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L’Enseignement Mathématique (2) 59 (2013), 3-37

UNE PREUVE PLUS IMMOBILIFRE DU THEOREME DE
«SATURATION » DE KAPOVICH-LEEB-MILLSON

par Nicole BARDY-PANSE, Cyril CHARIGNON,
Stéphane GAUSSENT *) et Guy ROUSSEAU

ABSTRACT. We give a more building-oriented and somewhat simpler proof of the
«saturation » theorem of Kapovich and Millson for any complex semisimple group. The
main difference with their approach lies in the combinatorial part of the procf. We state
a theorem of folding/unfolding triangles in the affine building, only in combinatorial
terms. For the analytical part, we gather materials that appear in distinct papers of
Kapovich, Leeb and Millson to complete the proof.

1. INTRODUCTION

Cet article a pour but d’exposer une démonstration du théoréme de
«saturation», ce théoreme a été démontré par Kapovich et Millson [12],
a la suite d’une série d’articles avec Leeb ([9], [10], [11],...). Nous aurons
besoin des notations suivantes:

G groupe semi-simple sur le corps des complexes C,
associé 4 (X,Y, D, dY)
tore maximal dans G
réseau des caracteres de T
réseau des cocaractéres de 7, dual de X
systtme de racines de (G, T), contenu dans X et
supposé irréductible
{ev}ier  un choix de racines simples dans @
PY réseau des copoids, dual de Q = G&Zq;
DY systeme des coracines de (G, T), contenu dans Y

SR

*) Le troisiéme auteur remercie le projet ANR-09-JCIC-0102-01 pour son soutien financier.



4 N. BARDY-PANSE, C. CHARIGNON, 8. GAUSSENT ET G. ROUSSEAU

oY réseau des coracines de G, Q¥ = @Za) C YV C PY
GV dual de Langlands de G, groupe semi-simple com-
plexe associé a (Y, X, DV, ®)
V(X))  représentation irréductible de GV de plus haut poids
Ae¥t={Ae¥|alh>0}
T immeuble de Bruhat-Tits associé a4 G et au corps
H = C(?) des séries de Laurent

THEOREME 1.1.  Soit k = ko le plus petit multiple commun des coefficients
de la plus grande racine de © . Soient A, ji et v des copoids dominants tels que

Mutv e QY. 8l existe N € N* tel que (V(NA)@V(NM)(X)V(NV))GV?& {0}
alors (VN @ V& @ VIEr)© £ {0}

La conjecture qu’ils formulent est que le résultat reste vrai si on remplace k2
par k et méme si on le remplace par 1 ou 2, selon que les racines de &
sont toutes de méme longueur ou non. Pour G de type A, k=1 et on a bien
une saturation du céne de Littlewood-Richardson (formé des (A, u, v) tels que
(V()\) RV ® V(l/))Gv;é {0}). Dans ce cas-la, le résultat a &té démontré
par Knutson et Tao avec le modeéle du nid d’abeilles [13] et par Derksen
et Weyman en utlisant les carquois [7]. Par la suite, Belkale et Kumar ont
montré qu’on peut prendre 2 & la place de k> dans le théoréme précédent
quand le groupe G est symplectique ou orthogonal impair [2], ils utilisent
des techniques de géométrie algébrique et plongent le groupe dans un groupe
de type A. La derniére amélioration (2 notre connaissance) est donnée par
Sam qui montre en prolongeant les idées de Derksen et Weyman que 1’on
peut prendre 2 dans le cas d’un groupe orthogonal ou symplectique [18]. 1l
se débarrasse de plus de I'hypothése A+ pu+wv € QY.

L’importance de ce théoréme tient au fait que la non nullité de (V()\’ )

V(u’)@V(l/))Gv traduit I’existence d une sous-représentation de V{(A\)@V(y')
isomorphe au dual V(z'*) de V(¢') et la multiplicité de V() est la dimension
de cet espace. On a donc ainsi des renseignements sur la décomposition en fac-
teurs irréductibles du produit tensoriel de ces deux représentations irréductibles.

ESQUISSE DE LA PREUVE. La preuve que nous présentons se décompose
en les points suivants:
Ltape 1) (V(N)\)@V(NM)@V(NV))G # {0} implique qu’il existe un triangle
(géodésique) T(0,A,B) dans 7, de longueurs de c¢6tés NA, Ny, Nv.
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Ftape 2) Il existe une application, appelée «application de Gauss», qui
T(0,A, B) associe une configuration semi-stable

((NA, €1), (N, £2), (N, £3))

de points pondérés de 9,7 (le bord visuel de 7).
Ltape 3) L’ensemble des configurations semi-stables est saturé, ainsi

(()‘7 gl): (/:/Lv 52)7 (V7 63))

est toujours semi-stable. On veut maintenant inverser 1’application de
Gauss. Pour cela on construit a partir de ((A, &), (14, &2), (1, &3)) une
application ¢: Z — 7. En fait, on montre qu’il existe un point fixe noté x
de ¢, d’ou un triangle T(xg,x;,x;) dans 7, de longueurs de c6tés A, pi, 1.

Ftape 4) La condition A 4 g + v € QY implique que xp,x;,%; sont des
sommets de 7. On rétracte dans un appartement contenant x, et
par rapport a une alcbve a qui contient ce point. On dilate par k,
les sommets deviennent des sommets spéciaux et on obtient un poly-
gone P(0,a,ai,...,a,,b,0) formé de deux segments [0, a] et [b,0] de
longueurs de cOtés kA et kv et d’une ligne brisée qui est en fait un
chemin de Hecke par rapport a a de type kpu.

Etape 5) On replie ce polygone dans la chambre fondamentale, ce qui
en donne un formé par les segments [0,kA], [0,kv*] et un chemin
de Hecke de type ku contenu dans la chambre fondamentale (ici,
v* = —wpr ). Malheureusement, un chemin de Hecke n’est pas forc ément
LS (abbréviation de Lakshmibai-Seshadri). Mais, modulo un petit ajuste-
ment, en dilatant de nouveau, on arrive a un chemin LS. On conclut par

un théoréme de Littelmann que (V(&*)) ® V(&) ® V(k*)) Gv# {o}.

Nous nous inspirons largement des travaux de Kapovich et Millson [12].
La principale différence réside dans ’introduction des chemins de Hecke par
rapport a une alcbve qui permettent de caractériser les lignes polygonales que
I"on peut déplier, voir le théoréme 3.8. Ce résultat est une contribution originale
au sujet. Kapovich et Millson ne peuvent déplier que certains chemins qui
sont denses dans les chemins LS (voir la preuve du théoreme 6.1 de [12]).
Nous évitons ainsi I’utilisation d’un argument de compacité.

La section 2 introduit les notions de chemins LS et de Hecke dues
a Littelmann et Kapovich-Millson, et explique leur importance en théorie
des représentations. La section 3 fournit une preuve originale (entiérement
immobiliere) d’une caractérisation des images dans un appartement des
triangles géodésiques de 7 par certaines rétractions; on en déduit I’étape 1)
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ci-dessus dans le théoréme 3.10. Dans la section 4, on introduit le bord visuel
de Z et la notion de configuration semi-stable. L application de Gauss est
introduite dans la partie 4.2.3, ce qui permet de réaliser 1’étape 2). On montre
qu'elle a un point fixe dans le théoréme 4.15; ceci constitue 1’étape 3). On
conclut enfin, dans la derni¢re section, apreés avoir accompli 1’étape 4) dans
la partie 5.2 et I"étape 5) grace au théoreme 5.3.

2. DIFFERENTES DEFINITIONS DE CHEMINS

2.1 APPARTEMENT DANS 7

On note A Dappartement témoin dans 7, il s’agit d’un espace affine
euclidien de direction V = Y @R (souvent identifié a V). De plus, on désigne
par Ct ={x e V| ax) > 0, Vi € I} la chambre de Weyl fondamentale;
la plupart des notions introduites ci-dessous dépendent du choix de cette
chambre. Le groupe de Weyl fini W agit isométriquement sur V avec CT
comme domaine fondamental. Il est engendré par les réflexions r,, pour
a € @, ol r, est la symétrie orthogonale par rapport a I’hyperplan Ker o
(mur vectoriel).

Pour tout v ¢ V, il existe un unique v, € Ct M Wou, on définit
la projection sur CT en posant vy = pre+(v). Si v € CT, on note
v* = pre+(—v) = —wp.v (st wp est 1’élément de plus grande longueur
de W). De plus, pour tous x,y € A, on pose do+(x,¥) = prer(y —x) € CT.
On dit que d-+(x,y) est la longueur du segment orienté [x, y].

L’ensemble M des murs de A est en bijection avec & x Z, il s’agit des
hyperplans

Ma,k)={xcA|ax)+k=0}.
La réflexion rys = ro s associée au mur M = M(«, k) respecte 1’ensemble M
des murs et ces réflexions engendrent le groupe de Weyl affine: W = WixQ".
Un mur de A détermine deux demi-espaces fermés de A (appelés demi-
dppartements) dont il constitue le bord.

Une alcéove dans A est I'adhérence d’une composante connexe du
complémentaire des murs; ¢’est un domaine fondamental pour I’action de W?.
Un sommet de A4 est un sommet x d’une alcdve, il est spécial si, Voo € D,
ona ax)cZ (e st x€PY).

On sera amené plus tard a considérer des appartements construits comme
ci-dessus, en remplacant Z par un autre sous-groupe discret de R, par
exemple {0}. Dans ce dernier cas, W* = W, I'appartement est dit vectoriel
et ses alcOves sont aussi ses chambres de Weyl.
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2.2 GALERIES

Les chambres de Weyl de V sont les transformées de CT par W. Une
cloison est une facette de codimension 1 d’une chambre, son type est 1’ élément
i € I tel quelle soit conjuguée par W & CTMKer ¢ . Deux chambres sont dites
mitoyennes si elles ont une cloison en commun (elles peuvent &tre égales).

Une galerie de chambres de C a C’ est une suite I' = (Co = C,Cy, . ..,
C, = C") de chambres telle que C; | et C; soient mitoyennes, pour 1 < i < n.
Cette galerie est dite fendue si la longueur n est minimale; alors n est la
distance de C & C’. La suite des types de cloisons dans C;_;MNC; est un type
de cette galerie. Plier I' (au niveau j), c¢’est avoir C;—; # C; et remplacer
Cj,...,C, par leurs images via la réflexion par rapport au mur (vectoriel)
contenant la cloison C;_; N C;.

Comme une alcéve est un domaine fondamental pour W9, toutes les
définitions précédentes peuvent étre répétées pour les alcoves. On définit ainsi
dans A des cloisons d’alcdves et des galeries d’alcOves. Dans ce cadre les
types correspondent aux cloisons d’une alcdve fondamentale; comme @ est
irréductible, ils sont indexés par I {0}.

2.3 ORDRE DE BRUHAT-CHEVALLEY

Le groupe W est un groupe de Coxeter pour le systeme de générateurs
{ri = rs | i € I}. Tout w € W peut se décomposer sous la forme
W= Fyenn.. r;.; la longueur #(w) de w est le minimum des r possibles,
une décomposition avec K w) termes est alors dite réduite.

On a le résultat classique suivant (voir [1], 3.59 et 5.16).

PROPOSITION 2.1. Dans W, les assertions suivantes sont équivalentes :
(1) w < w (ordre de Bruhat-Chevalley);
(2) i existe une suite w' = wo, wi,...,w, =w et des racines [; telles que
wit1 = wirg, et Lwipr) > Lwy);
(3) idem avec les rg i gauche;
(4 idem avec f(w;i 1) = w)+1;
(5) w’ estle produit d’une sous-expression d’une décomposition réduite de w ;

(6) il existe une galerie tendue de C & wCV qui donne une galerie de CT

N

& w'Ct par des pliages successifs.

On définit un ordre dans W/Wy, ot Wy = {w € W | w(d) = A} =
a{X) = 0). Etant donnée une classe @, il existe un unique @y € @ de

(ra,
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longueur minimale notée £,(«7). On a @y < w, pour tout w € % et méme

w =W, u < Wy avec f(w) = (W) + €w). De plus, weCT est la projection

de CT sur @A, i.e. la chambre contenant ) la plus proche de C . On définit
W < par @, < .

PROPOSITION 2.2. [Les conditions suivantes sont équivalentes :

@ <w;

Q) Jwean, Iw cad’, w <w;

(3) il existe une galerie tendue de CT & WA qui donne une galerie de CT
a w'A par des pliages successifs.

La preuve est laissée a la sagacité du lecteur.

2.4 CHEMINS A LA KAPOVICH ET MILLSON

2.4.1 CHEMINS POLYGONAUX. Si A € CT, un A-chemin est une ap-
plication linéaire par morceaux w: [0,1] — A telle que, pour tout ¢,
pro+ (7' (£)) = A, sauf pour un nombre fini de ¢. Les points correspondants x; =
(%), 1 < i < n sont appelés les points anguleux de 7. Les dérivées a droite et a
gauche en ¢, 7r’+(l) et ' (f) existent tout le temps, mais sont parfois non iden-
tiques. La somme des longueurs des segments constituant le A-chemin 7 est A.

Un A-chemin s écrit w(\, g, w,a), ol w = (wy,...,Wy,) € W", a =
(ap=0<a1 < -~ <ayp=1) et

i1
O =70+ > (@ — @ Ju) + - a w0V sioa <t<aq
i=1

242 CHEMINS DE HECKE. S1 « est un A-chemun, on note w4 (f)
I’élément de W de plus petite longueur tel que /L (¢) = wL(HA. Pour x € A,
on pose Wy = (ro | a € ®, alx) € Z).

Un chemin linéaire par morceaux 7 est de Hecke (par rapport & —C1)
si, pour tout ¢, il existe une Wy(,-chaine de =’ (#) a «/,(f), c’est-a-dire s’il
existe une suite de vecteurs © (&) = 70,71, -+, e = 7r’+(t) et des racines
positives 1, ..., 5, telles que
(HL) rﬁ,("?i—l) = i -

(H2) iln 1) < 0.
(H3) rg, € Wy, 1.e. Si(w(0) € Z: 7(t) est dans un mur de direction Ker 3;.

LEMME 2.3. Soit m un A-chemin de Hecke alors, pour tout t, w () < w_(1).
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Démonstration. On a g = ©_(§) = w_(HX et 9 = wyh, ol on a posé
wy =rg, - raw_(8. Or By < O implique que Biw_ 1€t £ 0 ce qui
équivaut a f(w; = rgwi—1) < Hwi—1). Done w_() =wo > w1 > -+ > Wy =
w8y car 7 () = wp .

2.5 LES CHEMINS LS

Un chemin de Lakshmibai-Seshadri (ou LS) de type A € CT est un

A-chemin 7 = 7w(A, mp, w,a) tel que: pourtout j=1,...,m—1, il existe une
a;-chatne de w; a w1 i.e. il existe une suite 35, ..., f;; de racines positives
telle que, si on pose ;0 = w;, 01 = Fp,  W,..., 05 = oy - T3 Wy, O A

Oj5, = Wi €t

(LS0) mp est un sommet spécial (i.e. 1o € PV)et Ac PYT =PV (CH;
(LSD) gj; < gy, dans W/Wy;

(LS2) @fi(o() € Z;

(LS3) £3(03) = Ealoyamn) — 1.

En fait, Littelmann ([14], [15]) considére des chemins LS normalisés, i.e. avec
mo = 0.

NoTa BENE. 1) (LSO) + (LS2) = @, € Q (si w, £ wy_1).
2) On sait que 7(1) — 7 — A e —QYFT =—>" Ng/.

PROPOSITION 2.4, Si (LSO) est vérifié alors: (LS1)4+(LS2) < Hecke.
La preuve de cette proposition se trouve dans [8], section 5.1.2.

2.6 QUAND EST-CE QUE HECKE VAUT LS?

La condition LS est un peu mystérieuse par rapport 2 Hecke. On utilise
le lemme « grossier» suivant.

LEMME 2.5. Soit 7: [0,1] — A ur chemin de Hecke (par rapport @ —C™1)
de type n € CTNPY = PVt Si les points ott w est plié sont des sommets
spéciaux, alors m est LS (et dans ce cas LS <= Hecke).

Démonstration. Pour tout ¢, il existe une suite & = @' (9, &, ..
& = 7r’+(t) et des racines positives fy,..., 5, telles que
HD) rg -1 =&
(H2) p&-1) <0
H3) rg € Wy, 1e. Bim@) € Z.

o)



10 N. BARDY-PANSE, C. CHARIGNON, S. GAUSSENT ET G. ROUSSEAU

On note wx(H) € W I'élément de plus petite longueur tel que 7/ () =
wx(Hn. Alors, on a

w_(D) =wo > Wy =Fp W > > Wy = TIg,Wn_1 = wy(D.

D’apres la proposition 2.4, il suffit de prouver la condition (L.S3). Mais, on
sait que pour tout ¢, w(H) < w_(#. Quand il y a égalité, il n’a rien i faire.
Quand il n’y a pas égalité, comme les points oul le chemin se plie sont des
sommets spéciaux, on peut écrire

wo(f) = gy TR

avec décroissance de 1 des longueurs. Donc 7 est bien LS.

2.7 LES OPERATEURS e, ET f,

Soient 7: [0,1] — A un chemin linéaire par morceaux d’origine w(0) = 0
et « une racine simple.

On considére @ = inf(a o ([0, 1PN Z). Si Q@ = 0, le chemin e,
n’est pas défini. Si @ < 0, soient ¢ = inf{t € [0,1] | ¢ o w(t) = Q} et
y=sup{tc [0,g9] | @om(f) = Q+1}; le chemin e, 7 est la concaténation de
7|07, d’un symétrique de 7|py,q et d’un translaté de 7|[g,17. Plus précisément
eam(®) = w(®) pour t € [0,y], eqm(t) = rg,on1(m()) pour ¢ € [y,q] et
e,m(t) = () — w(g) + e, m(g) pour ¢ € [g,1].

De méme on considére la partie entiere P de aem(1)— Q. Si P <0, le
chemin f,7 n’est pas défini. Si P > 1, la définition de f,7 est analogue a
celle de eqm, voir [14] pour plus de détails.

On peut démontrer les propriétés suivantes (voir [14]):
(1) Si e,m est défini, on a e, m(1) = (1) + a" et si f,m est défini, on a
far(D) = (1) — aV.
(2) (en)"m est défini si et seulement si B < —Q et (f,)'m est défini si et
seulement si n < P,
3) Si () PV, ona P+ Q= a(x(l)).
D egr=7" <= f,r' =m7.
(5) Si w([0,1]) C €T, aucun e,m n’est défini.
On notera 1’analogie des propriétés 3 et 4 avec celles des bases des
représentations de S7,.
Pour A € PY1 soit my le segment [0, A], i.e. m5(£) = ¢X. Alors Littelmann
montre le résultat, plus difficile, suivant (voir dans I’introduction de [14] le
résultat appelé « Character formula»):
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PROPOSITION 2.6.  Un chemin © d’origine 0 est un chemin LS (normalisé)
de type X si et seulement si on peut I'écrire sous la forme m = fa fa, .. .f3,7x
avec r € N et 31,...,0, des racines simples.

2.8 APPLICATIONS AUX REPRESENTATIONS DE GY

Soit A € YT = ¥YNCT. La représentation irréductible de plus haut poids A
est de dimension finie. L’action du tore maximal 7" de GY est diagonalisable
avec des poids p € A — 7., Nay’ (contenu dans le réseau Y des caractéres
de TV). 1l est important de connaitre les poids qui interviennent et leur
multiplicité, c’est ce que donne le théoreme suivant [14].

THEOREME 2.7 (Formule des caractéres de Littelmann). La muliiplicité
de ;1 dans V(X) est le nombre de chemins LS (normalisés) de type A et
d’extrémité L.

La formule des caractéres de Weyl, précédemment connue, a le désavantage
d’exprimer la multiplicité comme une somme d’entiers relatifs, ce qui rend plus
difficile de voir si elle est non nulle. Le théoréme suivant de Littelmann [14]
est fondamental pour la preuve du théoréme de saturation.

THEOREME 2.8 (Régle de décomposition a la Littlewood-Richardson).
Soient ), i et v des copoids dominants de G (i.e.des élémentsde Y+ C PY71).
Alors, (V()\) @V ® V(z/))Gv#- {0} si, et seulement si, il existe un chemin
LS normalisé © de type p tel que )+ w(1) = v* et, pour tout t € [0,1],
A4 mecCt.

NOTA BENE. Dans ce cas on a donc A+ pu+v e QV.

2.9 LES CHEMINS LS GENERALISES

Malheureusement, un chemin de Hecke peut avoir un point anguleux en
n’importe quel point de rencontre avec un mur, donc pas forcément en un
sommet. Cela rend plus difficile 1’utilisation du lemme 2.5 pour dire qu’apres
homothétie un chemin de Hecke devient LS. On va donc considérer des
chemins qui restent dans le 1-squelette, comme ci-dessous.

Soit n € CT M PY, on choisit une décomposition 7 = 7y + --- +n avec
7 € Noy © PYT. Soit 75 = 7y * -+ * Ty, la concaténation des segments
Ty = [0,m] et = [+ -+, + -+ 1] pour i > 2 (évidemment,
ce chemin dépend de la décomposition 7 de 7).
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FIGURE 1

Un morceau d’un appartement de type 4;. Trois chemins LS 7y, et m (avec
Tn = €n,€a,T2 = €a,€a,71), €t un chemin de Hecke m. Un chemin LS généralisé my.

DERNITION 2.9. Un chemin de Hecke (resp. LS) généralisé de type 7
(par rapport & —C™) est un chemin p = pyx---%p; ou les p; sont de Hecke
(resp. LS) de type 1; (par rapport a —C), pi(0) = p;_1(1) =: p(&;) et pour
tout 2 < i</, il existe un vecteur &, une chambre qui contient i la fois &
et p' () et une Wyy,-chaine de p’ (#) a &.

Dans le cas LS, on suppose de plus que p;(0) est spécial.

Par exemple, w5 est un chemin LS généralisé de type 4. De plus, on a les
propriétés suivantes (démontrées par Kapovich et Millson [12, 5.3, 5.4] et par
Littelmann qui parle plus généralement de « locally integral concatenations »
[16, 5.6]):

— L’ensemble des chemins LS généralisés de type 7 et d’origine 0 est
stable par les opérateurs e, et f,.

— Le seul chemin LS généralisé de type 7] d’origine O et contenu dans
Ct oest my.

— Tout chemin LS généralisé de type 7 est le transformé, par des
opérateurs f,, de .

—  Le théoréeme de Littelmann sur le produit tensoriel (voir le théoréme 2.8)
est toujours valable avec des chemins LS généralisés de type 7.

Toutes les notions de chemins introduites dans cette partie sont emprunt ées
a Kapovich et Millson et a Littelmann. Nous aurons besoin d’introduire des
notions voisines de chemins LS et de Hecke par rapport a une alcGve (voir
les paragraphes 3.6 et 5.3).
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3. PLIAGE ET DEPLIAGE DE TRIANGLES

3.1 RAPPELS SUR LES IMMEUBLES

Un immeuble affine (ou vectoriel) est un espace métrique Z recouvert
par une famille de sous-espaces appelés appartements, tous isométriques a
I"appartement témoin A du paragraphe 2.1 par une isométrie unique a W¢
pres. Les alcoves de I'immeuble sont les alcoves de ses appartements. I’ axiome
fondamental suivant est satisfait:

Deux alcOves de I'immeuble sont contenues dans un méme appartement
et cet appartement est unique a un isomorphisme fixant (point par point) les
deux alcOves pres.

Si a est une alcove dans un appartement A de 7, pour tout x € T,
il existe un appartement B contenant a et x et un isomorphisme ¢ de B
sur A fixant a. L'élément ©(x) € A ne dépend pas des choix de B et ¢,
on le note p4 q(x). L'application ps «: Z — A est la rétraction de Z sur A
de centre a; elle diminue les distances, conserve les types et transforme une
galerie (d’alcGves) en une autre galerie.

L’enclos cl(QQ) d’une partie 2 d’un appartement A est ['intersection
des demi-appartements de A contenant L. L’intersection de deux apparte-
ments A, B est close (i.e. égale 2 son enclos) et les deux appartements sont iso-
morphes par un isomorphisme fixant leur intersection. Une galerie tendue dans
un appartement reste dans 1’enclos de ses extrémités; ainsi dans I'immeuble
une galerie tendue est dans tout appartement contenant ses extrémités.

Un demi-appartement D de mur M = 9D et une alcdve a dont une cloison
est dans M sont toujours contenus dans un méme appartement. L immeuble 7
est dit épais si toute cloison est contenue dans au moins 3 alcoves.

Pour plus de détails sur les immeubles affines, on pourra se référer a [1],
[4] ou [17].

Un guartier dans A est un sous-ensemble de la forme 3 = x+ C pour
un point x € A (son sommet) et une chambre de Weyl C C V (sa direction).
Deux quartiers sont équipollents si et seulement si leur intersection contient
un autre quartier. Les classes d’équivalence sont les germes de quartier, elles
sont en bijection avec les chambres de Weyl de V.

On a donc une notion de quartier ou de germe de quartier dans
I'immeuble 7. Les immeubles de Bruhat-Tits, qui nous intéressent, ont deux
propriétés particuligres:

Deux germes de quartier sont toujours contenus dans un m éme appartement
(contenir un germe de quartier signifie contenir I’un des quartiers du germe).
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Cela permet de montrer que ces germes constituent I’ensemble des chambres
d’un immeuble sphérique Z* (au sens de [19]). On reviendra sur Z° a la
section 4 (sous le nom 7).

Un germe de quartier et une alcdve sont toujours contenus dans un méme
appartement (c’est une conséquence de la décomposition d’Iwasawa). Comme
ci-dessus, cela permet de définir une rétraction psq de 'immeuble sur un
appartement A de centre un germe de quartier ¢ contenu dans A. Cette
rétraction aussi diminue les distances, conserve les types et transforme les
galeries (d’alcOves) en galeries.

3.2 DU LOCAL AU GLOBAL

3.2.1 IMMEUBLE TANGENT. Dans cette partie, 7 désigne un immeuble
affine (ou vectoriel) épais général. Soit x € T, 1’étoile x* (réunion des facettes
qui contiennent x) est, comme ensemble de facettes, un immeuble combinatoire
sphérique épais. Sa réalisation vectorielle, notée Z,(Z), est 'immeuble tangent
de 7 en x.

En fait 2.(7) est le quotient de x* x R par la relation: (v, A) ~ (z, u) <
y et z sont dans le méme segment d’origine x d’une facette de x* et, pour N
grand, (1 — A/Nx+ (A/Ny = (1 — u/N)x + (u/N)z. On note Ax$ la classe
de (v, A). Le point x s’identifie au point 0 =0, = ek = 0@ de Z,(D).

Les appartements de 2.(7) sont les espaces vectoriels

Av={\d [yeAns, Ae R},

pour A un appartement affine contenant x. Les chambres de Z,(Z7) sont les
¢ = {A@ |y €ec, A€ Ry} pour ¢ une alcdve de x*. Le groupe de Weyl
de A% est le groupe W, engendré par les réflexions linéaires associées aux
réflexions affines de A fixant x.

Si ¥ € Z(Z), alors x4+ ¥/ est bien défini dans T si ||¥/]| est assez petit
pour que x + ¢ € x*, sinon, il faut préciser un appartement A 3 x tel que
Ax 3 ¥. Deux éléments ¥ et ¥ de Z(Z) sont dits opposés s’ils sont dans
un méme appartement Ax et opposés dans celui-ci. On note ¢/ = opp(v).

Si 7w est un chemin linéaire par morceaux (donc réunion de segments
contenus dans des appartements), on peut définir, pour tout ¢, les dérivées =, (£)
et —7/ (#) dans 2,7 de manilre intrinséque (i.e. indépendante du choix
d’appartements). Le chemin m est dérivable en ¢ si, et seulement si, 7r’+(l)
et —7' () sont opposés dans T,y 7.

3.2.2 DIFFERENTIELLE. Soit f: Z — J un morphisme d’immeubles
affines. En particulier, f(x*) C (f(x))*. Pour tout x € 7, on définit la
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différentielle de f comme étant la réalisation vectorielle de la restriction de f
a x* et on la note dfy: Z,(I) — Zpny(J). Clest un morphisme d’immeubles
vectoriels.

Si v € Z,(T), soit € > 0 tel que x+&v' € x* alors f(x+et) € f(x)*. On a

] ——
AW = _fO)fexte0).

PROPRIETE. Soient A un appartement, ¢ une alcdve et p = pu, la
rétraction sur A centrée en c. Si x € A alors dp, = pgz ., ol & est la

chambre de /?x qui contient tous les )?y v € ¢ (autrement dit ¢ = proj{(c),
si proj.(c) est 'alcdve de x* a distance minimale de ¢).

Si x ¢ A, soit B D> ¢U{x} un autre appartement, soit ¢: B =y A
I"isomorphisme qui fixe ¢ et x, alors dp, = d%opﬁ,a' En effet p = wopg..

3.2.3 CRITERE INFINITESIMAL

PROPOSITION 3.1, Soit [z,x,X1,...,X,,¥,2] un polvgone dans un apparte-
ment A. Soit w: [0,1] = A une paramétrisation (linéaire par morceaux et
a vitesse constante) de [x,xy,...,%,,¥] avec x; = w(t;). Soit a une alcéve
conterant z et Soit p= pa o la rétraction sur A centrée en a.

Alors [z,x,%1, ..., X, ¥, 2] est Uimage par p d’un triangle [z,x,9%,z] si,
et seulement si, pour tout i € {1,... n}, (%2, *ﬁ’,(ti),Oxl,ﬁ;(t,ﬂ),ﬁ] est
image d'un triangle [t —n' (Ii),'r],ﬂ,x?] dans Z,(T) par P oit d,, est

— . . —_—
la chambre de Ax; qui contient tous les vecteurs x;7’, 7/ € a.

REMARQUE 3.2. La condition est équivalente au fait que pour tout i, il
existe 7; € X,(Z) tel que 7; est opposé a —7' = —7' (1) et p(m) =7/ ().

Démonstration. On suppose pour simplifier qu’il existe un groupe G
agissant sur 7T fortement transitivement (c’est-a-dire transitivement sur les
paires formées d’une alcOve dans un appartement). Cela nous suffit, car
nous appliquerons tout ceci a la situation ou 7 = Z(G,.*"), I'immeuble
de Bruhat-Tits associé au groupe G sur le corps % . Apres avoir démontré
la proposition 3.6, on peut voir que cette hypothése est inutile.

Pliage. On suppose que [z,X,X1,...,%,,¥,2z] est 'image par p d’un triangle
[z,x,¥,z]. Soit 7. [0,1] — Z une paramétrisation de [x, ¥] telle que po® = .
Pour tout i, posons %; = @(f) de sorte que x; = p(F;). On dérive en ;:

dps (7)) = +74(t),  dps(ud) = k.
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. = .
Soit Z un appartement contenant a,%; et tel que —#’ () € Z%;. Soit g € G
tel que g-Z=A et g-a=a. Alors, p|z =g|z. On prend 1, = dg= (7', (£)):
dgx, est un isomorphisme entre 2z 7 et 2,7, d’ol 7; est opposé & —x"_(4).
Il reste a montrer que pi> . (1) = ! (5).
. ' —
Soit ¥ un appartement contenant a,¥; et tel que 7”r’+(tl-) € YX;. On a des

isomorphismes:
Yy —L 5 gv 25 4,

a a

(cette notation signifie que g et  fixent a).
Lisomorphisme ¢ est égal 3 plyy et la composée a ply. On dérive:

— — —
Y L) ngl L A.Xl',
la composée est égale a dps, et @ (&) > m — dpy (7 (1) = 7/ (). Or,
N i s ; p
dpsx,: gYX%; — Ax; est aussi €gal & p» -, donc cest gagné!

Dépliage. On suppose qu’il existe, pour tout i, n; € £, T satisfaisant aux
conditions de I’énoncé. Soit By un appartement contenant e U {x;} tel que
—— - \ —

71 € Bixp. On pose ¥, = x1 + Ay € By, ot A est tel que Al|ni| = ||xixz||.
Notons ¢ |'isomorphisme B, % A. Alors (dpy,(m) = ﬂ'jr(tl) car
@)y = (p3 Py Done (e + Any) = x; +dipr(Am) = x1+ A7) (1) = x,.
Et m est opposé a 1 dans 2,7, donc [x,x;,¥%:] est un segment dans 7.

Soit g1 € G tel que g1-A =By et g1-a = a. On pose X3 = X2+ Aadq1(1)2)
dans un appartement B, et ainsi de suite. On construit de la sorte %3,...,%,,¥
pour fabriquer un triangle.

33 PLIAGE

Soit & un immeuble sphérique de groupe de Weyl W on le considere
dans sa réalisation vectorielle, comme 2,(7) en 3.2.1. Soient £ € §, 1 opposé
a &, —C une chambre et A un appartement contenant £ et —C. On note
P = pa,—c la rétraction sur A centrée en —C et opa(§) I'opposé de £ dans A.
Le but de cette partie est de trouver une relation entre £, —C et p(r) (HR(0)

ci-dessous).

RAPPEL. La notion de W-chaine (cf. 2.4) dépend du choix de la chambre
de Weyl €. On la reprend ici en explicitant la chambre dans le nom:
Une (W, —C)-chaine ou (—C)-chaine de opa(§) a p(n) est une suite

OPA(E), 710PA(5), 7'2710PA(§),- L) =Ty TzT1OPA(§),
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oll chaque 7; est une réflexion de A qui éloigne 7;_1-- mrmopa(§) de —C,
c’est-a-dire:

Tic1 - omeniopal€), —C |y, Timo1 - mmiopa(€),

ol M; est le mur associé a la réflexion 7;.

(Cette notation signifie que les termes de gauche sont strictement d’un ¢ 5té
du mur M; et le terme de droite de ’autre cOté, au sens large.)

DEFINITION 3.3. Soit I' une galerie tendue de —C & p(np), I’ =
(—C = Cy,Cq,...,Cp 3 p(m). Soit 7; la réflexion qui échange C;_; et C;.
Une chaine de longueur ¢ le long de T de opa(£) a p(n) est une (—C)-chaine
de opa(€) a p(n) du type p(n) = 7, -~ 7y 0pa(€) avec iy < --- < ip.

Soit maintenant une galerie tendue I' = (Cop = —C,Cy,...,Cp) de —C a n.
Pour tout i, soit B; un appartement contenant £ et C;. Notons p; = pp, ¢, la
rétraction centrée en C; sur B;. Bien évidemment, on prend By = A et py = p.
De I"autre coté, B, contient & et 1, et 5 = opg,£.

LEMME 3.4. Pour i <j, on a (p,')\pzj =pio (pj)\pzj ;

Démonstration. La galerie 0 = (Co,...,C; = p(Cp), p(Cii1), ..., pACp))
est tendue. En effet, p,(6) = p(I') est tendue car p; est une rétraction centrée
en une chambre de I'. Ainsi, 6 est tendue car p; réduit les distances.

Soit ¥ un appartement contenant . De méme, soit ¥’ un appartement
contenant (Cy,...,C; = piC)), pit1(Ciy1), ..., p{Cy)). Et enfin, soit Z un
appartement contenant I". On a:

i i i Y/ )

I Fg,

=4

Z

Ce qui domne @ (Ty) = p(Tz) et (W)lr,, = (P)r,,- De méme,
@io(e)lr,, = (p)r,, - Btenfin, (w)ls,, = (p)lg,,- D’oU, (p)|r,, = pio(p)lr,, -

Dans les conditions de ce numéro 3.3, on veut montrer les résultats suivants:

HR(:). [l existe une chaine le long de pi(I'x;) (c’est donc une C;-chaine)
de opp£ a pin).

L’hypothése HR( ) est trivialement vraie. On suppose HR(i+ 1), montrons
HR(#). Il y a deux cas.
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Cas 1. 1l existe un appartement ¥ contenant C;, £ et le demi-appartement
Dg, ,(m, Ciy1) de By contenant Cyyy et dont le mur M; contient la cloison
m; = C;MCiqy. (Cest le cas s £ € Dy, (m;, Ciy) ousi C; € By et dans
ce cas ¥ = B;. convient.)

Comme (C;, Ciq1, pir1(Cita), .- ., pip1(Cy)) est une galerie tendue, elle ne
coupe le mur M; qu’une seule fois. Donc, (Cit1, pitr1(Cit2), . .., pit1(Cy)) C
Dg,,(my, Ciy1). Et il existe des isomorphismes

~ (pi))y,~
B - yglus B;;
Epir1Txiqr) £,C

par le Lemme 3.4, p; transforme p;1(T'»ip1) en pi(Tziy1). On a la chaine
suivante dans B;; le long de p;1(I'zit1):

pi1(p) =7, - T 0pe, L6 -
Par les deux isomorphismes précédents, on a
pim) = Tii 91 'Tn‘,l opgt ,

ou Tij est la réflexion dans B; selon la i;-ieme cloison de pi(I"). C’est bien
une chaine de opg€ a pi(n) le long de p;(I"5,).

CAs 2. La chambre C; n’est pas dans B, et, dans B,;,, on a:

€ s G, pi1(Cig), oo pi 1 (Cr))

L’intersection B;MB;, | contient & et m; et donc I'enclos cl(€,m;). Or € ¢ M;
donc cl(€,m;) est de dimension maximale; c’est I’adhérence de la réunion
des galeries minimales de £ a m;.

Soit d = proja (&), ¢’est une chambre, elle est adjacente a C; dans B; et
a Ciyy dans B, . Autrement dit, d = 0(C;11) = p:(Cir1) avec g; la réflexion
selon M; dans B;y,. Soit ¥ un appartement contenant Dpg _, (m;, Cip1) U C;.
On a les isomorphismes suivants:

~

Py,
v Py Bi§
Pit1 Tzt L6

Bi
on note  l’isomorphisme composé, il envoie p;1(I'siy1) sur pi(I'sip1). La
chaine dans Bii1, pipi() = 7, -7 (0pe,.,§) se transforme en pi(n) =
@Tikﬂﬂfl'"LPTilsflt,O(OPB,HE). Or 7, = @ry !t est la réflexion selon
la i-ieme cloison de p (1) et w(opg, &) = oppw(€) = opg,oi(£), car
@ 8,18, Ol o] est la réflexion selon m; dans B;. Ainsi,

Bip 1 MB; = (UJ’)
pi(n) = Til e Tifl (UPB,U;(f))
= Til T Ti/lag(OPB,f)

est une chaine le long de p;(I'y;) dans B;.
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3.4 DEPLIAGE

Soit & un immeuble sphérique épais (dans sa réalisation vectoriclle et
auquel on pense comme I'immeuble tangent & 7 en un point 7(#)). Soient £, 7/,
deux points de S et A un appartement les contenant, ainsi qu’une chambre,
notée —C. Comme précédemment, p désigne la rétraction sur A de centre —C.

On suppose qu’il existe T’ = (Cy = —C,C},...,Cy,) une galerie tendue
de —C a 7', et une chaine le long de I" de opa& a 7/, de longueur /.

PROPOSITION 3.5. Il existe ) € S tel que p(n) = 7/, et 1 est opposé a §.

Démonstration. On raisonne par récurrence, la conclusion cherchée est la
condition HR(¥#) ci-dessous.

HR(i). I existe un appartement B; contenant &, il existe n; C B; tel que
() = w;, il existe une galerie tendue T'; de —C a w; qui est dans B; a
partir d’un certain rang k; telle que p(I;) = T, et il existe une chaine le
long de (U'i)sy, de opgé a m; de longueur [ —i.

HR(Q) est vraie pour Bo = A. Si on a HR(:), notons I'; = (—C =
Dq,...,D,) la galerie tendue et #, = 7, ---7,0pp& la chalne le long de
(T4, avec 7, la réflexion selon le mur M; contenant la i;-iéme cloison m;
de I'; et u=¢—1i. On a

opg.&, D Dy v, &1 (Diga, -, D)

Soit D un demi-appartement sortant de B; le long du mur Af; , il existe car
S est épais. On pose B, = DU Dg(m; &), Z =D UDg(m;,D) et on
note z: B; — Z I’'isomorphisme fixant Dg(m; , D). On prend

Fipi=Wo, ... . Dy, 02Dy 1), .. pz(Dp))

et ;41 = wz(n;). Remarquons que I'ypy =(Do,....Dr_1,02(Dg),. .., 0z(Dy)).
Par hypotheése de récurrence I'; est tendue, du coup PB8,,D,, Tiy1) = pB”D”(F,')
I’est aussi, et donc de méme pour I';;;. Par le lemme 34, on a
P|r,+1,2,l = po (P8 IIN s, - Dot p(Tip1,54) = pli»s) = I'syy et
i) = pln) = 7',

Par @z la chaine de I’hypothése de récurrence devient 1, = wz(n;) =

, , ‘ ; R o . ‘
T TL0ZTi OPBE, avec ) la réflexion selon la i;-ieme cloison de I

dans Z. On a m; 1y = 7, -+ - 7{ 0pzz(§). Notons «: Z — B;,; I'isomorphisme
qui fixe le demi-appartement D. En composant par i, on obtient 1, =
/

T Tylope b © wz(€), avee 1) = Yr/vT. Or opp, (¥ o wz(E) =

1
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7'ops,, (§). Done m41 = 7/ ---7//opg,,,(§) et c’est encore une chafne le

Iy

long de (I'i+1)>i,+1. En effet, dans B;, pour tout j, on avait

Ty Ty 0ps(€), D, ..., D

M, T Tyopg(€), Diy1, ... Dy

i 3
Par i o @z, on a, pour j > 2, les positions suivantes dans B;.; (avec
M| = 1) 0 pz(M;)):

I "

7 T ops (€, wz(Di 1), - 0z(Dy) |y 1 0pE, (), pz(Di)

b

pour tout k tel que i; <k < n.
D’apres le paragraphe 3.3 et la proposition 3.5, on a montré:

PROPOSITION 3.6.  Dans un appartement A de Uimmeuble S, on consid ére

des points &, ', et une chambre —C; on note p = pa,_c. Alors il existe
; s o s {3 e

dans S un point m opposé a § tel que p(n) = 7'y si, et seulement si, il existe

une galerie tendue I' de —C a n/_ et une chaine le long de T de opn& a @/_.

3.5 GALERIES PLIEES POSITIVEMENT

On garde les mémes notations qu’en 3.4 ci-dessus.

PROPOSITION 3.7. 1l existe une —C -chaine de ops€ a ﬂ"+ si, et setlement
si, il existe une chaine de op,& a ', le long d’une galerie tendue de —C a 7', .

Démonstration. 1l suffit de montrer que 1’existence d’une —C-chaine

de ops& a w/_ implique celle d’une chaine de ops§ & 7/ le long d’une

galerie tendue de —C a /.
Pour cela, on dira qu’une galerie 6 = (Dy,...,Dy) de type (ko,...,kn—1)
dans A est pliée positivement par rapport a une chambre D) si, en notant M;

le mur de D; de type k; (commun & D; et D, ), ona
Dj = Dj+1 = D ‘j\dj DJ = Dj+1 .

Pour une chambre D et A € S, on note w(D, A) 1"élément de W de plus
petite longueur tel que A € w(D, A).D

Soit C¢ = proje(—C) dans A. Soit I' une galerie tendue de —C a 7, .
Comme il existe une —C-chaine de opsé a @, w(—C,o0pad) < w(—C,7’)
et donc il existe une galerie v = (Co = —C, Cq,...,Cy) de méme type que I’
de —C a ops€. On veut montrer qu'on peut supposer 7y pliée positivement
par rapport a Cg.
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Si ~ ne l'est pas, soit j le plus petit indice tel qu'on soit dans la
situation: Ce,C; = Cipr |pg. Alors, comme v aboutit & ops€, cette
galerie va traverser le mur M, apres I'indice j ou finir dans ce mur. Posons
Jmax = max{k €lj,nl | My = M; ou ops& € M;}. On définit une nouvelle
galerie A = (Lo, ...,L,) par

Ly = SzMjck Sl]+1 <k<jmax
Ci Sik>jmax.

Ainsi A devient pliée positivement par rapport & Cy en M; et reste de méme
type que I'. On recommence cette procédure avec A et ainsi de suite. Au
final, on obtient une galerie & = (—C = Dy,...,D,) pliée positivement par
rapport a Cr entre —C et opa€.

Notons {i1,....5} C {1,...,nr} les indices (ordonnés de maniére crois-
sante) ol la galerie § est pliée. Alors,

/
7T+:SM

1
M v (Sag e Sh )T (S S, S )Su, 0Pag

i

= Su, o Su, 0pa

Ti,©* " T OPA

ol T, = Su ---SMIFISM&(SMH ---SM_I)*I. A chaque étape, on s’éloigne

de —C et on déplie la galerie 4. En effet, aprés le premier dépliage, on a:
—C.Dy,....Dy |M,l 7y (Diy 1), Ty (0pa&), §
car & est pliée positivement par rapport & Ce. La galerie
§' =(=C=Do,..., Dy, 7y, (D41, -, 7 D), 75y Dig 1) -, Ty (D))
est, jusqu’a l’indice i, minimale et donc égale a I'g;,. De plus, on sait que
opak, Diyy1 = Dy, \M,Z Ce, &,

en appliquant 7; on obtient

T 0PA& Ti Diy1 = 5Dy |m, T

Done, —C,m,0pa, 7, Diy11 = 7,D;, sont du méme c6té de 7, M,,. Ainsi
quand on déplie une deuxieéme fois par rapport a 7; M;,, on s’éloigne de —C.
On a donc obtenu une chaine de ops& & 7/ le long de la galerie tendue
de —Ca .
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3.6 CONCLUSION ET ETAFE 1)

D’aprés les propositions 3.1, 3.6 et 3.7, on a:

THFROREME 3.8.  Soient [z,x,X1, ..., %, ¥,Z] un polygone dans un apparte-
ment A de T, w: [0,1] = A ure paramétrisation (linéaire par morceaux et
a vitesse constante) de |x,x1,...,%,,¥] avec x; = w(t;), a unre alcbve con-
tenant 7 et p= paq la rétraction sur A centrée en a.

Pour tout 14)6 {1,...,n}, on note d, la chambre de A?c, qui contient tous

les vecteurs x;7/ pour 7/ € a.

Alors |z,x,x1,...,%,,¥,2] est Uimage par p d’un triangle |z,x,%,z] de T
si et seulement si, pour tout i € {1,... n}, il existe une (W, dy,)-chaine
de T () a 7T’+(Il‘).

On notera la différence avec un chemin de Hecke (section 2.4). On dira
qu'un chemin 7 vérifiant la condition ci-dessus est de Hecke par rapport &
Ualcéve a.

REMARQUE 3.9. Soient x un sommet spécial de 1’alcove a et Q le quartier
de sommet x opposé a a. Un chemin « entierement contenu dans Q est de
Hecke (par rapport a —C™ ol CT est la direction de () si, et seulement si,
il est de Hecke par rapport a a.

THEOREME 3.10. Soient \, u, v trois copoids dominants tels que (VINN)@

V(INu @ V(Nl/))G # {0}. Alors, i existe un triangle dans T, de longueurs
de cotés NA, Ny, Nv.

Démonstration. Les théorémes 2.8 et 3.8 ainsi que la remarque précédente
prouvent le théoreme, et donc 1’étape 1) du schéma de démonstration du
théoréme 1.1. En effet le chemin de Hecke NA+ 7 de NA a Nv* reste dans
la chambre de Weyl C; il est donc de Hecke par rapport a I'alcdve a_
(contenant O et opposée a CT). On note x; = w(f),1 € i < r, les points
anguleux de w. En dépliant le polygone [0, NA,xy,...,x,, Nv*, 0] on obtient

le triangle cherché dans 7.

COROLLAIRE 3.11.  L’ensemble T = T(A) des triplets (A, p,v) € (PYT)
tels qu’il existe dans I wun triangle [z,x,y,z] avec comme longueurs de
cotés A = der(2,x), pp = de+(x,y) et v = de+(y,2) ne dépend que de
Uappartement A et non de T .
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Cet ensemble T(A) est stable par homothétie de rapport un entier positif.
Si A’ est un appartement affine (ou vectoriel) associé au méme couple
(V, W), mais avec un ensemble de murs M’ C M, alors T(A") C T(A).

Démonstration. T est Iensemble des (X p,v) € (PYTY tels quil
existe dans A un bon polygone (i.e. vérifiant la condition du théoreme)
[2,%,%1,. .., %, ¥,2] avec A = de+(2,X), v = de+(y,2) et w de type p. 1l
ne dépend donc que de A et contient T(A’). Si zp est un sommet spécial
d’une alcdve contenant z, une homothétie de rapport # € N et centre zg
transforme un bon polygone associé a (X, u,v) en un bon polygone associé
a (nA,au,nv); d’ou la seconde assertion.

NOTA BENE. On verra dans la section 4 (4.15) que le cOne 7 est saturé
dans (PV1TY.

4.  APPLICATIONS DE (GAUSS ET CONFIGURATIONS SEMI-STABLES

4.1 LE BORD VISUEL DE Z

On rappelle que 1'immeuble 7 est un espace métrique complet dont on
notera la distance d. Il est muni de son systéme complet d’appartements.
Ainsi tout sous-ensemble convexe isométrique a une partie de R” est contenu
dans un appartement [1, 11.53].

Les résultats suivants résultent essenticllement de ce que 7 est un espace
CAT(0) complet. Pour la plupart des démonstrations on se reportera a [3].

4.1.1 RAYONS ET POINTS IDEAUX. Un rayon (ou une demi-droite) dans T
est un sous-ensemble p isométrique a [0, oo[. On confondra dans la suite le
rayon et 1’isométrie [0, co[— Z. Le point x = p(0) est appelé origine de p
ou la base. Un rayon est convexe, il est donc contenu dans un appartement A
de 7. Et dans A, il est de la forme {(1—fx+ty| ¢ 0} pour x £ y dans A.

On dit que deux rayons p; et pz sont asymplotes (ou paralléles) si la
fonction (convexe) ¢ — d(p1(f), p2(£)) est bornée. On vérifie que ceci définit
une relation d’équivalence. Une classe d’équivalence de rayons est un point
idéal de T (ou point & Uinfini).

Par rapport aux espaces CAT(0) généraux, beaucoup des démonstrations
des résultats de cette section sont simplifiées par les faits suivants:

—  étant données deux demi-droites o, il existe des sous-demi-droites p’, ¢’
contenues dans un méme appartement,
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— si de plus a est une alcbve ou un germe de quartier et p,o sont
asymptotes, il existe des demi-droites pg C p,p1,..-, 00 C o deux a
deux asymptotes et telles que, Vi, a, p; et p,r; soient contenus dans
un méme appartement.

La démonstration du lemme suivant est classique.

LEMME 4.1. Soient x un point de L et £ un point a Uinfini. Alors il
existe un unique rayon p de base x représentant £. On le notera [x,£).

On note J..7 l’ensemble des points & l'infini. Soit # une face d’un
quartier £ = x + C, on note F., 'ensemble des points a Uinfini & tels
que F contienne le rayon [x, £). Une facette a [’infini § est un sous-ensemble
de J7 tel que f = F, pour F une face de quarticr.

Les résultats suivants sont classiques.

LEMME 4.2.

(1) Si § est une facette a l'infini et x un point de I, alors il existe une face
de quartier F basée en x telle que F, = §. Ainsi, il y a une bijection
entre les facettes a Uinfini et les faces de quartier basées en tout point x .

(2) Deux quartiers de T donnent la méme facette a Uinfini si, et seilement
si, ils sont équipollents, ¢’est-a-dire correspondent au méme germe.

(3) Les intérieurs relatifs des facettes & Uinfini forment une partition de 0., .

4.1.2 STRUCTURE D'IMMEUBLE. On définit une relation entre les facettes
a I'infini: § est une face de f si pour tout point x de Z, la face de quartier I’
associce a | est une face de F, la face associée a f; comme on a considéré des
facettes fermées cela équivaut a f C . Pour un appartement A de Z, on note
Ao I'ensemble des facettes a 'infini données par les faces de quartiers de A.
Cet ensemble est un complexe simplicial et est stable par passage aux faces. En
fait, c’est un complexe isomorphe au complexe de Coxeter associé a (W, .5).

Le lemme 4.2 permet de démontrer le théoreme suivant.

THEOREME 4.3. L’ensemble T~ des facettes a Uinfini de T est un
immeuble sphérique, ses appartements sont en bijection avec ceux de T.
De plus, sa réalisation géométrique sphérique est en bijection avec 9,7 .

Dans notre cas Z est I'immeuble de Bruhat-Tits d’un groupe réductif sur un
corps non archimédien complet, alors 7, est 'immeuble de Tits de ce groupe
(dont les faces correspondent bijectivement aux sous-groupes paraboliques).
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REMARQUE 4.4.  On peut étendre la topologie de 7 3 T=7118.,.T en
une topologie appelée la topologie conique et alors, si Z est localement fini,
T est une compactification de Z. Une base d’ouverts de cette topologie est
formée des ouverts de Z et des ensembles de la forme C.(£,e) = {n € 7 |
nFEx L) <el,outxel, £€ 9T, €>0 et L(n&) est 'angle
dans un appartement contenant x et le début des deux géodésiques [x, &) et
[x,n) (si n € OxZ cela coincide avec la définition ci-dessous).

Cela dit, la topologie sur 9.7 qui va nous intéresser est celle de la
distance de Tits.

4.1.3 ANGLES ET DISTANCE DE TITS. Soient x un point de 7, &£ et &
deux points a D’infini. On pose p1 = [x,£1) et p2 = [x,£2). On considére le
triangle T(f) = T(x, p1(0), p2(®)) dans T et le triangle T() = T(X, 51(D), 52(D)
dans R? “de comparaison”, ¢’est-a-dire dont les ¢dtés ont la méme longueur
que ceux de T(£) (la condition CAT(0) dit que I'application évidente de T(¢)
dans T(¢) diminue les distances). On note &(t) I’angle en % de ce triangle 7(%).
Quand ¢ tend vers 0, &(#) décroit continliment et donc la limite existe, on pose

Z&1,8) = }g% a(e) .

N

Cette limite est égale & /,(pi(®), p2(9)) dés que ¢ est assez petit pour que
tous les points de 7(#) solent dans un méme appartement. Ainsi, si 7(x,y,2)
est un triangle géodésique dans Z, /,(y,z) est défini de maniere analogue et
ona /(v,2) < 75,7, ot T(%,¥,%) est un triangle de comparaison dans R?
(conséquence facile de CAT(0)).

Maintenant, on définit la distance de Tits sur T comme

Lriesl€1, £2) = sup L(€1, £2).
x€d

Par définition, Lrys(€1,82) = Z,(61,&) pourtous x € Z, £1,6 € 0.7,
EXEMPLE 4.5. Si Z est un arbre, alors /,(£1,&) = 0 ou w et donc
Z1is(€1,€2) = w, dés que £ # & ! Par contre, en rang supérieur, cette

distance peut prendre toutes les valeurs entre 0 et 7.

LEMME 4.6. Soient £, € 9T et p un représentant de £. On pose
OO = L&, m) . Alors, imy_, oo p(O) = L1is(€, 1) -

THEOREME 4.7. L’espace métrique (8.1, L1ys) est complet.

Une preuve de ce théoreme se trouve, par exemple, dans [3, Theorem 9.20].
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4.2  DES TRIANGLES AUX CONFIGURATIONS SEMI-STABLES

On cherche & réaliser 1’étape 2 de 1introduction et donc a construire une
configuration semi-stable associée & un triangle de T, cf. [10].

4.2.1 FONCTIONS DE BUSEMANN. On peut plonger 7 dans l’espace
F = F(Z,R)/R des fonctions continues sur 7 (avec la topologie de la
convergence uniforme sur les bornés), ol on quotiente par les constantes: a
x € Z on associe la fonction d(x,—). On peut montrer [3, IT 8.13] que T
est homéomorphe a I"adhérence 7 de T dans F. On ne va utiliser que le
plongement de d..7 dans F:

Soient x € T, £ € 37 et p un représentant de £. L’application
[0,00[—= R, £+ d(x, p()y — ¢ est minorée (par —d(x, p(0))) et décroissante;
on peut donc noter

be(x) = lim (dx, p(1) — D).

Cette fonction b de Z dans R est la fonction de Busemann associée a £
(ou plutdt a p). Elle ne dépend du choix de p qu’a une constante pres et est
1-Lipschitzienne en x. On peut montrer que b¢ est la limite de p(f) dans F.
Ainsi la classe de by dans F est en fait dans T et ne dépend que de £. Les
lignes de niveau de bg sont les horospheres de centre £.

EXEMPLE 4.8. Si les points x, y et la demi-droite p sont dans un méme
appartement A et si { = %(p(t))tzo est le vecteur directeur unitaire de p,
ona: be(x) —be(y) = xjfg = —d(x,v) cos(yx, 5) Les horosphéres (en tout cas
leurs intersections avec A) sont donc des hyperplans orthogonaux a p.

LEMME 4.9. Soient o une géodésique (parcouirue a vitesse 1) d’extrémité
neTetteR tels que o(t) £ n, alors la dérivée directionnelle de by selon
en t vaut: d%(bg o)) = —cos Lyip(n, &)

Deémonstration. C’est un exercice facile de géométrie euclidienne dans un
appartement contenant le début de la géodésique de o(¥) a n et la demi-droite

{ORIE

LEMME 4.10. Soient £,1 € 8,T et o une demi-droite représentant 1.
La pente asymptotique de bg en 1 est penteg(n) = limy w. Elle

s’exprime avec la distance de Tits: pentes(n) = — cos Z1y(§, 7).
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Démonstration. Si p est une demi-droite représentant £, on vérifie que
w ne dépend asymptotiquement pas des choix des représentants p et o.
On peut alors raisonner dans un appartement contenant ces deux géodésiques.

4.2.2 CONFIGURATIONS PONDEREES ET STARILITE. On considére trois
points £1,&,& € 95T et trois poids my,my,m3 € [0,40c0[. On les voit
comme une configuration pondérée : (Z/3Z,1) — 8T, ou v est la mesure
sur Z /37 de masse m; en i.

La mesure associée sur dooZ est g = ¢, =3, mydg,, de poids total |p| =
my + my + mz. On définit sa pente: pente, = — ZiEZ/EZ m; cos L1is(&r, —),
c’est une fonction sur 9.7

DEFINITION 4.11. La configuration + est dite semi-stable si la fonction
pente,, est positive ou nulle sur J..7.

Intuitivement cela signifie que les points &,&;, &3 sont éloignés les uns des
autres. Par exemple si £ = & = & aucune configuration n’est semi-stable;
dans un arbre, si £1,&2,& sont deux a deux différents (resp. & = & # &)
la configuration est semi-stable si et seulement si 2m; < my +my +mg, Vi
(resp. mz = my + my).

Bien str une configuration semi-stable le reste si on multiplie tous ses
poids par un méme réel positif: les configurations semi-stables forment un
cone (saturé).

La pente peut se réinterpréter avec les fonctions de Busemann: la fonction
de Busemann pondérée associée a g1 ou 9 est b, = >, myby,, elle est définie
a une constante pres. Si 1 € o7 est représenté par o, alors le lemme 4.10
dit que: pente, (n) = lim;_, m(;:(r))_

423 APPLICATION DE GAUSS ET ETAPE 2). Soit T = T(r,x2,%)
un triangle dans 7. On prolonge chaque segment [x; i,x;] en une demi-
droite d’origine x;_1, d’extrémité notée & € JZ et on considere les poids
m; = d(x;_1,x;) (on rappelle que xg = x3). L’application de Gauss ¢ associe
donc au triangle T une configuration pondérée ¥y (bien sur il y a plusieurs
choix pour 7).

PROPOSITION 4.12.  La configuration )y est semi-stable.

Démonstration. Soient 1 € I L et ~: [0,m] — [x_1,x] une
paramétrisation a vitesse 1 de ce segment. D’apres le lemme 4.9 et 4.1.3 on a:
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d%(bn o)) = — cos Ly n(1, &) < —c0s Lris(ny, &) . Ainsi by (x) —bp(xi_1) =
B 5y o v0de < [ — cos Z1us(n, £)dt = —micos Z1is(n, &) et done
0= Z;‘gz/3z —#it; 008 Lits (1, §)-

43 DES CONFIGURATIONS SEMI-STABLES AUX TRIANGLES

On cherche a réaliser 1’étape 3) de l'introduction et donc & inverser
I’application de Gauss ci-dessus en construisant un triangle dans 7 2 partir
d’une configuration semi-stable ¢ = ((£1,m1),(&,m2), (&3, m3)), cf. [10].

43.1 POINTS FIXES. Soient & € J.c7 et ¢ > 0. On définit I’application
pe L — 1, x> p(f) ol p est le représentant de £ issu de x. La fonction
£ d(g 1(x), Pe,(¥)) est convexe, bornée et décroissante.

Siot = (&1,m1), (&2, 1), (£3,m3)) est une configuration pondérée, on lui
associe ’application ¢ = ¢g; m; © Gy my © Py my de T dans Z. Par construction
d(x, ¢m) < [u| = mi +ma +ms et d(@x), (M) < d(x,y).

On cherche un point fixe xp de ¢ qui définirait un triangle T = T(xp, X1, X2)
(avec X1 = P, m, (X)) €l X2 = (g, g, (x1)) vérifiant 7 = 1.

Pour cela on va utiliser une variante du lemme de point fixe de Bruhat-
Tits [10]:

LEMME 4.13. Soit ¢ T — T une application 1-Lipschitzienne d’un
espace CAT(0) complet dans lui méme. S’il existe x € T tel que {¢"(x) |
n > 0} est borné, alors ¢ a un point fixe dans T .

Démonstration. Tout d’abord, on pose x, = ¢"(x) et, pour y € T,
r(y) = limsup, ,. d(x,,y). Alors r(¢dy) = limsup, ., dx,., ¢y) =
limsup, , . d(dx, 1,0y < limsup, . d(x, 1,¥) =r(y); donc rogp < r. 1l
suffit donc de montrer que r a un unique minimum dans 7.

On note p = infg(r). Pour € > 0 et v, € T tels que #(3),7(y) <
p+ e, il existe ng tel que d(xy,¥),d(xs,¥) < p+e, Vo > ng. Si m
est le milieu du segment [y,y] on a r(m) > p, donc d(x,,m) > p—¢
pour une infinité de » € N. L'inégalit¢ (CN) de [5, 3.2.1] (conséquence
de la condition CAT(0)) s’écrit alors, pour ces entiers n: d(y,y")? <
2(d(x,, ¥ + d(xy, ¥ — 4d(x,, m)> < 16pe. Ainsi une suite y, € Z telle
que r(y;) tende vers p est forcément de Cauchy. Comme Z est complet, cela
montre 1’existence et I'unicité d’un y € T tel que r(y) = p.
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432 LECONE SUR I'IMMEUBLE A I'INFINL.  L’immeuble sphérique 7, de
réalisation géométrique sphérique d.,7 a aussi une réalisation vectorielle (dans
le méme sens qu’en 3.2.1): c’est le ¢dne CdZ quotient de [0, +oo[X I T
par la relation qui identifie {0} X 97 a un seul point noté 0. C’est un espace
métrique pour la distance dc((a, £), (b, 7)) = a® + b* — 2abcos /i€, 1).

On montre [3, p. 60, 61, 188] que C3.7 est complet, que deux points sont
toujours joints par un unique segment géodésique et qu’il vérifie la condition
CAT(0). C’est un immeuble vectoriel.

En fait dans notre cas C3,T est 'immeuble de Tits d’un groupe réductif,
dans sa réalisation vectorielle et on sait qu’il a toutes les propriétés des
immeubles affines plus une, qui caractérise les immeubles vectoriels: les
appartements sont des espaces vectoriels euclidiens d’origine 0 (commune 2
tous les appartements).

On peut remplacer, dans ce qui précede, 7 par COZ et donc considérer ¢
sur ce dernier immeuble.

THEOREME 4.14.  Si la configuration <) est semi-stable, alors I’application ¢
admet un point fixe dans COT .

Démonstration [10, prop.4.5]. Nous sommes dans un immeuble vectoriel
que I’on notera 77, ses facettes sont des faces de quartier de sommet 0 et elles
correspondent bijectivement (par F — F™°) aux facettes de 9.7 = 977.
On normalise toutes les fonctions de Busemann de facon que 5¢(0) = O.
Comme deux facettes sont toujours dans un méme appartement, on peut
appliquer le calcul de l'exemple 48 & 0, x € TV et £ € J,Z, ainsi
be(x) = —d(0,x)cos Lo(x,&). En particulier |be(x)] < d(0,x) et d(0,x) =
max¢eg,, 7 (—be(x).

Si F est une facette de Z%, on note F™* son étoile ¢’est-a-dire la réunion
des facettes (fermées) contenant F. Si x € F*, 5 € F* et £ € 9,7,
alors x, 1 et £ sont dans un méme appartement et ¢g,(x) est le translaté
de x d’une longueur ¢ dans la direction £. On a donc b y(e (%)) — by(x) =
—tcos Zriys(€, ) d’apres 4.8. On définit I'ensemble F*° des x € F* tels que
la boule B(x,|u|) de Z¥ soit contenue dans F™. Ainsi, pour x € F*°, o, (%)
(pour 0 < 1< my), gy (B (¥) (OUr 0 < £ < 1) et iy (s ol g ()
(pour O < ¢t < m3) restent dans F* et on a donc: pourtous x € F*°, n € F™=,
(X)) — by(x) = — > m;cos Lri(&i, 1) = pente,(n). Comme g est semi-
stable, on en déduit que b, (¢(x)) > b, (x).

Pour appliquer le lemme 4.13 on veut montrer que ¢ stabilise un borné;
celui-ci sera I'approximation polyédrique d’une boule de centre O que 'on
va construire maintenant.
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Soit @ un quartier de sommet O dans 7%, on va construire un Sous-
ensemble fini D de Q°°. Pour cela on met d’abord dans D le barycentre
du simplexe Q°°, puis on ajoute successivement des points des faces de O
(différentes de Q™) ordonnées de fagon que la dimension décroisse: si F'™ est
une telle face, on rajoute au D _(F°) déja construit un ensemble fini D(F )
de points de I’intérieur relatif de F°° tel que F™ soit recouvert par les boules
ouvertes (pour la distance de Tits) de centres ces points de D(F ) et de rayon
(1/3).d(F™,D_(F™>)). On note e(F°°) la distance de F™ au complémentaire
de la réunion de ces boules.

Alors le D ainsi construit et ¢ = (1/2)inf{e(F™) | F™ C 90>}
vérifient la condition suivante: si 5 € Q% et { € D sont tels que
Zrits(1), ) < 2 Ties(ny, ¢ pour tous ¢" € D, alors n est & distance de Tits > ¢
de toute face de Q°° ne contenant pas ¢.

On considére ’ensemble £ des points de J..Z d’image dans D par la
projection de JZ sur Q™ déterminée par les types. Alors la condition de
I"alinéa précédent est encore vérifiée si 1’on change 0™ en d..Z et D en E.

On considere la fonction f = maxccg(—b¢). On a vu que |f| <d(0, —);
de plus les boules polyédriques Bs(r) = {x € I" | f(x) < r} sont bornées:
cela se vérifie dans le quartier Q et {x € Q| —b:(x) < r, ¥{ € D} est borné
d’aprés ’exemple 4.8. Il ne reste donc plus qu’a montrer que ¢ stabilise Bg(r)
pour r assez grand.

Sotent » > 0 et x € IV tels que d(0,x) > r. Montrons que V¢ € E,
—b(P(x)) < f(x).

— S Ao, 0) < 275x. (N, Y € E et si F est la facette contenant (
dans son intérieur relatif, alors x € F7® pour r > |u|/sine. On a alors
—be(d(x) < — by(x) < fx).

— Si p=Lox, ) > 250x, (") = 2¢q pour un ¢’ € E, on peut supposer
Zo(x, ¢y = min{ Zo(x, (") [ ¢ € E}. Alors Z1((, N < ptq <3(p—q)
et, si on note § = inf{/ &, ) | € £ n € E} = inf{Ln(&,n) | £ #
neD}>0o0mafd <p+qg<3p—gq. Alos f(x) = —bo(x) =
—be(x) + d(0,x)(cosg — cosp) = —b¢(x) + 2d4(0, x). sinLerﬂ.sinL;g >
—be(x) + ||, si 2rinf{sin(8/2), sin(Bw/D}.sin(d/6) > |p|. Et alors,
comme b est 1-Lipschitzienne et ¢ de déplacement au plus |u
—be(d) < —be() + || < f@).

On a donc f(px) < f(x) st d(0,x) > r avec r > ro (assez grand). Mais
G(BO, ) C BO,r + [u) C Ber + |u]). Donc Be(r) est stable par ¢ pour
o |p.

, on a
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433 1’ARGUMENT DE TRANSFERT ET L’ ETAPE 3). Nous venons de trouver
un point fixe de ¢ dans I'immeuble vectoriel C8,Z correspondant 3 d,,7. On
a donc dans Cd.Z un triangle de longueurs (numériques) de cotés my, mz, ms
et de directions de ¢dtés £,£,& € 9. 7.

Identifions CT & un quartier Q d’origine 0 de C&.,Z et considérons les
éléments A,pu,v de CT de longueurs numériques respectives mj,m;,ms et
de directions respectives les images de &1,&2,& dans Q°° par la projection
de JuoZ sur Q. On dira que A = pro+(€1,my) et, de méme, p =
pro+(&a,mp), v = pre+(§3,m3). Ainsi le triangle ci-dessus a pour longueurs
de cOtés A, p et v.

THEOREME 4.15.

(1) L’application ¢ a un point fixe dans T .

(2) Le coéne T du corollaire 3.11 est saturé dans (PYTY : s'il existe
O p,v) € (PYYY} et N € N* tels que (NA\,Nu,Nv) € T, alors
O u,)eT.

Démonstration. On est dans le cadre du corollaire 3.11 et le dernier
alinéa de celui-ci nous dit qu’il existe dans 7 un triangle de mémes longueurs
de cbtés. En effet, I’appartement témoin AY de €I, 7 s’identifie, avec ses
murs et son groupe de Weyl W, i I'appartement témoin A de Z, si l'on
ne garde dans ce dernier que les murs passant par un sommet spécial donné,
Cela signifie aussi que ¢ a un point fixe dans Z et on a donc démontré le
point (1) du théoreme.

S7il existe un triangle de longueurs de c6tés NA, Ny, Nv, on lui associe une
configuration semi-stable ((&£;1,#11), (£2,m2), (&3,m3)) avec NA = pro+(£1,my),
Np = pro+(&,my) et Nv = pro+(&3,ms), cf. proposition 4.12. Comme on
I’a vu dans 4.2.2, la configuration ((£1,m1/N),(&2,m2/N), (§3,m3/N)) est
encore semi-stable et le raisonnement ci-dessus permet de lui associer un
triangle dans Z de longueurs de c¢otés A, p et v, d’ol le point (2).

5. LE THEOREME DE SATURATION

On fait le point sur les étapes de la démonstration du théoréme 1.1 qui
sont déja démontrées. 1'étape 1) a été prouvée dans la section 3, voir le
théoreme 3.10. Les étapes 2) et 3) ont été démontrées dans la section 4. Il
reste 2 montrer les étapes 4) et 5).
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FIGURE 2

Un morceau d’un appartement de type B;. Un sommet spécial 0 et un sommet non spécial x.
Un chemin « vectoriellement dans le 1-squelette.

On a une configuration semi-stable & = ((§1,my), (§2,m2), (§3,m3)) avec

A = proc(E,my), po= pror(Ea,mz) et v = proy(&,m3) dans PY'; on
supposera dés le théoréme 5.2 que A+ u+v € QY.

5.1 FACTEURS DE SATURATION ET ACTION DE PY/QY

On note # la plus grande racine et m; son coefficient sur la racine «;,
l k Fay P B Pl = Pe .
6 =73, ;m;. Lalcove fondamentale o est déterminée par les inéquations:

@) >0, Vi=1,...,0; 6w <1,

Si on considére les poids fondamentaux w1, ..., alors PY = @Zw; et
a= {inwi ‘ X = 0, in < 1}
i

Les sommets de a sont donc (0,...,0);(1/m,0,...,0)...;(0,...,0,1/my)
dans la base (z7y,..., ). De plus, on sait que PV est simplement transitif
sur les sommets spéciaux.

LEMME 5.1. Le plus petit entier k € N* tel que, pour tout sominet s
de A, ks est un sommet spécial est U'entier k = ke = ppem(my, ..., my).

Démonstration. Si on teste sur les sommets de a, il est clair que k est
comme indiqué. Mais QY C PV est simplement transitif sur les alcdves donc
QY - {sommets de 0} = {sommets de A}. D’ol le résultat.

On s’intéresse maintenant a ’action de PV sur a. Soit A € PV, on note 73
la translation associée. On pose o’ = 73(a). Alors il existe un unique wy € W%
tel que wya' =a. On note s =wyo7y; si A€ OV, 7\ € W et vy = Id.
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Si 4 est un autre élément de PY, alors
-1
PN = WATAW, T, = WA(TAW, Ty, AT, € WinT,
et rpu(a) = a. Donc ¢ye, = @iy, Ce qui donne bien une action
de PY/QY sur Ialcdve a.
Comme le groupe est supposé presque simple, cette action se traduit par

une permutation des sommets (ou des cloisons) de a, donc par une action sur
le diagramme de Dynkin complété.

5.2 LE POINT FIXE EST UN SOMMET ET L ETAPE b

On sait que ’application ¢¢ = ¢ © ¢ © ¢h3 associée a la configuration
semi-stable & = ((£1,my), (§&2,M2),(&3,m3)) admet un point fixe xp dans 7.
Mais dans un appartement contenant £; et x, ¢1(x) est le translaté de x
d’une longueur m; dans la direction £;, donc selon un vecteur A’ € W.A. Or
X € PY, la translation associée 7, envoie donc facettes sur facettes. Ainsi,
¢, est une application simpliciale. De méme pour ¢, et ¢3. De plus 7
envoie une alcOve sur une alcove et permute les types de facettes par 1’action
de A € PY/QY: donc, si A+ pu+v € QY, ¢ conserve les types. Nous
avons démontré le premier point du théoréme suivant, le second est laissé a
la sagacité du lecteur.

THEOREME 5.2 (Kapovich-Leeb-Millson [11]).
— SiAtp+ve QY alors ¢ fixe un sommet.
—  Si ¢ fixe un sommet spécial alors M+ pu+v e QY.

On a donc un triangle T = [xg,x1,X2,%0] dans 7 avec do+(xg,x1) = A,
det(x1,%) = p et dor(x, %) = v et xp un sommet de Z. Comme
M, v € PY, x; et x sont aussi des sommets. On peut supposer que
xp et x; sont dans notre appartement témoin favori A. On choisit une
alcove a de A contenant xo. On rétracte le triangle 7 sur Iappartement A
par pa q. Alors, d’aprés les résultats de la section 3, on obtient un polygone
[X0, X1, ¥1, -« - » ¥ur X5, Xol, Ol X5 = pa o(x2) et [X1,¥1,..., ¥ X5] est un chemin
de Hecke de type p par rapport a a.

Maintenant, on fait dans A une homothétie de centre 0 et de rapport k,

alors le polygone [xg,X1,¥1,...,¥n, X5, %] se transforme en un polygone

[0, X0, Yoo oy Voo X5, X], OU afy,x], x5 sont des sommets spéciaux de A (on
/ / " / ! ! ! 7

pourra poser 0 = x}), de+ (x4, x]) = kA, do+ 0, x0) = kv et [x], ¥, ..., ¥} x5

est un chemin de Hecke de type ku. Malheureusement, en général, ce n’est
pas un chemin LS. .. Mais, on a bien démontré 1”étape 4).
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53 CONCLUSION

Dans cette section, on va montrer 1’étape 5. On considere le polygone
[X5, X1, Y1, - > ¥e, X5, x5] obtenu i la section 5.2, olt xf,x], x5 sont des sommets
spéeiaux de A, der(x),x]) = kA, dev (x4, x0) = kv et ot [x],y],...,¥,, %
est un chemin de Hecke de type ku par rapport 4 une alcbve a, con-
tenant xy. Le théoréme suivant montre qu’il existe dans Ct un polygone
[xf, ket 2y, ..k kx x)], o [k kzy, ... kz), ki1 est un chemin LS
généralisé de type k%u. Le théoréme de décomposition 2.8 s applique et
prouve que {V(&2X\) ® V(') @ V(K v)) GV# {0}. On a bien achevé Iétape 5)
et donc la démonstration du théoréme de saturation 1.1.

THEOREME 5.3.  Soit [0,u;,vy,. .., U, t2,0] un polygone oit u,,u, sont
des sommets spéciaux de A et [u),vy,..., vy U] est un chemin de Hecke
de type m par rapport & une alcbve o contenant 0. Soit CT la chambre de
sommet O opposée & la chambre contenant a. Alors, il existe un polygone
[0, kel k2, . . kz), klh, O] contenu dans CT tel que [kuj kz}, ... k2, ku)]
est un chemin LS généralisé de type kij = kny + - + ko,

Démonstration. On déplie le chemin [u, vy, ..., v, 42] dans 'immeuble
pour obtenir un triangle sur des sommets spéciaux [0,uy,72,0], avec
de+(uy,22) = n et deo+(22,0) = do+(u2,0). Dans un appartement contenant les
sommets 1, et zz, on remplace le segment [u;,2;] par le chemin m = u; + 7,
oll my est le chemin associé a une décomposition de 7 comme dans la par-
tie 2.9. Ce chemin n’emprunte que des arétes et donc chaque fois qu’il
rencontre un mur, ¢’est en un sommet.

On rétracte sur A par p = pagq. Alors on obtient un polygone
[0,u1,21,...,2m,u42] tel que pm = [uy,21,...,%m, 2] sOit un chemin qui est
plié uniquement en des sommets et qui est de Hecke généralisé de type # par
rapport & a (au sens de la définition suivante). C’est clair pour les images des
segments de 7. Pour les points anguleux, il faut remarquer que deux arétes
d’une méme alcdve auront des images dans une méme alcOve.

Maintenant, on replie A, en accordéon, sur Ct par la projection
prer: A — Ct o oon obtient ainsi un polygone [0,u,7],...,2,,u5, 0] avec
Ao+ (0, 1)) = de+ (O, 1), deo+ (45,0) = do+ (2, 0) et p=[u),2],..., 2, 5] est
un chemin plié uniquement en des sommets. D’apres le lemme suivant p est
de Hecke par rapport & a et donc de Hecke par rapport & —Ct (voir la
remarque 3.9).

Enfin, on applique I’homothétie de centre O et de rapport k, on obtient
un chemin de Hecke généralisé [ku), kz},... kz),, k] de type kij, dont les
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coudes sont des sommets spéciaux. Par le lemme 2.5, ce chemin est LS
généralisé de type k7, ce qui termine la preuve du théoréme.

DERINITION 5.4,  Soit a I'alcéve de A de sommet O et opposée a la

chambre de Weyl C*. Soit p un chemin dans A. Pour tout ¢ € [0,1], on
— . . —

note dpy la chambre de A, qui contient les vecteurs p()z’, pour 7/ € a.

Le chemin p est de Hecke généralisé de type 7 par rapport & a si
p=p1%---xp; oules p; sont de Hecke de type 7; (par rapport a a), p(0) =
pi_1(1) =: p(t;) et pour tout 2 < i < I, il existe un vecteur &;, une chambre
qui contient & la fois & et p’ (&) et une (Wy,), dy(;y)-chaine de p’ (1) & &;.

Il s’agit de la méme condition que la définition 2.9 ol il convient de
remplager « par rapport & Ct » et « Wy, -chaine» par «par rapport & a» et
« (W), dipr,y) -chaine ».

LEMME 5.5. Soit a Ualcove de A de sommet O et opposée a la chambre
de Weyl C*. Soit p un chemin de Hecke de type 1 par rapport & o ou un
chemin de Hecke géneralisé de type 7 par rapport a a dans A. Alors le
chemin replié pro+ o p est de Hecke de type 1 ou de Hecke généralisé de
type 7 par rapport & o dans CT.

Démonstration. Le chemin pr-+ op s’obtient a partir de p par une suite
de pliages rétractant A sur un demi-appartement contenant C' T et de mur
contenant 0. Soient donc M un mur contenant 0, D le demi-appartement
limité par M contenant Ct et mp le pliage de A sur D). On va montrer que
wp op est de Hecke (généralisé) par rapport a a. Cela se vérifie en chaque
point p(f) de p. Si p(H) ¢ M, alors ﬁpm contient a et sa symétrique sp(a);
de plus, au voisinage de ¢, wpop est égal a p ou a syyop. Donc wpop
vérifie encore la condition locale imposée.

Supposons p(f) € M. Par hypothese il existe une (W, @y)-chaine
de p/ () & £ ou £ est dans une méme chambre que pﬂr(t). Donc 7p(€)
et 7p(p’ (1)) = (wp o pY,(H) sont dans une méme chambre et du mé&me
cOté de M. Ainsi mp(§) est égal a4 £ ou su(£) avec comme positions:
& byy |m $1(8). De méme (mmpop) (8 est égal & p’ (D) ou & s(p_() avec
cette fois:  sp(p (D). dpey |ar p/_(®). Ainsi en complétant éventuellement,
par le début et/ou la fin, la (Wy, dy)-chaine de P’ (® a &, on obtient une
(Wi, @ppy) -chaine de (mpop) (& a mp(&).

REMARQUE 5.6. Nous avons une variante de la fin de la démonstration
du théoreme de saturation qui se décline comme suit. Dans la partie 5.2,
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on a trouvé un triangle T = [xg,X1,%2,%] dans T avec dg+(xp, %) = A,
de+(x1,%2) = 1 et do+(x2,x0) = v et xg,Xx1,X2 des sommets de 7. Dans un
appartement contenant x; et xz, on remplace le segment [x;,x2] par un chemin
«généralisé» [x1,day,..., 4y, X2] modelé sur une écriture o = py + --- +
comme dans la partie 2.9. Les guillemets signifient que ce chemin est seulement
vectoriellement dans le 1-squelette (quand le sommet x; n’est pas spécial). On
rétracte le polygone [xo,X1,@1,...,dm,X2,X0] par la rétraction pa ., oll a est
une alcdve qui contient xp. On peut montrer que ™ = pa o([X1, a1, .. ., G, X2])
est un chemin de Hecke « généralisé». Maintenant, on cherche le facteur &’
tel que k’7 soit LS généralisé. On peut montrer que ¢’est vrai pour k' = k2.
Mais en regardant, au cas par cas, quand un segment vectoriellement dans le
1-squelette peut croiser un mur, on voit que k£’ = 2 suffit dans le cas B, et
k' =12 pour le cas G,. Malheureusement, on trouve k' = 4 dés le type B,,
pour n > 3. Ensuite, on replie A en accordéon et, grice & une légére variante
du lemme précédent, on obtient un chemin LS généralisé dans C™.
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