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ON TOPONOGOV’S COMPARISON THEOREM FOR
ALEXANDROV SPACES

by Urs LANG and Viktor SCHROEDER

INTRODUCTION

In this expository note, we present a transparent proof of Toponogov’s
theorem for Alexandrov spaces in the general case, not assuming local
compactness of the underlying metric space. More precisely, we show that
it M is a complete geodesic metric space such that the Alexandrov triangle
comparisons for curvature greater than or equal to x € R are satisfied locally,
then these comparisons also hold in the large; see Theorem 2.3. The core
of the proof is Proposition 2.2. It states that a hinge H = pxUpy in M
has the desired comparison property if every hinge H' = p'x’ Up’y’ with
an endpoint on H and perimeter |p’x’| + [p'y/| + [x'y/| less than some fixed
fraction of the perimeter of H has this property. The argument involves simple
inductive constructions in M and the model space M2 of constant curvature,
leading to two monotonic quantities (see (5) and (6)), whose limits agree.
This immediately gives the required inequality.

The history of Toponogov’s theorem starts with the work of Alexandrov [3],
who proved it for convex surfaces. Toponogov [10, 11, 12] established the result
for Riemannian manifolds, in which case the local comparison inequalities are
equivalently expressed as a respective lower bound on the sectional curvature.
A first purely metric local-to-global argument was given in [8] for geodesic
metric spaces with extendable geodesics. In its most general form, without the
assumption of local compactness, the theorem was proved in [6] (in [5] the
result is attributed to Perelman). An independent approach, building on [8],
was then described by Plaut [9]. The proof presented here is a modification
of his argument.
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In fact, the statements in both [6] and [9] differ from what is shown
here in that the metric of A is merely assumed to be intrinsic (that is,
d(p,q) equals the infimum of the lengths of all curves connecting p and ¢,
but it is not required that the infimum be attained); correspondingly, the
Alexandrov comparisons are formulated without reference to shortest curves
in M. However, assuming M to be geodesic is not a severe restriction. By [9,
Theorem 1.4], for every point p in a complete, intrinsic metric space M of
curvature locally bounded below there is a dense Gs subset J, of M such
that for all ¢ € J, there exists a shortest curve from p to g. A proof of
Toponogov’s theorem for intrinsic spaces via essentially the same construction
as here, which was found independently by Petrunin, is contained in the
preliminary version of the forthcoming book [1]. Nevertheless, we felt that
it would be worthwhile to make the argument in the present sleek form for
geodesic spaces (such as complete Riemannian manifolds) available in the
literature.

1. PRELIMINARIES

In this section we fix the notation and recall some basic definitions and
facts from metric geometry.

Let M be a metric space with metric d. By a segment connecting
two points p,g in M we mean the image of an isometric embedding
[0,d(p,q)] — M that maps O to p and d(p.q) to g. We will write pg
for some such segment (assuming there is one), despite the fact that it need
not be uniquely determined by p and ¢. We will use the symbol |pg| as
a shorthand for d(p, g), regardless of the existence of a segment pg. By a
hinge H = Hy,(x,y) in M we mean a collection of three points p,x,y and two
nondegenerate segments px.py in M thus p ¢ {x,y} (but possibly x = y).
We call p the vertex, x,y the endpoints, and px,py the sides of H. The
perimeter of a triple (p,x,v) of points in M is the number

per(p, x,y) := |px| + [py[ + [xy/.
By the perimeter per(H) of a hinge H = H,(x,y) we mean the perimeter of

the triple (p,x,v).
We denote by M the m-dimensional, complete and simply connected
model space of constant sectional curvature x € R. We write

/& if K> 0,

D, = diam(M}}) = )
o0 if v <0,
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FIGURE 1

Proof of Lemma 1.2

for the diameter of M. Some trigonometric formulae for the model spaces are
collected in the appendix. The following basic monotonicity property follows
readily from the law of cosines, equation (18).

LEMMA 1.1. let « €R, and let a,b € (0,D,,) be fixed. For ~ € [0, 7],
let Hy(x,y) be a hinge in M-, with |px| = b and |py| = a such that the hinge
angle Z,(x,y) (between px and py) equals ~, and put cqp(v) = |xy|. The
Junction cqyp so defined is continuous and strictly increasing on [0,7].

The next lemma goes back to Alexandrov [3], compare [5, Lemma 4.3.3].

LEMMA 1.2. Suppose that Hy(q,y) and H,(x,y) are two hinges in MZ
with |py,|qv], lpq| + |gx| < D.., and HyX,y) is a hinge in MZ such that
Px = lpql+ x|, [PY] = pyl, and 33| = |y|. Then Zy(p, )+ Z4(x,y) <
if and only if /,(q,y) > Z5X,¥), whereas /(p,y)+ £/ x,y) = 7 if and only
if £p(q,y) < Lp(X, ).

Proof. Extend pg to a segment px’ of length |px'| = |pg| + |gx|; see
Figure 1. Consider the following obvious identities:

(1) Wﬁéq(pvy)iéq(xvy):Zq(xivy)iéq(xvy)v
@) Xy — oyl =[xy =[x,
(3) Ly Y) — L33 = £(q,y) — /5(X,F) .

By Lemma 1.1, the right side of (1) and the left side of (2) have the same
sign, and also the right side of (2) and the left side of (3) have equal sign.
Hence, the same holds for the left side of (1) and the right side of (3). L]



328 U. LANG AND V. SCHROEDER

Let again M be a metric space, and let x € R. Given p,x,y € M, a
triple (7,X,¥) of points in MZ is called a comparison triple for (p,x,y) if
px| = |px|. |p¥| = |py|, and Xy = |xy|. If s < 0, such a comparison
triple always exists, and if & > 0, a comparison triple exists if and only
if per(p,x,y) < 2D,. This is obvious if one of the distances a := |py|,
b := |px|, and ¢ := |xy| is zero or equal to D,. Otherwise, when
a,b,c €(0,D,), the assertion follows from LLemma 1.1: Depending on whether
a+b <D, oratb>D,, the function ¢, maps [0, 7] bijectively onto
[|¢ —b|,a+b] or [la—Db|,2D,, — a— b]. In either case, the given number ¢
1s contained in the image of ¢4, so there exists a unique ~y € [0, 7] such
that ¢, ,(y) =c.

Now consider a triple (p,x,y) of points in M such that p ¢ {x,y}. In
case k > 0, suppose that |px|, |py| < D, and per(p,x,y) < 2D, . Then any
comparison triple (7,X,¥) in M2 uniquely determines a hinge Hx(X,y) and
one defines the comparison angle /7(x,y) € [0, 7] as the hinge angle, thus

4;(3‘7,)’) = 45@5)

For an arbitrary hinge H,(x,y) in M, the (Alexandrov) angle or upper angle
of H,(x,y) is then defined by

Zp(x,y) 1= limsup é;(u,fu).

HEPX, vCpY
HU—p

The number /,(x,y) is clearly independent of x € R. Furthermore, if px, py, pz
are three nondegenerate segments, the triangle inequality

“ Lo )+ Lp(y, D) 2 Lp(x,2)

holds, see [2] or [4, Part I, Proposition 1.14].

Let again H = H,(x,y) be a hinge in M, and suppose that per(/{) < 2D,,.
Let (p,X,y) be a comparison triple in M2 for (p,x,y), and let Hy(%,$) be
a comparison hinge in M2 for H, that is, |p%| = |px|, |p9| = |py|, and
(X, ) = Z,(x, ). We are interested in the following comparison properties
that H may or may not have:

(Ax) (Angle comparison) Zp(x,y) = £;(x,y) (= £, 3));
(H,) (Hinge comparison) |xy| < |39/ ;

E]

(D,) (Distance comparison) |uv| > |#T| whenever u € px, v € py, U € pX,
v cpy, and |pu| = [pu|, |pv| = [p7|.

H]
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It follows easily from Lemma 1.1 that, for an individual hinge H as above,
(De) = (Aw) <& (Hy).

For the missing implication (A,) = (Dy), see Lemma 1.3 below. The metric
space M is called a space of curvature > w in the sense of Alexandrov if
every point g has a neighborhood U, such that any two points in U, are
connected by a segment in M and every hinge I = H,(x,y) with p,x,y € U,
(and per(H) < 2D,) satisfies (D). Again due to Lemma 1.1, the upper
angle between two segments in such a space M always exists as a limit, by
monotonicity. We call a segment px in a metric space balanced if, for every
nondegenerate segment gy with ¢ € px\ {p,x}, the angles formed by gy and
the subsegments gp, gx of px satisfy /. (p,y)+/4(x,y) = w. Note that, by (4),
the inequality Z.(p,y) + Z,(x,¥) > 7 always holds, since Z (p,x) = n. Of
course, in a Riemannian manifold every segment is balanced.

LEMMA 1.3. let k € R, and let M be a metric space. Then:

() If M is a space of curvature > r in the sense of Alexandrov, then all
segments in M are balanced.

(i) Let H = H,(x,y) be a hinge in M with balanced sides and per(Il) < 2D,. .
Suppose that every pair of points in px\Upy is connected by a segment in M

and every hinge with one side contained in px or py and the opposite
endpoint on the other side of H satisfies (Ay). Then H satisfies (D).

Proof. For (1), let px, gy be two nondegenerate segments in M such that
g €px\ {p.x}. Let u e gp, vegx, weqy be points distinct from ¢, and
assume that u # w. If u, v, w are sufficiently close to ¢, then there is a segment
uw such that the hinge H, (v, w) with uwv C px satisfies (D). Let (&, v, w)
be a comparison triple in M2 for (u,v,w), and let § € #T be the point with
g = |qu|. Then |qu| > [gw| and so /g, w) > /u(q, W) = /z(T,W) by
Lemma 1.1. Now Lemma 1.2 shows that L;(u,w) + L;(U,w) < 7. Passing
to the limit for u,v,w — q¢ we get L (p,y) + L x,y) < m.

We prove (ii). Let (p,X,y) be a comparison triple in M2 for (p,x,y),
and let u#,v and #,7 be given as in (D). We first show that |uy| > |[@y|.
Omitting some trivial cases, we assume u & {p,x,y}. Choose a segment uy.
Then /F(p,y)+ /5, y) < 2 p,V)+ 7 (x,¥) = © by the assumptions and so
Lemma 1.2 yields Zf(u,y) > /5(X,y) = /5@, ). By Lemma 1.1, [uy| > [#y].
An analogous argument shows that |uv| > |[uv| if (p,u,y) is a comparison
triple for (p,u,y) and © € py is such that |pv| = |p¥|. Since |uy =
lwy| > |[#y|, we have /5@, v) = L3,y > Z5(#,¥) = 5%, 7) (assuming
p & {u,v}) and hence |uv| > |#v| by Lemma 1.1. So |uv| > [@v|. [
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2. THE GLOBALIZATION THEOREM

Now we prove Toponogov’s theorem, in the form stated in Theorem 2.3
below. The central piece of the argument is Proposition 2.2. The following
lemma and the concluding part of the proof are standard techniques.

LEMMA 2.1. let s € R, let M be a metric space, and let H = H,(x,y)
be a hinge in M with per(H) < 2D, . Suppose that there exist a point q
on px, distinct from p,x,y, and a segment gy such that each of the three
hinges H,(q,v), Hy(p,y), Hy(x,y) with sides in pxUpyUqy satisfies (A,), and
Lp,y)+ Lgx,y) = w. Then H satisfies (A,) as well.

Proof. Note that per(p, q,y), per(g,x,y) < per(f) < 2D,;. Since H,(q,y)
satisfies (A.), we have Z,(x,y) = Zp(q,y) = Zg(q,y). By the remaining
assumptions, Z7(p,y) +Z£5(x,¥) < Ly(p,y) + Ly(x,y) = m and so Lemma 1.2
gives L;(q,y) > L;(x, y). Thus Z,(x,y) = A;‘(x,y). []

PROPOSITION 2.2. Let k € R, and let M be a metric space such that every
pair of points in M at distance < D, is connected by a balanced segment.
Let H,(x,y) be a hinge in M with balanced sides and per(p,x,y) < 2D, . If
every hinge Hy(x',y") in M with balanced sides, per(p’,x',y’) < 2 per(p,x,y),
and {X,y'} N(pxUpy) # & satisfies (Ay), then Hy(x,y) satisfies (A,) as
well.

Proof. We prove the following assertion, from which the general result
follows easily by a repeated application of Lemma 2.1: Let Hy = H,,(xo, yo)
be a hinge in M with balanced sides and |pyxp| < min{ % lPoyol, D — |p0y0\} ;
If every hinge Hy(x',y") in M with balanced sides, per(p’,x',y") < % per(Hyp),
and {xX',v'y N {xo,y0} #£ @ satisfies (A), then Hy satisfies (A,.) as well. We
put a:= |poyo| and b := |poxg|, so b < %a and ¢ +b < D,..

First, starting from H;, we will inductively construct a particular sequence
of hinges H, = H, (x,,¥,) in M with balanced sides such that {x,,y,} =
{x0,y0} and the numbers I, 1= |p,x,| + |pny.| satisfy

(5 at+b=L>L>2hL>...2 |xyo

E]

furthermore, for n > 1, |pyx,| =b' = %a and hence

Pu¥a| = |%n¥n| = |Pa¥n] = |x0y0| — ¥’ > a—b—-b" > ¥
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Yo — Xp—1

FIGURE 2

Constructing f, from H,_;

The hinge Hy is already given. For n > 1, if H,_; is constructed, let
Pn € Pn_1Yn—1 be the point at distance b’ from y,_;, and put x, := v,_; and
VYp 1= X, 1. Note that

|pnyn‘ < ‘pn—lpn‘ + |Pn_1yn\ = Ly = v <a+b-— b < %a

and hence per(p,_1,Pn, ¥n) < %a < %per(Ho). The sides of H, are the
subsegment p,x, of p,_1y,—1 and an arbitrarily chosen balanced segment p,v,.
Denote the angle of H, by ~,, and note that since p, 1y, | is balanced,
the adjacent angle between p,y, and the subsegment p,p, | of p, 1y, |

equals ™ — ,. See Figure 2. Clearly I, </, ;.

Now we will construct a sequence of hinges H, := H (Xn,¥,) n Mi
such that ‘}_)nfn| = ‘pnxn , I_)nyn| = |pnyn :
(6) [Xo¥ol = FiF1| = [Fo¥al = ..,

and such that the angle #, of [, is greater than or equal to ~,. Let I
be a comparison hinge for Hp, thus |[p%o| = b, |py,| = @, and % = 7o.
For n > 1, given H, i, let p, € p, ,¥, ; be the point at distance b’ from

¥, 1. put X, :=¥, |, and choose y, such that (p, ,,p,,¥,) 1s a compari-
son triple for (Py_1,pPn,¥s). This determines H,. Put &, = Ly Py Yn) =
Z5 (%, ¥,). See Figure 3. Since per(p,_1,pn.yn) < %per(HO) and y, €
{x0,¥0}, the inequalities v,_1 > @, and 7 —~, > ™ —*, hold by assumption.
Hence, 9, 1 = Yu_1 = &y and s0 X, 1y, | = |%¥,| by Lemma 1.1.

Now we can easily conclude the proof. For n — co, we have

‘[_)n—hl_jn‘ + ‘pnflyn| - |pnyn‘ - lnfl - ln — 0
by (5), consequently &, — 7 and 4, — 7 (note that |p, ,p,| > a—b—2b" >0
and |p, .y, =b' > 0 for n > 2). This implies in turn that
by — ‘xnyn‘ = |13an‘ E% |I_)nyn| o ‘fl’lyn‘ —0
as n — oo (recall that [, < a4+ b < D). In view of (6) and (5), this gives

IXo¥o| = |xovo|, so Hp satisfies (H,) and hence also (A). ]
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FIGURE 3

Constructing H, from H,

THEOREM 2.3. Let v € R, and let M be a complete metric space of
curvature > r in the sense of Alexandrov. Suppose that every pair of points

in M at distance < D, is connected by a segment. Then every hinge H,(x,y)
in M with per(p,x.y) < 2D, satisfies (A,), (Hy), and (D).

Proof. Recall that by Lemma 1.3 all segments in M are balanced;
furthermore, it suffices to prove that every hinge in M with perimeter
less than 2D, satisfies (A;). Suppose to the contrary that there exists a
hinge H in M with per(H) < 2D, that does not satisfy (A.). Then,
by Proposition 2.2, there exists a hinge H; with per(H;) < %per(H) and
an endpoint on the union of the sides of H such that H; does not
satisfy (A,) either. Inductively, for n = 2,3,..., there exist hinges H, such
that per(H,) < %per(H,,,l) < (%)Hper(H), some endpoint of H, lies on the
union of the sides of H,_, and H, does not satisfy (A,). Let p, denote the
vertex of H,. Clearly the sequence (p,) 1s Cauchy and thus converges to a
point ¢ € M. However, since M has curvature > x, all hinges with vertex
and endpoints in an appropriate neighborhood of ¢ satisfy (A,). This gives a
contradiction, as p, — g and per(H,) — 0. ]

APPENDIX : TRIGONOMETRY OF MODEL SPACES

In this appendix, we collect some trigonometric formulae for the model
spaces M2 | stated in a unified way for all x € R in terms of the generalized
sine and cosine functions.

For x € R we denote by sn.: R — R and c¢s,.: R — R the solutions
of the second order differential equation f” + xf = 0 satisfying the initial
conditions

sn, () =0, sn:{(O) =1, cs(0)y=1, cs:{(O) =0.
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Explicitly,

=

s, (x) = Z ixzﬂﬂ

sin(y/kx)/ /K if £ >0,

=<{x if x=0,

2n 1 1)
=0 sinh(v/—kx)//—r if K <0,
ey cos(y/Kx) if kx>0,
o —K 2n . o
cs,{(x)—z (2n)!x =<1 if k=0,

n=0 cosh(v/—kx) if K < 0.

Note that
Sl =Ey ; csl, = —kSn,,

and
(7 cs? +xsn = 1.

The following functional equations hold. For x.y € R,

8) sn.(x +¥) = sn.(x) cs,. (¥) + cs.(X) sn.(y),
Q) CSplX +¥) = €5,(xX) €8, (V) — K 5N (x) sn.(y);

in particular,

(10) sn,.(2x) = 280, (x) cs,.(x),

(11) 8,(2x)

csi (x) — & sni (x)
2es2(x) — 1

1—2k sni(x) :

Replacing x by x/2 in the last three lines one gets

(12) msni(

(13) csi(

Karcher [7] defined a “modified distance function” md,: R, — R by

X)_lcs,{(x)
T 2 ’
JC)1+CSH(JC)
ra 2 '

(1 —csp()/ Kk if K#DO,

d,.(x):= L(Ddt =
md,.(x) !/0 sn. () dt {xZ/Z P

In view of (12), this can be written as

md,.(x) = ani (E) .

L

333
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It is easy to check that

(14 cs,, +rumd, =1,
(15) md.(x +y) = md,.(x —y) + 2 sn,(x) sn.(¥)
= md,(x) + 8. (x) md(y) + sn.(x)sn.(y)
= md,(x) c8.(y) + mde(y) + sn.(x) sn.(y),
(16) md,.(2x) = 2 sn’(x)
=2(1 + cs,.(x)) md,.(x) .

We turn to trigonometry. Consider a triangle in M2 with vertices x,y,z
and (possibly degenerate) sides of length a,b,c > 0, where a = |yz|, b = |zx/,
and ¢ = |xy|, and let «, 3, € [0, 7] denote the angles at x,y,z, respectively,
whenever they are defined. The law of cosines can be stated in a unified
way as

(17) md,(¢) = md(a + D) — sn.(a) sn.(D)(1 + cos(y))
= md.(a — b) + sn.(a) sn.(b)(1 — cos(y))
= mdx(a) + cs.(@) md,(b) — sn, (@) sn.(b) cos(y)
= md (@) cs.(b) + md, () — sn,(a) sn. (D) cos(7y)

(compare (15)), or, in terms of sn,, as
2(C\ _ 20t b N 2(7
(18) sn,, (2) = snﬂ( ) sn,.(a)sn,(b) cos (2)

%
= sni (a;b) + sn,.(a) sn, () sin’ (%) )

Multiplying any of these equations by & one obtains the more familiar formula
(19) cs,(€) = csp(@) cs. (D) + rsn.(a)sn.(b) cos(y)

for the hyperbolic and spherical geometries. The “dual law of cosines” or
“law of cosines for angles” is the identity

20) cos(y) = sin(a) sin(3) cs, (¢) — cos(a) cos(S3) ;

in the Fuclidean case it represents the fact that a + 44+ v = 7. The law of
sines 1s given by

2D sn, (a)sin(/3) = sn,.(b)sin(cy) .
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Let 7 denote the distance from the midpoint of the side xy of the triangle to
the vertex z. Then

22) 2csﬁ(§) il F = g e sl (B — 2mdﬁ(g);
equivalently,
o 2wt i) -2

(This equation may be used to define spaces of curvature > sk or < k.)

Multiplying by & one obtains the simple formula

(24)

2 csy (%) csx () = csp(a) + cs.(P)

for the hyperbolic and spherical geometries.

Proof of (22). (We omit all subscripts x.) By (17),

md{/) = md(b) cs(g) + md(g) — sn(b) sn(g) cos(ay),
md(a) = md(b) cs(c) + md(c) — sn(b) sn(c) cos(cy) .

Using (13) and (10) we get

ZCS(%) md(f) — md{a) = md(b) + 208(%) md(%) —md(e).

Now the formula follows from (16). L]

(1]
(2]
[3]
[4]
(5]

(6]
[7]
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