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SATO-TATE IN THE HIGHER DIMENSIONAL CASE:
ELABORATION OF 9.54 IN SERRE’S Nx(p) BOOK

by Nicholas M. KAtz

1. INTRODUCTION

In the very last paragraph of Serre’s book Lectures on Ny(p), he writes
“An interesting fact is that the Sato-Tate conjecture is sometimes easier to
prove in the higher dimensional case (d > 1) than in the number field case,
thanks to the information given by the geometric monodromy (as done by
Deligne in characteristic p, cf. [De 80]).” The purpose of this note is to
spell out how this is done. In the higher dimensional case, one can bring
to bear monodromy techniques. It turns out that a mild hypothesis “(H)” on
the geometric monodromy is all that is needed; one gets a natural “Sato-Tate
group” K in the sense of [Se-Ny(p), 8.2.2], in whose space of conjugacy
classes the equidistribution takes place. Questions of modularity do not arise.

The prototypical situation to be dealt with was first considered by
Birch [B], where he looked at the universal family of elliptic curves in
Weierstrass form y?> = x> — ax — b, a,b indeterminates, over the ground ring
W= Z[a,b,1/6,1/(4a® — 27b%)]. It is the Spec of this ground ring which
is “higher dimensional”, and our concern is with equidistribution properties
of the unitarized Frobenius conjugacy classes attached to the closed points 3
of Spec(W). In this example, we may view the parameter space X := Spec(W)
as a “scheme over S” in various ways, for example, as a scheme over Z[1/6]
or as a scheme over Z[1/6,a] or as a scheme over Z[1/6,b]. The basic
object of study in this example is the lisse sheaf JF on the parameter space
X := Spec(W) which is the “H! along the fibres™ of the Weierstrass family.
Birch showed that as p grows, the F,, points of X := Spec(W) have unitarized
Frobenii which are closer and closer to being distributed according to Sato-Tate.
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In the general story to be developed below, Birch’s result is of the type we call
“packet by packet”, when viewing X := Spec(W) as a scheme over Z[1/6].

In these higher dimensional equidistribution questions, there are three sorts
of equidistribution which are relevant, which we call “packet by packet”,
“packetwise”, and “classical”. The first implies the second, cf. Prop. 5.2. In
generic characteristic zero, the second is equivalent to the third, cf. Lemma 3.6.
The third is false in equicharacteristic p > 0, c¢f. Remark 3.7.

2. THE GENERAL SETTING: REVIEW OF PINK’S THEOREM

In this section, we consider the following general situation. We are given
a noetherian normal connected scheme S, and a smooth S-scheme f: X — §
with geometrically connected fibres of dimension d > 1. We denote by #
the generic point of S (i.e., i 1s the Spec of the function field x(8) of §),
by 77 the Spec of a separable closure <(8)** of x(S), and by X,, and X5 the
corresponding generic and geometric generic fibres of X/S. The scheme X
is itself normal and connected, and we denote by & and £ its generic and
geometric generic points. Then £ is also a geometric point of X7 and of X,;.
We have morphisms of pointed (by €) schemes

X— X, 2 X,
The fundamental groups are related as follows.

m (X7, £) < m(Xy, ),
indeed we have the short exact sequence
1 - mXm & — m&y, §) — Gal@/n) — 1.
And we have
mXy, §) = m(X, ),

because both these groups are quotients of the absolute Galois group of &(X).
We also have a right exact sequence

m(Xe, &) = mX,6) —» mS,m) — 1,
cf. [Ka-La, Lemma 2]. Thus the image of m (X7, E) m (X ,E) 18 a normal

subgroup of m(X,£). We will denote this image group =“"(X/S$,&) <

(X ,E), hence we have a short exact sequence

1 "X/, 6) - mX, &) - m(S,m) > 1.
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If we take an arbitrary geometric point x of X, and a “chemin” from &
to x, we get an isomorphism

X, &) =2 mX,x).

If we change the chemin, we change the isomorphism by an inner automor-
phism of either source or target. Because 7{**"(X/S, &) <1m(X,£), the image
in 71(X,x) of the normal subgroup ={*"(X/S, OH<mE, € is a well-defined
(i.e. independent of the choice of chemin) normal subgroup of m(X,x), which

we denote 7¥“"(X /S, x) <1 7 1(X,x). Because this subgroup is normal, to say

that a given subgroup [' of m(X,x) lies in #{*""(X/S,x) is a meaningful
statement (i.e., independent of the choice of chemin from x to £). More
concretely, a given subgroup I' of m(X,x) lies in #{*"(X/S,x) if and only
if every m(X,x)-conjugate of I' lies in ={*""(X/S,x), if and only if some
(X, x)-conjugate of I lies in =7 (X/S,x).

The following theorem of Pink is proven in [Ka-ESDE, 8.18.2], despite

being imprecisely stated there. For the reader’s convenience, we give the proof.

THEOREM 2.1. Let ¢ be a prime number (not assumed invertible on S ),
F alisse Qp sheaf on X of rank n > 1.

(1) For every geomeltric point s of S, and every geometric point x of the
fibre X, when we view F as a representation p,: m(X,x) — Aut@(ﬂ),
we have an inclusion

P (X5, %)) C a7 (X /S, 00)
inside p,(m1(X,x)).

(2) There exists a dense open set U C S such that if the geometric point s
lies in U, then for every geometric point x of the fibre X; we have an
equality

P01 (X, ) = palmr] (X /S, %))
inside p,(m1(X,x)).

Proof. We first prove (1). The lisse Qg sheaf F descends to a lisse
E -sheaf, for some finite extension F)/Qy, then to a lisse ) -sheaf Fy
for O, the ring of integers in E,. So it suffices to prove (1) for each of
the lisse sheaves JF/{"F,. Fixing one such, we have a finite group G,
and a surjective homomorphism p;,: m(X,x) - <. Denote by H < G
the image of =¥*™(X/S,x). Then the quotient homomorphism from (X, x)
onto G/H factors through 7(S). Replacing S by the finite étale covering S

of itself which trivializes this homomorphism, replacing s by a geometric
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point of §; lying over s, replacing X/S by Xs /S;, and replacing x by
a geometric point x; of Xg lying over s;, we reduce to treating the
case when #{*"(X/S,x) and =(X,x) have the same image, here . In
this case, the asserted inclusion of (1) is just the inclusion of p,(m(X;, x))
in pu(m (X, 5)).

We next show that for our fixed F /0" Fy, there is an open dense set U, C S
over which py (11X, X)) = pr (7™ (X/S,x). As above, we may first base
change to §;, then take for U, C § the image of the dense open U,; C S
we find. Then we consider the finite étale H-torsor £ — X. The equality
Pr(T1 (X, 0)) = prulm] (X /S, %)) holds precisely at the geometric points s
over which the fibre E; (of E viewed as S-scheme, say h: £ — §) is
connected, or, equivalently, irreducible (remember £/S is lisse, everywhere
of relative dimension d). The number of irreducible components of F; is the
dimension of the stalk at s of the constructible sheaf RZdhg@. By construction,
this dimension is one at 7, so is one on some dense open set. [See also
[De-Weil 1II, 1.11.5] for another approach to this “finite” case.]

To end the proof, we use Pink’s Lemma [Ka-ESDE, 8.18.3], which insures
that we can take for U the open set U, for m» sufficiently large. [The
statement is that given a closed subgroup K C Gi(n,(O),), (here the image
P (X /S, %)), there is an integer v with the following property: if a
closed subgroup H (here p(m(X;,x))) of K maps onto the image of K
in Gl(n,(0,/*0,), then H = K. See also [T, proof of Thm. 2], [Se-CP4,

&133, pp. 1-2], and [Se-MW, 10.6] for arguments of this type.] L]

3. TFORMULATION OF TWO EQUIDISTRIBUTION THEOREMS

In this section, we suppose further that the noetherian normal connected
scheme S is a Z[1/{]-scheme of finite type. We fix a field embedding
t: Q¢ C C, and a real number w. We fix a lisse Qp sheaf F on X of
rank n > 1 which is ¢-pure of weight . For a fixed geometric point x of X,
we denote by

Garith,X,x & Aut@(]:x)
the Zariski closure in Ath—E(}}) of the image p,(m(X,x)), and by

Ggeom,X/S,x < Garith,X X

georm

the Zariski closure in Gy x , of the image p (w{"""(X/S,x)).
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For each closed point p of §, with residue field F, and geometric point
= Spec(FTp) lying over it, we have the fibre X,/F, and the geometric
fibre XE/PTP. For a geometric point x of Xg, we denote by

Ggeom,Xp X < Garith Xpox

the Zaniski closures in Ggrgx» of the images of m(Xz,x) and m(X;,x)
respectively.

In what follows, we will use some choice of chemin from x to the
geometric generic point & of X, drop the x from the notation, and view all of
the groups: Goeomiys Corithidts+ O geom, % /5 Garign x a8 Zariski closed subgroups
of Ggrip,x. with inclusions

Ggeom,Xp <] Garith,Xp C Garith,X:

Ggeom,Xp - Ggeom,X/Sv

Ggeom,X/S < Garith,X )

all well defined up to G x -conjugation.
By Pink’s theorem we not only have

Ggeom,Xp e Ggeom,X/S

for every closed point p of S, but we have equality for all those p lying in
some dense open U C §.

Recall (cf. [De-Weil 11, 1.3.9 the first paragraph of its proof, and 3.4.1 (ii1}])
that for each closed point p of §, the group Ggeomx, 18 semisimple. In view
of Pink’s theorem, the group Gg,pn x/s IS semisimple.

For the rest of this note, we impose the following hypothesis') (H) on
our data (X/S,F,u):

Hyp0theSiS (H) : P(ﬂ'l (X)) - GmGgeom,X/S':

or, equivalently,

Garith,X C GmGgeom,X/S'

For each closed point p of §, we thus have

p(ﬂ—l (Xp)) - GmGgeom,X/S-

1y As we will see, the role of Hypothesis (fT) is to allow us to make use of known
equidistribution theorems on the fibres of X /5. See section 9 for examples where Hypothesis (H)
does not hold (and where looking along the fibres does not help).
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LEMMA 3.1. For each closed point p of S, there exisis «p € @X with
the following properties :

(1) For each finite extension k/Fy, and each point t € Xp(k),

deg(k
p(FrObk,t)/O[p 9tk/¥p) = Ggeom,X/S.

(2) For each closed point 'Y of X, (i.e., for each closed point 'Y of X which
lies above p ),

de
,O(FrObq:;)/O[p 9®5 /Fp) € Ggeom,X/S'

Any «p satisfying either (1) or (2) is an {-adic unit, i.e. ap € OS—, the
£
lisse sheaf on X, given by

Gp 1= (FIXp) ® 0,7

is t-pure of weight zero, and ils associaled representation pg, maps
Trl(Xp) lo Ggeom,X/S'

Proof. If X, has an Fp-rational point £, then any Frobenius element

Froby, ; is an element of degree one in m(X,). Choose any ay € @X such
that p(Froby )/, lies in Ggeom x5, this being possible by hypothesis (H).
If not, use the fact that in all large enough extensions of F,, there are
rational points. Denote by £, the extension of degree n of F,. Then for n
large, choose a point £, € X,(k,) and a point #41 € Xp(ksy1). Then choose
Frobenius elements Froby, .., and Froby , in m(X,). Then the element

Vp = Froby, 4, +1Frob,;}1n is an element of degree one in m(X,). Choose

any op € @X such that p(yp)/crp lies in Gyppm x /s, this being possible by
hypothesis (/7). Now (1) holds because for any Frobenius element Froby ,,

(44 & 2% _d k F * - .
the “ratio” Froby iy, 29k /F) is an element of degree zero 1n m(Xp), so lies

in 7/*"™(X), which in turn maps by p to Gyepmy/s by Pink’s theorem.
Unscrewing all this, we get (1). We get (2) by repeating this argument with
Froby, replaced by Frobsy.

To see that ayp € O%, we argue as follows. We know that F has an O@—
form, so det(p(7,)) lies in O(%. But Gyeom x5 18 semisimple, so det on it has
finite order. Thus det(p(fyp)/ «rp) 1s a root of unity, and hence « 1s an £-adic
unit. To see that (F|Xp)@a, w9 i ¢-pure of weight zero, use the fact that it is
¢t-pure of some weight (namely w —2logq(|¢(ap)\) for g = #(I,)). So we can
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read its weight from the weight of its determinant. But pg, maps m(X;) to
G geom,x /5, Where every element has a determinant which is a root of unity. [

REMARK 3.2. There may be several choices of . Indeed, the indeter-
minacy is precisely the finite group Gy M Gyeom,x /s (finite because Ggeom x /s
is semusimple). In what follows, we fix a choice of an «ajp for each closed
point p of §.

We now use the embedding ¢: Q; C C to view C as a Qg-algebra, so we
can form the group G eom x/5(C), which we view as a complex semisimple
Lie group in the “classical” topology. We denote by K a choice of maximal
compact subgroup of Gy x /5(C).

LEMMA 3.3, let p be a closed point of S, 1 a closed point of X lving
over p. Then the semisimplification (in the sense of Jordan decomposition) of
L(p(Frobqg)/aieg(Fm/F")) i G geom,x /s(C) is conjugate in G ypom x/s(C) fo an
element of K, which is itself unique up to K -conjugacy.

Proof. Because (F X))® ap, w4 s t-pure of weight zero, this semisimple
element in the semisimple group G em x/s(C) has all its eigenvalues on the
unit circle, so lies in a compact subgroup of Geom x/5(C), hence lies in a
maximal compact subgroup of Ggegm x/5(C), and all such are Gyeop x /5(C)-
conjugate. That all ways to conjugate this element into K lead to K -conjugate
elements results from the Peter-Weyl theorem (that conjugacy classes in K
are determined by their traces in all irreducible representations of K), Weyl’s
unitarian trick (that irreducible representations of K are the restrictions to K of
(the image under ¢ of) irreducible representations of Gg.op x/s), and the fact
that in any representation of Gg..p x /s, an element and its semisimplification
have the same trace. [

Thus for each closed point P of X, we obtain a K-conjugacy class Oy,
whose definition involves the rescaling by the chosen «y, for p the closed
point of § lying under ‘J3.

We now formulate two theorems concerning the equidistribution properties
of the conjugacy classes fiy.

To formulate the first, recall that for a scheme W of finite type over Z,
we denote by |W/| the set of its closed points, and by 7w: Rsg — Z the
counting function

aw() = #{P € |W|, NP <«¢}.
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THEOREM 3.4 (Packetwise Equidistribution). Suppose hypothesis (H)
holds. For t € Ry large enough that wx(t) > 0, denote by pu(< t) the
probability measure on K* defined by

S =m0 D oy,
P X NB <t
ie., it is the measure “average a function over all the closed points of norm
at most t”. Then as t — oo, the measures (< ) converge weakly to the
induced “Haar measure” of total mass one on K* : for every continuous
central C-valued function f on K, we have the integration formula

/ Pl [ / Fdu(< ).
JK —roa JK

We call this first theorem “packetwise equidistribution” because in our
successive approximating measures, we add on entire packets of closed points,
namely all those of given norm, as we pass from one approximant to the next.
The second theorem is “classical” equidistribution, but is valid only when we
are in generic characteristic zero.

THEOREM 3.5 (Classical Equidistribution). Suppose that X has generic
characteristic zero and hypothesis (H) holds. As Y3 varies over the closed
points of X, ordered by increasing NY (ties to be broken arbitrarily), the
sequence of conjugacy classes Oy is equidistributed in the space K' of
conjugacy classes of K for the induced “Haar measure” of total mass one.

As Serre explains in [Se-Nx(p), 9.2.1 small print], we have the following
lemma.

LEMMA 3.6. Suppose X has generic characteristic zero. Then Theo-
rems 3.4 and 3.5 are equivalent.

Proof. That Theorem 3.5 implies Theorem 3.4 1s obvious. To show that
Theorem 3.4 implies Theorem 3.5, we argue as follows. The scheme X
is irreducible of some dimension D = d + dim(S) > 1. As X has generic
characteristic zero, Serre tells us [Se-Ny(p), Cor. 9.2] that wx(£) ~ /Dlog(#).
From this asymptotic, it follows that

wx(t+ 1) — mx(8) = o(mx (D) .

Serre gives an algebro-geometric argument for this estimate, in the sharper
form

mx(t+ 1) — mx () = 0”1
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Denote by g: X — Spec(Z[1/f]) the structural morphism. The fibres all
have dimension < D — 1, so by the constructibility of the higher direct
images R‘g!@, their vanishing for i > 2(D— 1), the Lefschetz Trace Formula,
and Deligne’s fundamental estimates, we conclude that there exists an upper
bound M € Z for the sum of the compact Betti numbers of the fibres, and
that we have the inequality #X(F,») < Mp™®~V for all primes p # ¢ and
all n > 1. Now 7x(¢+ 1) — mx(#) can only be nonzero if the unique integer
in (¢, ¢+ 1] 1s a prime power p”, in which case we are counting closed points
of norm p" in X, and the number of these is trivially bounded by #X(F.),
which is O@™P~1) = 0P 1).

To deduce classical equidistribution from packetwise equidistribution, fix
a continuous central function f on K which (by subtracting a constant and
rescaling we may assume) has fK fdpisae = 0 and has Supg|f(k)| < 1.
Fix € > 0. For ¢ large enough, we have both

| /fd,u(S Hl <e and  wx(t+ 1) — mx(@) < emy(D).
JK

Then for any subset A of the set of closed points with norm in the interval
(t,t+ 1], we have

D SO+ Y O] < em() + #A

N <t Pca

< emx(O) + (mx(E+ 1) — mx(8)) < 2emy() < 2e(my(H) +#A). [

REMARK 3.7. Here is a simple example, along lines suggested by Serre,
to show that in equicharacteristic p > 0, classical equidistribution is false.
Take an odd prime p, § = Spec(F,) and X = G,,/F, = Spec(F,[x, 1 /x]).
Pick a prime ¢ # p and view the quadratic character y;: F; — *1
as taking values in @X, so giving a Kummer sheaf L£,, on X. Here
Goeomx/s = Ganmx = *1. The class ¢ attached to a closed point 3
of norm p” is the following: such a closed point is an irreducible monic
polynomial f(x) € Fy[x] with f(0) # 0, and its fp € +1 is x2((— 1)"F(0)).
According to the packetwise theorem, as we look at all closed points of norm
at most p* for large n, about half give +1 and about half give —1. On
the other hand, as we will see in Theorem 5.1, it is also true that when we
look at the closed points of norm precisely p"t!, about half give +1 and
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about half give —1. But for any p > 11, there are more?) closed points of
norm p"T! than there are of all lower norms combined. So if we tag onto all
the closed points of norm at most p" only the half of the closed points of
norm p**! giving +1, then of all these points, something like at least 2/3
give +1 instead of —1.

4. PROOF OF THE PACKETWISE EQUIDISTRIBUTION THEOREM :
FIRST REDUCTION

LEMMA 4.1. For Z any proper closed subscheme of X, we have the
estimate w7 (1) = o{my (D).

Proof. The scheme X, being smooth with geometrically connected fibres
over the connected normal Z[1/{]-scheme of finite type S, is itself a
connected, normal Z[1/¢]-scheme of finite type, so is irreducible of dimension
D =d + dim(S5). Any proper closed subscheme Z of X is a finite union of
irreducible Z[1/{]-schemes Z of finite type, each of dimension d; < D — 1.

When §, or equivalently X, has generic characteristic zero, Serre tells us
[Se-Nx(p), Cor. 9.2] that wx(¢) ~ i /Dlog(#). For each 7 which is itself of
generic characteristic zero, we have w2 (f) ~ £ /d;ilog(t). For an irreducible
component 7; which is an irreducible F,-scheme for some prime p, of
dimension d; < D — 1, we argue as follows. If d; = 0, then 7z (¢) is bounded.
If 1 <d; < D—1, then by Noether normalization applied to affine pieces we
have an estimate of the form #7,(F,-) = O(p™) for variable n. So trivially the
number of closed points of norm at most p” is O(Zj::l p?%). The inner sum
Yo Pl = (p% /(p% — DY(p™ — 1) < 2p™. Thus 7z (6) = O(%) whenever ¢
is a power of p, and hence for all £ > 0 (because 7z (#) is increasing, and
only changes value when ¢ is a power of p).

When S, or equivalently X, has generic characteristic p > 0, then the
algebraic closure of F,, in the function field #(X) is a finite field F,, and X/F,
is geometrically irreducible of dimension D). By Lang-Weil, there exists a real

2y In Gm/Fp, there are approximately p'/i closed points of given norm p' ; the exact number
always lies within 2pi/ 2/i of p'/i. So the number of closed points of norm at most p" is at most
237 «iepP' /i, while the number of closed points of norm p"+! is at least p"*!/2(n+1). What
is true (a calculus exercise) is that for any real ¢ > 8, we have, for all # > 1, the inequality
L+ D > 43 e P
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constant C > O such that for all integers n = 0, #X(F,.) > " e O I 4 (| q"/ .
So for large n (e.g., large enough that ¢"/2 > 2C), we have #XEFy) > q"° /2.
Similarly, for # large, the number of closed points of degree ¢" is at least
g™ /2n. So we trivially have the estimate 7y () > ££/2 logq(t) whenever ¢ is
a large power of g. So for all large ¢ we have

mxe(0) = /)P [2log (t/q) = ¢~ "1 [2log () — 1)) = ¢~ [3log (1.  []

COROLLARY 4.2. Let V C X be a dense open set. Then Theorem 3.4
holds on X if and only if it holds on V.

Proof. By Weyl’s criterion, the packetwise equidistribution theorem is
equivalent to the assertion that for every irreducible nontrivial representation A
of K, we have the estimate

Z Trace(A(fs)) = o(mx(D) .

PelX]|, NB<s

The assertion that it holds on V is that for each of these same A, we have
the estimate

> Trace(A(fg) = o(m().

Pe|V|, NP <t

Each summand Trace(A(fy3)) has absolute value at most dim(A). So the
equivalence is immediate from the previous lemma, applied to the proper
closed subscheme Z:=X\V of X. []

We will use this corollary as follows. Recall that by Pink’s theorem, there
is an open dense set U C S such that for each closed point p of U, we have

Ggeom,Xp = Ggeom,X/S'

By the corollary, it suffices to prove packetwise equidistribution on V:= f~1(1/).
Thus we reduce to proving universally the packetwise equidistribution theo-
rem for the situation (X/S,F,:) under hypothesis () and the additional
hypothesis (AFG) (“all fibres good™):

Hypothesis (AFG) : for every closed point p € S, Ggeomx, = Ggeomx/s -
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5. A STRONGER EQUIDISTRIBUTION THEOREM,
WHEN BOTH HYPOTHESES (H) AND (AFG) HOLD

In this section, we suppose both hypotheses (H) and (AFG) hold. We
arrange the closed points ¥ into packets P(p,n) labeled by the underlying
closed point p of § and by the integer # > 1 which is the degree of Fos/Fp.
In other words, P(p,n) consists of the closed points of X, whose degree
over Fy is n.

For each nonempty packet, denote by 1(P(p,n)) the measure on K* defined
by

WP, m) = A/#PG, ) > bay, .
PEPP .M

THEOREM 5.1 (Packet by Packet Equidistribution). Suppose that both
hypotheses (H) and (AFG) hold. Let (p;, n;) be a sequence of pairs consisting
of a closed point of S and a strictly positive integer. Suppose that Np" {ends
archimedeanly to oo . Then the sequence of measures (P(p;,n;)) tends weakly
to the induced “Haar measure” of total mass one on K*.

PROPOSITION 5.2. When hypotheses (H) and (AFG) hold, Theorem 5.1
implies Theorem 3.4.

Proof. For each nonempty packet, and each irreducible nontrivial A, we
consider the fraction

N(p,n, N)/#P(p, n)

with

N(p,n,A) = Z Trace(A(fp)) .
PCP(p.m)

Theorem 5.1 is, by the Weyl criterion, the assertion that for each irreducible
nontrivial representation A of K, the fractions N(p,n, A)/#P(p,n) tend to O
as Np” tends to oo. What we must prove is that for each irreducible
nontrivial A, the fractions

Z(p,n) with NpﬂgtN(p-: n,A)
Z(p,n) with Np"SI#P(pv n)

tend to O as ¢ tends archimedeanly to oo.

It suffices to apply the following elementary lemma, whose proof is left
to the reader.
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LEMMA 53. Let a,/b, be a sequence of fractions with a, € C and
b, € R.y. Suppose that |a,/b,| — 0 as n tends to oo, and that Zign b,

i<n i

- tend 10 0 as n

tends to oo as n tends to oo. Then the fractions %
lends to co. [

i<n

We now turn to the proof of Theorem 5.1. In [Ka-Sar, 9.6.10], ratios similar
to the ratios N(p,n, A)/#P(p,n) are considered. [The assumption “(9.3.5.1)”
stated there is used only to insure that G x C GuGgeom x/s-]1 That result
is stated in terms of conjugacy classes 0 ., attached to finite-field valued
points of X, say x € X(k), partitioned according to the underlying k-valued
point s of S, with ¢ there our aieg(F’/ ¥l It is proven there that there exist
positive integer constants A(X/S) and C(X/S, F) such that for each nonempty
packet P(p,n) with Np” > 4A(X/S)*, and F, ,/F, the extension of degree #,
we have

#Xp(Fp ) 2 Np™ /2

and
1

s S N
‘#XP(Fp,n) race(Afr, ,.p,az.0)))

2EX, (Fy 1)
< 20(X /S, Fydim(A)/Np™? .

We now have only to turn this into an estimate for our fractions
N(p, n, A)/#P(p,n). To do this, we use the fact that closed points P of X,
of degree n over F, are simply the orbits of Gal(F,¥/F,) of length n
in X,(Fp,), and that each of the n points in such an orbit gives rise to
the same conjugacy class fi. The number of points of X,(F,,) which lie
n Xp(Fpnsr) for some divisor r > 2 of n 1s at most 2(1 +A(X/S))Np"d/2.
So the sum

> Trace(Alr, , p.an )
x€Xp(Fyp )
differs from the sum
naN(p,n,A)

by an error bounded by 2(1 + A(X/ S))Np"d/ Zdim(A). And #X,(Fp ) differs
from n#P(p,n) by at most 2(1 + AX /S))Np”d/ 2. We conclude that for Np”
sufficiently large, we have the estimate

() INGp, 1, A/#P(p, | < 4CX /S, F) dim(a)/Np™/?.
This concludes the proof of Theorem 5.1.  []
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Here is an application of Theorem 5.1. For each integer N > 1, denote
by P(N) the packet consisting of all the closed points of norm N. For each N
such that P(N) is nonempty, denote by p(P(N)) the measure on K* defined by

PPN = (1PN > gy -

PELNV)

THEOREM 5.4 (Norm by Norm Equidistribution). Suppose that both
hypotheses (H) and (AFG) hold. Then as N tends to oo over norms of
closed points of X, the measures (P(N)) on K" tend weakly to the induced
“Haar measure” of total mass one on K.

Proof. Indeed, the packet P(N) is the disjoint union of those packets
P(p,n) for which Np™ = N. For N large and P(N) nonempty, the estimate ()
shows that for cach nontrivial irreducible A we have the estimate

[(L/#P(NY) D Trace(Afp )| < 4C(X/S, F) dim(A)/NY2 . [

NB=N

As another application of Theorem 5.1 and Lemma 5.3, we have the
following variant of the packetwise equidistribution theorem.

THEOREM 5.5 (Partial Packetwise Equidistribution). Suppose that both
hypotheses (H) and (AFG) hold. Let (p;, n;) be a sequence of pairs consisting
of a closed point of S and a strictly positive integer. Suppose that Npl' tends
archimedeanly to oo. Then as d — oo the sequence of measures on K*

1
Vg = Z Z 5&3
21§i§d #P(pi, i) 1<i<d PEPP,,m)

tends weakly to the induced “Haar measure” of total mass one on K’ .

For example, we could take any sequence (p;, 1) with closed points of §
whose norms tend archimedeanly to oo. If § has generic characteristic zero,
we could further restrict to using only closed points with prime fields as
residue fields (cf. [Se-Nyx(p), 9.1.4]), and we could choose any infinite subset
of these if we wish.

REMARK 5.6. Even when X has generic characteristic zero, it will not be
the case in general that the collection of closed points in U;P(p;, n;) satisfies
classical equidistribution. For example, we might choose the sequence NpJ
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to be so lacunary that at each approximating step we add on more points than
we had before (i.e. #P(pga1,R411) > 21931 #P(p;, 1)),

6. A VARIANT: “ELIMINATING” §

In this section, we suppose hypothesis (H) holds, and we make an
additional hypothesis (Sm) on the base S.

(1) If S has generic characteristic zero, we suppose given a number field
L and an integer N such that S is a smooth ;[1/N/]-scheme with
geometrically connected fibres of some common dimension ¢ > 0.

(2) If § has characteristic p > 0, we suppose given a finite field F, such that
S is a smooth, geometrically connected F,-scheme of dimension e > 0.

For ease of reference, we denote by Sp the scheme Spec(Qr[1/N{]),
respectively Spec(lF), in the two cases.

LEMMA 6.1. Under hypotheses (H) and (Sm) on (X/S, F, 1), the situation
(X/So, F, 1) satisfies hypothesis (H).

Proof. Denote by 7y the geometric generic point of S;. Then 7, the
geometric generic point of §, lies over 7, so the homomorphism

(X, §) - (X, )
factors as
71X, &) = 71 (X £) — m(X, £).
Thus the Zariski closure groups are related by
Ggeom,X/S C Ggeom,X/Sg C Gar’ilh,X . GmGgeom,X/S C GmGgeom,X/Sga
the penultimate inclusion by hypothesis (H). Thus
Garith,X & GmGgeom,X/Sg ’

as required. [

The group Ggpom x/s, 18 semisimple, and being caught between Gyeom x /s
and GuGyeom,x /s Must be 1iaGypom x /s for some integer n > 1.

When we apply Theorem 3.4 to this (X/Sy, F,:) situation, we are

getting packetwise equidistribution of conjugacy classes, call them 983, in the
space (11,K)* of conjugacy classes of the group p,K, instead of packetwise
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equidistribution of conjugacy classes iy in the space K* of conjugacy classes
of the group K.

To see how the two results differ, start with (X/S,F,¢), and a lisse rank
one Qg-sheaf £ on S. Denote by £; the pullback of £ to X. Now consider
the situation (X/S,F ® £1,t¢). From the point of view of the packetwise
equidistribution theorem for X/S, nothing has changed, since £; is trivial
on Xz. We simply do not see £;. However, from the point of view of X/Sp,
we might very well see it.

Here is a concrete example. Choose an integer n > 1, and denote by R
the cyclotomic ring R := Z[(,, 1/6n]. Take £ =2,

So = Spec(R),

S = Spec(R[g3, 1/g:1) = Gm /R,

X = Spec(Rlg2, g3, 1/95,1/(g5 — 27g3)D).
Over X we have the Weierstrass family W/X, affine equation y* =
4x’ — gax — g3. For F on X its H' along the fibres, Gyepmx s is SL(2)
(indeed, on each geometric fibre of X/S, the j-invariant is nonconstant).
Since F is of rank 2, we certainly have Guinx C GG geom,x /s = GL(2).
Now take for £ on § = G,,/R a Kummer sheaf £, with x a character
of order n. Then F @ L1 on X has Gyeom x /5, = tinSL(2).

7. ANOTHER VARIANT

In the situation of the previous section, (X/S/Sq, F,t) with (X/S, F. ¢)
satisfying hypotheses (H) and (Sm), there is a stronger hypothesis we could
impose, hypothesis (H;):

Hypothesis (H1) : Gypomx /s = Garithx 5

in other words p(m1(X)) C Ggeomx /s In this case, the inclusions Ggepm x/s C
GQBDW;X/SG - Gan’th,X show that

Ggeom,X/S — Ggeom,X/So i

So for packetwise equidistribution on X of all the 64y ’s there is no difference
between the result for (X/S,F,:) and the result for (X/Sp, F,t). There is
however the difference that if hypothesis (AFG) holds for both (X/S,F,¢)
and for (X/Sp,.F,t), then in Theorems 5.1 and 5.5, we get to select finer
packets in the X/S context than in the X/Sp context.
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8. SOME EXAMPLES

In this section, we illustrate the general theory with a few concrete
examples. We begin with curves. Fix a genus ¢ > 1, and a monic polynomial
f24X) € Z[X] of degree 2g whose discriminant A is nonzero. We consider
the one-parameter family of genus g curves, parameter A, given in affine
form as

¥ = frg(OEX — )

over the parameter space X := Spec(Z[X, 1/2f (MDA, say n: € - X. On X
we have the lisse sheaf F := R'm Q,, which is pure of weight one. We take
S := Spec(Z[1/(2A)]). Here one has [Ka-Sar, 10.1.16] Ggeomx /s = SP2g)
and Gginx = GSp(2g), so hypothesis (H) holds. In this example, (AFG)
also holds.

Here is another curve example. Begin with a monic polynomial f5,,1(X)
Z[X] of degree 2g+ 1. Denote by & the ged of the coefficients of the second

i

derivative f, , of fag+1. Consider the two-parameter family of genus g
curves, parameters A, B, given in affine form as

Y2 = oy 1(X) +AX + B

over the parameter space X := Spec(Z[A, B, 1/(26N)]), for A € Z[A,B] the
discriminant of f,41(X)+AX + B (which is nonzero, cf. [Ka-ACT, 3.5]). Here
we may take S := Spec(Z[1/(28)]), or we may take S := Spec(Z[A, 1/(20)]).
For either choice of S, one has [Ka-Sar, 10.3.1, 10.3.2] Gyeomx/s = Sp(29)
and Ggimx = GSp(2g), so hypothesis (/1) holds.

Here are some hypersurface examples, cf. [Ka-Sar, 10.4.9] and [De-Weil II,
4.4.1]. Take integers d > 3 and n > 1, with (n,d) £ (2,3), and consider
the universal family of smooth projective hypersurfaces of dimension n and
degree d, say m: Xpg — Hpa. Fix a prime ¢, take X := H, 4[1/¢] and
S := Spec(Z[1/4]). When n is odd, we take F on X[1/¢] to be R"r,Qq,

which 1s lisse of rank
prim(n,d) := ((d — 1)/d)((d — 1"t — (—=1)y*t1)

and pure of weight n. Here Ggepmx /s = Sp(prim(a. d)), Garimyxy =
GSp(prim(n, d)), and hypotheses (H) and (AFG) both hold. When #n is even,
we take F on X[1//] to be Prim”ﬁ*@(n/Z) (cf. [Ka-Sar, 11.4.8] for the
definition of Prim”), which is lisse of rank prim(s,d) and pure of weight
zero. We have Goeon x/s = Gaimx = O(prim(n,d)). Here hypotheses (H)
and (AF'G) both hold.
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9. EXAMPLES WHERE HYPOTHESIS (H) FAILS

Let us begin with § a noetherian connected scheme of finite type over
Z[1/¢], and Fy a lisse Q; sheaf on § of rank » > 2 which is L-pure
of weight zero, such that in the representation pg of m(S) which Fy “is”,
the image of m(S) is not abelian?®). Now take any X/S which is smooth,
with geometrically connected fibres of some dimension d > 1, and take F
on X to be the pullback of Fy. Then on each geometric fibre of X/S, F
is constant, hence Gyeom,x/s 18 the trivial subgroup of GL(n). But the group
Garinx 18 the group Ggips C GI{n) (because F was the pullback from §
of Fu), and this group is not abelian. So Hypothesis (H) does not hold.
While Jordan-semisimplified Frobenius classes from 7(S) may or may not
be equidistributed (in some or all of the various senses of equidistribution
discussed above) in a compact form*) of Gy s, the moral of this example
is that invoking an X /S and pulling back to X will never help us.

Here is another example where Hypothesis (H) does not hold. Take for Sy
the Spec of Z[1/2/], and for X /Sy the product G, x G,,, with coordinates x, y.
Take y to be the quadratic character, and take F on X to be the direct sum
of the two Kummer sheaves

F 1= Ly B Loy -
Then

Ggeom,X/Sg = Garith,X = M2 X Uz,

and Hypothesis (H) holds for X/S;. However, if we take S to be G,,/Sp
and view X as lying over § by the second projection, then Gyeon x /5 18 the

group o, embedded diagonally in gy X 2. So for X/S, Hypothesis (H) does
not hold.

3y For example, take ¢ = 776887, take S to be the Spec of Z[1/776887]. and take Fy as
follows. The polynomial x’ —x — 1 over  has Galois group the full symmetric group S-, and
the discriminant of this polynomial is —776887. We take for F; the lisse Q, sheaf on § of
rank 7 incarnating this representation pp: 7 (8) = 57 C GL(7) (here the inclusion 57 C GL(7)
is by the usual permutation action on the coordinates).

) To be able to speak of a compact form of Ggp 5, we must also assume that Fp is
a completely reducible representation of m((S5); then the group Gy s will be reductive, and
hence will have a compact form.
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