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L'Enseignement Mathématique (2) 59 (2013), 3-37

UNE PREUVE PLUS IMMOBILIÈRE DU THÉORÈME DE

«SATURATION» DE KAPOVICH-LEEB-MILLSON

par Nicole BâRDY-Panse, Cyril CHARIGNON,

Stéphane Gaussent * et Guy Rousseau

ABSTRACT. We give a more building-oriented and somewhat simpler proof of the
« saturation » theorem of Kapovich and Millson for any complex semisimple group. The
main difference with their approach lies in the combinatorial part of the proof. We state
a theorem of folding/unfolding triangles in the affine building, only in combinatorial
terms. For the analytical part, we gather materials that appear in distinct papers of
Kapovich, Leeb and Millson to complete the proof.

1. Introduction

Cet article a pour but d'exposer une démonstration du théorème de

«saturation», ce théorème a été démontré par Kapovich et Millson [12],
à la suite d'une série d'articles avec Leeb ([9], [10], [11],.. Nous aurons
besoin des notations suivantes:

G groupe semi-simple sur le corps des complexes C,
associé à (X, Y, <3>, <3>v)

T tore maximal dans G

X réseau des caractères de T
Y réseau des cocaractères de T, dual de X
d> système de racines de (G, T), contenu dans X et

supposé irréductible

un choix de racines simples dans d>

Pv réseau des copoids, dual de Q — ©Za,
<3>v système des coracines de (G, T), contenu dans Y

*) Le troisième auteur remercie le projet ANR-09-JCJC-0102-01 pour son soutien financier.
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gv réseau des coracines de G, Qv — ©Zctf C Y C Pv
Gv dual de Langlands de G groupe semi-simple com¬

plexe associé à (Y,X, <3>v, <É>)

L(A) représentation irréductible de Gv de plus haut poids
A e Y+ {A e Y I tti(A) > 0}

X immeuble de Bruhat-Tits associé à G et au corps
JéT — C((0) des séries de Laurent

THÉORÈME 1.1. Soit k — k® le plus petit multiple commun des coefficients
de la plus grande racine de d>. Soient X,p et v des copoids dominants tels que

\ApAv e <2V S'il existe Ne N* tel que (L(NA)©L(N^)©L(A©))GV {0}
alors (V(k2A) © V(k2p) © V(k2u))°V± {0}

La conjecture qu'ils formulent est que le résultat reste vrai si on remplace k2

par k et même si on le remplace par 1 ou 2, selon que les racines de d>

sont toutes de même longueur ou non. Pour G de type A, k 1 et on a bien

une saturation du cône de Littlewood-Richardson (formé des (A, /i, v) tels que

{V{X) 0 VQj) 0 Vm) f {0}). Dans ce cas-là, le résultat a été démontré

par Knutson et Tao avec le modèle du nid d'abeilles [13] et par Derksen

et Weyman en utlisant les carquois [7]. Par la suite, Belkale et Kumar ont
montré qu'on peut prendre 2 à la place de k2 dans le théorème précédent

quand le groupe G est symplectique ou orthogonal impair [2], ils utilisent
des techniques de géométrie algébrique et plongent le groupe dans un groupe
de type A. La dernière amélioration (à notre connaissance) est donnée par
Sam qui montre en prolongeant les idées de Derksen et Weyman que l'on
peut prendre 2 dans le cas d'un groupe orthogonal ou symplectique [18]. Il
se débarrasse de plus de Lhypothèse A + p + v e Qv.

L'importance de ce théorème tient au fait que la non nullité de (LCA7) ©
G^

\V)©V{v')) traduit l'existence d'une sous-représentation de

isomorphe au dual de V(y'~) et la multiplicité de V(v'*) est la dimension
de cet espace. On a donc ainsi des renseignements sur la décomposition en
facteurs irréductibles du produit tensoriel de ces deux représentations irréductibles.

Esquisse de la PREUVE. La preuve que nous présentons se décompose

en les points suivants:
y G^
Étape 1) (A)©V(Np)<g>V(Nv)) ^ {0} implique qu'il existe un triangle

(géodésique) T(0,A,B) dans X, de longueurs de côtés N'A,Np,Nu.
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Étape 2) Il existe une application, appelée «application de Gauss», qui à

7X0, A, 5) associe une configuration semi-stable

de points pondérés de d^X (le bord visuel de X).
Étape 3) L'ensemble des configurations semi-stables est saturé, ainsi

«A, &), (/*,&), (*,&))

est toujours semi-stable. On veut maintenant inverser l'application de

Gauss. Pour cela on construit à partir de ((À, fi), (ß, £2)5(^5 £3)) une

application 0: X —>• X. En fait, on montre qu'il existe un point fixe noté Xq

de 0, d'où un triangle T(x0,^1,^2) dans X, de longueurs de côtés \,ß,v.
Étape 4) La condition À + ß + v G Qy implique que Xq,X\,X2 sont des

sommets de X. On rétracte dans un appartement contenant Xq et

par rapport à une alcôve a qui contient ce point. On dilate par k,
les sommets deviennent des sommets spéciaux et on obtient un polygone

P{0, a, ai,..., an, b, 0) formé de deux segments [0, a] et [b, 0] de

longueurs de côtés kX et kv et d'une ligne brisée qui est en fait un
chemin de Hecke par rapport à a de type kß.

Étape 5) On replie ce polygone dans la chambre fondamentale, ce qui
en donne un formé par les segments [0, £À], [0, kv*~\ et un chemin
de Hecke de type kß contenu dans la chambre fondamentale (ici,
v* — —Wqv). Malheureusement, un chemin de Hecke n'est pas forcément
LS (abbréviation de Lakshmibai-Seshadri). Mais, modulo un petit ajustement,

en dilatant de nouveau, on arrive à un chemin LS. On conclut par

un théorème de Littelmann que (V(k2À) O V(k2ß) O V(k2v)) ^ {0}.

Nous nous inspirons largement des travaux de Kapovich et Millson [12].
La principale différence réside dans l'introduction des chemins de Hecke par
rapport à une alcôve qui permettent de caractériser les lignes polygonales que
l'on peut déplier, voir le théorème 3.8. Ce résultat est une contribution originale
au sujet. Kapovich et Millson ne peuvent déplier que certains chemins qui
sont denses dans les chemins LS (voir la preuve du théorème 6.1 de [12]).
Nous évitons ainsi l'utilisation d'un argument de compacité.

La section 2 introduit les notions de chemins LS et de Hecke dues

à Littelmann et Kapovich-Millson, et explique leur importance en théorie
des représentations. La section 3 fournit une preuve originale (entièrement
immobilière) d'une caractérisation des images dans un appartement des

triangles géodésiques de X par certaines rétractions; on en déduit l'étape 1)
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ci-dessus dans le théorème 3.10. Dans la section 4, on introduit le bord visuel
de X et la notion de configuration semi-stable. L'application de Gauss est

introduite dans la partie 4.2.3, ce qui permet de réaliser l'étape 2). On montre

qu'elle a un point fixe dans le théorème 4.15; ceci constitue l'étape 3). On
conclut enfin, dans la dernière section, après avoir accompli l'étape 4) dans

la partie 5.2 et l'étape 5) grâce au théorème 5.3.

2. Différentes définitions de chemins

2.1 Appartement dans X

On note A l'appartement témoin dans X, il s'agit d'un espace affine
euclidien de direction V — F&R (souvent identifié à V). De plus, on désigne

par C+ {a G V \ at(x) ^ 0, Vi G 1} la chambre de Weyl fondamentale;
la plupart des notions introduites ci-dessous dépendent du choix de cette
chambre. Le groupe de Weyl fini W agit isométriquement sur V avec C+
comme domaine fondamental. Il est engendré par les réflexions ra, pour
a G d>, où ra est la symétrie orthogonale par rapport à 1'hyperplan Kera
(mur vectoriel).

Pour tout v G V, il existe un unique vo G C+ fi Wv, on définit
la projection sur C+ en posant Vq — prc+(v). Si v G C+, on note
v* — prc+(—v) — —Wo-V (si Wo est l'élément de plus grande longueur
de W). De plus, pour tous x,y G A, on pose dc+(x,y) — prc+(y — a) G C+.
On dit que dc+(x,y) est la longueur du segment orienté [a, y].

L'ensemble A4 des murs de A est en bijection avec $xZ, il s'agit des

hyperplans

M(a, k) — {a g A I a(x) + k — 0}
La réflexion Tm — ra,k associée au mur M — M(a,k) respecte l'ensemble A4
des murs et ces réflexions engendrent le groupe de Weyl affine : Wa — Wïk Qv
Un mur de A détermine deux demi-espaces fermés de A (appelés demi-

appartements) dont il constitue le bord.

Une alcôve dans A est l'adhérence d'une composante connexe du

complémentaire des murs; c'est un domaine fondamental pour l'action de lfa.
Un sommet de A est un sommet a d'une alcôve, il est spécial si, Va G d>,

on a a(A) G Z (i.e. si a G Pv).
On sera amené plus tard à considérer des appartements construits comme

ci-dessus, en remplaçant Z par un autre sous-groupe discret de R, par
exemple {0}. Dans ce dernier cas, Wa — W, l'appartement est dit vectoriel
et ses alcôves sont aussi ses chambres de Weyl.
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2.2 Galeries

Les chambres de Weyl de V sont les transformées de C+ par W. Une
cloison est une facette de codimension 1 d'une chambre, son type est l'élément
i G I tel qu'elle soit conjuguée par W à C+HKeraj. Deux chambres sont dites

mitoyennes si elles ont une cloison en commun (elles peuvent être égales).

Une galerie de chambres de C à C est une suite Y — (Co — C,Ci,...,
C„ — C') de chambres telle que Cj_i et Ci soient mitoyennes, pour 1 < i < n.
Cette galerie est dite tendue si la longueur n est minimale; alors n est la

distance de C à C'. La suite des types de cloisons dans C*_i flC* est un type
de cette galerie. Plier Y (au niveau j), c'est avoir Cj- \ ^ Cj et remplacer

Cj,... ,Cn par leurs images via la réflexion par rapport au mur (vectoriel)
contenant la cloison Cj-1 fl Cj.

Comme une alcôve est un domaine fondamental pour Wa, toutes les

définitions précédentes peuvent être répétées pour les alcôves. On définit ainsi
dans A des cloisons d'alcôves et des galeries d'alcôves. Dans ce cadre les

types correspondent aux cloisons d'une alcôve fondamentale; comme d> est

irréductible, ils sont indexés par ' U {0}.

2.3 Ordre de Bruhat-Chevalley

Le groupe W est un groupe de Coxeter pour le système de générateurs

{/i rc*i I i ^ J}- Tout w C. W peut se décomposer sous la forme

w — rij rin ; la longueur £(w) de w est le minimum des n possibles,

une décomposition avec £(w) termes est alors dite réduite.

On a le résultat classique suivant (voir [1], 3.59 et 5.16).

Proposition 2.1. Dans W, les assertions suivantes sont équivalentes :

(1) w' < w (ordre de Bruhat-Chevalley) ;
(2) il existe une suite w' — Wo,W\7... ,wn — w et des racines ßi telles que

wi+i wtrßi et i(wi+1) > £(Wi) ;

(3) idem avec les rßi à gauche;

(4) idem avec £(Wi+1) — £(wï) + 1 ;

(5) w' est le produit d'une sous-expression d'une décomposition réduite de w ;

(6) il existe une galerie tendue de C+ à wC+ qui donne une galerie de C+
h w'C+ par des pliages successifs.

On définit un ordre dans W/W\, où W\ — {w G W \ w(X) — A}
{l'on I Of»(A) — 0). Etant donnée une classe w, il existe un unique Wq G w de
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longueur minimale notée £\(w). On a Wo < w, pour tout w G w et même

w WqU, u G W\ avec £(w) £(wo)-\-£(u). De plus, WqC+ est la projection
de C+ sur wX, i.e. la chambre contenant wX la plus proche de C +. On définit

w' <w par Wq < wo

Proposition 2.2. Les conditions suivantes sont équivalentes :

(1) w' < w ;

(2) 3w G w, 3w' G w', w' < w ;

(3) il existe une galerie tendue de C+ à wX qui donne une galerie de C +

à w'X par des pliages successifs.

La preuve est laissée à la sagacité du lecteur.

2.4 Chemins à la Kapovich et Millson
2.4.1 CHEMINS POLYGONAUX. Si A G C+, un A -chemin est une

application linéaire par morceaux 7r: [0,1] —> A telle que, pour tout t,
prc+(7r'(t)) — A, sauf pour un nombre fini de t. Les points correspondants Xi —

7T(ti), 1 ^ i ^ n sont appelés les points anguleux de 7r. Les dérivées à droite et à

gauche en t, irf+(t) et n'_(t) existent tout le temps, mais sont parfois non
identiques. La somme des longueurs des segments constituant le A-chemin tt est A.

Un A-chemin s'écrit 7t(A, ttq, w, a), où w (wi,... ,wm) G W"1, a —

(«o 0 < ai < • < am — 1) et

2.4.2 CHEMINS DE Hecke. Si TT est un A-chemin, on note w±(t)
l'élément de W de plus petite longueur tel que 7r±(t) — w±(t)A. Pour a G A,
on pose Wx — {ra \ a G d>, a(x) G Z).

Un chemin linéaire par morceaux tt est de Hecke (par rapport à —C+)
si, pour tout t, il existe une W^t)-chaîne de ir'_{t) à Tr'+(t), c'est-à-dire s'il
existe une suite de vecteurs ir'_{t) — r)o,r)i,... ,r)m — Tr'+(t) et des racines

positives ßi7... ,ßm telles que

(Hl) rßi(r)i_i) — rji.
(H2) ßi(rji-i) < 0.

(H3) rßt G W^t), i.e. ßi(Tr(t)) G Z : Tr(t) est dans un mur de direction Ker ßi.

LEMME 2.3. Soit tt un X-chemin de Hecke alors, pour tout t,w+(t)<W-(t).

j=i
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Démonstration. On a tjq — — W-(t)X et rfr — WiX, où on a posé

Wi rßi rßlW-(t). Or i) < 0 implique que ßi{wi-\C+) ^ 0 ce qui
équivaut à £(wi — rßiWi-1) < £(wi~i). Donc «j_(0 wo > w\ > > wm >
w+(t) car 7r'+(t) — wm\.

2.5 Les chemins LS

Un chemin de Lakshmibai-Seshadri (ou LS) de type À G C+ est un

À-chemin ir — ir(À, 7To, w, a) tel que : pour tout j — 1,..., m — 1, il existe une

üj-chaîne de w3 à Wj+1 i.e. il existe une suite ßjß,..., ßJ>s de racines positives
telle que, si on pose oJi0 — Wj, ojß — rßjlWj,... ,ojtSj — rßjs. rßjlWj, on a

<7J,Sj — wj+1 et

(LSO) 7To est un sommet spécial (i.e. 7To G Pv et À G Pv+ — Pv H C+ ;

(LSI) oj>i<Oj>i-1, dans W/W\ ;

(LS2) ajßjfaiiA)) G Z ;

(LS3) £x(*jtù i\(<rjti-i)-l.
En fait, Littelmann ([14], [15]) considère des chemins LS normalisés, i.e. avec

7T0 — 0.

Nota Bene. 1) (LSO) + (LS2) e Q (si wj ± wj-1).
2) On sait que 7r(l) — 7r(0) — À G — Qv+ — — J] Na^.

Proposition 2.4. Si (LSO) est vérifié alors : (LS1) + (LS2) Hecke.

La preuve de cette proposition se trouve dans [8], section 5.1.2.

2.6 Quand est-ce que Hecke vaut LS

La condition LS est un peu mystérieuse par rapport à Hecke. On utilise
le lemme «grossier» suivant.

LEMME 2.5. Soit 7r: [0,1] —ï A un chemin de Hecke (par rapport à — C+
de type rj G C+ fi Pv Pv+. Si les points où iz est plié sont des sommets

spéciaux, alors ir est LS (et dans ce cas LS Hecke).

Démonstration. Pour tout t, il existe une suite £o — 7r^_(0, £i,
Çm — 7r'+(i) et des racines positives ßi,..., ßm telles que

(HI) rA(6_0 6
(H2) AÊ-iXO
(H3) rßi G i.e. ßi(iz(t)) G Z.
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On note w±(t) G W l'élément de plus petite longueur tel que ir±(t) —

w±(t)Tj. Alors, on a

W-(t) w0 > Wi rßlwo > > wm - w+(t).

D'après la proposition 2.4, il suffit de prouver la condition (LS3). Mais, on
sait que pour tout t, w+(t) < W-(t). Quand il y a égalité, il n'a rien à faire.

Quand il n'y a pas égalité, comme les points où le chemin se plie sont des

sommets spéciaux, on peut écrire

w+(t) rßy rß'W-

avec décroissance de 1 des longueurs. Donc tr est bien LS.

2.7 LES OPÉRATEURS ea ET fa
Soient 7r: [0,1] —> A un chemin linéaire par morceaux d'origine 7r(0) — 0

et a une racine simple.
On considère Q inf(a o 7r([0,1]) n Z). Si Q — 0, le chemin eair

n'est pas défini. Si Q < 0, soient q — inf{4 G [0,1] | a o 7r(t) — Q} et

y sup{t G [0, q] | a O7r(0 Q + 1} ; le chemin eair est la concaténation de

7r|[o,y|, d'un symétrique de Tr\[y,q] et d'un translaté de 7r|[Çti]. Plus précisément
ea7T(t) tt(0 pour t G [0,y], eair(t) ra>ß+i(7r(0) pour t G \y,q] et

ea7r(t) tt(0 - ir(q) + eair(q) pour t G [_q, 1]

De même on considère la partie entière P de a o7r(l) — Q. Si P < 0, le
chemin fatt n'est pas défini. Si P > 1, la définition de fatt est analogue à

celle de ea7r, voir [14] pour plus de détails.

On peut démontrer les propriétés suivantes (voir [14]):

(1) Si ea7r est défini, on a ea7r(l) — 7r(l) + av et si fatt est défini, on a

/a7T(l) - tt(1) - av.
(2) (ea)n7r est défini si et seulement si n < —Q et (fa)ntt est défini si et

seulement si n < P.

(3) Si tt(1) G Pv, on a P+ Q a(7r(l».
(4) ea7T — tt' <^>/att' — TT.

(5) Si 7T([0,l])cC+, aucun eaTT n'est défini.

On notera l'analogie des propriétés 3 et 4 avec celles des bases des

représentations de SLj.
Pour À G Pv+, soit ttx le segment [0, A], i.e. TT\(t) — tX. Alors Littelmann

montre le résultat, plus difficile, suivant (voir dans l'introduction de [14] le
résultat appelé «Character formula»):



LE THÉORÈME DE SATURATION 11

Proposition 2.6. Un chemin ir d'origine 0 est un chemin LS (normalisé)
de type A si et seulement si on peut l'écrire sous la forme ir fßx fßz

avec r G N et ß\,..., ßr des racines simples.

2.8 Applications aux représentations de Gv

Soit À G Y+ — YC\ C+. La représentation irréductible de plus haut poids À

est de dimension finie. L'action du tore maximal Ty de Gv est diagonalisable
avec des poids p G A — 2îg/ Na;v (contenu dans le réseau Y des caractères

de rv). Il est important de connaître les poids qui interviennent et leur

multiplicité, c'est ce que donne le théorème suivant [14].

THÉORÈME 2.7 (Formule des caractères de Littelmann). La multiplicité
de p, dans V(A) est le nombre de chemins LS (normalisés) de type À et
d'extrémité p.

La formule des caractères de Weyl, précédemment connue, a le désavantage

d'exprimer la multiplicité comme une somme d'entiers relatifs, ce qui rend plus
difficile de voir si elle est non nulle. Le théorème suivant de Littelmann [14]
est fondamental pour la preuve du théorème de saturation.

THÉORÈME 2.8 (Règle de décomposition à la Littlewood-Richardson).
Soient À, p et v des copoids dominants de G (i.e. des éléments de Y+ C Pv+

(J^
Alors, (V(X) 0 Vi(4 0 V(v)) + {0} si, et seulement si, il existe un chemin

LS normalisé ir de type p tel que À + 7r(l) v* et, pour tout t G [0,1],
A + tt(0 G C+

Nota Bene. Dans ce cas on a donc A -\- p-\-v G Qv.

2.9 Les chemins LS généralisés

Malheureusement, un chemin de Hecke peut avoir un point anguleux en

n'importe quel point de rencontre avec un mur, donc pas forcément en un

sommet. Cela rend plus difficile l'utilisation du lemme 2.5 pour dire qu'après
homothétie un chemin de Hecke devient LS. On va donc considérer des

chemins qui restent dans le 1-squelette, comme ci-dessous.

Soit r] G C+ HPV, on choisit une décomposition fj — rp + • • + r)i avec

r)i G NtUj C Pv+. Soit 7— ir^l * * ttVi la concaténation des segments

TTrçi [0,??i] et 7rVi \r)H Fî?î_i,î?i 4 \~Vi\ Pour * > 2 (évidemment,

ce chemin dépend de la décomposition fj de rj).
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Figure 1

Un morceau d'un appartement de type A2. Trois chemins LS tvv,tvi et 1Y2 (avec
7Yrj ^ai^a27V2 ÊQ2eQ-i7I'i). et un chemin de Hecke n. Un chemin LS généralisé 7r^.

DÉFINITION 2.9. Un chemin de Hecke (resp. LS) généralisé de type fj
(par rapport à —C+) est un chemin p — pi * • • *pi où les pi sont de Hecke

(resp. LS) de type rfr (par rapport à — C+), pi(0) /?j_i(l) =: p(ti) et pour
tout 2 ^ i ^ /, il existe un vecteur Çt, une chambre qui contient à la fois £
et p'+(ti) et une Vf^()-chaîne de pf_(ti) à £.

Dans le cas LS, on suppose de plus que p i(0) est spécial.

Par exemple, tt^ est un chemin LS généralisé de type fj. De plus, on a les

propriétés suivantes (démontrées par Kapovich et Millson [12, 5.3, 5.4] et par
Littelmann qui parle plus généralement de « locally integral concatenations »

[16, 5.6]):

— L'ensemble des chemins LS généralisés de type fj et d'origine 0 est

stable par les opérateurs ea et fa.
— Le seul chemin LS généralisé de type fj d'origine 0 et contenu dans

C+ est 7i-fj.

— Tout chemin LS généralisé de type fj est le transformé, par des

opérateurs fa, de

— Le théorème de Littelmann sur le produit tensoriel (voir le théorème 2.8)
est toujours valable avec des chemins LS généralisés de type fj.

Toutes les notions de chemins introduites dans cette partie sont emprunt ées

à Kapovich et Millson et à Littelmann. Nous aurons besoin d'introduire des

notions voisines de chemins LS et de Hecke par rapport à une alcôve (voir
les paragraphes 3.6 et 5.3).
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3. Pliage et dépliage de triangles

3.1 Rappels sur les immeubles

Un immeuble affine (ou vectoriel) est un espace métrique X recouvert

par une famille de sous-espaces appelés appartements, tous isométriques à

l'appartement témoin A du paragraphe 2.1 par une isométrie unique à Wa

près. Les alcôves de l'immeuble sont les alcôves de ses appartements. L'axiome
fondamental suivant est satisfait:

Deux alcôves de l'immeuble sont contenues dans un même appartement
et cet appartement est unique à un isomorphisme fixant (point par point) les

deux alcôves près.

Si a est une alcôve dans un appartement A de X, pour tout a G X,
il existe un appartement B contenant a et a et un isomorphisme ip de B

sur A fixant a. L'élément cp(x) G A ne dépend pas des choix de B et tp,.

on le note pA,a(x)- L'application pA,a'- X —, A est la rétraction de X sur A
de centre o ; elle diminue les distances, conserve les types et transforme une

galerie (d'alcôves) en une autre galerie.
L'enclos cl(Q) d'une partie Q d'un appartement A est l'intersection

des demi-appartements de A contenant Q. L'intersection de deux appartements

A, B est close (i.e. égale à son enclos) et les deux appartements sont
isomorphes par un isomorphisme fixant leur intersection. Une galerie tendue dans

un appartement reste dans l'enclos de ses extrémités; ainsi dans l'immeuble
une galerie tendue est dans tout appartement contenant ses extrémités.

Un demi-appartement D de mur M — dD et une alcôve o dont une cloison
est dans M sont toujours contenus dans un même appartement. L'immeuble X
est dit épais si toute cloison est contenue dans au moins 3 alcôves.

Pour plus de détails sur les immeubles affines, on pourra se référer à [1],

[4] ou [17].

Un quartier dans A est un sous-ensemble de la forme O. — x + C pour
un point a G A (son sommet) et une chambre de Weyl C C V (sa direction).
Deux quartiers sont équipollents si et seulement si leur intersection contient

un autre quartier. Les classes d'équivalence sont les germes de quartier, elles

sont en bijection avec les chambres de Weyl de V.
On a donc une notion de quartier ou de germe de quartier dans

l'immeuble X. Les immeubles de Bruhat-Tits, qui nous intéressent, ont deux

propriétés particulières :

Deux germes de quartier sont toujours contenus dans un même appartement
(contenir un germe de quartier signifie contenir l'un des quartiers du germe).
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Cela permet de montrer que ces germes constituent l'ensemble des chambres

d'un immeuble sphérique Xs (au sens de [19]). On reviendra sur Xs à la

section 4 (sous le nom X^).
Un germe de quartier et une alcôve sont toujours contenus dans un même

appartement (c'est une conséquence de la décomposition d'Iwasawa). Comme

ci-dessus, cela permet de définir une rétraction pA,q de l'immeuble sur un

appartement A de centre un germe de quartier q contenu dans A. Cette
rétraction aussi diminue les distances, conserve les types et transforme les

galeries (d'alcôves) en galeries.

3.2 DU LOCAL AU GLOBAL

3.2.1 IMMEUBLE TANGENT. Dans cette partie, X désigne un immeuble
affine (ou vectoriel) épais général. Soit a G X, l'étoile x* (réunion des facettes

qui contiennent a) est, comme ensemble de facettes, un immeuble combinatoire

sphérique épais. Sa réalisation vectorielle, notée 2*(X), est l'immeuble tangent
de X en x.

En fait Hx(X) est le quotient de x* x R+ par la relation: (y, À) ~ (z, ß) O-

y et z sont dans le même segment d'origine x d'une facette de a* et, pour N
grand, (1 — à/A0a + (A/AOy — (1 — p/N)x-\- (p/N)z. On note \x$ la classe

de (y, À). Le point a s'identifie au point 0 0* Aa£ 0a^ de 2*(Z).
Les appartements de "Zx(X) sont les espaces vectoriels

Âa {AÂ^ | y G A n a* A G R+}

pour A un appartement affine contenant a. Les chambres de H*(T) sont les

c — {Axy | y G c, A G R+} pour c une alcôve de a*. Le groupe de Weyl

de Aa est le groupe Wx engendré par les réflexions linéaires associées aux
réflexions affines de A fixant a.

Si v G 2*(Z), alors a + v est bien défini dans X si \\v\\ est assez petit
pour que a + v G a* sinon, il faut préciser un appartement A 3 a tel que
Aa 3 v. Deux éléments v et v' de 2*(T) sont dits opposés s'ils sont dans

un même appartement Aa et opposés dans celui-ci. On note v' — op^(v).
Si 7T est un chemin linéaire par morceaux (donc réunion de segments

contenus dans des appartements), on peut définir, pour tout t, les dérivées 7r'+(t)

et — dans I.^X de manière intrinsèque (i.e. indépendante du choix

d'appartements). Le chemin iz est dérivable en t si, et seulement si, 7r^_(0

et sont opposés dans H^X.

3.2.2 DIFFÉRENTIELLE. Soit fiX—ïJ" un morphisme d'immeubles
affines. En particulier, /(a*) C (/(a))*. Pour tout a G X, on définit la
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différentielle de f comme étant la réalisation vectorielle de la restriction de /
à a* et on la note dfx: 2X(T) —> 2/(^(^7). C'est un morphisme d'immeubles
vectoriels.

Si v E ^x(X), soit s > 0 tel que x-\-ev Ex* alors f(x+ ev) E /(a)*. On a

dfx(.V) -f(x)f(x + £V)
£

PROPRIÉTÉ. Soient A un appartement, c une alcôve et p — pA>c la

rétraction sur A centrée en c. Si x E A alors dpx — pffx^ où cx est la

chambre de Ax qui contient tous les xy, y E c (autrement dit cx — projx(c),
si projx(c) est l'alcôve de x* à distance minimale de c).

Si x A, soit B D c U {a} un autre appartement, soit <p\ B A

l'isomorphisme qui fixe c et a, alors dpx dipxop-> _ En effet p <popB c.1JX,Cx

3.2.3 Critère infinitésimal

Proposition 3.1. Soit [z,a,ai, ,A„,y,z] un polygone dans un appartement

A. Soit 7r: [0,1] —> A une paramétrisation (linéaire par morceaux et
à vitesse constante) de [a,ai, ,A„,y] avec xi — ir(ti). Soit a une alcôve

contenant z et soit p — pA,a lu rétraction sur A centrée en a.
Alors [z,a,Ai, ,A„,y,z] est l'image par p d'un triangle [z,A,y,z] si,

et seulement si, pour tout i E {1,...,«}, [a^, -7r'_(*i), 0,„ 7T'+(ti), x£] est

l'image d'un triangle [À*!, — ir'ffti), Pi,xj£\ dans X,x(X) par p—> -, où ax est
|^ AXit^xi

la chambre de Axi qui contient tous les vecteurs Xiz', z' E a.

REMARQUE 3.2. La condition est équivalente au fait que pour tout i, il
existe r)i E X,Xi(Z) tel que pi est opposé à —7t'_ — —ttet pipi) — i

Démonstration. On suppose pour simplifier qu'il existe un groupe G
agissant sur T fortement transitivement (c'est-à-dire transitivement sur les

paires formées d'une alcôve dans un appartement). Cela nous suffit, car

nous appliquerons tout ceci à la situation où X — Z(G,JtS), l'immeuble
de Bruhat-Tits associé au groupe G sur le corps J£T. Après avoir démontré
la proposition 3.6, on peut voir que cette hypothèse est inutile.

Pliage. On suppose que [z,a,Ai, ,xn,y, z] est l'image par p d'un triangle
[z,A,y,z]. Soit tt: [0,1] —> X une paramétrisation de [a,y] telle que poif — 7r.

Pour tout i, posons Xi — ir(ff) de sorte que ai — p(Xi). On dérive en p :

dpXi(±ïï'±(ti)) ±74(0 dpz^XjZ) Xik.
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Soit Z un appartement contenant a,Xi et tel que —ttr_(ti) G Zxi. Soit g E G
tel que g • Z — A et g • a — a. Alors, p\z g\z- On prend r}j — dgXi(7r'+(ti)) I

dgXi est un isomorphisme entre Y,XiX et Y.XiX, d'où rji est opposé à

Il reste à montrer que p-r* - (rji) — ir'Xti).
AXi,aXi ~r

Soit Y un appartement contenant a,Xi et tel que if'+(ti) G Yxj. On a des

isomorphismes :

Y 9' gY ip' ~) A,
a a

(cette notation signifie que g et p fixent a).

L'isomorphisme p est égal à p\gy et la composée à p\y. On dérive:

Yxi
d9

gYxi ^ > Äxi,

la composée est égale à dpXi et f'+(ti) i—>• r)i i—>• dpXi(7r+(ti)) — ttf+(ti). Or,

dpXi '• gYxi —> Axt est aussi égal à p^ -, donc c'est gagné

Dépliage. On suppose qu'il existe, pour tout i, r)t G YxX satisfaisant aux
conditions de l'énoncé. Soit B\ un appartement contenant aU {ai} tel que

T)i G B\X\. On pose x2 — X\-\- Xrp E Bi, où À est tel que A||7711| ||aiA2||.

Notons ip 1 l'isomorphisme B\ A. Alors (dp\)Xl(r}{) — ^r+C^i) car
a

(dipi)Xl (Pt,a)\tr Donc ^1(^1 + Aî?i) *1 Ydpi(Xr]i) Xi + Att+(*i) x2.
Et A1A0 est opposé à r)\ dans Y.XïX, donc [x,xi,x2] est un segment dans X.

Soit g\ G G tel que g\-A — B\ et g\ • a — a. On pose X3 — x2-\- Xidgiipz)
dans un appartement B2, et ainsi de suite. On construit de la sorte *3,xn,y
pour fabriquer un triangle.

3.3 Pliage

Soit S un immeuble sphérique de groupe de Weyl W ; on le considère
dans sa réalisation vectorielle, comme Xx(X) en 3.2.1. Soient £ G S, rj opposé
à f, — C une chambre et A un appartement contenant £ et — C. On note

p — pA-c la rétraction sur A centrée en — C et opA(0 l'opposé de £ dans A.
Le but de cette partie est de trouver une relation entre £, — C et p(rf) (HR(0)
ci-dessous).

RAPPEL. La notion de W-chaîne (cf. 2.4) dépend du choix de la chambre

de Weyl C+. On la reprend ici en explicitant la chambre dans le nom :

Une (W, —C)-chaîne ou (—C)-chaîne de opA(0 a p(V) est une suite

OpA(0, TiOpA(0i T2TlOpA(0, • p(p) Tn--- T2TlOpA(0
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où chaque 77 est une réflexion de A qui éloigne 77_ 1 • • T2TiO/?a(0 de — C,
c'est-à-dire:

Tf_l • • T2Ti0/?a(O, "C |Mj TiTi-l T2TlOpA(0 >

où Mi est le mur associé à la réflexion 77.

(Cette notation signifie que les termes de gauche sont strictement d'un côté
du mur Mj et le terme de droite de l'autre côté, au sens large.)

DÉFINITION 3.3. Soit r une galerie tendue de — C à p(p), F —

(—C — Cq,C\, ,Cn 3 Soit 77 la réflexion qui échange Cj_ 1 et C*.

Une chaîne de longueur t le long de F de opA(0 à fArf) est une (—C)-chaîne
de opA(0 a p(p) du type p(p) rk ThopA(Q avec h < < it.

Soit maintenant une galerie tendue F (Co —C, Ci,..., C„) de —C à rj.
Pour tout i, soit Bi un appartement contenant £ et C*. Notons pi — pBitCi la
rétraction centrée en Cj sur Bi. Bien évidemment, on prend Bq — A et po — P-

De l'autre côté, Bn contient £ et p, et p — opB„Ç-

LEMME 3.4. Pour i <j, on a (pj)|r^ — pi 0 (Pj)|r^ •

Démonstration. La galerie 0 — (C0,... ,Cj — p/Q),p7(CJ+1),...,p/C„))
est tendue. En effet, p/(0) — p/r) est tendue car pj est une rétraction centrée

en une chambre de F. Ainsi, 0 est tendue car pj réduit les distances.

Soit Y un appartement contenant 0. De même, soit Y' un appartement
contenant (C0,..., Q piiQ), pi+i(Ci+i),... ,pi(C„)). Et enfin, soit Z un

appartement contenant F. On a:

z ——a y -^3 r.
Ce qui donne <p/r— pjÇT^j) et (</?/) |r&/ — (pj)\r>r De même,

\r>t (pù\r>r Et enfin, (pù\e^ (pù\&>r D'où, (p;)|r^ P;°(p/)|r>r

Dans les conditions de ce numéro 3.3, on veut montrer les résultats suivants :

HR(ï). // existe une chaîne le long de pi(F^i) (c'est donc une Ci-chaîne)
de opB£ à pity).

L'hypothèse HR(n) est trivialement vraie. On suppose HR(i+1), montrons

HR(ï). Il y a deux cas.
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Cas 1. Il existe un appartement Y contenant Ci, £ et le demi-appartement

Dßi+l(ini, Ci+i) de Bi+1 contenant C*+i et dont le mur Mf contient la cloison

nu — Ci fi Ci+i. (C'est le cas si £ G DBi+l(rtii,Ci+i) ou si Ci G Bi+1 et dans

ce cas F — Bi+ \ convient.)
Comme (Ci, Ci+\, pi+\(Ci+2), ,Pi+i(Cn)) est une galerie tendue, elle ne

coupe le mur Mi qu'une seule fois. Donc, (Cf+i, pi+i(Cj+2), ,pi+i(Cn)) C

Dßi+iOnii Cj+i)- Et il existe des isomorphismes

B,+1 ^ > T 5, ;

e,ft+icr>j+i) e.Cj

par le Lemme 3.4, pj transforme en pj(r^j+i). On a la chaîne

suivante dans Bi+1 le long de pj+i(r^j+i):
A+iO?) Tk

Par les deux isomorphismes précédents, on a

Pi(Xi) T,ik---T,iOpB£,

où r(. est la réflexion dans Bi selon la 4-ième cloison de pi(T). C'est bien

une chaîne de opBiÇ à pi(rj) le long de pi(T^i).

Cas 2. La chambre Cj n'est pas dans Bi+1 et, dans Bi+1, on a :

f |Mi (Cj+l J pj+l(Cj+2)? • • pj+l(Cw)) •

L'intersection contient £ et m, et donc l'enclos cl(Ç,rrii). Or Ç ^ Mi
donc cl(Ç,rrii) est de dimension maximale; c'est l'adhérence de la réunion
des galeries minimales de Ç à m/.

Soit d — projmi(Ç), c'est une chambre, elle est adjacente à Ci dans Bi et
à Cf+1 dans Bi+1. Autrement dit, d — ai(Ci+1) — pi(Ci+1) avec ai la réflexion
selon Mi dans Bi+\. Soit Y un appartement contenant DBi+l(rtii, Cj+i) U Ci.
On a les isomorphismes suivants:

B,+1 > Y Bi ;

A+ifr^j+i) Q

on note ip l'isomorphisme composé, il envoie pi+i(T^i+i) sur pi(T^i+\). La
chaîne dans Bi+l, pi+i(r]) rik Tk(opBi+lQ se transforme en pi(rj)
ipTikip~l • ipTilip~lip(opBi+lÇ). Or r[k — ipTikip~l est la réflexion selon

la 4-ième cloison de pi(T) et tp(opBi+iO opBiip(Ç) opBia-(0, car

— (CjOIßi+inßi. où cr- est la réflexion selon rrii dans Bi. Ainsi,

fhfflt r[t T^opea'^Y)

7i-- -TLaK°PB,o

est une chaîne le long de pj(r>j) dans Bi.
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3.4 Dépliage

Soit S un immeuble sphérique épais (dans sa réalisation vectorielle et

auquel on pense comme l'immeuble tangent à X en un point ir(t)). Soient £, 7r'+

deux points de «S et A un appartement les contenant, ainsi qu'une chambre,
notée — C. Comme précédemment, p désigne la rétraction sur A de centre — C.

On suppose qu'il existe T — (Co — —C,C\,... ,Cn) une galerie tendue

de —Ca 7r'+ et une chaîne le long de T de opAÇ à 7r'+ de longueur l.

Proposition 3.5. Il existe rj G S tel que p(rf) — 7r'+ et rj est opposé à Ç.

Démonstration. On raisonne par récurrence, la conclusion cherchée est la

condition HR(C) ci-dessous.

HR(i). Il existe un appartement Bi contenant Ç, il existe rp G Bi tel que
p{rji) — 7T^|_, il existe une galerie tendue Yl de —C à rji qui est dans Bi à

partir d'un certain rang ki telle que pÇYi) — Y, et il existe une chaîne le

long de (Yi)^ de opBtÇ à rfr de longueur l — i.

HR(0) est vraie pour Bo A. Si on a HR(r), notons Tj — (—C

Dq, ,Dn) la galerie tendue et r)i — r^- r^opßX la chaîne le long de

(A)5^ avec rij la réflexion selon le mur My contenant la ij -ième cloison m^
de Yi et u — t — i. On a

OPb& Dki, A, |My f, Vi, (Ai+i, • •, A) •

Soit V un demi-appartement sortant de Bi le long du mur My, il existe car
S est épais. On pose 5*+1 — D U Dg^m^, £), Z — D U Dg^m^, D^) et on
note tpz- Bi l'isomorphisme fixant A^)- On prend

Yi+1 (Do,..., Ai ^z(Ai+i), <Pz(A))

et r]l+i ipzivù Remarquons que A+i (A),... ,A,-i, <Pz(A*),- • <Pz(A»))•

Par hypothèse de récurrence Tj est tendue, du coup pBitDf (Pj+i) Pb^d, (A)
l'est aussi, et donc de même pour Yf+ Par le lemme 3.4, on a

p|r(+-li>(l P ° (pBuDy)|ri+li>il D'où pÇYi+i^y) pÇY^y) Y>h et

p(Vi+i) - p(Vi) - ^4•
Par ipz la chaîne de l'hypothèse de récurrence devient Vi+i — pzivù —

r(u • • • tCipzjyOps^, avec r(. la réflexion selon la ij -ième cloison de Yi+i
dans Z. On a r}i+i =<< opzpziO Notons ip: Z —>• Bi+1 l'isomorphisme
qui fixe le demi-appartement D. En composant par ip, on obtient Vi+i —

TZm'"Til°PBt+}1> ° <Pz(Q, avec r(J - Or opBi+i(ip o <pz(0) ~
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r({opBi+j(0- Donc rji+1 — r^opBl+l(0 et c'est encore une chaîne le

long de (Fj+i)>i1+i. En effet, dans B(, pour tout j, on avait

Tij-i Th OPB&QiDk., Di. \Mij 7~ij Tix OpB£Q, Dij+1

Par iß o Lpz, on a, pour j > 2, les positions suivantes dans (avec

M'i.—ip o pz(Mi}))\

r£opBi+i(0, <Pz(.Dil+1),..., v?z(A--) |jm? t? r£opBi+i(0, <Pz(Dk)

pour tout k tel que ij < k ^ n.

D'après le paragraphe 3.3 et la proposition 3.5, on a montré:

Proposition 3.6. Dans un appartement A de l'immeuble S, on considère
des points Ç, 7r'+, et une chambre — C ; on note p — pA,-c • Alors il existe
dans S un point p opposé à £ tel que p(p) tt^_ si, et seulement si, il existe

une galerie tendue Y de — C à 7r'+ et une chaîne le long de Y de op^Ç à tt'+

3.5 Galeries pliées positivement

On garde les mêmes notations qu'en 3.4 ci-dessus.

Proposition 3.7. Il existe une —C-chaîne de opAÇ à tt'+ si, et seulement

si, il existe une chaîne de opAÇ à 7r'+ le long d'une galerie tendue de —C à ti'+

Démonstration. Il suffit de montrer que l'existence d'une —C-chaîne
de opAf à 7r'+ implique celle d'une chaîne de opA^ à 7r'+ le long d'une

galerie tendue de — C à 7r'+.

Pour cela, on dira qu'une galerie S — (Do, ,Dn) de type (ko,... ,kn-i)
dans A est pliée positivement par rapport à une chambre D si, en notant Mj
le mur de Dj de type kj (commun à Dj et Dj+1), on a

Dj — Dj+1 => D I

Mj Dj — Dj+1

Pour une chambre D et À G S, on note w(D, À) l'élément de W de plus
petite longueur tel que À G w(D, X).D

Soit Cç — projç(-C) dans A. Soit Y une galerie tendue de — C à ir'+.
Comme il existe une —C-chaîne de opA^ à ir'+, w(—C,opaO ^ w(—C, 7r^_)

et donc il existe une galerie 7 — (Co — —C, Ci,..., C„) de même type que Y

de — C à opA^. On veut montrer qu'on peut supposer 7 pliée positivement

par rapport à C^.
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Si 7 ne l'est pas, soit j le plus petit indice tel qu'on soit dans la
situation: Cç, Cj CJ+\ \Mj. Alors, comme 7 aboutit à opAÇ, cette

galerie va traverser le mur Mj après l'indice j ou finir dans ce mur. Posons

ymax max{& n\ | A4 — Mj ou opAÇ G A4}- On définit une nouvelle

galerie À (L0,... ,L„) par

ICk

si k ^ j
SMjCk si j + 1 ^ k ^ jmdiX

Ck si k > jmax

Ainsi À devient pliée positivement par rapport à Cç en Mj et reste de même

type que Y. On recommence cette procédure avec À et ainsi de suite. Au
final, on obtient une galerie S — (—C — D0, - - - ,D„) pliée positivement par

rapport à Cç entre — C et opAÇ.

Notons {ii,..., 4} C {1,..., n} les indices (ordonnés de manière
croissante) où la galerie S est pliée. Alors,

7T+ — $Mt{ • • • ' ' SMtj_{
1

' ' ' Om,j SMl2SMt{ )^Mt{ OpA£

sMlropAÇ

Tir • ruopA£,

où T(j sMii sMij_tsMij(sMii sMij_t)_1. A chaque étape, on s'éloigne
de — C et on déplie la galerie S. En effet, après le premier dépliage, on a:

-C,DU... ,Dh Imh Th(Dh+i),Th(opA0,£,

car S est pliée positivement par rapport à Cç. La galerie

S1 (-C £>0,..., Dh,Th(Dh+i), ,Ti,(/>*), tïjCZVhi), ,rh(£>„))

est, jusqu'à l'indice ï2, minimale et donc égale à r^j2. De plus, on sait que

opA%, A2+i Dh I
Miz Cç, £,

en appliquant 77 on obtient

Ti\ °PA£ Tii Di2 -)-i — Tjj Z)j2 I

Tjj Mj2 Tî 1 £ •

Donc, —C, 77opA^, sont du même côté de r^M^. Ainsi
quand on déplie une deuxième fois par rapport à 77A4,, on s'éloigne de — C.
On a donc obtenu une chaîne de opAÇ à tt'+ le long de la galerie tendue 7
de — C à 7r'+.
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3.6 Conclusion et Étape 1)

D'après les propositions 3.1, 3.6 et 3.7, on a:

THÉORÈME 3.8. Soient [z, x, X\,..., xn, y, z] un polygone dans un appartement

A de X, 7r: [0,1] —> A une paramétrisation (linéaire par morceaux et
à vitesse constante) de [x,xi,... ,xniy] avec Xi — 7r(tO, a une alcôve
contenant z et p — pA,a to rétraction sur A centrée en a.

Pour tout i G {1on note aXi la chambre de Axi qui contient tous

les vecteurs Xiz' pour z7 G a.
Alors [z, jc, jci ,a„, y,z\ est l'image par p d'un triangle [z,x,y,z] de X

si et seulement si, pour tout i G {1,...,n}, il existe une (W^ti),aXi)-chaîne
de 7T'_(ti) à 7T'+(ti).

On notera la différence avec un chemin de Hecke (section 2.4). On dira

qu'un chemin it vérifiant la condition ci-dessus est de Hecke par rapport à

l'alcôve a.

REMARQUE 3.9. Soient x un sommet spécial de l'alcôve o et Q le quartier
de sommet x opposé à o. Un chemin 7r entièrement contenu dans Q est de

Hecke (par rapport à — C+ où C+ est la direction de Q) si, et seulement si,

il est de Hecke par rapport à a.

THÉORÈME 3.10. Soient À, p, v trois copoids dominants tels que V(AG\)0

V(Np) 0 V(yVu)) yé {0}. Alors, il existe un triangle dans X, de longueurs
de côtés NX, Np, Nu.

Démonstration. Les théorèmes 2.8 et 3.8 ainsi que la remarque précédente

prouvent le théorème, et donc l'étape 1) du schéma de démonstration du

théorème 1.1. En effet le chemin de Hecke NX-\-tt de NX à Nu* reste dans

la chambre de Weyl C+ ; il est donc de Hecke par rapport à l'alcôve o_
(contenant 0 et opposée à C+). On note Xi — 7r(^), 1 ^ i ^ w, les points
anguleux de 7r. En dépliant le polygone [0,NA,Ai, Nu*, 0] on obtient
le triangle cherché dans X.

Corollaire 3.11. L'ensemble T 7~(A) des triplets (X,p,v) G (Pv+)3
tels qu'il existe dans X un triangle \z,x,y,z\ avec comme longueurs de

côtés X — dc+(z,x), p — dc+(x,y) et v — dc+(y,z) ne dépend que de

l'appartement A et non de X.
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Cet ensemble 7~(A) est stable par homothétie de rapport un entier positif.
Si A' est un appartement affine (ou vectoriel) associé au même couple

(V, W), mais avec un ensemble de murs Ai' C A4, alors T(A') C 7~(A).

Démonstration. T est l'ensemble des (X,p,u) G (Pv+)3 tels qu'il
existe dans A un bon polygone (i.e. vérifiant la condition du théorème)

[z,x,xi,... ,x„,y,z] avec À — dc+(z,x), u — dc+(y,z) et 7r de type p. Il
ne dépend donc que de A et contient T(A'). Si Zo est un sommet spécial
d'une alcôve contenant z, une homothétie de rapport n G N et centre Zo

transforme un bon polygone associé à (X,p,u) en un bon polygone associé
à («À, np, nu) ; d'où la seconde assertion.

Nota Bene. On verra dans la section 4 (4.15) que le cône T est saturé

dans CPV+)3.

4. Applications de Gauss et configurations semi-stables

4.1 Le bord visuel de X

On rappelle que l'immeuble X est un espace métrique complet dont on
notera la distance d. Il est muni de son système complet d'appartements.
Ainsi tout sous-ensemble convexe isométrique à une partie de R" est contenu
dans un appartement [1, 11.53].

Les résultats suivants résultent essentiellement de ce que X est un espace
CAT(O) complet. Pour la plupart des démonstrations on se reportera à [3].

4.1.1 Rayons ET points IDÉAUX. Un rayon (ou une demi-droite) dans X
est un sous-ensemble p isométrique à [0, 00[. On confondra dans la suite le

rayon et l'isométrie [0, 00[—» X. Le point x — p(0) est appelé l'origine de p
ou la base. Un rayon est convexe, il est donc contenu dans un appartement A
de X. Et dans A, il est de la forme {(1 — t)x-\-ty \ t ^ 0} pour xf^y dans A.

On dit que deux rayons p\ et p2 sont asymptotes (ou parallèles) si la

fonction (convexe) t i-A d(pi(0, p2(0) est bornée. On vérifie que ceci définit
une relation d'équivalence. Une classe d'équivalence de rayons est un point
idéal de X (ou point à l'infini).

Par rapport aux espaces CAT(O) généraux, beaucoup des démonstrations
des résultats de cette section sont simplifiées par les faits suivants:

— étant données deux demi-droites p, a il existe des sous-demi-droites p', a'
contenues dans un même appartement,
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— si de plus a est une alcôve ou un germe de quartier et p,a sont

asymptotes, il existe des demi-droites po C p, pi,..., pn C a deux à

deux asymptotes et telles que, Vi, a, pi et pi+\ soient contenus dans

un même appartement.

La démonstration du lemme suivant est classique.

LEMME 4.1. Soient x un point de X et Ç un point à l'infini. Alors il
existe un unique rayon p de base x représentant f. On le notera [x, Ç).

On note d^X l'ensemble des points à l'infini. Soit F une face d'un
quartier Ù x + C, on note F^ l'ensemble des points à l'infini £ tels

que F contienne le rayon [x, f). Un& facette à l'infini f est un sous-ensemble

de dcoX tel que f — F^ pour F une face de quartier.
Les résultats suivants sont classiques.

Lemme 4.2.

(1) Si f est une facette à l'infini et x un point de X, alors il existe une face
de quartier F basée en x telle que Foo — f. Ainsi, il y a une bijection
entre les facettes à l'infini et les faces de quartier basées en tout point x.

(2) Deux quartiers de X donnent la même facette à l'infini si, et seulement

si, ils sont équipollents, c'est-à-dire correspondent au même germe.

(3) Les intérieurs relatifs des facettes à l'infini forment une partition de dofX.

4.1.2 STRUCTURE D'IMMEUBLE. On définit une relation entre les facettes

à l'infini: f est une face de f si pour tout point x de X, la face de quartier F'
associée à f est une face de F, la face associée à f ; comme on a considéré des

facettes fermées cela équivaut à f C f. Pour un appartement A de X, on note

Aqo l'ensemble des facettes à l'infini données par les faces de quartiers de A.

Cet ensemble est un complexe simplicial et est stable par passage aux faces. En

fait, c'est un complexe isomorphe au complexe de Coxeter associé à (W, S).

Le lemme 4.2 permet de démontrer le théorème suivant.

THÉORÈME 4.3. L'ensemble X^ des facettes à l'infini de X est un
immeuble sphérique, ses appartements sont en bijection avec ceux de X.
De plus, sa réalisation géométrique sphérique est en bijection avec dofX.

Dans notre cas X est l'immeuble de Bruhat-Tits d'un groupe réductif sur un

corps non archimédien complet, alors X^ est l'immeuble de Tits de ce groupe
(dont les faces correspondent bijectivement aux sous-groupes paraboliques).
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REMARQUE 4.4. On peut étendre la topologie de X à X — XII d^X en

une topologie appelée la topologie conique et alors, si X est localement fini,
X est une compactification de X. Une base d'ouverts de cette topologie est

formée des ouverts de X et des ensembles de la forme CX(Ç, s) — {p G X \

rj yé x, Zx(p,Ç) < e}, où x G X, f G d^X, e > 0 et Zx(p,Ç) est l'angle
dans un appartement contenant x et le début des deux géodésiques [x, £) et

[.x, rf) (si r) G d^X cela coïncide avec la définition ci-dessous).

Cela dit, la topologie sur d^X qui va nous intéresser est celle de la
distance de Tits.

4.1.3 Angles et distance de Tits. Soient A un point de X, Çi et
deux points à l'infini. On pose pi — [x, fi) et p2 — [x, &). On considère le

triangle T(t) — T(x, pi(t), p2(0) dans X et le triangle T(t) — T(x, p\(t), p2(0)
dans R2 "de comparaison", c'est-à-dire dont les côtés ont la même longueur

que ceux de T(t) (la condition CAT(O) dit que l'application évidente de T(t)
dans T(t) diminue les distances). On note <5(0 l'angle en x de ce triangle T(t).
Quand t tend vers 0, <5(0 décroît continûment et donc la limite existe, on pose

4ÄU&) - lim <5(0 •

t->o

Cette limite est égale à ZZpi(0? p2(0) dès que t est assez petit pour que
tous les points de T(t) soient dans un même appartement. Ainsi, si T(x,y,z)
est un triangle géodésique dans X, Zx(y,z) est défini de manière analogue et

on a Zx(y,z) ^ Xx(y,z), où T(x,y,z) est un triangle de comparaison dans R2

(conséquence facile de CAT(0)).
Maintenant, on définit la distance de Tits sur d^X comme

ZTits(fî ,6) suP 446, &)
xÇ.1

Par définition, ZTits(6?6) % Pour tous xeX, £ d^X.

EXEMPLE 4.5. Si X est un arbre, alors ZZfi,^) 0 ou 7r et donc

^Tits(fi?f2) — tt> dès que yé Ç2 Par contre, en rang supérieur, cette
distance peut prendre toutes les valeurs entre 0 et tt.

LEMME 4.6. Soient G d^X et p un représentant de £. On pose
<p(t) - Zp(o(f, rj). Alors, lim^oo <p{t) ZTits(C, rj) •

THÉORÈME 4.7. L'espace métrique (dooX, Zxits) est complet.

Une preuve de ce théorème se trouve, par exemple, dans [3, Theorem 9.20].
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4.2 DES TRIANGLES AUX CONFIGURATIONS SEMI-STABLES

On cherche à réaliser l'étape 2 de l'introduction et donc à construire une

configuration semi-stable associée à un triangle de X, cf. [10].

4.2.1 Fonctions de Busemann. On peut plonger X dans l'espace

T — F(X, R)/R des fonctions continues sur X (avec la topologie de la

convergence uniforme sur les bornés), où on quotiente par les constantes: à

x £ X on associe la fonction d(x, — On peut montrer [3, II 8.13] que X
est homéomorphe à l'adhérence X de X dans T. On ne va utiliser que le

plongement de d^X dans T :

Soient x E X, £ E d^X et p un représentant de f. L'application
[0, oo[—y R, t1—>• d(x,p(t)) — t est minorée (par —d(x,p(0))) et décroissante;

on peut donc noter

bf(x) lim (d(x, p(t)) — t)
t—)-oo

Cette fonction bç de X dans R est la fonction de Busemann associée à £

(ou plutôt à p). Elle ne dépend du choix de p qu'à une constante près et est

1-Lipschitzienne en x. On peut montrer que bç est la limite de p(t) dans T.
Ainsi la classe de bç dans T est en fait dans X et ne dépend que de £. Les

lignes de niveau de bç sont les horosphères de centre

EXEMPLE 4.8. Si les points x, y et la demi-droite p sont dans un même

appartement A et si £ jt(p(0)t=o est le vecteur directeur unitaire de p,
on a : bç(x) — bç(y) — xy.Ç — —d(x,y) cos(yx, f). Les horosphères (en tout cas

leurs intersections avec A) sont donc des hyperplans orthogonaux à p.

LEMME 4.9. Soient a une géodésique (parcourue à vitesse 1 d'extrémité

r) E X et t E R tels que cr(t) ^ p, alors la dérivée directionnelle de b^ selon p
en t vaut : fj+(bç o a)(t) - cos Xait)(p, 0.

Démonstration. C'est un exercice facile de géométrie euclidienne dans un

appartement contenant le début de la géodésique de cr(t) à p et la demi-droite

ko, a.

LEMME 4.10. Soient £,p E d^X et a une demi-droite représentant p.
La pente asymptotique de b^ en p est pente^(p) — lim^oo Elle

s'exprime avec la distance de Tits: pente^(p) — — cos ^Tits(0 V) '
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Démonstration. Si p est une demi-droite représentant £, on vérifie que
b>l'lLLL ne dépend asymptotiquement pas des choix des représentants p et a.
On peut alors raisonner dans un appartement contenant ces deux g éodésiques.

4.2.2 Configurations pondérées et stabilité. On considère trois

points £i,£2,£3 C dooX et trois poids 7711,7712,7713 G [0,+oo[. On les voit
comme une configuration pondérée iß\ (Z/3Z, v) —> dooX, où v est la mesure

sur Z/3Z de masse m* en i.
La mesure associée sur d^X est p — ip*v — JL >

de poids total \p\ —

m\ -\-m2-\-m3. On définit sa pente: penteß z/3z mi cos ^Tits(£î, —

c'est une fonction sur d^X.

DÉFINITION 4.11. La configuration iß est dite semi-stable si la fonction

penteß est positive ou nulle sur dooX.

Intuitivement cela signifie que les points £i,£2, £3 sont éloignés les uns des

autres. Par exemple si £1 — £2 — £3 aucune configuration n'est semi-stable;
dans un arbre, si £1, £2, ^3 sont deux à deux différents (resp. £1 £2 ^ £3)
la configuration est semi-stable si et seulement si 2m, < m\ + m2 + m3, Vi

(resp. m3 — m\ + m2 )•

Bien sûr une configuration semi-stable le reste si on multiplie tous ses

poids par un même réel positif : les configurations semi-stables forment un
cône (saturé).

La pente peut se réinterpréter avec les fonctions de Busemann : la fonction
de Busemann pondérée associée à p, ou iß est bß — mfi^, elle est définie
à une constante près. Si r) G d^X est représenté par a, alors le lemme 4.10
dit que : penteß(rj) lim^oo

4.2.3 Application de Gauss et Étape 2). Soit T T(xi,x2,x3)
un triangle dans X. On prolonge chaque segment [**_!,**] en une demi-
droite d'origine jc»_i d'extrémité notée £j G d^X et on considère les poids

mi — d(Xi_ 1,x^ (on rappelle que Xq — x3). L'application de Gauss iß associe

donc au triangle T une configuration pondérée ißj (bien sûr il y a plusieurs
choix pour ißj)-

Proposition 4.12. La configuration ißj est semi-stable.

Démonstration. Soient rj G d^X et %: [0,mi\ —> [aî_i, Aj] une

paramétrisation à vitesse 1 de ce segment. D'après le lemme 4.9 et 4.1.3 on a:
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5Pf(^°7î)(0 - — cos Z7i(f)(ry, fj) < -cosZTits(??,6). Ainsi ^(^>-^(^-1) -
JT 3f(^°7î)(^< Jo"11 - cos ZTits(»?, cosZTitsO?,&) et done

0 < Eiez/3Z ~micos ZTits(??, &)

4.3 Des CONFIGURATIONS SEMI-STABLES AUX TRIANGLES

On cherche à réaliser l'étape 3) de l'introduction et donc à inverser

l'application de Gauss ci-dessus en construisant un triangle dans X à partir
d'une configuration semi-stable ip — ((^1, /Wi), (^2? ^2)? (£3,^3)). cf. [10].

4.3.1 Points fixes. Soient £ G dooX et t > 0. On définit l'application
X —> X, x 1—>• p(t) où p est le représentant de £ issu de x. La fonction

t ha d((f)çtt(x), 0£,*Cy)) est convexe, bornée et décroissante.

Si ip — ((fi,/fti), (£2,^2)? (£3? w3)) est une configuration pondérée, on lui
associe l'application 0 — 0£3,m3 °0£2,m2 °0£i,mi de X dans X. Par construction

d(x, 4>x) < \p\ — m\ + m,2 + m^ et d(<p(x), <p(y)) < d(x,y).
On cherche un point fixe Xq de 0 qui définirait un triangle T — T(x0,^1,^2)

(avec Ai 0^,mi(AO) et a2 0£2,m2(Ai)) vérifiant ipT 0.
Pour cela on va utiliser une variante du lemme de point fixe de Bruhat-

Tits [10]:

LEMME 4.13. Soit 0: X —ï X une application 1 -Lipschitzienne d'un

espace CAT(O) complet dans lui même. S'il existe x G X tel que {(f>"(x) |

n > 0} est borné, alors 0 a un point fixe dans X.

Démonstration. Tout d'abord, on pose xn — 0"(a) et, pour y G X,
r(y) - limsup„^00 d(x„,y). Alors r(0y) - limsup^^ d(xn,(ßy) -
limsup^^ d(fi>xn-U<t>y) < limsup^^ d(xn_uy) r(y) ; donc ro0 < r. Il
suffit donc de montrer que r a un unique minimum dans X.

On note p — infx(r). Pour e > 0 et y, y' G X tels que r(y),r(y') <
p + e, il existe «0 tel que d(xn,y),d(xn,y') < p + e, V« > «o- Si m
est le milieu du segment {y,y'~\ on a r(m) > p, donc d(xn,m) > p — e

pour une infinité de « G N. L'inégalité (CN) de [5, 3.2.1] (conséquence
de la condition CAT(O)) s'écrit alors, pour ces entiers n\ d(y,y')2 <
2(d(xn,y)2 + d(x„,y')2) — 4d(xn,m)2 < 16pt. Ainsi une suite y„ G X telle

que r(yn) tende vers p est forcément de Cauchy. Comme X est complet, cela

montre l'existence et l'unicité d'un y G X tel que r(y) — p.
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4.3.2 Le cône SUR L'IMMEUBLE À L'INFINI. L'immeuble sphérique X^ de

réalisation géométrique sphérique d^X a aussi une réalisation vectorielle (dans
le même sens qu'en 3.2.1): c'est le cône CdooX quotient de [0, -\-oo[xdooX

par la relation qui identifie {0} x dooX à un seul point noté 0. C'est un espace
métrique pour la distance dc((a, 0, (b, rjj)2 — a2 + b2 — 2abcos Ziïts(0 V)-

On montre [3, p. 60, 61, 188] que CdooX est complet, que deux points sont

toujours joints par un unique segment géodésique et qu'il vérifie la condition

CAT(O). C'est un immeuble vectoriel.
En fait dans notre cas CdooX est l'immeuble de Tits d'un groupe réductif,

dans sa réalisation vectorielle et on sait qu'il a toutes les propriétés des

immeubles affines plus une, qui caractérise les immeubles vectoriels: les

appartements sont des espaces vectoriels euclidiens d'origine 0 (commune à

tous les appartements).
On peut remplacer, dans ce qui précède, X par CdooX et donc considérer <ß

sur ce dernier immeuble.

THÉORÈME 4.14. Si la configuration iß est semi-stable, alors l'application <ß

admet un point fixe dans CdooX.

Démonstration [10, prop. 4.5]. Nous sommes dans un immeuble vectoriel

que l'on notera Xv, ses facettes sont des faces de quartier de sommet 0 et elles

correspondent bijectivement (par F 4 F°°) aux facettes de dofiX — dc0XV.

On normalise toutes les fonctions de Busemann de façon que bç(0) — 0.

Comme deux facettes sont toujours dans un même appartement, on peut
appliquer le calcul de l'exemple 4.8 à 0, x G Xv et G dooX, ainsi

bç(x) — —d(0,x)cosZo(x,Ç). En particulier |&f(x)| < ^(0,^) et d(0,x) —

maxç(=dcx3z (-bç(x)).
Si F est une facette de Xv, on note F* son étoile c'est-à-dire la réunion

des facettes (fermées) contenant F. Si a G F*, r) G F°° et £ G d^X,
alors x, rj et £ sont dans un même appartement et (ß^fix) est le translaté

de x d'une longueur t dans la direction 0 On a donc bv{4>^it{x)) — bv(x)
—tcos Ziits(0 0 d'après 4.8. On définit l'ensemble F*° des x e F* tels que
la boule B(x, \p\) de Xv soit contenue dans F*. Ainsi, pour x G F*°, 4>çut(x)

(pour 0 < t < mi), 0fc(f(0£i,mi(z)) (pour 0 < t < m2) et (•*)))

(pour 0 < t < m3 restent dans F* et on a donc: pour tous x G F*°, r] G F°°,
bv((ß(x)) — bv(x) — —^2 micos ^Titsfâ? v) — penteß(rf). Comme p est semi-

stable, on en déduit que bv(<ß(x)) > b^x).
Pour appliquer le lemme 4.13 on veut montrer que <ß stabilise un borné;

celui-ci sera l'approximation polyédrique d'une boule de centre 0 que l'on
va construire maintenant.
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Soit Q un quartier de sommet 0 dans Xv, on va construire un sous-
ensemble fini D de Q°°. Pour cela on met d'abord dans D le barycentre
du simplexe Q°°, puis on ajoute successivement des points des faces de Q°°
(différentes de Q°° ordonnées de façon que la dimension décroisse : si F°° est

une telle face, on rajoute au Z)_(F°°) déjà construit un ensemble fini D(F°°)
de points de l'intérieur relatif de F00 tel que F°° soit recouvert par les boules

ouvertes (pour la distance de Tits) de centres ces points de D(F°°) et de rayon
(1 /3).d(F°°7D-(F°°y). On note e(F°°) la distance de F°° au complémentaire
de la réunion de ces boules.

Alors le D ainsi construit et e (l/2)inf{e(F°°) | F°° C dQ°°}
vérifient la condition suivante: si r) G Q°° et £ G D sont tels que

C) ^ 2Zxits(^, CO pour tous C' G D, alors r) est à distance de Tits > e

de toute face de Q00 ne contenant pas C-

On considère l'ensemble E des points de d^X d'image dans D par la

projection de dooX sur Q°° déterminée par les types. Alors la condition de

l'alinéa précédent est encore vérifiée si l'on change Q°° en d^X et D en E.

On considère la fonction / — ma. On a vu que |/| < <2(0, —) ;

de plus les boules polyédriques 5/(r) — {a G Xv |/(a) < r} sont bornées:
cela se vérifie dans le quartier Q et {a G Q \ —bç(x) < <r, VC G D} est borné

d'après l'exemple 4.8. Il ne reste donc plus qu'à montrer que 0 stabilise Bf(r)
pour r assez grand.

Soient r > 0 et x G Xv tels que <2(0,x) > r. Montrons que VC G E,

-£c(0(a)) </(A).
— Si Zo(a, C) < 2Zo(a, C0> VC' £ E et si F^° est la facette contenant C

dans son intérieur relatif, alors x G Fç° pour r > |/u-| / sin e. On a alors

-2?c(0(a)) < - bv(x) </(a).
— Si p — ZoCx, C) > 2Zo(.x, CO — 2# pour un <E E, on peut supposer

Z0(x, CO - min{Z0(.x, C'O I C" £ E}- Alors ^Tits(C> CO < P+q < 3(p-q)
et, si on note 9 inf{ZTits(C, rj) \ £ ± r\ G E} inf{ZTits(C, r\) \ Ç ±
r] e D} >0 on a 9 < p + q < 3(p — q). Alors /(a) —bç(x) —

—bç(x) + d(0,x)(cosq — cosp) —bç(x) + 2<2(0, a), sin sin^2 >
—bç(x) + \ß\, si 2r inf{sin(0/2), sin(37r/4)}. sin(0/6) > \ß\. Et alors,

comme bç est 1-Lipschitzienne et 0 de déplacement au plus \ß\, on a

-£c(0(a)) < - bc(x) + \ß\ </(a).
On a donc /(0(a)) </(a) si <2(0, a) > r avec r > r0 (assez grand). Mais

0(5(0, r)) C 5(0, r+ \ß\) C 5/(r + |^|). Donc 5/(r) est stable par 0 pour
r > r0 + \ß\.



LE THÉORÈME DE SATURATION 31

4.3.3 L'argument de transfert et l' Étape 3). Nous venons de trouver
un point fixe de 0 dans l'immeuble vectoriel CdooX correspondant à d^X. On

a donc dans CdooX un triangle de longueurs (numériques) de côtés mi,m2,#13
et de directions de côtés £1,^2? £3 £ d^X.

Identifions C+ à un quartier Q d'origine 0 de CdooX et considérons les

éléments X,ß,u de C+ de longueurs numériques respectives 7711,7712,7773 et
de directions respectives les images de £1,^2, £3 dans Q°° par la projection
de dooX sur Q°°. On dira que À — prc+(^\,m{) et, de même, ß —

prc+(t;2,7712), v — P^c+ii3,7773)- Ainsi le triangle ci-dessus a pour longueurs
de côtés À, ß et v.

Théorème 4.15.

(1) L'application 0 a un point fixe dans X.

(2) Le cône T du corollaire 3.11 est saturé dans (Pv+)3 ; s'il existe

(X,ß,u) G (Pv+)3 et N G N* tels que (NX,Nß,Nu) G T, alors

(\,ß,v) G T.

Démonstration. On est dans le cadre du corollaire 3.11 et le dernier
alinéa de celui-ci nous dit qu'il existe dans X un triangle de mêmes longueurs
de côtés. En effet, l'appartement témoin Av de CdooX s'identifie, avec ses

murs et son groupe de Weyl W, à l'appartement témoin A de X, si l'on
ne garde dans ce dernier que les murs passant par un sommet spécial donné.

Cela signifie aussi que 0 a un point fixe dans X et on a donc démontré le

point (1) du théorème.

S'il existe un triangle de longueurs de côtés NX,Nß,Nu, on lui associe une

configuration semi-stable ((£1,7711),(£2,7712),(£3?"'s)) avec NX — prc+(Çi,7fti),
Nß — prc+ (£2,^2) et Nu — prc+(£3,7713), cf. proposition 4.12. Comme on
l'a vu dans 4.2.2, la configuration ((£1,7711/AO, (£2,77*2/^0, (£3,7713/AO) est

encore semi-stable et le raisonnement ci-dessus permet de lui associer un

triangle dans X de longueurs de côtés À, ß et v, d'où le point (2).

5. Le théorème de saturation

On fait le point sur les étapes de la démonstration du théorème 1.1 qui
sont déjà démontrées. L'étape 1) a été prouvée dans la section 3, voir le
théorème 3.10. Les étapes 2) et 3) ont été démontrées dans la section 4. Il
reste à montrer les étapes 4) et 5).
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Figure 2

Un morceau d'un appartement de type B2. Un sommet spécial 0 et un sommet non spécial x.
Un chemin n vectoriellement dans le 1-squelette.

On a une configuration semi-stable £ — ((£(Ç2,m2), (£3,^3)) avec
A - prc+(Çunti), ß - prc+(Ç2,m2) et v />rc+(f3,m3) dans Pv+; on

supposera dès le théorème 5.2 que A + ß-\- v G Qy.

5.1 Facteurs de saturation et action de Pv/Qv

On note 9 la plus grande racine et m, son coefficient sur la racine a*,
9 Yli=1 L'alcôve fondamentale a est déterminée par les inéquations :

ai(t/)> 0, Vi 1; 9(v)^ 1.

Si on considère les poids fondamentaux vd \,..., vdi alors Pv — 0Zvjf et

0 I Xi ^ 0, ^ 1}
i

Les sommets de a sont donc (0,..., 0); (1 /m1,0,..., 0);... ; (0,..., 0,1 /m{)
dans la base (tui,... De plus, on sait que Pv est simplement transitif
sur les sommets spéciaux.

LEMME 5.1. Le plus petit entier k G N* tel que, pour tout sommet s
de A, ks est un sommet spécial est l'entier k — k® — ppcm(m\,... ,mi).

Démonstration. Si on teste sur les sommets de 0, il est clair que k est

comme indiqué. Mais Qv C Pv est simplement transitif sur les alcôves donc

Qv • {sommets de a} — {sommets de A}. D'où le résultat.

On s'intéresse maintenant à l'action de Pv sur a. Soit A G Pv, on note t\
la translation associée. On pose a' — ta (a). Alors il existe un unique w\ G Wa

tel que w\a' — a. On note ip\ — w\ ° ta ; si A G Qy, t\ G Wa et ip\ — Id.
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Si ß est un autre élément de Pv, alors

— WxTxWjjTfj, — W\(T\WßT^l)T\T^ G W^xT^

et o) — a. Donc tpxtfin — px+fj,- Ce qui donne bien une action
de Pv /Qv sur l'alcôve o.

Comme le groupe est supposé presque simple, cette action se traduit par
une permutation des sommets (ou des cloisons) de o, donc par une action sur
le diagramme de Dynkin complété.

5.2 Le point fixe est un sommet et l'Étape 4)

On sait que l'application 0 — 0i o 02 o 03 associée à la configuration
semi-stable £ — ((£i,mi),(£2,^2),(£3,^3)) admet un point fixe Xq dans X.
Mais dans un appartement contenant fi et x, 0i(a) est le translaté de x
d'une longueur m\ dans la direction £1, donc selon un vecteur G W.X. Or
À G Pv, la translation associée t\ envoie donc facettes sur facettes. Ainsi,
01 est une application simpliciale. De même pour 02 et 03. De plus t\
envoie une alcôve sur une alcôve et permute les types de facettes par l'action
de À G Pv/Qv ; donc, si À + ß + v G <2V, 0 conserve les types. Nous

avons démontré le premier point du théorème suivant, le second est laissé à

la sagacité du lecteur.

THÉORÈME 5.2 (Kapovich-Leeb-Millson [11]).

— Si \-\- ß-\-v Qv alors 0 fixe un sommet.

— Si 0 fixe un sommet spécial alors X-\- ß-\- v G Qv

On a donc un triangle T — [ao?ai,A2,ao] dans X avec dc+(xo,Ai) — À,

dc+(xux2) ß et dc+(x2,x0) v et Xq un sommet de X. Comme

X,ß,u G Pv, Ai et x2 sont aussi des sommets. On peut supposer que
Xq et Ai sont dans notre appartement témoin favori A. On choisit une
alcôve a de A contenant Ao. On rétracte le triangle T sur l'appartement A
par pA,a- Alors, d'après les résultats de la section 3, on obtient un polygone
[a0, ai yi,..., y„, a£, a0] où x'2 pA,afe) et [xuyu..., y„,x'2] est un chemin
de Hecke de type ß par rapport à 0.

Maintenant, on fait dans A une homothétie de centre 0 et de rapport k,
alors le polygone [Ao,Ai,yi,... ,yn,x'2,Ao] se transforme en un polygone
[Aq, a'i,/1,...,y'n,x2, Aq], où Aq, a'i,x2 sont des sommets spéciaux de A (on

pourra poser 0 Aq), dc+(aJ,aJ) — kX, dc+(x2,x'0) — kv et [a^ y'x,... ,y'n,x'fi\

est un chemin de Hecke de type kß. Malheureusement, en général, ce n'est

pas un chemin LS... Mais, on a bien démontré l'étape 4).
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5.3 Conclusion

Dans cette section, on va montrer l'étape 5. On considère le polygone
[Xq x'y y[,..., y'n, *2, Xq] obtenu à la section 5.2, où x'0, x\, x!{ sont des sommets

spéciaux de A, dc+(x'0,x[) — kX, dc+(x2,x'0) — kv et où [x^..,y'n,x^]
est un chemin de Hecke de type kp, par rapport à une alcôve ûo

contenant Xo. Le théorème suivant montre qu'il existe dans C+ un polygone
[Xq,kx'l,kz[,...,kz'm,kx2,xj], où \kx'{,kz[,...,kz'm,kx2] est un chemin LS

généralisé de type k2p. Le théorème de décomposition 2.8 s'applique et

prouve que (V(k2X)0V(k2p)0V(k2u)) ^ {0}. On a bien achevé l'étape 5)
et donc la démonstration du théorème de saturation 1.1.

THÉORÈME 5.3. Soit [0, Ui, Vi,..., vn, U2,0] un polygone où U\, U2 sont
des sommets spéciaux de A et [u\, Vi,..., v„, U2] est un chemin de Hecke

de type r) par rapport à une alcôve a contenant 0. Soit C+ la chambre de

sommet 0 opposée à la chambre contenant a. Alors, il existe un polygone
[0,ku[,kz[,,kz!m,ku'2,0] contenu dans C+ tel que [ku[,kz[,...,kz!m,ku^]
est un chemin LS généralisé de type kfj — krj + •+ krji.

Démonstration. On déplie le chemin [ui,V\,... ,v„,U2\ dans l'immeuble

pour obtenir un triangle sur des sommets spéciaux [0,Wi,Z2,0], avec

dc+ (u\,Z2) 7] et dc+(z2,0) — dc+(u2,0). Dans un appartement contenant les

sommets U\ et Z2, on remplace le segment [wi,Z2] par le chemin tt U\
où TTfj est le chemin associé à une décomposition de r] comme dans la partie

2.9. Ce chemin n'emprunte que des arêtes et donc chaque fois qu'il
rencontre un mur, c'est en un sommet.

On rétracte sur A par p — pA,a- Alors on obtient un polygone
[0, Ui,zi,... ,zm,U2\ tel que pn — [ui,Zi,... ,zm,u2] soit un chemin qui est

plié uniquement en des sommets et qui est de Hecke généralisé de type f) par
rapport à 0 (au sens de la définition suivante). C'est clair pour les images des

segments de 7r. Pour les points anguleux, il faut remarquer que deux arêtes

d'une même alcôve auront des images dans une même alcôve.

Maintenant, on replie A, en accordéon, sur C+ par la projection

prc+ : A —> C+ ; on obtient ainsi un polygone ,z'm, u'2,0] avec

dc+(0, u[) dc+(0, Mi), dc+(u2,0) dc+(u2,0) et p \u'vz\,... ,z'm, u'^ est

un chemin plié uniquement en des sommets. D'après le lemme suivant p est

de Hecke par rapport à a et donc de Hecke par rapport à — C+ (voir la

remarque 3.9).

Enfin, on applique l'homothétie de centre 0 et de rapport k, on obtient

un chemin de Hecke généralisé [ku[,kz[,... ^kz'^ku'^ de type kfj, dont les
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coudes sont des sommets spéciaux. Par le lemme 2.5, ce chemin est LS

généralisé de type kf), ce qui termine la preuve du théorème.

DÉFINITION 5.4. Soit a l'alcôve de A de sommet 0 et opposée à la

chambre de Weyl C+. Soit p un chemin dans A. Pour tout t G [0,1], on

note ap(t) la chambre de Ap(t) qui contient les vecteurs p(t)z', pour z' G ci.

Le chemin p est de Hecke généralisé de type f) par rapport à o si

p — p!* - *p{ où les pi sont de Hecke de type r)i (par rapport à o), pi(0) —

=: p(ti) et pour tout 2 ^ i ^ /, il existe un vecteur f*, une chambre

qui contient à la fois £ et p'+(ti) et une (Wp^, ap^ti))-chaîne de p'_{U) à £.
Il s'agit de la même condition que la définition 2.9 où il convient de

remplaçer « par rapport à C+ » et « Wp^ti) -chaîne » par « par rapport à a » et

« (WfKtih ^a,))-chaîne».

LEMME 5.5. Soit a l'alcôve de A de sommet 0 et opposée à la chambre
de Weyl C+. Soit p un chemin de Hecke de type r) par rapport à a ou un
chemin de Hecke généralisé de type 'Tj par rapport à o dans A. Alors le

chemin replié prc+ o p est de Hecke de type r\ ou de Hecke généralisé de

type f} par rapport à a dans C+.

Démonstration. Le chemin prc+ °p s'obtient à partir de p par une suite
de pliages rétractant A sur un demi-appartement contenant C+ et de mur
contenant 0. Soient donc M un mur contenant 0, D le demi-appartement
limité par M contenant C+ et le pliage de A sur D. On va montrer que

ttd o p est de Hecke (généralisé) par rapport à a. Cela se vérifie en chaque

point p(t) de p. Si p(t) ^ M, alors ap^t) contient a et sa symétrique 5m(û) ;

de plus, au voisinage de t, iop est égal à p ou à %° p. Donc o p
vérifie encore la condition locale imposée.

Supposons p(t) G M. Par hypothèse il existe une (Wp(t),ap(t))-chaîne
de p'_{t) à f où f est dans une même chambre que p'+(t). Donc tto(0
et TTpip+it)) (ttd o p)'+(t) sont dans une même chambre et du même
côté de M. Ainsi tto(0 est égal a ou sm(0 avec comme positions:
Ç, ap(t) \M sM(0- De même (jvD op)'_(f) est égal à p'_{t) ou à sM(p'_(t)) avec

cette fois: SM(p-(t)), aP(t) |m p'-{t). Ainsi en complétant éventuellement,

par le début et/ou la fin, la (Wpçt), ap(t))-chaîne de p'_{t) à f, on obtient une

(Wpit),apit))-chaîne de (ttd opY_(t) à 7td(Q.

REMARQUE 5.6. Nous avons une variante de la fin de la démonstration
du théorème de saturation qui se décline comme suit. Dans la partie 5.2,
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on a trouvé un triangle T — [xo,X\,x2,Xo] dans X avec dc+(xo,X\) — A,

dc+(xux2) ß et dc+(x2,Xq) — v et Xq,X\,x2 des sommets de X. Dans un

appartement contenant xi et x2, on remplace le segment [x1,^2] par un chemin

« généralisé» [jci, ai,..., am,x2] modelé sur une écriture ß — ß\ + • + pi
comme dans la partie 2.9. Les guillemets signifient que ce chemin est seulement

vectoriellement dans le 1-squelette (quand le sommet X\ n'est pas spécial). On
rétracte le polygone [ao,*i, «1, • • •, par la rétraction pA,a. où a est

une alcôve qui contient Xq. On peut montrer que 7r — pA,a([xi, ah 5

est un chemin de Hecke «généralisé». Maintenant, on cherche le facteur k'
tel que k'iz soit LS généralisé. On peut montrer que c'est vrai pour k' — k2.

Mais en regardant, au cas par cas, quand un segment vectoriellement dans le

1-squelette peut croiser un mur, on voit que k' — 2 suffit dans le cas B2 et
k' — 12 pour le cas G2. Malheureusement, on trouve k' — 4 dès le type B„,

pour n ^ 3. Ensuite, on replie A en accordéon et, grâce à une légère variante
du lemme précédent, on obtient un chemin LS généralisé dans C+.
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