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L’Enseignement Mathématique (2) 59 (2013), 307-324

SUR UN ENSEMBLE DE BESICOVITCH

par Jean-Pierre KAHANE

Un ensemble du plan est appelé ensemble de Besicovitch s’il est d’aire nulle
et contient un segment de droite dans toute direction. Si un ensemble du plan
est d’aire nulle et qu’il contient un segment dans toute direction appartenant a
un certain angle, il suffit d’en prendre les images par des rotations en nombre
fini, et de réunir ces images, pour avoir un ensemble de Besicovitch. Je me
permettrai dans cet article d’étendre le sens du terme, et d’appeler ensemble
de Besicovitch, dans le plan ou dans I’espace (C,R?,R") tout ensemble dont
la mesure de Lebesgue est nulle dans la dimension considérée, et qui contient
des segments de droite dans toutes les directions appartenant a un ensemble
ouvert de directions.

Mon point de départ sera un exemple que j’ai donné en 1969 dans
I’Enseignement Mathématique, a savoir la réunion dans le plan des segments
de droites dont les extrémités appartiennent a deux ensembles de Cantor
de dimension 1/2, homothétiques 1'un de ’autre dans le rapport 2, et non
colinéaires [5]. I’exemple est bon mais la justification que j’avais donnée est
incorrecte. Il y a deux manieres de justifier cet exemple, 1'une, trés rapide,
par I'utilisation du théoréme de projection de Besicovitch [2, 9], et 1'autre,
qui entre plus profondément dans les propriétés arithmétiques de 1’ensemble,
par une méthode de Richard Kenyon [7]. Je donnerai les deux démonstrations,
puis des variantes de cet exemple dans le plan et dans 1’espace, et quelques
commentaires.
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1. LE MODELE REDUIT ET LA PREMIERE DEMONSTRATION
I’exemple donné en [5] est le transformé par affinité du modele réduit que
voici.
Dans le plan de la variable complexe z = x + iy, on considere les deux
ensembles de Cantor

(1) E=2¢Y "gag€{0,1}
g=1
) E =2E+1i,

dont les segments supports sont 'intervalle [0, %} de la droite réelle y = 0,

et I'intervalle [0, %} +i de la droite y = 1. La réunion des segments de droite

qui les joignent est

3) B={(0—-hz+hi, z€E, 7€, 0<h<1}.
Les sections horizontales de B sont les

€] By={0-hz+hi,z€E, 7/ €cE} (@O<hr<])

qu’il sera commode d’écrire B, = (1 — h)B;, avec

U U h
5 B*=E+-FE,6 —=—"— >0, 0< h<1).
&) w=E+SE, S=7— @>0, )

Les parties réelles des B s’écrivent

6) E, = ReB* = { S G+ ushd ™, (g, € {0, 1}2}
=1

— {Zaﬂ‘j, a; € {O,l,u,l—l—u}}.
j=1

Remarquons que

E,=10,11, Ey/p =10, 3],
E = {2%4—1, o € {0,1,2}}
j=1

donc E; est de mesure nulle et sa dimension est log3/log4, et

1
) Eiju=~E,
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ce qui permet de borner 'étude & O < u < 1. Enfin

oo
(8) AE, = {al +Zaj+14*f} = {0,1,u,1 +u} + E,
=1
égalité qui va jouer un réle essentiel dans 1’étude arithmétique.
Examinons les directions des segments joignant les points z de E aux
points 7/ de E’. Ils ont tous 1 pour hauteur, et leurs projections sur l’axe
réel ont pour mesures

Re(? —z) = (¢} — g™
=1

=50+ ) DA

=1

L’ensemble de ces mesures est £, — fﬂﬁf , ¢ est—a—dire [— %, %] Les
j=1

segments ont donc toutes les directions entre f = -3 et ﬁ — % c’est—a—dire

les directions des segments joignant les intervalles—supports de E et de F’,

0.4 et 1.2 +1.

[’ensemble B contient bien des segments de droites dans toutes les
directions appartenant & un ensemble ouvert de directions.

Reste a montrer que mes; B = 0, soit mes B, = 0 pour presque tout h,
soit mes; E, = 0 pour presque tout # (mes, est la mesure de Lebesgue en
dimension ).

La preuve rapide repose sur le théoréme des projections de Besicovitch.
En effet, F, est la projection de E x F dans la projection qui ameéne (x,y) en
x+uy. Or £ x E est un ensemble de dimension 1 irrégulier selon Besicovitch,
purement non—rectifiable dans la terminologie actuelle ([2], [9] p.204). Le
théoréme de Besicovitch dit justement que mes F, = O pour presque tout u
(2], [9] p.-250). Au lieu du théoréme de Besicovitch, on peut se référer a
I’étude de Peres, Simon et Solomyak, plus élémentaire et au cceur du sujet [10].

2. LA METHODE DE KENYON, SECONDE DEMONSTRATION

Je vais maintenant donner une autre preuve, calquée sur une étude de
Richard Kenyon [7]. On va montrer que mes E, = 0 quand u est irrationnel ;
cela suffit pour établir que B est un ensemble de Besicovitch. Voici une
description plus complete des propriétés des FE,.
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Introduisons d’abord une notation. A tout entier n positif, associons
n* € {1,2,3}, le premier chiffre non nul a partir de la droite dans 1’écriture
de n en base 4:

n* =n4™  mod4, j5 =sup{j: ¥ divise n}.

Remarquons que si g est une fraction irréductible, on a soit p* et g* impairs,
soit p* 4 ¢* impair.

THEOREME 1. Si u :§ avec p* + g* impair, . contient un intervalle,
et c’est Uadhérence de son intérieur. Si u = £ avec p* et ¢ impairs,
mes E,, = 0 et la dimension de Hausdorff de E,, est < 1. Si u est irrationnel,
mesi i, =0.

La démonstration reposera sur les lemmes que voici.

LEMME 1. Si mes ik, > 0, £, contient un intervalle.

LEMME 2. Si E, contient un intervalle, ¢’est I’adhérence de son intérieur.
LEMME 3. Si E, contient un intervalle, u est rationnel.

Le lemme 1 joue un rdle clé. Le lemme 2, dont la démonstration est
immeédiate, sera utilisé dans celle du lemme 3. La démonstration du lemme 3
fait intervenir un pavage par des translatés de F,, idée ingénieuse qui était
naturelle pour Kenyon.

L’implication

)] u irrationnel — mes1E, =0

résulte des lemmes 1 et 3. On examinera le cas de u rationnel apres la
démonstration du lemme 2.

Démonstration du lemme 1. L'égalité (8) signifie que 4FE, est la réunion
de quatre translatés de E,, distincts si 'on suppose 0 < u# < 1. Comme

4

mes | (4E,) < Z mes; (translaté de E,) = 4 mes, F,
1

les intersections deux & deux de ces translatés sont de mesure (mes;) nulle;
nous dirons que ces translatés sont disjoints presque partout. En itérant, 4"F,
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est la réunion de 4" translatés de E,, qui sont deux a deux soit confondus,
soit disjoints presque partout. L'ensemble des vecteurs de translations est

Vo=1{0,1,u,1 +u}+4{0,1,u,1+u} +-- +470,1,u,1 +u},
et
(10) P, =V + E;.

Supposons mesk, > 0. Soit x un point de densité de F,. Alors la mesure
de 4*(E, —x)N [—%, %] tend vers 1 quand » — o0, soit

) u 11
(1D nlingomesl((VH+Eu—4x)ﬂ[—E,ED=1.
On peut remplacer V, —4"x dans (11) par I’ensemble W), des w, € V, —4"x
tels que 1w, + F, rencontre [—%, %], soit
11
W,={(V, —4xN(|—=,=| —E,),
(- #00 ([~ 2.2] -5
et comme les wy, + F, sont soit confondus soit disjoints presque partout, leur
; 143 mesiE,
nombre ne dépasse pas ———
mes Lk,

143 E,

(12) W, < L oF 8 enly, _
mes1 Ey,

L’ important dans (12) est que le second membre ne dépend pas de =.
Il existe donc une sous—suite de W, qui converge, et soit W sa limite.
Alors (11) entraine que

mesi (W1 E)N [ ! ID =1

53
Comme W est fini, W+ [, est fermé, donc
(13) W+ E, =1.

Le premier membre est une réunion finie de translatés de F,,, qui sont fermés.
Iun au moins de ces fermés contient un intervalle (Baire). Donc E, contient
un intervalle.
o 2
Démonstration du lemme 2. Soit x € E,, x = > a4~ comme en (6).
J=1
Ecrivons
n
€Y aAH4ATE,.
=1
Si on suppose que E, a des points intérieurs, il en est de méme pour 4~ "F,
quel que soit 7, donc x est limite de points intérieurs de F,. Donc F, est
I’adhérence de son intérieur.
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EXAMEN DU CAS OU u EST RATIONNEL. Les ensembles V), introduits
pour avoir 1’égalité (10) peuvent &tre définis de plusieurs facons:

a4 V,= {O,l,u,1+u}—|—4{0,1,u,1—|—u}—|—---—|—4"’1{0,1,u,1—|—u}

—{ X a7, g e ot 1+u}]

J=1

_ {Zbkél", b {0,1,u,1 +u}}
k=1

n—1
St u, @b e {017
k=0

Quand u est irrationnel, il est clair qu'aucun V, n’a de point multiple. Nous
allons nous intéresser & cette propriété quand u est rationnel.

Commengons par une remarque générale. Le fait qu'aucun V, n’ait de
point multiple peut s’exprimer ainsi: 1’équation

Sadrud gd =0 ke

oll ¢ = (gx) et ¢’ = (g}) appartiennent a {0,1}* et sont nuls hors d’un
ensemble fini, admet au plus une solution pour chaque v € Z donné. Sous
cette forme, il est évident que la propriété est invariante quand on change u
en 4u ou en u/4.

Partant de la fraction irréductible u = %’, on se rameéne donc, sans modifier
la propriété, au cas ot p = p* mod4 et ¢ = ¢* mod4, ce que nous
supposerons maintenant. Le fait qu'aucun V,, n’ait de point multiple signifie
que 1’équation

anA" +p26,’(4" = qZE,’H" —|—pZ€,’c”4k,
k>0 k>0 k>0 k>0
oll g, &', & et & appartiennent a {0, 1} et sont nuls pour k assez grand,
n’admet que les solutions € =", &/ = &', ¢’est—a—dire que I’équation
k k
(15) a> wd+pd ya =0,
k>0 k>0
ot () et (v;) appartiennent & {—1,0,1}N et sont nuls pour & assez grand,
n’admet que la solution (7)) = () = 0. Or I’équation (15) entraine

Y +p*v, =0 mod4.

L’hypothése que p* +¢g* est impair, ¢’est—a—dire p* resp. ¢* = 2 et g* resp.
p* =1 ou 3, entraine 7, =, = 0, puis, en remontant a (15), v; =] =0,
et finalement +;, =y, = 0 pour tout k.
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CONCLUSION. Si p*+g* est impair, aucun 'V, n’a de point multiple.

Prenons maintenant comme hypothése que u = %, 0 <u <1, et

qu aucun V, n’a de point multiple. Chaque V, se compose donc de 4” points

contenus dans 1'intervalle [0,4"] et mutuellement distants d’au moins é.

Soit u, la mesure de probabilité portée par 4~ "V, et chargeant également
tous ses points. Pour tout intervalle J de longueur |J| > $4*", on a

(16) (D) < 24|

Les (1, convergent faiblement vers une mesure de probabilité i portée par E,
(n — ™), et (16) implique que p est absolument continue, avec une
dérivée < 2¢. Donc la transformée de Fourier de 4, /i, tend vers O a 'infini. Or

(17) e = H C@E7n avec C@O) = i(l + ) (1 + ",

=1
= - -t
|6 = 1_[1 | cos4_15| H \ c0s4_fu§\ :
j= j=

Prenons ¢ = 2g4"n :

n o0 n >x2
|| = H| cos g4" x| H |cos g4" 7| H| cospd" | H | cospd™ | .
j=1 j=n+1 i=1 J=r+1
n o>
Les produits [] valent 1, et les produits [] sont indépendants de n. Le
j=1 j=n-+1

o

dernier, qui vaut [] |cosp4m|, n’est nul que si un facteur est nul, ¢’est—i—dire
=1

si p47m =7 mod m pour un certain j, ¢’est—a—dire si p* = 2. De méme, le

o>
premier |][ n’est nul que si ¢* = 2. Dong, si p* et ¢* sont impairs, on a
j=n+1
lim |fi(®)| > O
f— o0

ce qui est incompatible avec 1’hypothese.

CONCLUSION 1. Si p* et ¢* sont impairs, Uun des V,, disons V,,, a
un point multiple, c’est—a—dire que le cardinal de 'V, est strictement inférieur
a 4% :

{Va, = v < 4™,
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Poursuivons. L’égalité (10), itérée, entraine pour m = 1,2,3, ...

A, =V, + Vi, + -+ Vi, +E,
m t;mes
et comme £, C [0,1] puisqu’on a supposé 0 < u < 1, I'hypothese u =

avec p* et ¢* impairs entraine que, pour un ry et un v < #g convenables et
pour tout m, 4™ FE, est recouvert par v intervalles de longueur 1, ¢’est—

o

a—dire que F, est recouvert par v intervalles de longueur 4™ . Il en
résulte l
dimE, < —2Y ~1,
4logn,

dim signifiant la dimension de boite (ou de Minkowski), par conséquent aussi
la dimension de Hausdorft.
Revenons plus haut.

CONCLUSION 2. Si p*+qg* est impair, E, porte une mesure de probabilité
absolument continue, donc mes E, > 0 et, d’apres les lemmes 1 et 2, E,
est Uadhérence de son intérieur.

La partie du théoréme 1 concernant le cas u# rationnel est établie par les
conclusions 1 et 2. Reste a démontrer le lemme 3.

Démonstration du lemme 3. Supposons que F, contient un intervalle
ouvert, J. Cela impose que, quel que soit n, la distance de deux éléments
distincts de V, soit minorée par |J|; sinon, deux translatés de J par des
éléments distincts de V,, empiéteraient ['un sur |’autre, ce qui est impossible.
Pour N assez grand, J contient deux translatés de 4 E, disjoints

vi+4YE,, 1ie4™Vy (G=0o0ul).
On supposera v, < vy, ¢ est—a—dire
Jo =1 +47NJ

a gauche de
Ji=u +47J,

On a vu que si un V, a un point multiple, dimF, < 1. Donc ici tous
les V, sont constitués de points distincts, 4 distances mutuelles > |J|. Prenant
i = 2N dans la formule (10), on voit que E, est recouvert par 4°V translatés
de 472ME, les vecteurs translations appartenant 3 4-2¥V,y, et I’ensemble
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recouvert plusieurs fois est de mesure nulle. Extrayons de ce recouvrement
les recouvrements minimaux de J, J, et Ji:

J C U (w -+ 472NEH)
wE W)

L U (w4 2E)
wE W)

nhe |J w+a™Ey.
wEWily)

Observons que le recouvrement de J; est le translaté par v; — v, du
recouvrement de J,. Montrons comment reconstituer le recouvrement de J
a partir de celui de J,. Soit G, =]a,b[ le plus grand intervalle ouvert

contenant J, et contenu dans |J (w Q2N Remarquons que tous les
w & WJ,)

w+ 4 NE, tels que w ¢ W(H\W(J,) sont disjoints de G,; en effet, si
I'un d’eux avait un point dans G,, il y aurait aussi un intervalle (lemme 2),
donc il ne pourrait étre disjoint p.p. de tous les autres w + 4~ *VFE,. Comme
leur diamétre est plus petit que |G,
gauche de G,. Comme les w + 4 E, (w € W(J)) recouvrent J et que
ceux pour lesquels w € W(J,) ne recouvrent pas un voisinage de b, il en
existe au moins un pour lequel w ¢ W(J,) et qui contient b et un point
4 droite de b, disons w(b) + 47 *VE, ; la suite va montrer qu’il est unique.

, chacun d’eux est soit a droite, soit a

Il est & droite de G,, donc b est son extrémité gauche. Réunissons—le aux
w+ 47 NE, pour lesquels w € W(J,), et soit G/ le plus grand intervalle

ouvert contenant (7, et contenu dans U (w+4-E), posons
wEWJ,) ou w=w(b)
G =la,b'[, et définissons w(b’) a partir de G/, comme w(b) a partir de G,.

D’apreés notre observation initiale,
b —b=wd)  wb) >4,
En poursuivant de la sorte, on définit G7 =]a,b”[ et w(b”), et
b —b =47

et ainsi de suite. On construit de cette facon une chaine de translatés de 4 2VE,
qui va rejoindre Ji, puis comprendre les w+4-*E, (w € W(J1)). La chaine
se poursuit en se répétant au dela de J; jusqu’a la frontiere de E,. En partant
de J; vers la gauche au lieu de J, vers la droite, la chaine comprend les
wH+4"NE, (w € W(J,)) et se prolonge a gauche au dela de J, jusqu’a 0. La
construction est périodique, de période v, —v,, et elle réalise un pavage du plus
grand intervalle ]0,x[ contenu dans E,, périodique et de période v; — v,. Ce
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pavage se prolonge a droite en remplacant E, par 4E,, 4°E, etc... Ainsi RT
est recouvert par un pavage périodique, de période v; — v, dont les éléments
s’écrivent w + 4 VE, avec

w =4 Z(Ek + us Ak,
k>0
la somme étant finie et les ¢4 et ¢; égaux a 0 ou 1. Ces w se répartissent
en un nombre fini de progressions arithmétiques de raison vy —v,. Au moins
une de ces progressions contient deux > &4* différents, dont la différence
est donc un multiple de v; — v,. De méme il existe deux u > ;4" dont la
différence est un multiple de v; — v,. Il 8’ensuvit que u est rationnel.

Cela achéve la démonstration du théoréme 1.

3. INTERPRETATION DU THEOREME | SUR LE MODELE REDUIT,
ET COMPLEMENT

Le modele réduit est I’ensemble B défini par (1), (2), (3), et ses sections
horizontales sont les By, de (4). Puisque B, = FE et By = E’, bornons—nous
a 0 < h< 1. Rappelons (5), que

u h u

2 1—-h’ u+2°
Dire que u est irrationnel, c’est dire que £ est irrationnel ; alors mes; B, = 0.
St h= % irréductible, u = qupp_ Dire que u est le rapport de deux nombres
impairs, c’est dire que p et 45¥ sont impairs; dans ce cas, mes; B, =0 et
dim B, < 1. Il en est de méme si p* et (%)* sont impaires. Si p* ou (%)*
est paire (il n’est pas possible que les deux le soient), By contient un intervalle

et c’est 'adhérence de son intérieur. Ces propriétés sont invariantes par le
4k

31

Nous avons vu de deux manieres que B est un ensemble de Besicovitch
(au sens large). Pour obtenir un ensemble de Besicovitch au sens strict (le sens
usuel), on peut faire pivoter B de k7 autour de 0 (k=1,2,3,4,5,6,7,8) et
prendre la réunion des huit ensembles ainsi obtenus.

changement de u# en 4u, donc par le changement de 2 en

On peut aussi écraser B sur la droite réelle et prendre la réunion
des B écrasés, complétée par le segment réel [O,%]. Précisons: il s’agit

de I'adhérence de -
| A®,
n—1



SUR UN ENSEMELE DE BESICOVITCH 317

ol A, est la transformation affine (x,y) — (x,q,y), («,) étant une suite
positive quelconque tendant en décroissant vers 0.

La démonstration du théoreme 1 contient des informations intéressantes
sur la mesure ;1 dont la transformée de Fourier, écrite en (17), est

Af 71
76 I I . Y, i
() = cos 2cos 5

=1

et sur la réunion V de tous les V), ¢’est—a—dire de 1’ensemble

(18) V= (ex +uspdt

k>0

oll la somme est finie et les ¢4 et £, valent 0 ou 1. Groupons—les.

THEOREME 2. Si u est irrationnel, . est singuliere et portée par un
ensemble fermé de mesure nulle (mes\E, = 0), et V contient des points
arbitrairement proches mais jamais conrfondus. Si u est rationnel, u = ‘E’
irreductible, on a Ualternative suivante :

a) si p* et g* sont impaires, | est singuliere et portée par un ensemble
fermé de dimension inférieure a 1 (dimkE, < 1), ji(f) ne tend pas vers
0 a Uinfini, et V contient des points multiples.

b) si p* 4+ q* est impaire, ¢’esi—a—dire l'un des deux pair et I’autre impair,
[ est absolument continue, sa dérivée est bornée et son support est
ladhérence de son intérieur, V n’a pas de point multiple et c’est une
réunion finie de progressions arithmétiques de méme raison :

V=aN+A, a>0, 4 <.

On connait le comportement asymptotique de fi(f) quand # est rationnel :
lim fi(¢) > O dans le cas a), et lim fi(f) = 0 dans le cas b). Il est possible
t—r00 =0

que [i(t) tende vers O a I'infini quand »n est irrationnel, mais je ne sais pas
le démontrer.

4. VARIANTES

Commencgons par des variantes trés proches du modele réduit, pour aller
ensuite vers des variantes hors du plan.
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4.1 CHANGER 2 EN 3

Au lieu de (1) et (2) on peut partir de
E= {ZWJ9_j, n; € {0, 1,2}}
=1

E =3E+i

B étant toujours défini comme la réunion des segments de droites joignant
un point de E et un point de E' (formule (3)).
L’étude est la méme. On voit que E +3E =[0, 1], et que

3E - E= { i(sn; - nj)gff} = { é(sn; +Q - - 2)9*1} - [ - %, ?J ;

donc les segments de droites constituant B ont toutes les directions dans un
certain angle. Les E, = E 4 uE sont de mesure nulle (mes E, = 0) pour
tous les u irrationnels, on le voit en transcrivant les lemmes 1, 2, 3. Reste
le cas ol u est rationnel, u = %’ irréductible. On définit p* et ¢* comme
les premiers chiffres non nuls & partir de la droite dans les écritures de p et
de g en base 9, on transcrit de maniére évidente les définitions des V,,, de
V et de la mesure 1, et on a 'analogue des théorémes 1 et 2 en remplagant
comme il convient les conditions sur p* et ¢*, a savoir «3|¢* ou 3|p*» pour
assurer que V n’a pas de point multiple, et «3 1 ¢* et 3 p*» pour entrainer
Tim 70| > 0.

4.2 CHANGER 2 EN UN AUTRE NOMBRE PREMIER

Plus généralement, quand r est un nombre premier, on peut partir de

E:{anr_zj, n € {O,l,...r—l}}
=1
F =rE+i

n—1
et défimr F, =E+ukE, V, = { > nerk} et V =UV,, et 4 comme mesure
k=0

de probabilité canonique sur E,, avec

po=[lcoe ¥,  Cw=DwDwuy,
=1
1 — eirt

D) =1+4e e 4. =Dt = 1 .
_el
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De nouveau, les segments joignant E et E’ constituent un ensemble de
Besicovitch dont les sections horizontales de hauteur £ sont de la forme

rh

(19) Bpo= {1 —E,, + ik, uzl—k'

Pour u = %’, p* et g* représentent les premiers chiffres non nuls en partant
de la droite dans les écritures de p et ¢ en base r*. Les théorémes 1 et 2 se

transcrivent ainsi.

THEOREME 3. Si u est irrationnel, mes\E, = 0, n est singuliere et 'V
contient des points arbitrairement proches mais jamais confondus. Si u = %
irréductible on a alternative suivante :

a) si r ne divise ni p* ni q¢*, dimE, < 1, p est singuliere et lim |{i(f)| > 0,
t—oxa
et V contient des points multiples.

b) sir divise p* ou q*, E, est Uadhérence de son intérieur, . est absolument
continue et sa dérivée est bornée, et V est simple et de la forme

V=aN+A, a>0, A fin.

4.3 JOUER AVEC DES NOMBRES PREMIERS DIFFERENTS

On peut aussi jouer avec deux nombres premiers différents, r et s, en
considérant

E= {an(rs)_j, n€{0,1,....r— 1}}

=1
Ee {Zn;(rs)—f, e 0,1, 5— 1}}
=1

E,=E {uF’ (u>0)

V:{an(rs)k, kE{O,l,...,r—l}}

k>0

V= { S uesk, me {01, s—1}},

k>0

les derniers »_ représentant des sommes finies. Maintenant x, la mesure de
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probabilité canonique sur E,, a pour transformée de Fourier

pn = [[ csyn, @ = DDy,
=1
D) = 1+ &+ -0
D) = L dovs Jghe—10,

L’ensemble de Besicovitch associé est la réunion des segments joignant les
ensembles E7, porté par la droite y = 0, et #E°+1i, porté par la droite vy = 1.
On remarque que

E +rE°=E =[0,1],

ce qui assure que les segments ont toutes les directions dans un ensemble
ouvert de directions, les sections horizontales sont données par (19) en fonction
des F,, et les propriétés de F,, p et V s’expriment par I’extension suivante
du théoreme 3.

THEOREME 4. Méme énoncé que le théoréme 3 pour u irrationnel. Pour u
rationnel, u = £ irréductible, on désigne par p* (resp. q* ) le premier chiffre
non nul dans Uécriture de p* (resp. ¢*) en base rs. Méme énoncé que le
théoreme 3 en prenant comme hypothese dans a) que r ne divise pas p* et
que s ne divise pas q*, et dans b) Uhypothése opposée, c’est—a—dire que r
divise p* ou que s divise q* .

4.4 LES ENSEMBLES DE KENYON

Si on laisse de c6té les ensembles de Besicovitch, on peut étudier pour
cux—mémes les ensembles £, de la forme

Eu= {Z”’?ﬂ”a 7 € {0,1,---,r—2,u}} w>0).
=1

L’exemple type est r = 3, et ¢’est le cas traité dans ['article de Kenyon [7].
Son résultat principal est le suivant

THEOREME DE KENYON [7]. Pour avoir mes\E, > 0, il faut et suffit
que u soit rationnel, égal a % irréductible avec p+q =10 mod 3. Si u = %
irréductible avec p+q £ 0 mod 3, dimFE, < 1.
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4.5 LE CAS MULTIDIMENSIONNEL

On peut construire un ensemble de Besicovitch dans RYt! en partant
de E4, E étant défini en section 4.2, ou & partir de (K¢ et (E, EF
et F* étant définis en 4.3. Je me bornerai au cas r = s = 2, ¢’est—i—dire a
I’ensemble £ de départ, donné par (1), en considérant E?,

Técrirai R = R; xRy x -+ Xx Ry X Riy1, et je désignerai par i le
vecteur unitaire de R, ;. I'ensemble B et ses sections « horizontales» By
seront encore définis par (3) et (4), avec ici EY ala place de E, et QEY +i
i la place de E’. Ienveloppe convexe de K est le cube [O, %}d, et celle de
(2EY¥ +i le cube [0, %]d +i. Les segments de droite joignant un point de E¢
a un point de (2E) + i, dont la réunion est B, ont toutes les directions des
segments joignant les deux cubes. Pour montrer que B est un ensemble de
Besicovitch, il suffit de montrer que mes;F,, = 0 pour presque tout u«#, avec

F, = E* + ukE?

= {Z(Ej +uspd™, g€ {0, 1}¢, e; € {0, l}d}

j=1
o0
={ a7, ge(onu1rup}.
j=1
En fait, on a mes;F, = 0 pour tout u irrationnel.

THEOREME 5 (Transcription du théoréeme 1). Si u = % avec p* + g*
impair, I, est adhérence de son intérieur. Si u = % avec p* et g* impairs,
mesgF, =0 et dimfF, < d. St u est irrationnel, mesgF, = 0.

La preuve est une retranscription de celle du théoréme 1. Les lemmes 1
et 2 se retranscrivent verbatim. Le lemme 3 nécessite de remplacer au départ
les intervalles par des boules, puis par des pavés. Je me borne & d =2 pour
expliquer la situation. On considére R? euclidien, on pose

n—1
V, = {Zbkél", b © {0,1,u,1—|—u}2}.

k=0
On suppose que F,, contient un disque D de rayon p. La distance de deux
points de V), est alors minorée par p. Pour N assez grand, D contient deux
morceaux disjoints du recouvrement de F, par les v + 4 VF, (v € 47%Vy)
soit v, +4NF, et v, + 4 VF,, avec la condition additionnelle que v; soit
sur la méme horizontale que v, et a sa droite, ou sur la méme verticale et
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au—dessus. Le premier, v, + 4 VF,, contient un rectangle ouvert J, dont un
coté est parallele a vy — v,, et le translaté de J, par v; —v,, J1, occupe
dans v; +4 VF, la méme position que J, dans v, +4 VF,. Soit B le c6té
de J, faisant face a J,. Chaque point de B appartient & un w + 4 F,
(w € 472VV,y) disjoint de J,, et c’est un point extrémal de ce w + 4= Vay
dans la direction v, —v; (parmi d’autres peut—&tre). On réunit ces w4~ Vay
a ceux qui recouvrent J, de fagcon minimale. I'ensemble obtenu contient un
translaté de J, dans la direction v; —w,, J’', dont le ¢6té qui fait face a J,, B’,
est le plus proche possible de J;. En partant de J' et B’ au lieu de J, et B,
on définit J” et B” et ainsi de suite. Les segments B, B’, B, ... ne
peuvent pas s’accumuler parce que les w € 4 *¥Vay sont & des distances
mutuelles > 4~ p. La suite J,, J', J”,... se prolonge donc jusqu’a ce que
le dernier terme coincide avec Ji, et on peut la prolonger indéfiniment par
périodicité de vecteur v; — v,. Le fait que u est rationnel en dérive comme
en dimension 1.

En partant de J; vers J, on a une chaine de rectangles qui s arréte au
voisinage du bord gauche du quart de plan (RT)?, & savoir quand on se trouve 4
une distance de ce bord inférieure & 4~ p. En alternant les v; —v, horizontaux
et verticaux, on obtient un pavage doublement périodique de [, 00[* par des
w44 NF,, wed ™V avec V =JV,, pour N > N(g).

n

L’étude pour r rationnel se raméne au cas d = 1.

5. COMMENTAIRES SUR LES REFERENCES

L’histoire des ensembles de Besicovitch et leurs liens avec [’analyse
harmonique, 1’arithmétique et la combinatoire se trouvent excellemment décrits
dans [8]. Besicovitch les avait introduits deés 1918 pour montrer que les
intégrales de Riemann ne se prétent pas a un théoréme de Fubini. Il en a
repris la description en 1928 dans [1] comme réponse au probleme de Kakeyva,
puis en 1938 dans [2] a 'occasion d’un film montrant la construction. La fin
de cet article énonce une propriété remarquable des ensembles de droites dans
le plan: on associe & chaque droite D son pdle P par rapport a un cercle
fixé, et ainsi a un ensemble de droites D, (o € A) un ensemble de points P,
(x € A), soit E. Cette propriété est redonnée, et démontrée, dans [3]:
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THEOREME ([3] p.706). Si l'ensemble E est irrégulier (purement non

rectifiable), 'ensemble | ) D, est de mesure plane nulle. S’il est régulier
acA
(rectifiable), la réunion des D, est de mesure plane infinie.

Besicovitch ajoute dans [2] que la construction d’un ensemble E irrégulier
tel que les D, aient toutes les directions ne présente pas de difficulté. Cela
occupe quelques lignes dans [3], et se trouve expliqué complétement dans [4].

L’exposé moderne le plus accessible sur les théorémes de projection et
sur les ensembles de Besicovitch et leurs généralisations se trouve dans
le chapitre 18 du livre de Mattila [9]. L'existence d’ensembles dans R”
constitués de plans ayant toutes les directions possibles, et de mesure nulle en
dimension n, est un probléme ouvert ([9] p.263). Mattila donne un exemple
d’ensemble de Besicovitch par une variante de la méthode de dualité de
Besicovitch (1964 [4]), en associant au point («,b) la droite y = ax + b.

La méthode de Kenyon exploitée ici dans la partie 2, et son théoréme
énoncé en 4.4 sont tirés de [7]. Kenyon part du tamis défim dans C par

§— {Zsjs—f, 5 € {0, 1,1'}}
j=1

qui est un ensemble de Sierpifiski de dimension 1, et purement non—rectifiable.
La projection qui amene x 4 iy sur x +#y amene S sur

S, = { S a3, a4 ¢ {0, l,u}},
i=1
I’ensemble considéré en 4.4. J'ai juste transcrit sa méthode pour I’étude des
ensembles F,. Le théor¢me de 4.4 est un abrégé trés incomplet des résultats
de Kenyon sur les S,.
[article de Kahane et Salem de 1958 [6] traite dans sa derniére partie des
mesures ;¢ dont les transformées de Fourier sont les produits yg(£)y:(Af), ou

Ye(t) = H cos &kt .
0

Il considere les cas & > % (p absolument continue pour presque tout A) et
£ & i (o singuliere pour tout A), et laisse de coté le cas & = %. Clest le
cas traité ici par le théoreme 2.

Mon article de 1969 [5] nécessitait une correction. Elle est faite.

Je remercie le referee pour ses observations, en particulier pour la
référence [10] et pour m’avoir incité a réécrire un passage crucial dans
I’argument de pavage de Kenyon.
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