix with the elements f(A1),..., f(A,) on the diagonal.

ii) Let A|T| — C be a surjective homomorphism, where C is projective of
rank m over A, and let g(7) be the characteristic polynomial of the product by
the image /¢ of T in C. By the Cayley-Hamilton theorem we have a surjective
homomorphism of A-algebras A[T]/(g) — C. Since these algebras have the
same rank m, the morphism is an isomorphism. The last part follows, since
pltc) = 0, and thus the polynomial ¢(7) divides p(T).

iiiy Let p; (T) be the characteristic polynomial of multiplication by ¢ on B;.
Since we have a direct decomposition of B as a product, the characteristic
polynomial of 7 in B factors as po(T)p1(T). From i) we deduce that
p(T) = po(T)p1(T), and from ii) we get isomorphisms A|T|/(p;) = B;.
Finally, it is a general fact that two ideals /7 and J in a ring R are relatively
prime if the morphism R — R/I x R/J is bijective, as can be seen by tensoring
by R/1T. O
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2. Finite étale algebras

In this section we recall some results related to finite étale morphisms. Geomet-
rically they may be seen as étale coverings. In fact, the main example of a finite
dtale A-algebra is a finite product A" of copies of A; “locally” it is the only one
(see 2.4). In the sequel, finite étale A-algebras will mainly appear as quotients
A[T|/(p) where p is a monic polynomial whose discriminant is invertible in A,
i.e. a separable polynomial (see 2.8).

Proposition 2.9 deserves to be pointed out because it is often used in the text.
For a thorough exposition on étale algebras, see of course [EGA], 1V, 17.6, 18.3.

2.1. Definition. A morphism of rings A — B is said to be finite érale if
it makes B into a projective A-module of finite type and if the multiplication
u:B ®4 B — B makes B into a projective module over B @4 B.

The kernel of p is the ideal generated by the elements h ® 1 — 1 & b due
to Lemma 1.1 (whose idempotent, denoted by e, is here 1 — ¢), the condition
on g is equivalent to:

2.2. There exists an element e € B @4 B such that u(e) = 1 and
e (b@l)=e.(1®b) for all b e B.

An element e with these properties is an idempotent since the first condition
implies that ¢ — 1 € Ker(u), and the second that e.Ker(x) = 0. Such an
idempotent e is unique when it exists, and 1 —e is a generator of the ideal
Ker(1t).

For simplicity we sometimes write that a ring homomorphism 4 — B ‘is’ a
projective quotient if it is surjective and makes B into a projective A-module.
In the next lemma we collect the properties of finite flat algebras used in the
sequel.

2.3. Lemma. 1) A surjective morphism A — B is étale if and only if it
Is a projective quotient, that is, if its kernel is generated by an idempotent.

ii) Let f: A — B be a homomorphism making B into a projective A -module
of finite type. Then [ is faithfully flar if and only if [ is injective. If A is
connected and B # 0 or, more generally, if for each prime p of A, rank,(B)
is non zero, then f is faithfully flat.

iii) Let f:A — B and g:B — C be finite étale algebras. Then
gf: A — C is also a finite étale algebra.

iv) Let f: A — B be a finite étale algebra with A connected and B # 0.
Then there is a non-zero projective quotienti B — B’ which is connected and
étale over A.
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v) Let f:A — B be a homomorphism and f":A" — A" @4 B be the
morphism obtained by the base change A — A'. If f is finite étale then so
is f'. Conversely, if f' is finite étale, and A — A’ is faithfully flai, then
A — B is finite étale as well.

Proof. 1) This is clear from Lemma 1.1, since, in this case, B ®4 8B = B.

ii) A faithfully flat morphism is injective ([AC], I, 3.5). Suppose that f is
injective. We have to show that Spec(B) — Spec(4) is surjective ([AC], II,
2.5); this is a consequence of the “going up theorem”, but here we may give the
following easy proof. Let p be a prime ideal of A. The morphism 4, — B,
Is injective, so that B, is non zero. Since B, is a finitely generated projective
module over the local ring A, it is free and non zero. Therefore the ring B, /p B,
1s non zero, and each of its prime ideals restricts to p. We have thus shown that
Spec(B) — Spec(A) is surjective.

iii) In the following diagram, where p, and p, are multiplication maps
and m is the natural homomorphism, the square is co-cartesian, that is, it makes
C ®p C into a tensor product of the three other rings

iy 0 — Bl 15 1 s

]

Since f is étale, py is a projective quotient, and hence the same is true for .
Since g is €tale, e 1s a projective quotient. Therefore pgr = pgm 1s also a
projective quotient.

iv) The proof is similar to that of Proposition 1.4, since a projective quotient
of B is still étale over A, by i) and iii).

v) The direct statement comes from the fact that projectiveness is preserved
under any base change. Conversely, according to [AC], I, 3.6, prop.12, the
hypothesis implies that B is a finitely generated projective A-module. If we
apply the latter result to the faithfully flat morphism

B®4B— A ®R4(BR4yB)=(A"®4B)R4 (A ®4 B)

and to the B ®4 B-module B, we conclude that B is a projective B ®4 B-mod-
ule. ]

2.4. Proposition. let A — B be a morphism. Then the following
conditions are equivalent:

i) The morphism A — B is finite étale of constant rank d.

ii) There exist a finite étale morphism A — A’ of constant rank < d! and
an isomorphism of A'-algebras A" ®4 B ~ A, If, moreover, A is connected
then there exists such an A" which is also connected.
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iil) There exist a faithfully flat morphism A — A’ and an isomorphism of
A’ -algebras A’ @4 B ~ A'%.

Proof. 1) = ii) We argue by induction on the rank ¢, starting from the
case where ¢ = 1, which is obvious. Since B is étale, the ring B ®4 B contains
two idempotents 1 —e and e which yield a decomposition as a product of rings
B®4B >~ BxC. Consider B®y B as a B-algebra via the first factor. It is a
finite étale B-algebra of rank 4, and from Lemma 2.3, i) and iii), we see that
the composite B — B @4 B — C is a finite étale algebra of rank 4 — 1. By
the induction hypothesis there exist a finite étale B-algebra B — A’ of constant
rank < (d —1)! over B and an isomorphism A’ ®p C ~ A1 The composite
A— B — A’ is finite étale by Lemma 2.3 iii), and of constant rank < d!, and
we have the isomorphisms

A@4B=A @5 (BR4B)~A @5 (BxC)~ A xA"".

If moreover A is connected, it follows from Lemma 2.3 iv) that there is a non-zero
projective quotient of A" which is connected.

The implication ii) = iii) is clear, since by Lemma 2.3ii) a finite étale
morphism of constant rank is faithfully flat.
The implication iii) = i) follows from Lemma 2.3 v). ]

2.5. Notation. Given a monic polynomial p(7) € A[T] we introduce the
polynomial dp(X.Y) € A|X, Y| defined by the relation

pX) —pl¥) =X -Y)dp(X.Y).

Then dp(X, X) = p'(X), where p'(X) is the formal derivative of p(X). This
follows immediately, by linearity, from the case p(7) = T". See Remark 8.4 3)
below for some complements on this polynomial.

The next two propositions develop some consequences of being étale for
algebras of the form A[T]/(p).

2.6. Proposition. Ler p(T) € A[T| be a monic polynomial. Write B =
A[T]/(p) and denote by t the class of T in B. Let us denote further by
w:B @4 B — B the multiplication map. We assume that p'(t) is invertible
in B. Then the following three assertions hold:

i) The morphism A — B is étale. More precisely, the element
_pt®1,1®1)
- POl

in B®4 B is an idempotent such that p(e) = 1 and such that, for all b € B,
we have (bR 1).e = (1 @Db).e.
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ii) The map e: B — B ®4 B, defined by (b)) = (b @ 1).e = (1 ®@b) .e,
induces an isomorphism B — Amnge g1 @1 -1®1).

iil) The sequence

(2.6.1) 0—B->Ba B 2% Bo,BLS B—0

is exact and split as a sequence of B @4 B -modules.

Proof. 1) Since B is a free A-module, it is enough to check the conditions
of 2.2. Since dp(X,X) = p/(X) we obtain that p(e) = dp(t, 1)/ p'(f) = 1.
From the relation p(f) = 0 and the definition of dp(X,Y), we deduce that

((R1-1®H.e=(pt)—plaN)/(p)el) =0.
Finally, since 7 1s a generator of the A-algebra B, we see that the relation

(t®1—1®¢).e =0 implies that (h®1).e = (1 Rb).e forall b in B.
ii) Since the ideal / = Ker(u) is generated by 1 — ¢, the ideal

Annge,p(t ® 1 —1 @) = Anngg (1)

1s generated by e.

iii) Due to i1), the exactness as a sequence of A-modules is clear. The map
e 18 B ®4 B-lincar when B is endowed with the structure of B ®4 B-module
coming from g . Indeed we have:

epx@y) =e(xy)=(xy@1).e=x@Ny®l).e
=x1NI@y)e=(x@y).e

The sequence is split since B is a projective B ®,4 B-module. ]

2.7. Remarks. 1) The formula for e in the proposition appears to be
asymmetric, since in general p'(1) ® 1 # 1 ® p’(t). However, the difference
PHY®1 — 1® p'(r) is a multiple of £t ® 1 — 1 @ ¢; hence it is annihilated by
dp(t®@1,1®1), and we have dp(t @1, 1QN(1R@p'(£)) = Ip(rR1, 1RH)(p(H)R1).

2) See 8.3 for a sequence analogous to (2.6.1), but without the assumption
that p'(¢) is invertible.

We now turn to the discriminant of a polynomial (for more information, see
for example [A], V, §6 and §7):

Let p(T) in A[T] be a monic polynomial of degree n. Since the algebra
B = A[T]/(p) is free over A, we have a norm map

Npja: B — A, defined by Np,4(b) = det(bg), where bp(x)=bx.
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An element & in B is invertible in B if and only if Npg/4(b) is invertible in A.
The discriminant of p(T) is defined as

dis(p) = (=1)"" V2 Ng, 4(p'(1)) .

Thus p’(¢) is invertible in B if and only if the discriminant of p(T) is invertible
in A. Moreover, if p(T) splits as p(T) = (T — p1) (T — pg), then

dis(p) = [ [ (i — 1)
i#j

2.8. Proposition. Ler p(T) € A|T| be a monic polynomial. Write B =
A[T)/(p) and denote by t the class of T in B. Then B is finite étale over A if
and only if p'(t) is invertible in B, a condition equivalent to the discriminant of
p(T) being invertible in A. We then say that the polynomial p(T) is separable.

Proof. By Proposition 2.6, the only point which remains to be proved is
that p’(¢) is invertible if B is étale. For doing so we may assume that A is
connected; from Proposition 2.4 we see that we can also assume that there is
an isomorphism B = A[T]/(p) ~ A". The image of ¢ under this isomorphism

may be written as (gy,...,4,) With p; € A. Since ¢ is a generator of the
A-algebra B, the sequence (1,¢,..., t”‘l) is a basis of this 4-module, and thus
the Vandermonde matrix

Loy pi o pit

1 ps uj - pg!

1 pn pz oo pp!

is invertible, that is p; — p; is invertible in A when i # j. The discriminant
of p(T) is thus invertible. ]

2.9. Proposition. Let B be a finite étale A-algebra, and let M be a
B -module of finite type. If M is projective as an A -module, it is also projective
as a B -module.

In particular, if J is an ideal in B such that B/J is isomorphic to A, then
B/J is a projective B -module.

Proof. We give two proofs of the proposition:

1) We can assume that A is connected, and hence that B has constant rank,
say d. According to 2.4, there exist a faithfully flat morphism 4 — A’ and
an isomorphism A’ ®4 B > A% Since A’ ®4 M is a module over that ring, it
splits as a product of A’-modules My x---x Mz . But, by assumption, A" @4 M
is projective over A’, and thus each factor M; is also projective over A’. Hence
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A" ®4 M is projective over A" ®4 B. The proposition follows by descent of
projectiveness under faithfully flat morphisms ([AC], I, 3.6, prop.12).

2) For the B-module structure coming from the first factor, the module
B ®4 M is projective. The given B-module structure on M yields a B-linear
map

upm:B R4 M — M, defined by pupy(b®x)=bx.

To prove the proposition it suffices to show that g admits a B -linear splitting,
that is a map

oM — B4 M

such that upyc = Idpy and o(bx) = (b®1).0(x) where p®@1 isin B4 B.In
fact, the existence of such a B -linear splitting ¢ shows that M is B-isomorphic
to the direct summand o (M) of the projective B-module B ®4 M , and therefore
M is projective as a B -module.

To define o0 M — B ®4 M we use the idempotent ¢ € B ®4 B coming
from the definition of étale morphisms (see 2.2), and we let

ox)=e.(1®x).

This map is B -linear since ¢ . (1®b) = e .(b®1). In fact, o(bx) = e . (1Rbx) =
e (12b)(1@x)=e. (RN RXx)=h®IL).0(x). Since u(e) =1 we have
pumo(x) = pple. (1@ x)) = ple)um(l @ x) = x. 0

3. Endomorphisms with a separable characteristic polynomial

We first introduce some notation and prove some results used in the proof of
Theorem 3.3.

3.1. Notation. In what follows, A will denote a ring and M an A-module of
finite type with an A-linear endomorphism u: M — M . When M is a projective
A-module of rank n we denote by p,(T) the characteristic polynomial of u
in A|T], that is, p,(T) = det(T —u). By the Cayley-Hamilton theorem, M is
also an A[T]/(py)-module.

We shall on several occasions use that, given a monic polynomial p(7) in
A[T], there is an A algebra A — A’ which is free of finite rank as an A-module
and such that p(T) splits completely over A’ as p(T) = [[_,(T — A;). The
splitting algebra of p(T) provides such an algebra which is also universal for
splittings; see e.g. [A], IV, 6.5, [E-L1], and [L-T] (or [F1] for a much more
general point of view).
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3.2. Lemma. Assume that M is a projective A-module of rank n, and let
q(T) in A[T]| be a monic non-constant divisor of the characteristic polynomial
pulT) of u: M — M. Then det(g(u)) = 0.

Proof. Let A — A’ be an A-algebra which is free of finite rank as an
A-module, and over which ¢(T) splits as g(T) = [[;_ (T — A;). Since the
morphism A — A’ is injective, and since det(g(ls ® u)) is the image in
A" of det(g(u)), we can assume from the outset that ¢(7) splits over A as
g(T) = [[JL (T —A;) with A; in A. Then we have

det(gw)) = [ [ det(u — 4,).

i=1
However, since a root A; of ¢(7T) is also a root of p,(T), we obtain
det(u — &;) = (=1)"det(A; —u) = (=1)"pu(d;) = 0.
In particular, we have det(g(u)) = 0. 1

The following theorem is the first important result of the article.

3.3. Theorem. Let M be a projective A-module of rank n > 0, and let
u: M — M be an A-linear endomorphism with characteristic polynomial p,(T).
Write B = A|T|/(pu). We suppose that the discriminant of pyu(T) is invertible
in A, ie. that B is étale over A.
1) If moreover pyu(T) splits over A as py(T) = [I_((T — Ai), then the
following two maps are isomorphisms
PKer(u —A;)) — M — [[M/(u-2;)M
[ i
and, for each i, the composite map
Ker(u —A;)) — M — M/(u—A) M
is an isomorphism.
2) The following three equivalent assertions hold:
1) The B-module M is invertible, i.e. it is projective of rank 1.
i) If pu(T) splits over A as py(T) = [[;_ (T — A;), then, for each i, the
quotient M/(u — A;) M is an invertible A-module.
iii) If pu(T) splits over A as pu(T) = [1;_{(T — A;), then, for each i, the
submodule Ker(u — A;) is an invertible A-module.

Proof of 1). As the characteristic polynomial is supposed to be separable, its
factors (7T — A;) are pairwise comaximal, and hence the morphism

B— HB/(I —Ai)B
Fesl
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1s an isomorphism. Moreover, for each 7, we have the isomorphism
B/(t—A)B — A4,

defined by ¢ — A;. By composition we get an isomorphism B 5 A"; the
projection p;: B — A onto the i-th factor is characterized by p;(1) = A;.
Tensoring with M, we get the isomorphism

M=B®sM — [[M;:.
i
where M; denotes the module (B/(t —A;) B)®p M = M/(u—A)M = p'M .
Now we will prove that the composite map

(*)i,j Ker(u—A;)) — M — M/(u—-A;) M

is zero if ¢ # j, and that it is an isomorphism for j = i. This will imply that
the composite map

PKer(u —A) — M — [[M/(u—-rj)M
i i

1s an isomorphism, whence the map on the left is also an isomorphism.
Let us fix an index i and let g(7T) = Hj#(T — A;). There exists a monic
polynomial #(7) such that

q(Ai) = q(T) + (T = A) r(T).

Since the polynomial p(T) = (T — A;)g(T) is separable, the element g(A;)
is invertible in A. Introducing the endomorphisms v = g(A;)"'g(u) and
w = q(A;)"'r(u), we get the equality

(%%) Idy =v4+ (u—A)w.

The Cayley-Hamilton theorem implies that 0 = p(u) = qg(u)(u — A;) =
(¥ — A;) g(u). From this we deduce the relations v(x — A;) = 0 and Im(v) C
Ker(u — A;), and the equality (xx) shows that

v =12 and Im(v) = Ker(u — A;).

It is immediate from the definitions that Im(v) = Im(g(x)) C () ;2 Imu — 45),
so that Ker(u# — A;) C ﬂj#i Im(x — A;). Therefore, for i # j, the map

(*)i.j Ker(u —Aj) > M - M/(u—A;) M

is zero. Now, the kernel of the map

(%) Ker(u —A;)) > M — M/(u—A;) M

is Ker(u — A;) NIm(u — A;). But if x € Ker(u — A;) then x = v(x), and if
x € Im(u — A;) then v(x) = 0. Thus the map (x);; is injective. It is also
surjective since the equality (x%) shows that x = v(x) mod(x — A;) M, and
we know that v(x) € Ker(u — A;).
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Proof of 2). Note first that, according to [AC], I, 3.6, prop. 12, the conclusion
of 1) 1s valid if and only if it is established after a faithfully flat base change.
Thus we may, and we will, suppose that the characteristic polynomial is split.

Proving the equivalence i) < 1ii) reduces to proving that M is invertible
over B if and only if each factor M; is an invertible A-module. This is clear
geometrically: if we allow ourselves to look at M and the M; as sheaves on
Spec(B) and Spec(A) respectively, then M; = p*M appears as the restriction
of M over the open and closed image set of

Spec( p;
Spec(A) M Spec(B) .

and these open sets cover Spec(B).
The equivalence of ii) and iii) comes from the isomorphism (x);; .

We next prove that M 1is an invertible B-module. Since B is étale over A4 it
follows from Proposition 2.9 that M is a projective B-module. Hence it remains
to prove that M is of rank one. This is a consequence of the following slightly
more general result:

3.3.1. Lemma. ZLet w:M — M be an endomorphism of a projective
A-module of finite type. Let g(T) be a monic divisor of its characteristic
polynomial py,, such that q(u) = 0. We suppose that M is a projective module
over A|T|/(q). Then the support of M as an A|T|-module is V(q).

Moreover, if q = p, then M is invertible over A|T|/(py)-

It is good to keep in mind the extreme example of the zero endomorphism
of A", with n > 2; then po(T) =T", and we can take g(T)=T.

Proof. Welet C = A[T]|/(g); it is a quotient of B = A[T]/(pu), and M is
endowed with a structure of C-module. We first prove that the support of M is
equal to Spec(C) = V(g). To this end, we may clearly assume that Spec(A4) is
connected. It follows from Proposition 1.3 that the support of M is closed and
open in Spec(C). Hence it follows from Lemma 1.1 that we can factor C into
a product C = Cy x Cy of rings, where Spec(Cy) is isomorphic to the support
of M and Cy @c M = 0.

Since we assume that Spec(A) is connected, it follows from Proposition 1.5 ii)
that there is a monic divisor go(7T) of g(T) such that Cy = A|T]/(go). The
relation Co @®¢c M = 0 can thus be written M = go(u) M. The latter equality
implies! that go(u) is an isomorphism of M . Hence it follows from Lemma 3.2
that go(7T) = 1, and consequently that Cp = 0.

! The surjectivity of gq(u) implies the surjectivity of the endomorphism det(go(2)) = A"go(u)
of the invertible module A" M . Hence det(ga(u)) is bijective, and gp() is an isomorphism.
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We now suppose that ¢ = p,,, i.e. that B = C. To prove that rankz(M) =1,
we may assume that A is a field k. Since B 1is then a finite algebra over a
field, we can write B as a product of local rings B = K; x--- x K, each
being a finite k-algebra. Thus M = M; x--- x My, where M; = K; @p M is
a free K;-module since M is projective over B, and this free module is non
zero because Spec(K;) is in the support of M, as shown above. We have

m 1441
dimy (M) = dimg(M;) = ) _ dimg (K;) rankg, (M;) .
=1 i=1

Moreover, since B = A[T]/(py) we have dimg(M) = n = deg(py,) = dimg (B)
and thus dimg (M) = Y7 | dimg(K;). Since, for all i, we have observed that
rankg, (M;) = 1, we obtain that rankg, (M;) = 1 for all i. Hence M is an
invertible B -module. ]

3.4. Corollary. lLet M be a projective A-module of rank n, and let
u:M — M be an A-linear endomorphism with characteristic polynomial
pulT). Write B = A[T|/(pu). If pu(T) is separable, that is if the discriminant
of pu(T) is invertible in A, then:

i) The only A-module endomorphisms of M that commute with u are the
polynomials in u with coefficients in A.

ii) A polynomial g(T) in A|T| satisfies g(u) = 0 if and only if g(T) is a
multiple of pu(T), i.e. py is the minimal polynomial {see §4).

iil) Assume that Spec(A) is connected. Let N be an A-submodule of M that
is stable under u, that is u(N) C N, and such that M/N is projective over A.
Then there exists a unique monic divisor g(T) of py(T) such that N = q(u) M .

Conversely, if q(T) in A[T] is a monic divisor of py(T), then g(u) M is
stable under u, and M/q(u) M is a projective A-module.

Proof. The subalgebra of End4(M) consisting of A-endomorphisms that
commute with ¥ is nothing but Endg(M). Moreover, M is an invertible
B-module by the theorem, so the canonical morphism B — Endp(M) is an
1somorphism. Hence assertion i) holds.

Assertion ii) is equivalent to having the inclusion B >~ Endg(M) C End4(M).

The module M/N of assertion iii) is a B-module since N is stable under .
By assumption, M/N is a projective A-module and the morphism A — B is
étale. We deduce from Proposition 2.9 that M/N is a projective B-module,
and it 1s of rank < 1 as a quotient of the invertible B-module M. By
Proposition 1.3 and Lemma 1.1, the support of M/N is the image of a morphism
Spec(C) — Spec(B), where C 1is a projective quotient of B. Thus M/N is
an invertible C-module. The surjective map of B-modules M — M/N gives
rise to a surjective map of invertible C-modules C ®p M — M/N, and thus
the latter is an isomorphism.
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Now, since Spec(A) is connected by assumption, it follows from Proposition
1.5ii) that there is a monic divisor g(7) of p,(T) such that C = A[T]/(q).
The above isomorphism C @ g M — M/N gives an isomorphism M/q(u) M =
M/N, thatis N =qg(u) M.

Conversely, let ¢(7) be a monic divisor of p,(T). Then M/q(u) M is an
invertible module over A[T|/(¢) = B/q(t) B, and in particular, a projective
A-module. Finally, it is obvious that g(u) M is stable under u. O

3.5. Examples. Here are two examples coming from geometry:

1. The first one is an example of an endomorphism of a free module with
constant eigenvalues, whose eigenspaces are projective of rank one but nor free.

Let A =R[X,Y]|/(X?+Y?—1) be the ring of real polynomial functions on
the circle, and denote by x and y the classes of X and Y. Consider the A-
algebra M = C®p A as a free A-module of rank 2, with basis (1®1,i®1). For
a,b € A we shall simply write @ +ib instead of the more correct 1 @a+i®5b.
The map

(3.5.1) UCRprA—CQr A, a+ibr—— (x +iy)a—ib)

is A-linear, but of course it is not C ®p A-linear since it involves the
complex conjugation. On the specified basis the matrix of u is (; _yx), and
the characteristic polynomial of u is p,(T) = T2 — 1. Let L and L’ be the
two eigenspaces relative to the eigenvalues 1 and —1 respectively (see [F2] for
a thorough but elementary discussion of these eigenspaces and their relation to
the Mobius strip). Let z = x +iy. Forany « € C g A we have o + zae € L
and o —z& € L', whence we get a decomposition as a direct sum of A-modules

CpAd=A*=Lal'.

Moreover the A-algebra B = A|T|/(py) of Theorem 3.3 is here the product of
two copies of A along which the B-module M splits into the product L x L.
Thus, as stated in Theorem 3.3, M is indeed an invertible B -module.

Let us show that the A-module I is invertible but not free, and that the
same is true for L. An element in (§,7) € S; C R? determines a morphism of
R-algebras A — R, namely a(x, y) — a(£, n), hence a morphism of C -algebras
CRrA—C,a+ib— a(&, n)+ib(&, n); the image of x +iy is thus § +in.
We now consider the usual realization of S; as the set of { € C such that
¢¢ = 1; we denote by f(¢) the complex number image of f € C Qr A by
the morphism attached to ¢, thus the image of x + iy is precisely ¢. Hence the
elements of L are polynomial functions f:S; — C satistying, for all { € Sy,
the relation, analogous to (3.5.1),

(3.5.2) &) =¢.1©).
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We will show that any such function f has a zero on $; and thus cannot be a
generator of L. To do this, we introduce the function ¢(¢) = £(¢) £(), which is
easily seen to have only real values. Since the topological space Sy is connected
and compact, ¢(Sq) is a closed interval in R, and we have to show that this
interval contains 0. The relation (3.5.2) implies that (1) is real and that f(—1)
is purely imaginary. Hence ¢(1) > 0 and @(—1) <0, and we are done. ]

2. In the second example the A-module M is free of rank 3 but it contains
a stable direct factor of rank 2 which is not free. The main point comes from
the article [S] by Samuel.

Let A =R[X,Y,Z]/(X?>+ Y2+ Z?—1) be the ring of polynomial functions
on the sphere S;, and denote by x, y,z the classes of X, Y, Z, respectively. In
order to define our endomorphism of the free module M = A*, we introduce its
canonical basis (e, ez, e3); attached to it are the usual scalar product, denoted
by (— | —), and the isomorphism

(p:/\z(A3)—>A3, e1 A Ner>e3, exAezt»e;, ex3Anel e,

This isomorphism is characterized by the relation (@(w A B) | v)e1 Aex nes =
anpPay. The term @(aAf) is usually called, for real three-dimensional Euclidean
spaces, the vector product of o and f, and will be denoted by o A §. We will
use the classical relation

(3.5.3) aA(BAY)=(a]|y)B—(a]|B)y.

Letting @ = xey + yea 4+ zes, we define the endomorphism w A0 —s A5 by
the relation
) = w A a.

The matrix of ¥ on the canonical basis is

0 -z vy
Z 0 —x
-y X 0

From the formula (3.5.3) we, at once, deduce that u?(a) = (& | @) @ —a, so that
u® = —u, since u(w) =0 and (w | @) = 1. Hence the characteristic polynomial
of u is p,(T)=T(T? +1).

The eigenspace Ker(u), relative to the root T = 0, is the free submodule
L = Aw, as the relation u?(x) + o = (@ | @)@ shows. The same relation
implies that the submodule P = Ker(u? + 1) of A% is the set of «’s such that
(w | @) = 0, that is the orthogonal of L.

We may interpret P as the bundle of the tangent vectors to the sphere S»
as follows: let us view S, as a subset of R3; t0 a point ¢ € S, is associated
the morphism of R-algebras A — R which sends a polynomial a € A to its

value a({). Its extension A% — R? sends @ to ¢, and the image of « € P



150 D. FerranD and D. LAksov

is a vector a({) orthogonal to ¢, which therefore has to be seen as a tangent
vector to S, at the point {. Now a deep result of J.L.E. Brouwer (see for
example [M], p.30) asserts that any tangent vector field on the real sphere must
vanish somewhere. Therefore no @ can be part of a basis of P, and hence the
A-module P is not free.

The ring B = A[T|/(T(T? + 1)) is clearly étale over A, and it splits as
the product A x C, where C = A|T]/(T? + 1). The B-module M = A3 with
its endomorphism splits accordingly as Aw x P . The factor P 1is an invertible
C -module and it is not free, since C is free over 4 and P is not.

By its very definition, C is isomorphic to C ®g A. In [S], p. 165, Samuel
shows that A i1s a factorial domain but C @pr A is not. He also shows that
C ®r M is free of rank 2, over C @r A. We thus have an exact sequence of
C ®pr A-modules

0—-M —CepM— M —0,

where M and M’ are invertible C ®r A-modules which are not free. O

Theorem 3.3 allows us to get a proof of the spectral mapping theorem
by specializing from the generic polynomial, which has indeed a separable
characteristic polynomial.

3.6. The spectral mapping theorem. Let M be a projective A-module of
rank n, and let u: M — M be an A-linear endomorphism with characteristic
polynomial py(T). If py(T) splits over A as py(T) = [1;_ (T — &), then,
for every polynomial f(T) in A[T], we have pru)(T) =[1i_ (T — f(Ai)).

Proof. When the discriminant of p,(7) is invertible in A, the assertion
is an immediate consequence of Theorem 3.3ii), since the endomorphism f(u)
induces on the quotient M/(u — A;) M the map x — f(A4;)x.

There is a standard way of reducing to this case, as follows (see also [EL1]).
We first note that we can restrict to open affine subschemes of Spec(A). Therefore
we can assume that M is free and we choose a base. Then we represent u by
an n X n-matrix with coefficients in A. Specializing the generic n X n-matrix
X = (X,;) with entries X;; that are algebraically independent over Z, to
the matrix representation of u, and splitting px(7) in the splitting algebra of
px(T) over the Z-algebra Z[X]| generated by the entries of X, we see that
it suffices to prove the theorem for the generic matrix X . The discriminant dx
of px(T) is regular, that is non zero in the domain Z[X], as can easily be
seen, for example by specializing all the non-diagonal entries of X to zero:
the discriminant ]_[1-7& ;(Xii — Xjj) of the resulting diagonal matrix is regular in
Z|X11. ..., Xun|. Since dy specializes to this discriminant, it is non zero and
hence regular in Z[X]. It follows that the spectral mapping theorem holds for
X over the algebra Z|X||1/dx], and thus over its subalgebra Z|X]. O
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4. Minimal polynomials

Let M be a projective A-module of rank 7, and let u: M — M be an A-linear
map. Denote by
Oo: A|T] — Endg(M)

the morphism defined by 65(7T) = u. Let t be the class of 7 in B = A[T]/(py).
It follows from the Cayley-Hamilton theorem that 6y factors through the
A-algebra homomorphism

0: B — Endy(M)

given by 6(¢) = u. The image of 0 is the A-algebra Afu] in End4(M) generated
by u.

4.1. Lemma. [f the ideal Ker(Oy) is principal, it can be generated by a
monic polynomial, which is then its unique monic generator. Suppose that A
is a domain with field of fractions K. Let g € K|T| be the (monic) minimal
polynomial of 1xg @ u. Then Ker(Oy) is principal if and only if g € A|T|, and
then q is a generator of this ideal.

When Ker(6p) is principal its unique monic generator is called the minimal
polynomial of . It divides the characteristic polynomial p, . Note thatit M # 0
the minimal polynomial of the zero endomorphism is equal to 7.

Proof of 4.1. A generator gy of Ker(fp) must divide the characteristic
polynomial, which is monic. Therefore its leading coefficient, say «, is invertible
in A. Then g = a~lqy is also a generator and it is monic. It is the only one with
this property: indeed, let g; be another monic generator; the relations g = g7
and ¢, = gry imply that # and r; are monic, and deg(r) = deg(r;) = 0; hence
r=ri=1~L

Now suppose that 4 is a domain with field of fractions K. The isomorphism
K ®4 Endq(M) — Endg(K ®4 M) ([AC], I, 2.10) implies that the map
K @4 Alu] — K[lx @ u] C Endg(K ®4 M) is injective; thus the map
K ®4 AJu] — K[l ® u] is an isomorphism.

Let ¢ € A[T] be a monic polynomial such that g(u) = 0; and let
f:A[T]|/(g) — Alu| be the associated morphism. Consider the following
commultative square

A[T)/(q) —L— Alu]

! l

KIT1/q) {57 K @4 Alu] — > K[l ®u.

If g is the minimal polynomial of u, that is if f is an isomorphism, then
the same holds for 1 ® f, i.e. g is also the minimal polynomial of 1 ® u.
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Conversely, it 1 ® f is an isomorphism, then f is injective (hence bijective)
since the vertical map on the left is injective, due to the fact that A[T]/(g) is
free over A. O

4.2. Proposition (Existence of the minimal polynomial). Ler, as above,
u:M — M be an endomorphism of a projective A-module of finite type. Assume
that Spec(A) is connected. Then:

i) The algebra Alu| is projective as an A-module if and only u has a
minimal polynomial.

i) If A is an integrally closed domain, then u has a minimal polynomial.

iii) Let g be a monic divisor of py such that g(u) = 0. If the discriminant
d = dis(g) is regular in A, then g is the minimal polynomial of u.

Proof. The statement i) is given here for the record; a proof has already been
given in 1.51i).

ii) The morphism A[T]/(p,) — A[u] is surjective, and the sub-algebra
Alu] C End4(M) is torsion free; thus the conclusion is a particular case of the
following variant of a ‘Kronecker lemma’:

4.3. Lemma. Given a monic polynomial p € A|T|, let f:A|T]/(p) — C
be a surjective morphism of A-algebras. If A is an integrally closed domain
and if C 1is torsion free then C is a free A-module, of the form C = A[T]/(q)
where q is a monic divisor of p.

A proof is given below.

iii) We have to show that the morphism A|T|/(q) — A[u] is injective. If
the discriminant 4 is invertible then the module M is projective over A|T]/(g)
(by Proposition 2.9), and L.emma 3.3.1 implies that the support of M is the whole
spectrum of A|T]/(g); thus, by Proposition 1.3, the minimal polynomial is g.
If d is only regular, we again use the commutative square

AlT]/(q) —— Alu]

i l

(AlT1/(@))a —= (Alu)a —— Aalu].

whose vertical map on the left is injective, in view of the regularity of 4. [
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Proof of 4.3. Consider the commutative square associated with the inclusion
of A in its field of fractions K:

AlT)/(p) —L1—C

l

KIT)/(p)——=K 84 C.

Since K is a field, the ideal Ker(fx) is generated by the class of a monic
polynomial ¢g(7). It is a divisor of p(T) in K[T], thus p(T) = q(T) r(T) with
r(T) in K[T]. Since p(T) and ¢(T) are monic, the polynomial »(7") is also
monic. We can then apply the usual Kronecker lemma (JAC], V, 1.3, prop. 11) to
deduce that the coefficients of ¢(7") are integral over A; hence g(7) is in A[T|
since A is integrally closed in K. Since C is torsion free, the map C — K®4C
is injective. Thus the equality fx(g) = 0 implies f(¢) = 0. From the above
square we obtain the diagram

AT/ (q) ——C

d

K[T]/(q) —= K ®4C.

The map j is injective since A[T]/(g) is a free A-module, and the lower
horizontal map is an isomorphism. Thus the surjective map A[T]/(g) — C is
an isomorphism. O]

4.4. Examples

4.4.1. Given a monic polynomial p € A|T], of degree n, we may consider
the endomorphism of the free A-module A[T|/(p) defined by the product of
the class of 7', ak.a. the “companion matrix”. Its minimal polynomial is clearly
equal to p, which is also its characteristic polynomial, because both have the
same degree #.

4.4.2. An explicit particular case of 4.21iii): Suppose that M 1s free and
that u is given, over some basis, by a diagonal matrix diag(A,...,A,). Let
i1, ..., s be the distinct elements from the set {A(,...,A,}. Then Ker(8p) is
the set of polynomials f(7) in A[T] such that f(u;) = 0 for all i. If the
differences p; — p; are regular for i # j, in particular if A is a domain, then
Ker(fp) is generated by the polynomial ¢(7) = [T;_ (T — ui).

Proof. The description of the ideal J = Ker(fp) is clear. Now suppose that
the differences p; —p; are regular. Let f(7T) in A[T] be a polynomial such that
f(u1) =0. Then f(T) is obviously a multiple of 7 — ;. Suppose now that a
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polynomial f(T) in J is proved to be a multiple of ¢, (T) = (T —puq1) --- (T —pu;),
say f(T)=¢q;(T)g(T). The relation

0= fluig1) = i1 — 1) (i1 — ;) 8ltiv1)

together with the hypothesis that the differences p;41 — p; are regular, imply
that g(u;+1) = 0, and thus ¢; 1(7T) divides f(7). We conclude, by induction,
that f(7) is a multiple of ¢, (7).

4.4.3. Consider the endomorphism u of A? given by the matrix (§7).
By Euclidean division, any element in Ker(fy) is the sum of a multiple of
the characteristic polynomial p,(7T) = (T — a)(T — b) and a polynomial of
degree < 1, say a7 + f. The condition au + 8 = 0 is equivalent to

o € Anngf{a — b) N Anng(c) and B =—wa=—-ab.

If this endomorphism has a minimal polynomial g then there are two possibilities:

1) deg(g) = 1; since ¢ is monic this is equivalent to saying that 1 €
Anng{(a — b) N Anng(c), that is, equivalent to ¢ = b and ¢ = 0, and then
g=T-—-a.

2) deglg) = 2, i.e. ¢ = p,; since the relation au + f = 0 implies o = 0,
we then have Anng(a — b) N Anny(c) = 0.

In all other cases, that is if

0 # Anng(a — b) N Annyglc) # A,

the endomorphism (§ ) does not have a minimal polynomial.

In particular, let A4 = k[X] be the polynomial ring over a field. The
endomorphism given by u = (} %) has (7 —1)* as minimal polynomial. Its
image modulo X" has a minimal polynomial if and only if n = 1.

4.4.4. The following easy remark from commutative algebra leads us to con-
struct endomorphisms over a domain which don’t possess a minimal polynomial.
We have learned this method from the paper [Fr].

Two monic polynomials pi, pa € A[T] give rise to an injective morphism of
A -algebras

AITI/(p1) N (p2) — AIT)/(p1) x AIT/(p2).

In general, the ideal (p1) M (p2) is not principal; but it is principal if A is
an integrally closed domain, as can be shown by applying Lemma 4.3 to the
morphism  A[T]/(p1p2) —> A[T}/(p1) (1 (pa).

In general, the A-algebra M = A[T]/(p1) x A[T]/(p2) is a free
A-module, and the product in M defines an injective morphism of A -algebras
M — Ends(M). Thus, for + € M, the sub-algebra A[f] C M is isomorphic to
A[u] € End4(M), where u is the endomorphism x — 7x. Let us consider the
element f = (f1,%;) € M, where £ is the class of 7 modulo p;. The algebra
Alu| generated by x +— fx is here isomorphic to A[T]/(p1) N (p2).
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To construct examples where a minimal polynomial does not exist, it 1s
thus enough to find two monic polynomials p; and p, such that the ideal
(p1) N(p2) of A|T] is not principal. If we restrict to a domain A with field
of fractions K, it is enough, according to Lemma 4.1, to produce two monic
polynomials in A[T| whose least common multiple in K[7T] is not in A[T].

For a simple explicit example consider a domain A whose field of fractions
K contains an element x, not in A, such that x> € A and x° € 4. Let

p=T"—x* and po=T>—xT—x*4+x>=(T-x)(T +x—x%).

Then in K[T], one has lem(py, p2) = (T?—x2)(T + x —x?); but the coefficient
of T2 in this polynomial is x — x?, which is not in A.

To be more concrete, we write the matrix coming out of this construction,
which therefore does not have a minimal polynomial:

0 x2 0 0
1 0 0O 0
0 0 0 x2—x3
0O 0 1 x2

In her paper [Fr], Sophie Frisch gives a characterization of normality along these
lines.

Finally, we indicate a special situation where the minimal polynomial exists.

4.4.5. Proposition. Let A be a domain containing Q. Let u be an
endomorphism such that Spec(A|T|/(pu)) is irreducible. Then the minimal
polynomial of u exists in A|T].

Let K be the field of fractions of A, and let ¢ € K[T] be the minimal
polynomial of . It is a classical fact over a field (and it is proved in general in
Corollary 5.6) that there exists an integer » for which the following divisibility
relations hold in K[T]:

qlpulq” .

Since the morphism A|T|/(py) — K|[T|/(py) is injective and flat, it induces
a bijection between the sets of minimal primes in both rings. Hence the
hypothesis implies that Spec(K|7T]/(py)) = Spec(K|T'|/(g)) is irreducible. Thus
the polynomial ¢ is a power g = g of an irreducible polynomial go € K[T];
and the relation p, | ¢§° implies that p, is a power of go. The following lemma
then implies that go is in A[T].

4.4.6. Lemma. Let B be a ring, and let A C B be a subring containing ().
Let [ € B|T| be a monic polynomial of which some power f™ is in A[T],
with m = 1. Then f € A[T].
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Instead of monic polynomials, it is equivalent to consider polynomials whose
constant term is 1, since the transformation

F(T) — T £(1/T)

1s multiplicative, as are the hypothesis and the conclusion. Moreover, we will use
power series, and so we consider the inclusion A[[T]] C B[[T]]. Since @ C A
one can define exponential and logarithm in A[[U]] (see, for example, [A], 1V,
4 and also exercise 8 of §4). More precisely, one has

UJ

log(l + U) = Z(—l)j_lUJ—_j, exp(U) = I

izl i=0
For a positive rational number a € (Q, let
(1 4+ U)* :=explalog(l + U)) = Z (j) U’
Jj=0

ala—1)(a—j+

H D Fora positive integer

where (j‘) 1s the binomial polynomial
m, 1t is easy to check that

(L+U)ym =1+ U.
Going back to A[[T]], write the hypothesis f"” € A[T] as
fm=14aT+-+a,T" = 14 g(T),

with g(T) € TA|T]. Then, from loc. cit. end of §4, we can substitute g(7") for
T in (14 T)%, in the ring A[[T]], and we get

f=(™m=(+gT)m e A|T]]. m

5. Cyclic modules

A finite-dimensional vector space V' over a field K, equipped with an endomor-
phism u: V — V', is said to be cyclic (with respect to ) if there exists x € V
such that V is generated by the elements u'(x). In other words, V is then a
monogenous K [u]-module, and thus it is isomorphic to K|[T]/(g), where g(T)
is a monic polynomial. This implies that deg(g) = dimg V', whence ¢ is the
characteristic polynomial of u. This justifies the following definition.
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5.1. Definition. Let u: M — M be an endomorphism of a projective
A-module of finite type. We say that M is cyclic (with respect to u) if M 1s
an invertible module over A|T]/(py).

This property is weaker than the characteristic polynomial p, being separable,
as is shown by Proposition 5.3 below. It may be characterized as follows.

5.2. Proposition. Under the general hypotheses of 5.1, let us write
B = A|T)/(pu). Then the following properties are equivalent:

1) The B-module M is invertible, i.e. M is cyclic.

iy The Alu|-module M is invertible.

ii) The morphism of A-algebras 0: B — End4(M) is universally injective,
that is, for any A-algebra A — A’ the map 1R0: A'@4B — A'@4Endg(M) =
Endg (A" @4 M) is injective.

iil) After any base change the characteristic polynomial of u is also its
minimal polynomial.

Note that, since M is projective of finite type, the canonical map
A" ®4 Endy(M) — Endy (A" @4 M)

is bijective for any algebra A’ ([A], II, 5.3). However, in general the map
A" @4 Alu] — A’ @4 End4(M) is not injective, nor is the map A" @4 Alu| —
A’|1 @ u]: the formation of A[u| does not commute with (non-flat) base change.

Proof. 1) = 1ii) The property of M being invertible over B is pre-
served under any base change A — A’; moreover, it implies the injection
B 5 Endp(M) C Ends(M).

Assertion 1i1) is a reformulation of ii).

i) < i) We have just seen that i) implies that the morphism p: B — Alu]
is an isomorphism; hence it implies that M is invertible over A[u]. Conversely,
this condition implies that A|u] is projective over A, with the same rank as M,
which is also the rank of B since p is surjective, it is in fact an isomorphism.

iii) = i) If A is a field, the first step of the theory of similarity invariants
shows the existence of an x € M whose annihilator in A[T] is generated by
the minimal polynomial of #. By assumption, the latter 1s also the characteristic
polynomial. Therefore the map B — M given by b +— bx is injective, and
hence it is bijective since the vector spaces B and M have the same dimension.
The conclusion now follows from the
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5.3. Proposition. Let u: M — M be an endomorphism of a projective
A-module of finite type. Let us write B = A[T]/(py). Then M is cyclic with
respect to u if and only if, for every maximal ideal m of A, the vector space
M/mM is cyclic relative to u: M/mM — M/mM . Due to Theorem 3.3, it
is even enough that this condition be satisfied for those maximal ideals which
contain the discriminant of py.

Proof. We have to prove that for any maximal ideal m of A one can find an
element s ¢ m and an isomorphism of B;-modules B; — M;. By assumption,
the module M/mM is free of rank 1 over B/mB . By lifting to M a generator
of M/mM , we define an x € M, and thus a B-linear map ¢: B — M . From
the Nakayama lemma we deduce the surjectivity of the map ¢n: By — M.
The A-module Coker(g) is of finite type and Coker(¢)y is zero; therefore there
exists s € A, s ¢ m such that Coker(¢); = 0, i.e. @; is surjective. But Bs and
M; are projective A;-modules of the same rank; thus ¢; is an isomorphism,
which shows that M is locally free of rank 1 over B. 4

The following example illustrates a particular case of the hypotheses of
Proposition 5.3. For more, related, examples see [F2].

54. Example. Let A = R|[X] be the polynomial ring over the real numbers,
set M = A%, and let u be the endomorphism defined by the matrix

[+ 3)

The characteristic polynomial is p,(7T) = T2 + X2 — 1. Let us write B =
R[X,T]/(T2 + X2 —1). Then

o the module M is invertible over B, although B is not étale over A;
o the B-module M is not free.

The R[X]-algebra B is clearly ramified when X2 = 1, and the discriminant
of p,(T) is here d = 4(1 — X?).

In order to apply the above result we consider the quotients R[X]/(X — 1)
and R[X]/(X + 1), and we need to check that the R-vector space R? is cyclic

for the matrices (_11 _11) and (} :}) But, for both these matrices, the vector

((1)) and its image are independent.

Here is a direct proof which does not use Proposition 5.3. The condition for
the B-module M to be free is the existence of § € M such that (§,u(§)) is a
basis over A. Consider the base change R — C. The module C @g M is free
over C ®@g B: in fact, let § = (}) € C ®g M : then we have u(§) = ( brx T

—iX-1
Since
PoE+X .
det (1 X 1) =2
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is invertible in C ®@p A, the elements &,u(&) yield a basis over C ®p A, and
thus & is a basis over C ®p B. By descent from C to R we see that M is
invertible over B.

Let us check that M is not free over B. Consider a non-zero element
g = (z) € M, where @ and b are real polynomials in X . The determinant of
(§,u(£)), over the canonical basis of M, is easily seen to be the polynomial

g(X) = —((a®* + b X + 2ab).

Since deg(a®+h?) = 2max(dega, degh) > deg(ab), the degree of g(X) is odd.
Since a real polynomial of odd degree has a real root, ¢(7') cannot be invertible
in A =R[X], and M is not a free B-module. [

The following result is a partial generalization of both the spectral mapping
theorem of [LTS] and of 3.6.

5.5. The spectral mapping theorem. Ler M be a projective A-module of
rank n, and let u: M — M be an A-linear map. For b in B = A|T|/(pu) we
denote by pp p(X) the characteristic polynomial of multiplication by b on B,
and by popym(X) the characteristic polynomial of the endomorphism 0(b)
of M. Then, in A[X], we have

6.8 (X) = pog),m(X).

In particular, if we assume that py splits as py(T) = [1/_ (T — &), then, for
all polynomials f(T) in A|T|, we have in A|X]

Prapm(X) = [ [(X = f(A)).
=1

Proof. First, let us check the equality of the constant terms of the given
polynomials, namely

detp(b) = detar (8(D)) .

The element b can be written as b = f(¢), where f(7) is a polynomial
in A[T] of degree strictly less than n = deg(py), and we have to prove
that detp( f(z)) = detpq(O(f(z))) = detpyr(f(u)). Since we also have b =
f(t)+ pu(t), we can now assume that f(7) is monic of degree n. Let A — A’
be a base extension such that A" is free as an A-module, and such that f(7T)
splits into a product of linear factors 7 —w over A’. Since A — A’ is injective
it is enough to check this equality in A’. As the determinant is multiplicative it
suffices to prove that

detp(t — o) = detpyr (4 — @)

for all roots o of f(T) in A’. However, by Proposition 1.51), the left hand side
is equal to (—1)" p,(a), and so is the right hand side, by definition.
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The expected equality between polynomials in X can be written as
detpx1(X —b) = detyxjem (X @ 1 -1 ® 0(D)),

which, one sees, is a particular case of the one above.
The second part of the theorem follows from the first, together with the second
part of Proposition 1.51). O

5.6. Corollary. The kernel of the homomorphism
8:B = A[T]/(py) — End4(M)

is a nilideal, that is, the support of M as a B-module is equal to Spec(B).
In particular, p,(t) is invertible in B if and only if p)(u) is invertible
in Alu|, and then 0 is injective.
If the minimal polynomial q(T) exists, then we have, in A[T|, the usual
divisibility properties
g(T) | pu(T) | g(T)".

Proof. It 6(b) =0 we obtain from the theorem above that pp p(T) =T".
We then deduce from the Cayley-Hamilton theorem that 6" = pp g(b) = 0,
which proves the first part of the corollary. Since the support of M is the set of
prime ideals of B containing Anng (M), it is equal to Spec(B).

When the minimal polynomial ¢(7) exists, we take » to be the class of
g(T), to obtain the last assertion of the corollary. O

This proof of the equality Suppgz(M) = Spec(B) can be used to shorten the
proof of 3.3.1.

6. Diagonalizable endomorphisms

In this section we generalize the diagonalization of endomorphisms of vector
spaces to endomorphisms of projective modules over arbitrary commutative rings.

6.1. We first recall the diagonalization property for an endomorphism
u: V. — V of vector spaces of finite dimension over a field K. The K -algebra
Klu] in Endg (V) generated by u is isomorphic to K|[T]/(g), where g(T) is
the mintmal polynomial of u.

The following properties are known to be equivalent (see, for example, [A],
VII, 5.8, and [A], V, 7):
(6.1.1) The roots of g, in an extension of K, are distinct.
(6.1.2) The algebra KJu] is étale over K.
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(6.1.3) There exists an extension L of K such that the endomorphism
l@u: L@V — LRV

is diagonalizable, in the usual sense.

Note that the proper extension to a ring A of the notion of distinct elements
is elements with distinct images in each residue field «(p) of A, and then they
may be called everywhere distinct. Let A and o be elements in A with distinct
images in each «(p). The factorization

A— A/p — k(p)

shows that the condition “everywhere distinct” is equivalent to: “for all prime
ideals p, A —p ¢ p”. Ultimately, this condition is equivalent to: “A — u is
invertible in A”. Hence, over a ring A, the condition (6.1.1) must be translated
as follows: if (uy1,...,n) denote the roots of ¢ in some extension A" of A,
then p; —p; € A'™, for i # j, a condition equivalent to g being separable.

When the above three properties are satisfied, Bourbaki writes that u 1s
absolutely® semi-simple.

6.2. Theorem. Let M be a projective module of rank n over a connected
ring A. Let u:M — M be an endomorphism and let Alu| in Endga(M) be
the algebra generated by u. The following three properties are equivalent:

1) The A-algebra Alu] is projective as an A-module and the roots [, . .., is
of the minimal polynomial q(T) of u in any faithfully flat extension A — A" of
A are everywhere distinct, that is, p; — p; is invertible in A" when i # j; in
other words, q is separable.

ii) The algebra Alu| is finite éiale over A.

iii) There exists a faithfully flat morphism A — A" such that A’ @4 M s free
with a basis on which the matrix U of 14 ®@u is diagonal with the property that
distinct diagonal entries are everywhere distinct, that is, if U = diag(Aq, ..., A,),
and if A; # Aj then A; — A; is invertible in A’

Proof. The equivalence i) < ii) is established in 2.8.

ii) = iii)) According to 2.4, there exist a finite étale morphism 4 — A’,
with A’ connected, and an isomorphism of A’-algebras A’ ®4 A[u] >~ A" . The
image of 1 ® ¥ may be written as (pq1,..., us) with p; € A’, and it follows
from 2.8 that p; —p; is invertible in A" if i # j.

Now, the A’-module A" ®4 M decomposes as a product of projective
A'-modules M; x My x -+ x M,. Since A’ is connected, each module M;
has constant rank. By covering Spec(A’) with a finite number of open sets over
which the M; are free, and by taking the disjoint union of these sets, we can find

“The translator of Bourbaki into English has forgotten this crucial adjective in the definition of
Jordan decomposition [A], VII, 5.9.
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a faithtully flat map A" — A" such that each A” ® 4 M; is a free A”-module,
of rank, say, n(i). On A” ®4 M; the endomorphism 1 ® u is simply the map
x = u; x. Finally, if we choose any basis in each factor, the matrix of 1 @ u
may be written as

AL = = = 5 00,0 JVG; « + ¢ 5,0y covompflisys v + « 5 ligd) =
n(1) n(2) n(s)

iii) = i) Let pq,..., ;s be the distinct elements from the set {Aq,...,A,}.
The free A’'-module A" ®4 M splits into a direct sum of free A’-modules
A R4 M =M &---® M, such that 1l @ u acts as x — p; x on M;. Since the
differences p; — p; are invertible in A’, we deduce from 4.4.2 that 1 ® ¥ has a
minimal polynomial, namely the separable polynomial ¢(7) = [[(7 —u;). Hence
the A’-algebra A'[1 ® u| ~ A'|T]/(g) is finite étale. Since A’ is flat over A,
the morphism A" ®4 A[u] — A'[1 ® u] is injective, hence it is an isomorphism.
It follows from Proposition 2.4 that A[u] is finite étale over A. [

6.3. Remark. We shall not introduce a specific adjective to qualify these
morphisms; the choice of Bourbaki (‘absolutely semi-simple’) is a little cumber-
some; we prefer to say: Alu] is étale.

However, the semi-simplicity property itself deserves to be pointed out: if Afu]
is étale then each u-stable submodule N of M such that M/N is projective
over A has a u-stable complement. Indeed, M/N is then projective over A[u],
by Proposition 2.9.

Note that the projectiveness (over A) of M/N is necessary. For example, if
A = k[X] then the endomorphism u = (¥ ,0,) of M = A? is injective, not
surjective, and its characteristic polynomial is separable; but the strict sub-module
u(M) C M is not a direct summand of M, since the quotient M/u(M) is
isomorphic to k2.

A classical result on endomorphisms of vector spaces says that two commuting
endomorphisms which are both diagonalizable are simultaneously diagonalizable,
that is, there exists a basis on which they both are given by diagonal matrices.
In our context, the result states as follows.

6.4. Proposition. Ler u and v be two commuting endomorphisms of a
projective A-module M of finite type. If Alu]| and Alv| are étale over A, then
the sub-algebra Alu,v| of Endgs(M) they generate is étale.

If A is connected, there exists a faithfully flat morphism A — A’ such that
A" ®4 M is a free A" -module with a basis with respect 1o which the matrices of
u and v are both diagonal.
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Proof. Since u and v commute, the commutative A-algebra Alu,v] is
endowed with a surjective map

C = Alu] ®4 A[v] — Afu, v].

This morphism allows us to define a structure of C-module on M, for which
we have an isomorphism

C/Amc(M) ~ Alu,v].

We thus have to show that C/ Anng¢ (M) is étale over A. Lemma 2.3 implies that
C is étale over A, as are AJu| and A[v]. Therefore M is a projective C -module,
by Proposition 2.9. It then follows from Proposition 1.3 that C/ Annc(M) is a
projective quotient of C; hence it is €tale over A.

Proposition 2.4 ensures the existence of a faithfully flat morphism A4 — A’,
with A" connected, such that the algebra A'®4 A[u, v] is split, say A’ @4 A[u, v] =
A™ . As in the beginning of the proof of Theorem 6.2, we can assume that in
the related decomposition of A" ®4 M as My x---x My, each M; is a free
A’-module. Moreover, on each factor, 1 ® ¥ and 1 ® v act as multiplication by
a constant. O

It is perhaps worth recalling that in general there is no relation between the
dimensions of the three algebras A[u], A[v] and A[u, v], even over a field. For
example, consider the diagonal endomorphisms of A> given by

u = diag(l,1,0), v = diag(0,1,1).

Then A[u] and A[v] are of rank 2, and Au, v] is of rank 3, with basis (1,u,v),

since u2 =u, v2=v and wv =u +v—1.

7. The Jordan-Chevalley-Dunford decomposition

If # is an endomorphism of a vector space over a field K, the following result
is classical:

The endomorphism u has a Jordan decomposition u = ug + u,, where u;
is absolutely semi-simple and u, is nilpotent, if and only if the eigenvalues of
u are separable over K.

See, for example, [A], VII, 5.8 and 5.9.

Over aring A, the condition “u; is absolutely semi-simple” has to be replaced
by: the algebra Alus| is étale over A. See §6.
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We must find a substitute for the condition “the eigenvalues of u are separable”
which remains meaningful over rings. For a monic polynomial p(7'), the condition
that its roots should be separable has to be replaced by:

(1) There exist a monic separable divisor q of p and an integer s such that
p divides g°.
Equivalently, if A is connected,

(2) The A-algebra B = A|T|/(p) has a quotient B/J which is finite éiale
over A, with J a nilpotent ideal in B.

In fact, (1) implies (2) with J the ideal generated by ¢(7') in B. The opposite
implication follows from Propesition 1.5ii1), which provides a monic polynomial
g(T) in A[T] such that B/J = A[T]/(q); and Proposition 2.8 implies that g(7)
1s separable.

Actually, the generalization of Jordan decomposition is a special case of the
following fundamental result of Grothendieck:

7.1. Theorem (Lifting property for étale algebras). Let A — B be an
A-algebra, let J be a nilpotent ideal in B, and let w: B — B/J denote the
canonical projection. If B/J is finite étale over A, then there exists a unigue
morphism of A-algebras o:B/J — B such that mo =1Idg;;.

Two direct proofs are given below. This result can also be found in the EGA
as follows: in [EGA], IV, 18.3.1, the definition given in 2.1 is shown to imply
“formal étaleness” as defined in [EGA], IV, 17.1. To deduce the statement of
Theorem 7.1 from this proposition, take Y] = X = Spec(B/J), Y = Spec(4),
and Y’ = Spec(B).

Before giving proofs of this theorem we translate it into the “Jordan
decomposition” we have in mind.

7.2. Theorem (Jordan decomposition). Ler u be an endomorphism of a
Jinitely generated projective A-module M. We assume that A is connected.

1) If Alu| has an étale quotient defined by a nilpotent ideal I, then there
exists a couple of endomorphisms ug and u, in Alu]| such that

U = Ug + Uy,

where Alug| is étale over A and where u, is nilpotent. This decomposition is
unique if u, is specified to be in I.

ii) Suppose that the ring B = A|T|/(pu) has an étale quotient B/J defined
by a nilpotent ideal J. Then, as in 1), there exists a couple of endomorphisms
us and u, in Alu] such that

U = Ug + Uy,
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where Alug| is étale over A and where u, is nilpotent, but in general without
the uniqueness assertion.

i) If A is reduced, the hypotheses in 1) and in 11) are equivalent.

The hypothesis in i1) is the direct translation of the classical one; it 1s weaker
than the hypothesis in 1).

If A is not reduced, uniqueness is lacking without some additional assumption;
if fact, for a nilpotent element a € A, 1 4 a is invertible and we get another
decomposition

U =ug +uy = (1 + a)us + (u, —auy).

Proof. 1) Let w: Alu] — Alu]/I be the projection onto the étale quotient.
Since 7 is nilpotent, from the lifting property 7.1 one has a unique morphism of
A-algebras o: Alu|/I — Alu] such that mo = Ids[,/7 - Let uy = o(m(u)). This
morphism ¢ induces an isomorphism onto its image Alu|/I =~ Alus], which
shows that Alu,| is étale over A. Finally, ¥, = u# — ug is nilpotent since it is
mn /.

Now we prove that the obtained decomposition is unique. Let ¥ = s + 1 be
a decomposition where Als] is étale, and n € 7. The composite morphism

frAls] — Alu| — A|u|/1

is then surjective, with a nilpotent kernel. It is in fact an isomorphism. To see
this, it is enough to show that f is faithfully flat, and hence injective, as follows
from Lemma 2.31ii). It is flat by Proposition 2.9 because A[s] is étale over A,
and Alu|/I is projective over A by assumption. Finally Spec(f) is surjective
since the kernel of f is nilpotent.

The inverse isomorphism f~! composed with the inclusion A[s] € A[u]
gives a section of 7, which coincides with o in view of the uniqueness assertion
in 7.1.

ii) Let r denote the class of T in B = A|T]/(pu). Applying 7.1 to the
quotient B — B/J, we get, in B, a decomposition

f=5+n

where A[s| is an étale sub-algebra of B, and where »n is nilpotent. From 2.9 we
derive that M is projective over A[s|. Since the kernel of A[s] C B — Alu]
is a nilideal, the support of M as a module over A[s] is the whole spectrum
of that ring. Hence Anngj(M) = 0 and the morphism Als] C B — Afu| is
injective. Therefore, taking the images us; of s, and u, of n, in A[u], we get
the expected decomposition in A[u].

iii) Since the kernel of the morphism B — A[u| is nilpotent, the hypothesis
in i) implies the hypothesis in ii).
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Conversely, let J be a nilpotent ideal in B; denote by [ its image in Afu];
we have the following commutative square of surjective morphisms

B— A[M]

l

B/J —— Alu)/I.

Suppose that A is reduced and that B/J is étale over A. Then B/J is reduced:
this is trivial if B/J 1is split as a product A", and the general case comes
from 2.4. But the kernel of f is nilpotent; thus f is injective, i.e. it is an
isomorphism. We conclude that A[u]/! is étale over A, as B/J is. O

Proof of 7.1. a) We first prove uniqueness. Let C = B/J. Given two
A-algebras sections of 7, say o, 7:C — B, we introduce the morphism of
A-algebras w:C ®4 C — B defined by w(x ® y) = o(x)z(y). We have
w(x ® 1) = o(x), and w(l ® x) = 7(x). Thus, to prove uniqueness we have to
check that w(x ® 1 — 1 ® x) = 0, that is w(/) = 0, where I denotes the kernel
of the morphism pu:C &4 C — C. Since

wo = gt = g

the following triangle is commutative:

C ®4C @ B

S~

€

The kernel /" of @ is contained in 7, and a power /™ of [/ is contained in
I’ since the kernel of 7 is nilpotent. Since C is étale over A, the ideal [ is
generated by an idempotent ¢. We thus have ¢ = ¢” € I’, which shows that
I = I’ In particular w(/) = 0, as we wished to prove.

b) We now prove the existence of ¢ under the additional assumption that
the A-algebra B is monogenous: B = A|¢]. (This is enough for the applications
in 7.2.)

We can assume that A is connected. By induction on the least integer m
such that J™ = 0, we can assume that J2 = 0. Since B/J is a projective
A-module, it follows from Proposition 1.51i) that there exist a monic polynomial
q(T) € A|T] and an isomorphism A[T]|/(¢) >~ B/J which sends T to the
image { of ¢ in B/J. The expected section ¢ is determined by the image o (),
which has to be a root b in B of the minimal polynomial g(7) of . We try
b=r1+4+x with x € J. Since x? = 0, we have

gt +x) =q(t) +xq'(t).
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By Proposition 2.8 the image of ¢'(¢) in B/J = A[T]/(g) is invertible since
A[T]/(g) is étale. As J2 = 0, the element ¢'(z) is invertible in B as well.
Moreover, by definition of ¢g(7T), the image of g(¢) in B/J is zero, so g(¢) is
in J . Finally, if we let x = —g(z)¢’(t)"!, we have ¢(t + x) = 0.

This proof is very close to the Newton approximation procedure; it is due to
Chevalley ([C], 1, 8, thm 7), and it can be made effective.

c) We now explain another particular case which shows clearly what is going
on. Suppose that the étale algebra B/J is split as a product of copies of A,
say B/J = A®. Since J is nilpotent, the map Spec(B/J) — Spec(B) is a
homeomorphism. Thus Spec(B) is the disjoint union of s open and closed sets,
each of them being homeomorphic to Spec(A). From Lemma 1.1 we deduce
a factorization B = By X ---x By and s surjective morphisms of A -algebras
B; — A inducing the bijections Spec(A) — Spec(B;). Then the product of the
s canonical inclusions A C B; gives the section 0: A — B = [[ B; we were
looking for.

Remark. Instead of the topological argument used in the above proof and
of Lemma 1.1, we could as well use the lifting to B of the idempotents
associated with the decomposition of B/J. This is due to the following result:

7.3. Lemma. Let a be an element in a ring R such that a—a*
Then there is an idempotent b € R such that b —a € (a — a®)R.

is nilpotent.

For a proof, see for example, [A], VIII, 9.4.

d) Second proof of the existence: Let C = B/J. Consider the composite
morphism

B-Ba,c 2L 0,0,

with i(b) = b ® 1. Since C is étale over A, the kernel of the multiplication
w:C ®4 C — C 1is generated by an idempotent e. The kernel of 7 @ 1
is J ®4 C, a nilpotent ideal. According to the above lemma there exists an
idempotent ¢ € B ®4 C such that (m @ 1)(g) = e. Let v B Ry C — D
be the morphism to the quotient D = B @4 C/e(B ®4 C). We get a surjective
homomorphism 7p: 2 — C with nilpotent kernel making the following diagram

commutative:

F—ts BeiC -2 o8uc

NF b

D——(C,
70

where ¢ = vi, and where the square is co-cartesian, i.e. it makes C into a
tensor product of the three other rings. The commutativity shows that moe = 7.
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The map 7 1s finite €tale by base change from 4 — C, and v is a projective
quotient by definition, thus v is an étale morphism, by Lemma 2.31). Hence the
composite map ¢ = vi is finite étale. In fact, it is an isomorphism: by tensoring
with C over B, the diagram becomes

CsERiC—C®aC

X ll@v ll-t
C®pD——>C.
1c®mp
Since the square is cocartesian, the map l¢ ® mp is an isomorphism; finally we
get that ¢:C = B/J — D/JD = C ®p D is an isomorphism.

As the 1deal J i1s nilpotent, we first deduce from this that ¢ is surjective.
We also deduce that the map Spec(D) — Spec(B) is surjective, i.e. that ¢ is
faithfully flat; hence it is also injective. This allows us to conclude that ¢ is an
isomorphism.

We can now define the required section ¢:(C — B by the condition

wo =vj,
where j:C — B ®4 C is the canonical injection j(c) =1®c:

C

a .
J
B —BoCZ2.Ca,4C

RN

D——=(C.
70

It remains to calculate 7o . We have

o =mg@po =mvj =pu(r®1)j=Idc. O

8. Eigenspaces

We use the words eigenvalue and eigenspace with their classical meaning: an
eigenvalue A is a root of the characteristic polynomial, and the eigenspace relative
to A is the submodule Ker(u—A) of M. If the base ring is not a domain, it may
happen that Ker(x# — A) is non zero even if A is not an eigenvalue. For example,
it ab =0 with @ and b non zero in A, the map x — ax has a non-zero kernel
but its determinant @ is not equal to zero, that is 0 is not an eigenvalue.
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In this section we show that the eigenspace is often definable as an image,
essentially the image of (a variant of) the cotranspose (u — A)¢ of u — A; see
also [L]. Without any additional hypothesis on u, this description as an image is
efficient for the generic eigenvalue alone, that is for A equal to the class of T
in B = A|T]/(py). To abtain this type of description for all the eigenvalues, we
must restrict ourselves to particular classes of endomorphisms for example those
for which A|u] is étale.

8.1. Lemma. Let C be a ring, let L and L’ be C -modules, and let
fiL— L and f":L'— L be C -linear maps such that

@8.1.1) ff=dy and ff=dp,

where dp(x") = dx’ and dp(x) = dx for some element d € C. Finally, let
M = Coker(f). We asssume that the maps dj, and dp. are injective. Then

1) The module M is annihilated by d, and it is thus a C/dC -module.
ii) The following sequence is exact, where n: M — L/dL is induced by f',

0— M 1l L a5 M — 0.

Proof. To prove assertion i) we note that, if x" € L', then dx’ =
f(f'(x)) € Im f, and hence the image of dx" in M is zero.

In order to prove assertion ii), we first check that the sequence

var L vjar s 1yar

is exact, that is Im(f’) = Ker(f). If x € L is such that f(x) € dL' =
FOf (L)) then x € f'(L') since dy’, and thus f, are injective. The same
argument, using the injectivity of dr, shows that the sequence

L1dE s El1dnt s Lydt,

is exact, that is, f’ induces an isomorphism from Coker(f) = M onto

Im(f7) = Ker(f). =

8.2. Notation. We shall apply the previous lemma in the following situation:
Let M be an A-module with an A-linear map u: M — M, and let p(T)
be a monic polynomial of degree n such that

Moreover, let C = A|T] and L = L' = A[T| @M, let f =T®1-13Ru,
and let f' = op(T ® 1,1 @ u), where dp is the polynomial, introduced in 2.5,
which is defined in the polynomial ring A[T, U] by

(8.2.2) (T =U)dp(T,U) = p(T) — pU).
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For simplicity we often write 7 —u and dp(7,u) instead of T® 1 — 1 ®u and
ip(T®1.1%u).

Due to the hypothesis p(u) = 0, the endomorphism ap(T,u) of A[T| R4 M
satisfies the relation

(T =) dp(T.u) = dp(T.u) (T —u) = p(T).

This corresponds to the condition (8.1.1) of the previous lemma, with f = 7T —u,
f'=0p(T,u) and d = p(T). The equality Coker(f) = M from the lemma
becomes here the well-known exact sequence (see for example [A], III, 8.10)

A[T]®AMM>A[T]®AML>M—>O

where u(3" T @ x;) = > 1 (x;).

Denote by ¢ the class of T in B = A[T]/(p); the ring B corresponds

to the ring C/dC of the lemma. The condition p(x) = 0 gives a structure
of B-module on M. On B®4 M = L/dL, the maps f and f’ becomes,
respectively, 1 ® 1 — 1 ® u and Ip(s,u).

8.3. Proposition. Let M be an A-module with an A-linear map w: M — M,
and let p(T) be a monic polynomial such that

plu) =0.

Denote by t the class of T in B = A[T|/(p). Then the following sequence is
exact

(8.3.1) B35BT BEy B2 Ry BB 50

where 1 is defined as 1(b) = dp(t,1)(1 ® b). On tensoring this sequence
on the right by M over B, exaciness is preserved and we obiain the se-
quence

B o MU M — 0,

(8.3.2) 0— M Bo,M
where now the first arrow is defined as ny(x) = dp(t, u)(1 @ x). In other words,
the subspace Im(dp(t,u)) of B ®a M is the eigenspace of 1 @ u relative to the
eigenvalue 1 @ 1.

Proof. The exactness of these two sequences is merely a translation of
Lemma 8.1. ]
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8.4. Remarks. 1) The main application of Proposition 8.3 is to the case
where M is projective of finite type over A and p(7T) is the characteristic
polynomial p, (7). The endomorphism dp, (T, u) is then equal to the cotranspose
(T —u)® of T —u (in [A], III, 8.6, the cotranspose of v is denoted by v). In
fact, we have the two relations

(T—w)o(T —w)* = pu(T)  and (T —u)od(T,u) = pu(T),

and the endomorphism (7 —u) of A[T] ®4 M is injective.

2) On B ®4 M there are rtwo B -module structures, called, for simplicity, the
left and the right structure. It is important to note that the sequence (8.3.2) is
exact for both these structures, even though, in general, it is not split for the left
B -module structure. It is obvious that the sequence

BoaM 2% po Mt M —0

is exact as a sequence of B ®4 B-modules. It remains to check that the map
n: M — B ®4 M is linear for the left structure. Since f € B acts on M as
tx = u(x), we have to show that my(u(x)) = (¢t ® 1) na(x). We already know
that nas is linear for the right structure, so we have na(u(x)) = (1L @ u)nar(x).
Moreover, the definition (8.2.2) gives

(tR1-1Quwip(t,u)=pt)@1 -1 p(u) =0.

Thus we have (1 @ u)dp(r,u) = (t @ 1) dp(t,u).

3) The polynomial dp(T,U) can be given an explicit expression in terms of
the coefficients of

p=T"+an 1 T" '+ +ap.
In fact, if we write dp(7T,U) = Z?;(l, T p;(U), then p,_; =1, and for j > 0
we have p;_1(U) = a; + Up; (). Denoting by p=" the sum of the monomials

of degree > m, we get

>j+1

pJ(U) = W — Un—j—l e an_lUT’t—j—Z T +aj+1 .
With the notation of the above proposition we may write

(X)) ="' ® P (X)) + -+ 1 ® po(u)(x) € BRa M.

4) The endomorphism ppy M — B4 M — M is equal to p'(u). This
remark “explains” the analogy between the sequences (2.6.1) and (8.3.1). In fact,
we have n = p'(t) «.
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8.5. We now wish to describe the eigenspace relative to a general eigen-
value A. Giving a root A of p(T) in some A-algebra A’ is the same thing as
giving a morphism of A-algebras

f:B— A", ()= xr.

Hence a root gives rise to the following commutative diagram, obtained from
(8.3.2) by the base change f:

85.1) A'®@zM 2™ 4 @p (B e, M) 2210

A!®BMW'A!®AM A,®AM.

®n AR1—1Ru

A" @p (B®aM)

The submodule Ker(A ® 1 —1 ® u) in A" ®4 M is the eigenspace relative to
A. It contains Im(l & nar) but, unfortunately, it may be different from it. In
other words, the lower row is not exact in general; for example, consider the case
where u = 0, A =0, and M # 0. (See 8.7 below for a less trivial example.)

8.6. Proposition. Let M be an A-module with an A-linear map u: M — M,
and let p(T) be a monic polynomial such that p(u) = 0. Moreover, denote
by t the class of T in B = A|T|/(p). Let f:B — A" be a morphism of
A-algebras, and let A = f(t). Then the sequence

1 AR1—
(8.6.1) 0—> A’ @5 M 2 2@, M 222712 4@, M

is exact, under each of the following hypotheses:
1) the morphism f:B — A’ is flat;

11) M is a projective B -module;

i) B is finite étale over A.

Proof. The commutativity of (8.5.1) reduces the proof to verifying that, under
each of the hypotheses, the following sequence, obtained by tensoring (8.3.2) by
A’ on the left over B, remains exact:

1@n 12 R1—1%wu)
R

0> A'@p M 2™ A2 (B M) A @p(BRAM)ZE N @M —0.

This is obvious when f is flat.

Assume now that M is a projective B -module. Then it is also projective over
A, and thus B ®4 M 1s projective over B for the left B -module structure. The
sequence (8.3.2) is exact as a sequence of B-modules for the left structure, by
virtue of Remark 8.4(2). As each term is projective over B, it is split for the
same structure. Hence it remains exact by tensoring on the left by A" over B.
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If B is finite étale over A then p'(f) ® 1 is invertible in B ®4 B, by
Proposition 2.8, and thus the maps ¢ and n = (p’(¢) ® 1) ¢ have the same image.
Moreover, we observed in 2.6 that the sequence (2.6.1), which begins with &, is
split as a sequence of B @4 B-modules. Hence the sequence

0 —s ' —L B B S pe BT B e

1s also split as a sequence of B ®4 B-modules. Therefore it remains exact when
tensoring over B ®4 B by the B ®4 B-module A" ®4 M . The last point to be
checked is the isomorphism

B®pg,p (A @1 M) — A oM.

Now, it is a general fact that the kernel of the surjective map A'@4M — A'QpM
is generated by the elements ha’ ® x — a’ ® bx; hence it is the sub-module
Ker(p) (A" ®4 M). .

8.7. Example. In this example the sitvation is simple enough to make the
maps in the above results explicit.

Let A be a ring containing two elements a and & such that ab = 0. Consider
the endomorphism u of A% given by the matrix (g g) The characteristic
polynomial p,(T) = T? — (¢ + b)T admits two factorizations p,(T) =
(T—aT—h)=T(T —(a+h)). We have dp, (X, Y)=X+Y —(a+h), and
hence the map ny: M — B ®4 M of (8.3.2) is

(X)) =t @x+1@u(x)—1®(a+h)x.

For the canonical basis (e1,e2) of M we thus have

i) = (=) ®er, nulea)=(U—-a)®e;.

An element by ® e1 + b, @ ez in B ®y M is inside the generic eigenspace
Ker(f @ 1l — 1 ®@u) if ({ —a)by = 0 and (f — b)b, = 0. An immediate
verification confirms that such a by is of the form (¢t — h)cy, and b, is of the
form (f —a)cy with ¢; € A, as the exactness of the sequence (8.3.2) predicts.

For special eigenvalues the situation is more difficult. Let A be a root of p, (T)
in A, and let f: B — A be the morphism it defines, that is, f(z) = A. Then
AQrpM =M/(u—A)M,and AQrp(B@4M)=B/t-A)BQuM=M.
The map 1 @ nps of (8.5.1) can now be written as

moM/u—OM — M, m(x) =Ax +u(x)—(a+ h)x.

To determine the eigenspaces and discuss the exactness of the sequence (8.6.1)
we must introduce the ideals: o = Anng(a), b = Anng(bh) and ¢ = Anng(a—5).
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i) For the eigenvalue A = a, we find the inclusion
Im(n,) = Im(u — b) = (a — b)) Aey C Ker(u —a) = Aey + cez.

It is an equality if and only if @ — b is invertible in A, that is it B is étale. The
same conclusion holds for the associate other eigenvalue = b.

ii) For the eigenvalue A = 0 we get the inclusion
Im(ng) = bAey + aAey C Ker(u) = aey + bey .

It is an equality if and only if a =54 and b =aA.

For the ring A = Z[a, b]/(ab) the relations a = bA and b = aA are satisfied,
but @ — b 1is not invertible; thus the inclusion in i) is strict, whereas the second
one, in ii), is an equality. In the ring Z[a, b]/(a?, ab,b?), both inclusions are
strict.

This remark shows that in general the exactness of the sequence (8.6.1) depends
not only on u and on the polynomial p, but it also depends on the choice of
the eigenvalue.

About the possible decompositions of M into a sum of eigenspaces, the same
example shows that it depends on the choice of a factorization of the characteristic
polynomial:

e If we use the decomposition p, = (T — a)(T — b), the eigenspaces are
Ker(u —a) = Aey + ce2 and Ker(u — b) = cey + Ae,, and their sum is equal to
the whole module M . However, their intersection is trivial if and only it a — b
is regular.

e If we now use the decomposition p, = T(T — (¢ + b)), we find
Ker(u) = ae; + be, and Ker(u — (@ + b)) = bey + ae,. The image of the
map

Ker(u) x Ker(u — (a + b)) — M

is the submodule (a 4 b) M, and its kernel is isomorphic to (a N b) M. This
map 1s not even surjective without some strong conditions.
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