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ON TOPONOGOV 'S COMPARISON THEOREM FOR

ALEXANDROV SPACES

by Urs LANG and Viktor SCHROEDER

Introduction

In this expository note, we present a transparent proof of Toponogov's
theorem for Alexandrov spaces in the general case, not assuming local

compactness of the underlying metric space. More precisely, we show that

if M is a complete geodesic metric space such that the Alexandrov triangle
comparisons for curvature greater than or equal to k G R are satisfied locally,
then these comparisons also hold in the large; see Theorem 2.3. The core
of the proof is Proposition 2.2. It states that a hinge H px U py in M
has the desired comparison property if every hinge H' p'xf U p'y' with
an endpoint on H and perimeter \p'x'\ + \p'y'\ + \^yf\ less than some fixed
fraction of the perimeter of H has this property. The argument involves simple
inductive constructions in M and the model space of constant curvature,

leading to two monotonie quantities (see (5) and (6)), whose limits agree.
This immediately gives the required inequality.

The history of Toponogov's theorem starts with the work of Alexandrov [3],
who proved it for convex surfaces. Toponogov [10, 11, 12] established the result

for Riemannian manifolds, in which case the local comparison inequalities are

equivalently expressed as a respective lower bound on the sectional curvature.

A first purely metric local-to-global argument was given in [8] for geodesic
metric spaces with extendable geodesies. In its most general form, without the

assumption of local compactness, the theorem was proved in [6] (in [5] the

result is attributed to Perelman). An independent approach, building on [8],

was then described by Plaut [9]. The proof presented here is a modification
of his argument.
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In fact, the statements in both [6] and [9] differ from what is shown
here in that the metric of M is merely assumed to be intrinsic (that is,

d(p,q) equals the infimum of the lengths of all curves connecting p and q,
but it is not required that the infimum be attained); correspondingly, the

Alexandrov comparisons are formulated without reference to shortest curves
in M. However, assuming M to be geodesic is not a severe restriction. By [9,
Theorem 1.4], for every point p in a complete, intrinsic metric space M of
curvature locally bounded below there is a dense G$ subset Jp of M such

that for all q G Jp there exists a shortest curve from p to q. A proof of
Toponogov's theorem for intrinsic spaces via essentially the same construction

as here, which was found independently by Petrunin, is contained in the

preliminary version of the forthcoming book [1]. Nevertheless, we felt that

it would be worthwhile to make the argument in the present sleek form for
geodesic spaces (such as complete Riemannian manifolds) available in the

literature.

In this section we fix the notation and recall some basic definitions and

facts from metric geometry.
Let M be a metric space with metric d. By a segment connecting

two points p,q in M we mean the image of an isometric embedding

[0,d(p,q)] —> M that maps 0 to p and d(p,q) to q. We will write pq
for some such segment (assuming there is one), despite the fact that it need

not be uniquely determined by p and q. We will use the symbol \pq\ as

a shorthand for d(p,q), regardless of the existence of a segment pq. By a

hinge H Hp(x,y) in M we mean a collection of three points p,x,y and two
nondegenerate segments px,py in M; thus p {A,y} (but possibly x — y).
We call p the vertex, x,y the endpoints, and px,py the sides of H. The

perimeter of a triple (p,x,y) of points in M is the number

By the perimeter per(H) of a hinge H — Hp(x, y) we mean the perimeter of
the triple (p,x,y).

We denote by M the m-dimensional, complete and simply connected

model space of constant sectional curvature kgR. We write

1. Preliminaries

per(p,x,y) := \px\ + \py\ + \xy
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Figure 1

Proof of Lemma 1.2

for the diameter of MJJ. Some trigonometric formulae for the model spaces are

collected in the appendix. The following basic monotonicity property follows
readily from the law of cosines, equation (18).

LEMMA 1.1. Let kgR, and let a,b G (0 ,DK) be fixed. For 7 G [0,7r],
let Hp(x,y) be a hinge in with \px\ — b and \py\ a such that the hinge

angle Zp(x,y) (between px and py) equals 7, and put catb(7) := \xy\. The

function ca,b so defined is continuous and strictly increasing on [0,7r].

The next lemma goes back to Alexandrov [3], compare [5, Lemma 4.3.3].

LEMMA 1.2. Suppose that Hp(q,y) and Hq(x,y) are two hinges in
with \py\,\qy\, \pq\ + \qx\ < DK, and Hp(x,y) is a hinge in M\ such that

\px\ \pq\ + \qx\, |py| — \py\> and |*y| — |xy|. Then Zq(p,y) + Zq(x,y) < 1r

if and only if Zp(q,y) > /.p(x,y), whereas Zq(p,y)-\- Zq(x,y) > 1r if and only

if ^p(q,y) < Zp(x,y).

Proof. Extend pq to a segment px' of length |px'\ \pq\ + \qx\ ; see

Figure 1. Consider the following obvious identities :

(1) TT - ^q(p,y) - ^q(x,y) Zq(x' ,y) - Zq(x,y),

(2) tyy\ ~ l-^l — Wy\ ~ l^yl

(3) Zp(x', y) - Zp(x, y) Zp(q, y) - Zp(x, y)

By Lemma 1.1, the right side of (1) and the left side of (2) have the same

sign, and also the right side of (2) and the left side of (3) have equal sign.

Hence, the same holds for the left side of (1) and the right side of (3).
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Let again M be a metric space, and let n G R. Given p,x,y G M, a

triple (p,x,y) of points in MJ is called a comparison triple for (p,x,y) if
\px\ - \px\, |py| - \py\, and |Äy| - \xy\. If k < 0, such a comparison

triple always exists, and if k > 0, a comparison triple exists if and only
if per(p,A,y) < 2DK. This is obvious if one of the distances a := \py\,
b \px\, and c \xy\ is zero or equal to DK. Otherwise, when

a,b,c G (0, Dk), the assertion follows from Lemma 1.1: Depending on whether

a-\-b < Dk or a-\-b > DK, the function ca^ maps [0, tt\ bijectively onto

[\a — b\,a + b] or [|a — b\,2DK — a — b~\. In either case, the given number c
is contained in the image of ca,b, so there exists a unique 7 e [0,7r] such

that ca>b(7) c.

Now consider a triple (p,x,y) of points in M such that p {A,y}. In

case k > 0, suppose that \px\, \py\ < DK and per(p,x,y) < 2DK. Then any
comparison triple (p,x,y) in Mj uniquely determines a hinge Hp(x,y) and

one defines the comparison angle /.p(x,y) G [0,7r] as the hinge angle, thus

Z;(*,y):=Z^(Ä,y).

For an arbitrary hinge Hp(x,y) in M, the (Alexandrov) angle or upper angle
of Hp(x,y) is then defined by

Zp(x,y):= limsup Zp(u,v).
u£px, vÇ.py

u,v—^p

The number Zp(x,y) is clearly independent of kgR. Furthermore, if px,py,pz
are three nondegenerate segments, the triangle inequality

(4) /.p(x, y) + Zp(y, z) > Zp(x, z)

holds, see [2] or [4, Part I, Proposition 1.14].

Let again H — Hp(x, y) be a hinge in M, and suppose that per(H) < 2DK.
Let (p,x,y) be a comparison triple in Mj for (p,x,y), and let Hp(x,y) be

a comparison hinge in Mj for H, that is, \px\ \px\, \py\ — \py\, and

Zp(x, y) — Zp(x, y). We are interested in the following comparison properties
that H may or may not have:

(A«) (Angle comparison) Zp(x,y) > Z£(x,y) Zp(x,y))-
(Hk) (Hinge comparison) \xy\ < |^y| ;

(Dk) (Distance comparison) \uv\ > \üv\ whenever u G px, v G py, m G px,
v G py, and \pu\ — \pü\, \pv\ — \pv\-
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It follows easily from Lemma 1.1 that, for an individual hinge H as above,

(DJ => (AJ ^ (HJ.
For the missing implication (AJ => (DJ, see Lemma 1.3 below. The metric

space M is called a space of curvature > n in the sense of Alexandrov if
every point q has a neighborhood Uq such that any two points in Uq are

connected by a segment in M and every hinge H — Hp(x,y) with p,x,y E Uq

(and per(H) < 2Z)J satisfies (DJ. Again due to Lemma 1.1, the upper
angle between two segments in such a space M always exists as a limit, by
monotonicity. We call a segment px in a metric space balanced if, for every
nondegenerate segment qy with q E px\{p,x}, the angles formed by qy and

the subsegments qp,qx of px satisfy Zq(p,y)-\-Zq(x,y) ir. Note that, by (4),
the inequality Zç(p, y) + Z?(a, y) > tt always holds, since Zg(p, x) — ir. Of
course, in a Riemannian manifold every segment is balanced.

LEMMA 1.3. Let kgR, and let M be a metric space. Then:

(i) If M is a space of curvature > k in the sense of Alexandrov, then all
segments in M are balanced.

(ii) Let H — Hp(x, y) be a hinge in M with balanced sides and per(H) < 2DK

Suppose that every pair ofpoints in pxUpy is connected by a segment in M
and every hinge with one side contained in px or py and the opposite
endpoint on the other side of H satisfies (AJ. Then H satisfies (DJ.

Proof. For (i), let px, qy be two nondegenerate segments in M such that

q G px \ {p,a}. Let u G qp, v G qx, w G qy be points distinct from q, and

assume that u ^ w. If u,v,w are sufficiently close to q, then there is a segment

uw such that the hinge Hu(v, w) with uv C px satisfies (DJ. Let (m, v, w)
be a comparison triple in for (u, v, w), and let q EU v be the point with
\qü\ — \qu\. Then \qw\ > \qw\ and so Z^(q,w) > Ljfq, w) — L^(v, w) by
Lemma 1.1. Now Lemma 1.2 shows that ZJ(m, tu) + ZJ(i>, w) < tt. Passing

to the limit for u,v,w —>• q we get Aq(p,y) + Zq(x,y) < tt.
We prove (ii). Let (p,x,y) be a comparison triple in for (p,x,y),

and let u,v and U,v be given as in (DJ. We first show that |wy| > |wy|-

Omitting some trivial cases, we assume u ^ {p,A,y}. Choose a segment uy.
Then Z£(p,y) + Z£(x,y) < Zu(p,y) + Zu(x,y) tt by the assumptions and so

Lemma 1.2 yields Zp(u,y) > Zp(x,y) — Zp(U,y). By Lemma 1.1, \uy\ > |wy|-

An analogous argument shows that \uv\ > \uv\ if (p,u,y) is a comparison

triple for (p,u,y) and v E py is such that \pv\ \pv\- Since \uy\
\uy\ > \üy\, we have Z.p(u,v) /.p(u,y) > Z.^Ji,y) Z.p(U,v) (assuming

p fi {m,f}) and hence \uv\ > \üv\ by Lemma 1.1. So \uv\ > \Uv\.
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2. The globalization theorem

Now we prove Toponogov's theorem, in the form stated in Theorem 2.3

below. The central piece of the argument is Proposition 2.2. The following
lemma and the concluding part of the proof are standard techniques.

LEMMA 2.1. Let k G R, let M be a metric space, and let H — Hp(x, y)
be a hinge in M with per(H) < 2DK. Suppose that there exist a point q

on px, distinct from p,x,y, and a segment qy such that each of the three

hinges Hp(q,y), Hq(p,y), Hq(x,y) with sides in pxUpyUqy satisfies (AK), and

Zq(p,y) + Zq(x,y) — 7r. Then H satisfies (AK) as well.

Proof. Note that per(p, q,y), per(#, x,y) < per(H) < 2DK. Since Hp(q,y)
satisfies (AK), we have Zp(x,y) Zp(q,y) > Zp(q,y). By the remaining
assumptions, Z^(p,y) + Z^(x,y) < Zq(p,y) -\- Zq(x,y) — ir and so Lemma 1.2

gives Z;(q,y) > Z£(x,y). Thus Zp(x,y) > Z£(x,y).

Proposition 2.2. Let kgR, and let M be a metric space such that every

pair ofpoints in M at distance < DK is connected by a balanced segment.
Let Hp(x,y) be a hinge in M with balanced sides and per(p,A,y) < 2DK. If
every hinge Hp>(x',y') in M with balanced sides, per(p',x!,y') < | per(p,x,y),
and {V,/} n (px U py) ^ 0 satisfies (AK), then Hp(x,y) satisfies (AK) as

well.

Proof. We prove the following assertion, from which the general result
follows easily by a repeated application of Lemma 2.1 : Let Hq Hpo(xo,yo)
be a hinge in M with balanced sides and |po*o| < minj^lpoyol?^« — Ipo^ol} •

If every hinge Hp>(x' ,y') in M with balanced sides, peiip', Z,y') < I per(tfo),
and {Z,y/} Pi {^0,^0} 7^ 0 satisfies (AK), then Hq satisfies (AK) as well. We

put a |p0yo| and b := |po*o| .so b < ^a and a + b < DK.

First, starting from Hq we will inductively construct a particular sequence
of hinges Hn — HPn(x„,y„) in M with balanced sides such that

and the numbers ln \p„x„\ + \pnyn\ satisfy

(5) a + b — Iq > l\ > I2 > Z I-Tojo I

furthermore, for n > 1, \p„xn\ b' := \a and hence

\pnyn\ > \xtfn\ - \p»xn\ |A0yo| - b' > a -b -b' > b'.
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yn xn_ i

Figure 2

Constructing Hn from i/„_ i

The hinge Ho is already given. For n > 1, if is constructed, let

pn G be the point at distance b' from y„_i, and put xn y„-\ and

yn x„-i. Note that

\pnyn\ < |p«-ip«| + \Pn-iyn\ — In-1 - y < a + b - b' < \a
and hence per(pn-i,pn,yn) < |a < |per(//o)- The sides of Hn are the

subsegment pnxn ofpn~\yn-\ and an arbitrarily chosen balanced segment pnyn-
Denote the angle of Hn by 7„, and note that since pn-iyn-i is balanced,
the adjacent angle between pnyn and the subsegment p„pn- 1 of pn-iyn-i
equals 7r — 7See Figure 2. Clearly /„ < l„-\.

Now we will construct a sequence of hinges Hn := Hpn(x„,yn) in

such that \pnxn\ \p„xn\, \pnyn\ \p»y»\,

(6) IWo I > l^i I > lw2l > >

and such that the angle % of Hn is greater than or equal to 7Let Hq
be a comparison hinge for Hq, thus |p0Âo| b, |p0y0| — a, and 70 70-
For n > 1, given H„-i, let pn G p„_1y„_1 be the point at distance b' from

y„-i, put xn yn_i, and choose yn such that (pn_x ,pn,yn) is a comparison

triple for (p„-i,p„,y„). This determines Hn. Put Qn : Zpnl(pn,yn)
Zpn l(i„7„). See Figure 3. Since pev(pn_upn,yn) < \ per(//0) and yn G

{wyo}> the inequalities 7„_i > ü„ and tt — 7„ > tt — % hold by assumption.
Hence, %-i > 7„_i > ojn and so |Ä„_iy„_1| > \x„y„\ by Lemma 1.1.

Now we can easily conclude the proof. For n —> 00, we have

K-iAl + lA-Äl -ppj l»-i - 0

by (5), consequently Q„ —> tt and % —>• tt (note that \pn_iPn\ > a—b—2b' > 0

and \pn_iyn\ b' > 0 for n > 2). This implies in turn that

ln - lw„l - \p»xn\ + \p„y»\ - lw„| 0

as n —> 00 (recall that /„ < a + b < DK). In view of (6) and (5), this gives
IWo I > IWo I i so Ho satisfies (HK) and hence also (AK).
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X» yn

b' Pn Pn

Figure 3

Constructing H„ from H„_

THEOREM 2.3. Let n £ R, and let M be a complete metric space of
curvature > k in the sense of Alexandrov. Suppose that every pair ofpoints
in M at distance < DK is connected by a segment. Then every hinge Hp(x, y)
in M with per(p,A,y) < 2DK satisfies (AK), (HK), and (DK).

Proof. Recall that by Lemma 1.3 all segments in M are balanced;
furthermore, it suffices to prove that every hinge in M with perimeter
less than 2DK satisfies (AK). Suppose to the contrary that there exists a

hinge H in M with per(H) < 2DK that does not satisfy (AK). Then,

by Proposition 2.2, there exists a hinge H\ with per(7/i) < | per(H) and

an endpoint on the union of the sides of H such that H\ does not

satisfy (AK) either. Inductively, for n — 2,3,..., there exist hinges Hn such

that per(Hn) < |per(//„_i) < (|)"per(//), some endpoint of Hn lies on the

union of the sides of an^ Hn does not satisfy (A„). Let p„ denote the

vertex of Hn. Clearly the sequence (pn) is Cauchy and thus converges to a

point q £ M. However, since M has curvature > k, all hinges with vertex
and endpoints in an appropriate neighborhood of q satisfy (A„). This gives a

contradiction, as pn —> q and per(Hn) —»0.

In this appendix, we collect some trigonometric formulae for the model

spaces stated in a unified way for all « £ R in terms of the generalized
sine and cosine functions.

For k £ R we denote by snK: R —> R and csK: R —> R the solutions
of the second order differential equation f" + nf — 0 satisfying the initial
conditions

Appendix : Trigonometry of model spaces

snK(0) 0, sn'K(0) 1, csK(0) 1 cs'K(0) 0
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Explicitly,

sin if«>0:
snM V p^7y#+1 I * if « - 0

»=0 sinh(y/—KX)/y/—K if K < 0.

COS(y/Kx) if K > 0

»=0

Note that

and

cosh(y/^KX) if K < 0.

es' — k snK

(7) cs^+«sn^ l.
The following functional equations hold. For a, y G R,

(8) snK(x + y) snK(A) csK(y) + csk(a) snK(y)

(9) csk(a + y) csk(a) csK(y) - n snK(a) snK(y) ;

in particular,

10) snK(2a) 2 snK(a) csk(a)

(11) csk(2a) — es\(a) — k snJ(A)

2cs^(A) - 1

— 1 — 2nsnzK(x).

Replacing a by a/2 in the last three lines one gets

/a\ 1 — csk(a)
M) ;
»s «4(3 ^1^.
Karcher [7] defined a "modified distance function" mdK : R+ —> R+ by

mdK(A) : I snK(t)dt — j
In view of (12), this can be written as

(1 — csk(a))/« if k 7^0,

a2/2 if k 0.

2 ' X
mdK(A) — 2 sn I —
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It is easy to check that

(14) csK+k mdK 1

(15) mdK(x + y) mdK(x - y) + 2 snK(x) snK(y)

mdK(x) + csK(x) mdK(y) + snK(x)snK(y)

mdK(x) csK(y) + mdK(y) + snK(x) snK(y)

(16) mdK(2x) — 2 sn
2 (x)

2(1+ cs«(x)) mdK(x).

We turn to trigonometry. Consider a triangle in M2 with vertices x,y,z
and (possibly degenerate) sides of length a,b,c> 0, where a - \yz\, b \zx\,
and c — |xy|, and let a, /3,7 G [0,7r] denote the angles at x,y,z, respectively,
whenever they are defined. The law of cosines can be stated in a unified

way as

(17) mdK(c) mdK(a + b)~ snK(a) snK(&)(l + cos(7))

mdK(a -b) + snK(a) snK(&)(l - cos(7))

mdK(a) + esK(a) mdK(&) - snK(a) snK(b) cos(7)

mdK(a) esK(b) + mdK(b) - snK(a) snK(b) cos(7)

(compare (15)), or, in terms of snK, as

(18> snJ (y) snJ (^y~) ~sn^sn^cos2(2)
sn2 (-y-) + snK(a) snK(b) sin2 Q)

Multiplying any of these equations by k one obtains the more familiar formula

(19) esK(c) esK(a) esK(b) + « snK(a) snK(b) cos(7)

for the hyperbolic and spherical geometries. The "dual law of cosines" or
"law of cosines for angles" is the identity

(20) cos(7) sin(a) sin(/3) csK(c) — cos(a)cos(ß) ;

in the Euclidean case it represents the fact that a + ß + 7 tt The law of
sines is given by

(21) snK(a)sin(/3) snK(fr) sin(a)
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Let I denote the distance from the midpoint of the side xy of the triangle to
the vertex z. Then

(22) 2es« md« I md«(a) + md«(2>) - 2 md« (0 ;

equivalently,

(23) 2 cs, (0 S4(J) <(|) +4(|) - 2*»£(!)

(This equation may be used to define spaces of curvature > k or < k.)
Multiplying by k one obtains the simple formula

(24) 2es« es«(/) es«(a) + esK(b)

for the hyperbolic and spherical geometries.

Proof of (22). (We omit all subscripts «.) By (17),

md(/) — md(t)cs(!) + md(!) — sn(fc)sn(!) cos(a)

md(a) — md(fr) cs(c) + md(c) — sn(b) sn(c) cos(a)

Using (13) and (10) we get

2cs(-) md(/) — md(a) — md(&) + 2cs(—) md(-) — md(c)

Now the formula follows from (16).
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