Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique
Band: 60 (2014)

Artikel: Well-rounded equivariant deformation retracts of Teichmuiller spaces
Autor: Ji, Lizhen
DOl: https://doi.org/10.5169/seals-515848

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-515848
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’ Enseignement Mathématigue (2) 60 (2014), 109-129 DOI 10.4171/LEM/60-1/2-6

Well-rounded equivariant deformation retracts
of Teichmiiller spaces

Lizhen IT*

Abstract. In this paper, we construct spines, i.e., Modg -equivariant deformation retracts,
of the Teichmiiller space 7y of compact Riemann surfaces of genus g. Specifically,
we define a Modg -stable subspace S of positive codimension and construct an intrinsic
Mod -equivariant deformation retraction from 7z to S. As an essential part of the proof,
we construct a canonical Modg -deformation retraction of the Teichmiiller space Tg to
its thick part 7g(¢) when ¢ is sufficiently small. These equivariant deformation retracts
of Ty give cocompact models of the universal space EModg for proper actions of the
mapping class group Mod, . These deformation retractions of 7, are motivated by the
well-rounded deformation retraction of the space of lattices in R”. We also include a
summary of results and difficulties of an unpublished paper of Thurston on a potential
spine of the Teichmiiller space.

Mathematics Subject Classification (2010). 32G15, 22F99.
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1. Introduction

Let S be a compact oriented surface of genus g, and Mod, be the mapping
class group of Sg. Let T, be the Teichmiiller space of marked complex structures
on Sg. When g = 1, 7, can be identified with the upper half plane H? and
Mod, = SL(2,7Z).

We will assume that g > 2 in the following. Then every compact Riemann
surface of genus g admits a canonical hyperbolic metric, and hence 7, is also
the moduli space of marked hyperbolic metrics on Sg.

It is known that 7 is a complex manifold diffeomorphic to R®€~5 and Mod,
acts holomorphically and properly on 7. It is also known that Mod, contains

*Partially Supported by NSF grant DMS-1104696.
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torsion elements and does not act fixed point freely on 7, . By using the geodesic
convexity of the Weil-Petersson metric of 7T, , see [Wol], (or earthquakes in 7 )
and positive solutions of the Nielsen realization problem [Ke] and [Wol], it can
be shown, see [JW], Proposition 2.3, that 7, is a model of the universal space
EModg of proper actions of Mod,, which means that for every finite subgroup
F C Mody, the set of fixed points (7)¥ is nonempty and contractible.

On the other hand, it is well-known that the quotient Mod,\7, is the moduli
space of compact Riemann surfaces of genus g and is non-compact. For many
applications, an important and natural problem is to find a model of the universal
space EI" for I' = Mod, which is I'-cocompact, i.e., the quotient I"\EI is
compact, or rather more to the point, is a finite C W -complex. Another closely
related problem is to find a model of £I' which is of as small dimension as
possible, for example, equal to the virtual cohomological dimension of I'.

For any n > 1, let §;, be the surface obtained from S, by removing n
points, and 7, be the corresponding Teichmiiller space of S, , and Modg ,
the corresponding mapping class group. Then 7., is also a model for the
universal space £Modg , for proper actions of Modg ;. It was shown in [BoE],
[Ha], and [Pe2] that T, , admits the structure of Mod, ,-simplicial complex,
and hence admits an equivariant deformation retraction to a subspace which is
cofinite Modg - CW -complex of dimension equal to the virtual cohomological
dimension of Modg ,. This is a model of £Modg , of the smallest possible
dimension. This result was used by Kontsevich [Ko] in proving a conjecture
of Witten on intersection theory of the moduli space M, ;. The method for
constructing the above spine of 7T, , depends crucially on the assumption that
n > 1 and cannot be applied to T, .

Briefly, the important role played by the punctures in triangulating the
Teichmiiller space 7;, can be explained as follows. As in [Hal], Chapter 2, we
assume that n = 1 for simplicity. Let * be a fixed basepoint in 5. Then essential
simple closed curves in S, passing through * define a simplicial complex A,
called the arc-complex, where each simplex corresponds to an arc-system of S
based at *, which is a collection of essential simple closed curves nonhomotopic
to each other and intersecting only at *. Let A, be the subcomplex consisting
of simplexes whose arc-systems do not not fill Sg. The basic result is that there
is a canonical homeomorphism between 7, 1 and A — Au,. One way to see this
is that for each marked Riemann surface (X,.p) with p corresponding to the
basepoint * in S, there is a unique, up to multiplication by positive constants,
horocyclic holomorphic quadratic differential on X, with its pole of order 2
at p. The foliations defined by the quadratic differential will produce a filling
arc-system together with related weights so that they define a canonical point in
A — Ay (or rather a point in the simplex determined by the arc-system). The
second way to see this is to use the hyperbolic metric on the punctured Riemann
surface ¥, — {p}. Then a suitably defined distance of points of X, —{p} to the
ideal point at infinity p of X, — {p} defines a spine of X, — {p}, which also
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allows one to define a filling arc-system and related weights, and hence to map
(Zg,p) toapointin A—Ay.

Once TgJ 1s identified with A — A, the first barycentric subdivision of A4
gives an equivariant spine of 4 — Ay of the optimal dimension, which gives a
spine of Tg 1 of the optimal dimension. See Remark 2.2 for more details.

As mentioned above, when g = 1, the Teichmiller space 77 = H?, and
Mod; = SL(2.Z). An equivariant deformation retract, i.e. a spine, of H?
1s known. In fact, this was used in [Hal], Chapter 2, to motivate the above

construction of the spine in 7T; ;. We will also give a construction of the spine
of H? using the identification H? = SL(2,IR)/SO(2) in Remark 3.3 below.

For the above problem to construct Modg -cocompact universal spaces
EMod,, there are two approaches based on the action of Mod, on Tg: ei-

ther construct a partial compactification Tg such that the inclusion 7, — Tg isa
Mod, -equivariant homotopy equivalence, or construct a Mod, -stable subspace §
such that Mod,\S is compact and there exists a Mod, -equivariant deformation
retraction from 7, to S. The second approach seems to be more accessible and
might give spaces of smaller dimension than 7.

In a preprint [Th] circulated in 1985, Thurston proposed a candidate of Mod, -
equivariant deformation retract, i.e., a spine, of Ty, of pesitive codimension. An
outline was given to deform 7, into a small neighborhood of the proposed
subspace. But the deformation retraction to the proposed subspace does not
necessarily achieve its goal. See Remark 4.4 below for a summary of results
in [Th], discussions of the difficulties, and an alternative proof of one key result
in [Th].

It is known [Ha] that the virtual cohomelogical dimension of Mod, is 4g—5.
An important problem is whether there exists a Mod, -stable subspace of 7, which
is of dimension 4g—5 and is a Mod, -equivariant deformation retract of 7, . The
question whether such a deformation retract of 7, exists or not is Question 1.1
in [BV].

In this paper, we consider two spines of 7. The first one is the thick part
Te(e) of Tg, ie., for any & > 0 which is sufficiently small, 7, (¢) consists of
hyperbolic surfaces which do not contain closed geodesics with length less than
£. The second subspace S consists of hyperbolic surfaces whose systoles, i.e.,
the shortest simple closed geodesics, contain at least an intersecting pair. (See
Theorem 4.2 in §4 for more detail.) An important point about the second spine
S 1is that it is an intrinsically defined subspace of positive codimension.

It is known that 7, (e) is a real-analytic submanifold with corners and is
stable under the action of Mod, with compact quotient.

Existence of a Mod, -equivariant deformation retraction of 7, to Tg(e) was
proved in [JW], Theorems 1.2 and 1.3. Therefore, 7¢(e) is a Mod, -cocompact
ET" space for I' = Mod, .
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On the other hand, the deformation retraction of 7;,, to ’7;(8) in [JW], §3,
1s the flow associated with a vector field which is patched up from local vector
fields, which increase any fixed collection of short geodesics simultaneously, using
a partition of unity. In order to get an equivariant deformation, the construction of
the partition of unity is delicate. Since there is no intrinsic or canonical partition
of unity, the deformation retraction is not unique or canonical.

A natural problem is to construct a deformation retraction of 7, to Tg(e)
which depends only on the intrinsic geometry of the hyperbolic surfaces in 7T,
and the geometry of 7, . An answer is given in Theorem 3.9 below. Due to the
intrinsic nature of the construction, it is automatically Mod, -equivariant. Since the
construction is motivated and similar to the well-rounded deformation retraction
for the space of lattices in R", see [Asl], which is explained in Remark 3.3
below, we also call it the well-rounded deformation retraction of the Teichmiiller
space T, in the title.

The continuation of the deformation retraction to 7T,(g) gives rise to a
deformation retraction to the second spine §. It is a real sub-analytic subspace
of T, of codimension at least 1. See Theorem 4.2 below for a precise statement.

It seems that this spine S is the first example of equivariant deformation retract
of T, which is of positive codimension. A natural problem is whether this idea
can possibly be generalized to construct equivariant deformation retracts of 7T,
which are of higher codimension. This will depend on understanding subspaces
of T, consisting of hyperbolic surfaces whose systoles intersect. (See [Sch] for
a survey of some work on systoles of surfaces.) In Proposition 4.3, we explain
how to obtain a spine of 7, of codimension at least 2.

Another natural problem is to find good candidates of spines of 7, which are
of the optimal dimension 4g — 5. It is reasonable to believe that spines of 7T,
should consist of “rounded hyperbolic surfaces”, and hyperbolic surfaces in the
spine S in Theorem 4.2 are in some sense the /easr rounded among all possible
definitions of “rounded hyperbolic surfaces”. One idea 1s to require hyperbolic
surfaces to be cut into smaller pieces by some systoles such that the pieces are
“rounded”. Once good candidates are found, deformation retractions to them can
be difficult.

Acknowledgements. 1 would like to thank Scott Wolpert for very helpful con-
versations, references and encouragement and Hugo Parlier for helpful correspon-
dence, for example, the arguments in the proof of Proposition 4.3 are due to
them, and Juan Souto and Alexandra Pettet for the example on a flow on the
unit disk that explains a problem with the spine in [Th]. I would also like to
thank an anonymous referee for constructive suggestions which have improved
the exposition of this paper.
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2. Definition of spines and examples

Let X be a topological space, and T" a discrete group acting properly on X.
A subset § of X is called an equivariant spine or simply a spine if

(1) S is stable under T°,
(2) and there exists a I'-equivariant deformation retraction from X to §.

For example, if T is a cofinite, nonuniform Fuchsian group, and X = H?
is the Poincaré upper half-space, then H? has an equivariant spine given by a
tree. The best known example is I' = SL(2, Z), which is equal to Mod, when
g = 1; see [BoE]. (We note that when I' is a torsion-free non-uniform Fuchsian
group, then the fundamental group w{(I'\H?) is a free group.)

Proposition 2.1. If X is contractible, then any spine S of X is also contractible.
If X is a universal space for proper actions of T, then § is also a universal
space for proper actions of I'.

Proof. We only need to note that for any finite subgroup F of I', the fixed
set ST is a deformation retract of the fixed point set X% in X and hence is
nonempty and contractible. 4

In the following we assume that X is a universal space for proper actions
of I'. Then § is called a minimal (or optimal) spine if dim S = ved I', where
ved I' is the virtual cohomological dimension of I'. The reason is that since §
is also a universal space for proper actions of T, dim§ > ved T

The spine & of X is called a cofinite spine if § is a I'-CW -complex and
the quotient I'\.S is a finite CW-complex. S is called a cocompact spine it
I'\S is a compact space. We note that if S is cofinite, then it is cocompact. On
the other hand, the converse is not automatically true, since a general I'-space
may not admit the structure of a I'-C W -complex.

It is known that given any discrete group I'. there always exists a universal
space ET' for proper and fixed point free actions of I', and a universal space
£T for proper actions of T'. Both ET and ET are unique up to I'-equivariant
homotopy equivalence (see [Li] and references there). The quotient TN\ET is a
classifving space BT of T, ie., m(BT') =T, and =;(BT) = {1} for i = 2.
When I' is torsion-free, then ET' is equal to ET.

Models of ET can be constructed for groups by a general method due to
Milnor via the infinite join of copies of I' [Mil] and are infinite dimensional. A
generalization gives a construction of a model of £I" via the infinite join of copies
of cosets I'/F, where F ranges over finite subgroups of I', and such a model is
also infinite dimensional. (See [Li], §3, and [Tom], Lemma 6.11, Chapter 1, for
additional references and more details. The basic reason is that joining produces
highly connected spaces, and I' acts on these models by multiplication on the
vertices, and hence the action satisfies the desired stabilizer property.) But good
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models of £I" and EI', in particular those having various finiteness properties,
are important in order to understand finiteness properties of I' such as finite
generation, finite presentation and cohomological finiteness properties of I', and
also for proofs of the Novikov conjectures and the Baum—Connes conjecture
for T'. See [JW], §2, for an explanation of some applications.

For some basic groups such that arithmetic subgroups (or more general discrete
subgroups) of Lie groups and mapping class groups, there are natural finite
dimensional FEI'-spaces. For the former groups, they are the symmetric spaces
or more general contractible homogeneous spaces associated with the Lie groups,
and for the latter groups, they are given by the Teichmiiller spaces.

But such natural spaces are often not I'-cofinite, or even I -cocompact,
ET'-spaces, as pointed out in the introduction, and an important problem is to
find good equivariant spines contained in them in order to construct cofinite
models of ET -spaces of dimension as small as possible.

Remark 2.2. Suppose X is a simplicial complex with some faces of some
simplexes missing. Let X* be the completion of X, i.e, if an open simplex is
contained in X™*, then all its simplicial faces are also contained in X™*. Suppose
X # X*. Then there is a canonical spine of X obtained as follows. Take the
maximal full subcomplex of the barycentric subdivision of X* that are disjoint
from X* — X, i.e., from the missing faces of X . This is the spine constructed
in [As2] for the space of positive definite quadratic forms in » variables (or
equivalently the space of lattices in R"), the Teichmdiller space 7, , of Riemann
surfaces of genus g with n-punctures when n > 0 in [Ha], and the outer
space associated with the outer automorphism groups Out(F},) of the free groups
in [CV].

On the other hand, if X does not have a structure of I'-simplicial complex,
it is often less clear how to construct a spine or whether a spine of positive
codimension exists.

3. Deformation retraction of the Teichmiiller space to the thick part
and well-rounded lattices

Let Sg be a compact oriented surface of genus g > 2. A marked compact
hyperbolic surface of genus g 1s a hyperbolic surface 2, together with a
homotopy equivalence class [¢] of diffeomorphisms ¢ ¥, — S;. Two marked
hyperbolic surfaces (Zg 1. [¢1]). (Zg.2. [¢2]) are defined to be equivalent if there
exists an isometry i Xg 1 — g such that [¢1] = [g2 0] X1 — Sg. Then
the Teichmiiller space T, is the set of equivalence classes of marked compact
hyperbolic surfaces of genus g:

Te = {(Zg l¢Di/~-
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Let Diff* (s ¢) be the group of orientation preserving diffeomorphisms of
Sy and let Diffo(S ¢) the identity component of Diff*(S,). The quotient
Difft (S,)/Diff’(Sy) is the mapping class group Mody, and Mod, acts on
Tz by changing the markings of the marked hyperbolic surfaces.

By the collar theorem of hyperbolic surfaces, there exists a positive constant
£g such that for any compact hyperbolic surface X, and any two closed geodesics
y1, V2 in it if

£€(y1).€(y2) < €0,
then
nNy=9.
For any ¢ with 0 <& < g9, define the &-thick part Ty(¢) by

Te(e) = {(Zg. @]) | for all simple closed geodesic y in Xz, £(y) > e}.

Then the following result is known.

Proposition 3.1. The subspace Tg(e) is stable under Mod, with a compact
quotient Modg\Tg(e). Under the above assumption that 0 < & < g9, Tg(e)
is a real-analytic manifold with corners and hence admits a Modg -equivariant
triangulation such that Modg\Tg(e) is a finite CW -complex.

Proof. 1t is clear that T, (e) is stable under Mod, since its definition does not
depend on the markings. The compactness of the quotient Mod,\ 7T, (e) follows
from the Mumford compactness criterion for subsets of Modg\7,, see [Mu].
Near any boundary point p = (.. [¢]) € 9Tg(e) — T (e), the subspace T, (¢)
is defined by the inequalities:

1), .- ) = &,

where y1,...,yx are all the simple closed geodesics on the marked surface g
such that £(y1)(p) = &.....£{yx)(p) = . (Here we mean that the geodesics
¥1,--+, Yx are all the systoles for the marked hyperbolic surface represented by
the point p in the Teichmiiller space.) By the assumption on &, the geodesics
Y1,-.., Vi are disjoint. Then they can form a part of a collection of a pants
decomposition of X, , and their length functions are a part of the associated
Fenchel-Nielsen coordinates, and hence their differentials d£(y),...,d€(v)
are linearly independent. This implies that the subspace of 7, defined by the
inequalities £(y1) = &,...,£(yx) = € is a real-analytic submanifold of 7, with
corners near the point (g, [¢]). ]

The main result of [JW], Theorems 1.2 and 1.3, is as follows:

Proposition 3.2. For every ¢ with 0 <& < gq, there exists a Modg -equivariant
deformation retraction of Ty 10 Tg(e). In particular, T, (g) is a cofinite model
of the universal space ET' for proper actions of I' = Modg .
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The idea of the proof in [JW] is as follows. For any marked hyperbolic
surface (Xg, [¢]) in the thin part T, — T,(¢), we increase the lengths of the
short geodesics by following the flow of a local vector field which is a suitable
linear combination of the gradient vectors of the length functions of these short
geodesics. Specifically, let yq, ...,y be all the short geodesics of X, such that
£(y1) < --- =< €(yx) < &. In a simple case, suppose that £(y1) < £(y2). For
any geodesic y, let V£(y) be the gradient of the function £(y) with respect to
the Weil-Petersson metric of 7,. Then the flow along the vector field V£(y)
will increase {(y;) until it reaches £()2) or . The point to make use of the
Weil-Petersson metric is that it 1s intrinsic and hence the flow is automatically
Mod, -equivariant.

On the other hand, a difficulty occurs if £(y;) = £(y,) since it is not clear
whether we should use either V£(y1) or VE£(y,).

The way to solve this problem in [JW] consists of two steps: (1) introduce
a local vector field near every point in the thin part 7, — 7g(¢), which, in
the notation above, is a suitable linear combination of V£(y1),..., V£(y;) on a
small neighborhood of (g, [¢]) in 7, such that under its flow, the lengths of
all the short geodesics yq, ..., yx are increased simultaneously, (2) use a suitable
Mod, -invariant partition of unity to glue up the local vector fields to obtain a
desired global vector field on the thin part T, — T,(¢) that is invariant under
Mod, .

The construction of the partition of unity in Step (2) is complicated, but not
canonical or intrinsic. A natural problem is to obtain an equivariant deformation
retraction of 7, to T;(e) which only depends on the intrinsic geometry of the
hyperbolic surfaces ¥, and the geometry of 7, . The first purpose of this paper
is to construct such an intrinsic equivariant deformation retraction. To do this, we
first recall the well-rounded deformation retraction of lattices in R”.

Remark 3.3 (Well-rounded deformation retraction of lattices). The pair (7, Mody)
has often been compared with the pair (SL(n,R)/SO(n),SL(n, 7)) of a sym-
metric space SL(n,R)/SO(n) of noncompact type and an arithmetic subgroup
SL(n,7Z) acting on it. Unlike a general symmetric space, SL(n,R)/SO(n) is
the moduli space of marked unimodular lattices in R, where a marked lattice
is a lattice A C R" together with an ordered basis vy,...,v, of A, and a
lattice A C R is unimodular if vol(A\R") = 1. The locally symmetric space
SL(n, Z)\ SL{n,R)/ SO(n) is the moduli space of unimodular lattices in R” up
to isometry. As pointed out above, when n = 2, SL{n,R)/SO(n) is equal to
the Teichmiiller space 7Ty, and the deformation retraction described below gives
an equivariant spine of 7y.

There is a known SL(n,Z)-equivariant deformation retraction of symmetric
space SL(#n,R)/ SO(n) to the subspace of well-rounded lattices by successively
scaling up the inner product on the linear subspace spanned by the shortest lattice
vectors and hence increasing the length of shortest geodesics of the associated
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flat tori in order to reach more rounded flat tori. According to [Asl1], this result is
due to Soulé and Lannes and was presented in the unpublished thesis of Soulé. A
generalization of this method to the symmetric space associated with the general
linear group of a division algebra over { is given in [Asl]. Since we only need the
above special case (SL(n,R)/ SO(n), SL(n,Z)), we give a simplified summary
of the deformation retraction in [Asl] to motivate the deformation retraction of
T, in the next section.

More precisely, let R” be given the usual Euclidean inner product (,), and
A C R” be a lattice. Let

m(A) = inf{{v,v) | v e A -0},

and
M(A)={veA|{v,v)=m(A)}.

If M(A) spans R”, then the lattice A is called a well-rounded lattice. 1f
A C R™ is a unimodular, not well-rounded lattice in R”, then it can be deformed
canonically to a well-rounded unimodular lattice in several steps.

These notions can also be defined for marked lattices. Since there is a natural
marking in the deformation, we suppress the marking in the following discussion.
Or equivariantly, we are defining a deformation retraction of the locally symmetric
space Sl.(n, Z)\ SL{n,R)/ SO(n).

Suppose A is not a well-rounded lattice. Then the span M(A) ® R, denoted
by Var(A), is a proper linear subspace of R”. Let VAJJ(A) be the orthogonal
complement of Vjs(A) in R?. For any ¢ > 1, define a new inner product {, ),
on R”™ such that on Vys(A), the inner product is scaled up by 7, and on Vﬁ (A),
it is scaled down by a unique factor so that with respect to the new inner (,);
on R", the lattice A is still a unimodular lattice. Note that this inner product
depends on the lattice A. Scaling on the subspaces Va(A) and Vﬁ(/\) in
the opposite direction gives a canonical isometric identification between the two
Euclidean spaces (R”,(.);) and (R",(,)), and the image of A gives a new
lattice A; in the standard Euclidean space (R",(,)).

If A is given a marking, i.e., an ordered basis vy,...,v,, then the images
of vy,...,v, in A, form a basis of A; as well. What is changed is the inner
product and hence lengths of the vectors. This process also gives a canonical
identification between marked lattices A, and A.

In the deformation A,, the minimal norm m(A,) is increasing. We deform
A to A, until M(A,) contains at least one more independent lattice vector, i.e.,
the dimension of M(A,;) ® R increases at least by 1 (note that for small values
of t, M(A,) stays constant under the above identification between A; and A).
This finishes the first step of the deformation. Now we start again using the new
vector subspace Var(A;), and deform it again by increasing the norms of all
minimal lattice vectors simultaneously at the same rate. After finitely many steps,
M(A,) spans R" and the lattice A; is well-rounded.
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Though the above deformation procedure is canonical, we still need to show
that it gives a continuous map on ¥ = SL(n, Z)\ SL(n,R)/SO(n). To do this,
we define a filtration of ¥ :

Y=Y 3 Yyo: D Vs

where V; ={A €Y |dmMA)QR > j}, j=1,...,n. Cleadly, Y1 =Y, and
Y, is the subspace of well-rounded lattices. The complement Y;_; —¥; consists
of lattices whose associated subspace M(A) @ R has dimension equal to j — 1.
The deformation retraction to the subspace Y, of well-rounded lattices consists
of composition of the deformation retractions of ¥,y to ¥; for j =2,...,n.
Hence it suffices to show that at every step, the retraction of Y;_; to ¥; is
continuous.

Let A,A" € Y;_q be two lattices. It A € Y;_1—Y;, we deformitto A, €Y;
by the procedure described above; otherwise, A € ¥; and set A, = A. Similarly,
we can define the deformation image Aj, € ¥;. We need to show that A, and
A’, are close whenever A, A’ are close.

There are two cases.

(1) Suppose A € Y;. If A’ € ¥;, then A’, = A’ is close to A, = A by
assumption. If A" e Y; 1 —Yj;, then the next shortest norm of vectors in A’ after
m(A’) is close to m(A’). The reason is that dim M(A) ® R is at least j but
dim M(A") ® R = j — L. This implies that the stretching factor in reaching A’,

from A’ is close to 1, and A’, is close to A’ and hence close to A; = A.

(2) Suppose that A € ¥;_1—Y;. Then dim M(A)®@R = j —1. We claim that
when A’ is close enough to A, then dim M(A)®R = j —1. By assumption, for
any v € A—M(A)—{0}, ||v|| > m(A), and hence these exists a positive number
e such that for all v € A—M(A)—{0}, |[v]|| = m(A)+e&. Then for any A" € ¥;_4
close to A, there exists g € SL(n,R) close to the identity element such that
A’ = gA . This implies that only minimal vectors in M(A) can be mapped to
M(A", ie., M(gA) C gM(A), and hence dimM(A) Q@R < dimM(A) @ R.
Since A’ € ¥;_1, dim M(A")@R > j—1. By assumption, dim M(A)QR = j—1,
it follows that dim M(A) @ R = dim M(A) @ R.

Since m(A) and m(A’) are close and the next smallest norms in A, A’
are also close, the equality of the dimension dim M(A") @ R = dimM(A) ® R
implies that the scaling factor / needed for M(A;) to have a higher dimension,
Le, for A; to reach Y; 1is close to the scaling factor t" needed for A’I, to
reach Y;. This implies that A, and A’, are close. This completes the proof of
the continuity of the deformation retraction from Y;_q to Y;, and hence of the
deformation retraction of ¥ to the subspace Y, of well-rounded lattices.

A tempting idea is to carry out the same deformation for Teichmiiller spaces
by increasing the lengths of shortest geodesics while decreasing the lengths of
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other geodesics. But there are no linear structures and orthogonal complement on
the set of closed geodesics as in the case of lattices in R™, and it is not clear
whether such a deformation is possible. We will need to deform differently.

For any positive & < g9, decompose the thin part 7, — 7, (e) into a disjoint
union of submanifolds according to the multiplicity of the shortest geodesics, or
systoles.

Every simple closed curve ¢ of the base surface S, which is not homotopic
to a point induces a unique simple closed geodesic in every marked hyperbolic
surface (g, [¢]), which is contained in the homotopy class [¢~'(c)] of simple
closed curves.

For a collection of pairwise disjoint simple closed curves cq,...,¢x of Sg,
let yi.....yx be the corresponding geodesics in (g, [¢]). Define a subspace
7:‘,'»6‘1,---»% = {(Egs [(P]) | E(yl) == g(yk) < E(y),

for any other simple closed geodesic y C 2}.

In terms of systoles, Tg.c,...c, consists of hyperbolic surfaces whose systoles
are disjoint simple closed geodesics y1,...., Y.

Proposition 3.4. For every collection of disjoint simple closed curves cq, ..., cx,
the index k satisfies the bound: k < 3g — 3. The intersection (Ty — Tg(g)) N
,,,,, ¢, 15 a nonempty real-analytic submanifold. The thin part Ty — Tg(e)
admits a Modg -equivariant disjoint decomposition into (Tg—Te(€) N Tg.ep.cr »
when {cy,...,cy} ranges over all possible collections of disjoint simple closed
curves of the base surface Sy .

Proof. The first statement is the standard fact that the maximum number of
disjoint, simple closed geodesics in every hyperbolic surface 2, is equal to
3g — 3. The second statement follows from the proof of Proposition 3.1, and the
fact that for any collection of disjoint simple closed curves ¢y, ..., ¢, there are
marked hyperbolic surfaces whose corresponding simple closed geodesics have
arbitrarily short lengths.

The third statement follows from the fact that for any hyperbolic surface 2, ,
the lengths of its simple closed geodesics form an increasing sequence with finite
multiplicity going to infinity, and hence the surface X, belongs to some subspace
Tectocy » Where ¢, ..., cp are disjoint since their lengths are less than . [

anen

i

For each collection ¢y,...,cr of disjoint, simple closed curves of Sg, we
define a vector field V., . ., on the associated subspace (T, —To(€))NTg c1..cx
as follows. Since (Ty — Tg(€)) N Tg cy....c, 1S a submanifold of 7T, , the Weil-
Petersson metric of 7, restricts to a Riemannian metric on it. By definition,
the length functions £(y1).....€(yx) are equal on Tg .. .. and hence define a
common function, denoted by £. Let V£/2 be the gradient of £1/2 with respect
to the restricted Riemannian metric on (Ty — 7¢(€)) N T o1,en -

.....
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Lemma 3.5. In the above notation, £ has no critical point on (Ty — Tg(e)) N
Te.cr,.cr, and the vector field VEeY2 | denoted by V... .., does not vanish at
any point on (Tg—"Te(e)) N Tg.c1.....cr - Furthermore, VEY2 s uniformly bounded
away from O and from above.

.....

Proof. Since the geodesics yq,...,Yyx are disjoint, their length functions
£1,...,€; appear as a part of the Fenchel-Nielsen coordinates associated with a
collection of maximal disjoint simple closed geodesics. This implies that V{; # 0
for i =1,...,k. By [Wo3], Lemma 3.12, for any two disjoint geodesics y;, ;.
(VE;,VE£;) > 0. This implies that on Tg ¢, ... ¢ » Which can be thought of a partial
diagonal, V¥ # 0 at every point. This implies that V£1/2 £ 0 too. When £ is
small, the uniform boundedness of V£1/2 follows from [Wo3], Lemma 3.12; see
also [JW], eq. (3.1). ]

Remark 3.6. We note that an important reason for using V£/2 instead of V¢
is that the former is uniformly bounded away from O and from above when ¢
belongs to (0, a| for any a > 0, in particular near 0. See the discussion in [Wo2],
p- 278.

Lemma 3.7. The vector fields V., . .. piece together to define a Modg -equiv-
ariant vector field on the thin part Ty — Tg(e). Denote this vector field by V.

Proof. By Proposition 3.4, the thin part 7, — 7, (e) admits a Mod, -equivariant
disjoint decomposition into (7g —T#(£)) N Tg.c.....c, - Therefore, the vector fields
Ve,.....c.. combine and define a vector field on 7, —74(e). Since the submanifolds
and the vector fields are defined intrinsically in terms of the length functions
and the Weil-Petersson metric, it is clear that V' is equivariant with respect to
Mod, . ]

vy

Remark 3.8. We note that the vector field V' is not continuous in general. For
example, 7., ., is contained in the closure of both 7, and 7, . The vector fields
V., and V., will both extend continuously to 7 ., but have different values
at these boundary points. The vector field V., ., is an average of V. and V,.
The same phenomenon of discontinuity occurs in the well-rounded deformation
of lattices in SL(n,R)/SO(n) in Remark 3.3. But the deformation paths are
continuous. In some sense, it amounts to the fact that the integral of a piecewise
continuous function is continuous.

Theorem 3.9. For every & with 0 < & < gg, there exists an intrinsic
Mod, -equivariant deformation retraction of Tg to Tg(e). In particular, Tgy(e)
is a cofinite model of the universal space EI' for proper actions of I' = Modg .
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Proof. The deformation retraction is the flow of the vector field V' defined in
Lemma 3.7. Though the vector field V' is not continuous, it does not cause any
problem and the flow is still continuous. Roughly, for any hyperbolic surface in
the thin part T, — T, (e), we increase the lengths of the systoles at the same
rate until we have reached the thick part 7T, (e) or the systolic length equals to
the length of the next shortest geodesic, i.e., the systoles have included more
geodesics, and then we repeat the above procedure. It will reach the thick part
and stop after finitely many steps.

Specifically, we deform any marked hyperbolic surface (X4, |@]) in the thin
part T — To(e) as follows. Let £(y1) < £(y2) =...£€(yn) = ... be the lengths
of its simple closed geodesics arranged in the increasing order.

Suppose £(y1) = £(y2) = -+ = £(yr) < €(yry1), 1.e., the systoles consist of
Y1. ..., Vk. This means that (X,.[¢]) € Tg.cy,...c,- Then we increase the lengths
£(y1), ..., €(yr) simultaneously at the same rate, i.e., we keep the deformation
path inside Tg ¢, ... ¢, - This can be achieved by the flow of the nowhere vanishing
vector field V., . ., on the submanifold (Tg —7,(£))NTg.c,....c, until the length
of the systoles reaches the next length £()%4q) or the value ¢, ie., the surface
has reached a point of the thick part 7, (¢).

Suppose that the deformation has not reached the thick part 7, (e) yet. At the
next step, we have £(y1) = £(y2) = -+ = £(yr) < £(Ygr31), where &' = k + 1.
Since £(y1) = £(y2) =--- = €{yx’) < &, Y1,...,V are disjoint. We can deform
as above using the vector field V; .. in order to increase the length of the
systoles at the same rate and stop if the systolic length reaches the length of
the next shortest geodesic or the surface has reached a point of the thick part.
Since we have reached 7,(e) already whenever k" > 3g — 3, this process will
terminate after at most 3g — 3 steps.

To show that the deformation retraction is continuous, we follow the proof
of the continuity of the well-rounded deformation retraction of lattices in R”
recalled in Remark 3.3.

For j =1,...,3g—3, let 7¢ be the subspace of T, of marked hyperbolic
surfaces whose systoles contain at least j disjoint simple geodesics. Then
’Tgl = Tg. Define ’7’;’g_2 = . For each j = 2,...,3g — 2, the above
discussion gives a deformation retraction of ’ng_l UTg(e) to ‘ng U7, (e), and their
composition gives the deformation retraction to the thick part 7, (). Therefore, it
suffices to show that the deformation retraction at each step, from ’ng -1 UTg(e)

to ’ng U7 (e), is continuous.
Fixa jel,...,3g—2. Let (%, [¢]).(Z}.[¢]") be two points in ng_l U

T (£). Denote their deformed image in T UT, (¢) by (Z,. [¢]); and (=, [¢])e .
(The subscripts indicate the times needed for the flow). We need to show that
when (Zg, [¢]), (Z5,. [¢]") are close, then (X, [¢]):, (2, [¢]"), are also close.
There are two cases to consider.



122 L. Jx

Case (1): (Z4.l¢)) € TS UTe (). Then (S, [¢]): = (Sg.[¢]). If (. [¢]) €
T¢ UTe(e). then (S, [¢/)er = (Sp. [¢']) is close 1o (Sg.[¢]):.

Otherwise, (27, [¢]) € ('Tg“’_1 —Td) N Ty — Tgle), and the systoles of
(2,,[¢']) consists of j — 1 geodesics. Since (X, [p]") is close to (g, [¢]).
and the systoles of (X, [¢]) consists of at least j geodesics, it implies that the
length of j-th shortest geodesic of (X7, [¢]") is close to its systolic length, and

it takes a small deformation for (Z,[¢'])r to reach a point in T§ U Tg(e).
(Here we have used the fact that by Lemma 3.5, each vector field Vi, . .
is continuous and its norm is uniformly bounded from both below and above.)

Therefore, (Zg. [¢]):. (2,.]¢])s are also close.

Case (2): (Zq,l¢]) € (Tgf—l — Td) N Ty — Tg(e). Then the systoles of
(2g.[¢]) consist of j —1 geodesics, y1,...,Yj—1, which correspond to simple
closed curves ¢, ...,c;—1 of the base surface S, . We claim that when (X}, [¢'])
is sufficiently close to (X, [¢]), then the systoles of (X7, [¢’]) also consist of
J —1 geodesics yg..... y}_l which correspond to the same set of simple closed
curves c¢1,...,¢;—1 of the base surface S, . To prove the claim, we note that
there exists a positive number § such that for every simple closed geodesic y
of (¥,,[p]) different from yy,...,y;—1. £(y) = £(y1) + §. This implies that
when (X, [¢']) is sufficiently close to (Xg,[¢]), only geodesics of (X, [¢'])
corresponding to the simple closed curves ¢q,...,cj—1 on the base surface S,

can be systoles. Since (3, [¢]) € 7;5_1 . it must have at least j — 1 systoles.
This implies that it has exactly j — 1 systoles and the claim is proved.

By the claim, (Zg. [¢]), (Z}.[¢’]) belong to the same submanifold Tg ¢, e, -
Then under the flow defined by the vector field V. . ., they reach their
deformation points (S, [¢])r, (Z,.[¢De in TJ U Tg(e). We note that by
Lemma 3.5, each vector field Vi . .. is continuous and its norm is uniformly
bounded from both below and above, and hence the time it takes to move any
point of (.ng—l —Te(@) NTgeroci © (Tg UTg(e)) is also uniformly bounded
in terms of its distance to (‘7;"" U T, (£)) and depends continuously on the initial
point. Therefore, when (Zg.[¢]), (X, [¢']) are close, (Zg.[¢]):. (Z,. [0 D

are also close, and the continuity of the deformation retraction of 7}’_1 to- T
1s proved.

Since the flow at every step and hence the whole flow from 7T, to Tg(e) is
intrinsically defined and hence equivariant with respect to Modg , this completes
the proof of Theorem 3.9. O]
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4. Deformation of Teichmiiller space to a spine of positive codimension

Though the thick part 7,(¢) of 7, gives a cofinite model of the universal space
ET for I' = Mod,, it is a subspace of 7, of codimension 0.

It is tempting to conjecture that 7, admits a Mod, -equivariant deformation
retraction to a subspace of dimension equal to 4g — 5, which is equal to the
virtual cohomological dimension of Mod, .

One modest step towards this is to construct subspaces of 7 which are of
positive codimension and equivariant deformation retracts of 7, to them. As
mentioned in the introduction, such an attempt was first made in [Th]. In this
section, we continue the flow in the previous section and deform 7T, (e) (or rather
T¢) to a subspace of positive codimension.

For any marked hyperbolic surface (X,,[¢|), arrange its lengths of simple
closed geodesics in the increasing order:

Ly) <€) =...<fm)=....

Define a well-rounded subspace S C T, to consist of marked hyperbolic
surfaces (Xg, [¢]) satisfying the conditions:

(1) £(y1) =+ =£yr) < £(yry1) for some k > 2.

(2) some pairs of geodesics from yq,....)%, L€, some pairs of systoles of
(Zg. [¢]), intersect each other.

Proposition 4.1. The well-rounded subspace S is stable under Modg with a
compact quotient, and the codimension of S in Ty is positive. Furthermore, S
is a subanalytic subspace and hence admits a Modg -equivariant triangulation
such that the quotient Modg\S is a finite CW-complex.

Proof. It is clear that S is stable under Mod, since it is defined in terms of
the lengths of closed geodesics of hyperbolic surfaces in 7, . For any hyperbolic
surface in §, since two of the shortest geodesics intersect, by the collar theorem,
their length is uniformly bounded from below by a constant which depends only
on g. Then by the Mumford compactness criterion [Mu], the quotient Modg\§
is compact.

Near any point in S, S 1is locally defined by at least one real-analytic
equation, £(y1) = £(y¥2),....£(yx—1) = £(yx). This implies that § is of positive
codimension.

Since the geodesic length functions are real-analytic, § is a subanalytic space.
The existence of equivariant triangulation of § follows from a general result on
existence of equivariant triangulation (compare [I1]). ]

The second result of this paper is to show that .S is an equivariant deformation
retract of 7.
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Theorem 4.2. The well-rounded subspace S is a cofinite, equivariant spine of
Te of positive codimension with respect to Mod, .

Proof. For any collection of simple closed curves ¢y, ..., cr of the base surface
S, by the same prool of Proposition 3.4, we can show that the subspace
Te.cr.cr N(Tg—S) associated with it is a smooth submanifold, and 7, —S admits
a Mod, -equivariant decomposition into disjoint submanifolds Tg ¢, ... ¢ N(Tg—S)
as in the case of T, — T (¢).

We also note that as in Lemma 3.5 the disjointness of the simple closed
curves ci,...,c implies that k <3¢ —3, and the vector field V., . . = vel/2
is defined on Tgm _____ e N (Tg —.S5) and is continuous and its norm is bounded
away from 0 and from above. To prove this, we note that the norm of V£1/2 is
uniformly bounded away from zero and the above when { € (0, a], where a is
any positive constant. The condition £ € (0,a| for some a > 0 is satisfied since
£ is the systole of the hyperbolic surface.

Then the same proof of Theorem 3.9 works by replacing 7,(¢) by §, and
Theorem 4.2 can be proved. O

One natural question 1s whether the spine S in Theorem 4.2 can be further
deformation retracted to a subspace of smaller dimension. If § were a smooth
manifold, then the above flow might be continued. In general § should be a
singular subspace.

Define two subspaces of S by

S"={(Zg.[¢]) € S| there are exactly two systoles y1,y2} and S§”"=85-§".

It is clear that each hyperbolic surface in S” contains at least three systoles, and
hence S” is a real-analytic subspace of 7, of codimension at least 2.

Next we outline arguments from Wolpert and Parlier which prove the next
result.

Proposition 4.3. The subspace S’ is a smooth submanifold, and V{ is a nowhere
vanishing vector field on S’ such that its flow defines a deformation retraction
of § to S”. Therefore, §" is an equivariant deformation retract of T, with
codimension at least 2.

Proof. Briefly, we note that for each hyperbolic surface in §’/, the two systoles
V1, Y2 Intersect at one point. Using the fact that the difference of gradients of the
length functions of two geodesics intersecting at a single point is never zero, in
particular V{(y1) — V£(y2) # 0, we conclude that S is a smooth submanifold
of Tg. (See [MaP], Lemma 4 in §8. Briefly, Thurston stretch-map allows one
to increase the length £(yy) at a strictly greater rate than for the length £(y>)
in a suitable direction, since the maximal stretched set is a geodesic lamination
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and can be chosen to be a complete geodesic lamination which contains y; and
hence not y;.)

Let £ = £(y1) = £(y») be the systole function on S’. Let V£ be the gradient
of £ on §' with respect to the restriction of the Weil-Petersson metric of 7.
If V£ is not zero, then V£ is the direction along which both £(y;) and £(y>)
are increased at the maximal rate while the equality £(y1) = £(y2) is preserved.

Since yq1, Y2 are two intersecting systoles, it can be shown that )¢, > do not
fll ¥, . (Filling curves means that every closed geodesic will intersect one of
them. So when we cut the surface along these curves, there is trivial topology.)
For example, when g = 2, then the complement X, — ¥y — y2 is a one holed
torus. For g > 2, the complement g —y; — 2 is a genus (g — 1)-surface with
one boundary component.

Let § be a simple closed geodesic which is disjoint from yq, y2. By [Wo3],
Lemma 3.12, a deformation in 7, along the direction of V£(§) will increase
both £(y;) and £(y,). This implies that V{ is nonzero. Then the proof of
Theorem 4.2 (or Theorem 3.9) can be repeated to show that the flow of V£ defines
a deformation retraction of S to §”. Therefore 7, admits S” as equivariant
deformation retract of codimension at least 2. ]

It seems very difficult that this deformation retract §” can be pushed further
to construct a spine of 7T, with higher codimension. For example, it is not clear
whether the subspace S of S” consisting of hyperbolic surfaces with exactly
three systoles i3 a smooth submanifold of 7, . If yes, then S” can be deformed as
above to the subspace S” — S of higher codimension, which contains surfaces
with ai least 4 systoles. We note that when g = 2, S§” — S is of the optimal
dimension, i.e., the virtual cohomological dimension of Mod,, which is equal to
3.

Remark 4.4. The results of [Th] can be summarized as follows.

(1) Let P be the subspace of 7, consisting of hyperbolic surfaces whose systoles
fill the surfaces. This 1s the spine proposed in [Th].

(2) P is a real-analytic subspace of 7, and admits a triangulation, and hence
P is a deformation retraction of a regular neighborhood.

(3) Thurston constructed an isotopy ¢;, f > 0, such that for any neighborhood
of P and any compact subset K of T, , there exists a ¢ for which ¢,(K)
is contained in the neighborhood of P.

In constructing the isotopy ¢, the key result is the result [Th], Proposition 0.1
(expanding subsets): Let I' be any collection of simple closed curves on a surface
which do not fill the surface. Then therve are tangent vectors to Teichmiiller space

which simultaneously increase the lengths of the geodesics representing curves
in I.
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According to [Th], this is “The only slightly original observation concerning
the geometry of surfaces” in the paper. This was proved as follows.

(1) First cutting the hyperbolic surface along geodesics in I' to obtain
hyperbolic surfaces with boundary.

(2) Extend the surfaces to complete hyperbolic surfaces of infinite area.

(3) For any geodesic in the completed surface, cut the surface along it and
glue in a strip. Use the new expanded surface to obtain an expanded surface
of the original surface. After this operation on several geodesics, the lengths of
geodesics in I' have all been increased, due to the assumption that I' does
not fill the surface. Besides [Th], a description of this is also given in [Hal],
pp. 173-174.

This result was used to construct vector fields that flow points of 7, into
regular neighborhoods P, of P, which is defined to be the subset of T, consisting
of hyperbolic surfaces such that the set of simple closed geodesics whose lengths
are within & of the shortest length fill the surface. More specifically, we have
the following facts.

(1) For every collection I' of simple closed geodesics which do not fill a
hyperbolic surface, choose a local vector field along which the lengths of
the geodesics in I' are all increased.

(2) For every small positive constant £, construct a covering of 7, parametrized
by collections I' of simple closed geodesics and define a vector field on
each such open subset. If I" does not fill, use the vector field constructed
in (1); if I' does, take the zero vector field.

(3) Use a partition of unity defined via lengths of geodesics subordinate to the
covering in (2), and construct a global vector field X, on 7, using the local
vector fields in (2). This vector field is zero on P, and does not vanish on
the complement Pp., where B 1s a constant greater than 1 and depending
only on g.

(4) Use the flow defined by the vector field X, to deform points of 7, into a
neighborhood Pg, of P.

There seems to be some problems with the results in [Th]. The first serious
one is that the vector field X, defined in (3) may not deformation retract all
the complement 7, — Pg, into Pg, in a uniform time, i.e., Step (4) might
pose a problem. Certainly there is no problem to deform any compact subset
K of Tg — Pp; into Pp. in a fixed time, but we need to deform the whole
space. Consider the example of the closed unit disk D in R? and a vector field
Vix) = f(x)ey on D, where ¢; = (1,0) and f(x) is a nonnegative function
on ) which vanishes only on the unit circle. Clearly, for every point p in the
interior of D, the flow of V will deform p into any given small neighborhood
of the unit circle at a finite time. The same thing holds for every compact subset
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K of the interior of D . But we know that the unit disk D cannot be deformation
retracted to the unit circle. This implies that based on the properties of the vector
field X, in (3), it is not necessarily true that the flow of X, will deform 7,
into the neighborhood Pp.. If it can be shown that points in Pp, cannot be
flowed out of Pp., then it will be fine and Step (4) is valid. In summary, for
this method in [Th] to succeed, we need vector fields whose flows increase the
number of geodesics whose lengths are close to the systole of the surface, rather
than only increasing the lengths of systoles simultaneously.

The second, non-serious problem is that when the above result is applied to
these non-filling systoles, their lengths are indeed increased, but it is not clear
if they have the same length. This is the reason why the flow can only deform
points of 7T, into a small regular neighborhood of P . For example, assume that
I' conmsists of systoles yq,..., ¥t , and the next shortest geodesic is yg 1. Assume
turther that I' does not fill, but I' U {yx41} does fill. Then it is not clear if the
above deformation will reach P . There are two alternatives to solve the second
problem:

(1) Using triangulations of £ and a regular neighborhood of P, the regular
neighborhood of P can be deformed into £ . This is not canonical but
depends on the triangulations of P and its regular neighborhood.

(2) Take a sequence of & with lim; . &; = 0 and compose their associated
deformations of 7, into small neighborhoods of Pp, . In the limit, the
deformation will reach £ under the assumption that the deformation retraction
of 7o to Ppe, works.

It might be helpful to note that [Wo3], Lemma 3.12, implies the following
result: If a collection of systoles yy, ..., yr of a marked hyperbolic surface ¥4 is
not filling, then a deformation in T, along the direction of V€(8), the gradient of
the length of a disjoint simple closed geodesic § of Zg, increases simultaneously
lengths of all the systoles yi,..., V-

This gives a different proof of [Th], Proposition 0.1, recalled above. But
this probably does not overcome the problem as pointed out above: it does not
obviously lead a good direction to increase the lengths of the systoles vq,..., v«
and also to make them closer in some sense. To be more precise, we want to
increase the systole (length) but also want to have more geodesics of the minimal
length. In Thurston’s deformation, we increase the lengths of all the shortest ones,
but their lengths can differ, so the number of shortest geodesics may decrease.
We are trying to examine if we can increase the systole length while having some
control on the possible separation of these shortest lengths.
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