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L'Enseignement Mathématique (2) 59 (2013), 307-324

SUR UN ENSEMBLE DE BESICOVITCH

par Jean-Pierre KAHANE

Un ensemble du plan est appelé ensemble de Besicovitch s'il est d'aire nulle
et contient un segment de droite dans toute direction. Si un ensemble du plan
est d'aire nulle et qu'il contient un segment dans toute direction appartenant à

un certain angle, il suffit d'en prendre les images par des rotations en nombre

fini, et de réunir ces images, pour avoir un ensemble de Besicovitch. Je me

permettrai dans cet article d'étendre le sens du terme, et d'appeler ensemble

de Besicovitch, dans le plan ou dans l'espace (C,R2,R") tout ensemble dont
la mesure de Lebesgue est nulle dans la dimension considérée, et qui contient
des segments de droite dans toutes les directions appartenant à un ensemble

ouvert de directions.

Mon point de départ sera un exemple que j'ai donné en 1969 dans

l'Enseignement Mathématique, à savoir la réunion dans le plan des segments
de droites dont les extrémités appartiennent à deux ensembles de Cantor
de dimension 1/2, homothétiques l'un de l'autre dans le rapport 2, et non
colinéaires [5]. L'exemple est bon mais la justification que j'avais donnée est

incorrecte. Il y a deux manières de justifier cet exemple, l'une, très rapide,

par l'utilisation du théorème de projection de Besicovitch [2, 9], et l'autre,
qui entre plus profondément dans les propriétés arithmétiques de l'ensemble,

par une méthode de Richard Kenyon [7]. Je donnerai les deux démonstrations,

puis des variantes de cet exemple dans le plan et dans l'espace, et quelques
commentaires.
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1. Le modèle réduit et la première démonstration

L'exemple donné en [5] est le transformé par affinité du modèle réduit que
voici.

Dans le plan de la variable complexe z — x + iy, on considère les deux
ensembles de Cantor

{oo 0,1}

(2) E' — 2E i,

dont les segments supports sont l'intervalle |o, \ de la droite réelle y — 0,

et l'intervalle |o, |j -\-i de la droite y — 1. La réunion des segments de droite

qui les joignent est

(3) B {(1 — h)z + hz', Z G E, z' G E', 0 < h < 1}

Les sections horizontales de B sont les

(4) Bh {(1 - h)z + hz!, zeE, z' eE'} (0 < h < 1)

qu'il sera commode d'écrire Bh — (1 — h)B* avec

(5) B:=E+~E', (m > 0, 0 < A < 1).
2 2 1 — h

Les parties réelles des B* s'écrivent

OO

(6) E„ ReB* { V(- + „e^-J, Uj, e'j) e {0, l}2}
7=1

OO

{ aJ4~J ' ai {0' 1'"' 1 + ">}
7=1

Remarquons que

Ei [0,1], E1/2 [0, |],
OO

a, 6 {0,1,2}}
7=1

donc E\ est de mesure nulle et sa dimension est log3/log4, et

(7) E\ ju — —Eu' u
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ce qui permet de borner l'étude à 0 < u < 1. Enfin

oo

(8) 4Eu {ai + ^2 aj+i4~jj {0,1, u, 1+ u} + Eu

7=1

égalité qui va jouer un rôle essentiel dans l'étude arithmétique.
Examinons les directions des segments joignant les points z de £ aux

points z' de E'. Ils ont tous 1 pour hauteur, et leurs projections sur l'axe
réel ont pour mesures

oo

Red -Z) ]T(2c-; - eiÊT1
7=1

oo

7=1

oo
L'ensemble de ces mesures est E2 — XM--7, c'est-à-dire [ — |]. Les

7=1

segments ont donc toutes les directions entre ^ —3 et \ — c'est-à-dire
les directions des segments joignant les intervalles-supports de E et de E',
[0, |] et

L'ensemble B contient bien des segments de droites dans toutes les

directions appartenant à un ensemble ouvert de directions.

Reste à montrer que mes2 B 0, soit mes\Bh — 0 pour presque tout h,

soit mes\Eu — 0 pour presque tout u (mesa est la mesure de Lebesgue en

dimension a).
La preuve rapide repose sur le théorème des projections de Besicovitch.

En effet, Eu est la projection de E x E dans la projection qui amène (x, y) en

x-\~uy. Or ExE est un ensemble de dimension 1 irrégulier selon Besicovitch,

purement non-rectifiable dans la terminologie actuelle ([2], [9] p. 204). Le
théorème de Besicovitch dit justement que mes\Eu — 0 pour presque tout u

([2], [9] p. 250). Au lieu du théorème de Besicovitch, on peut se référer à

l'étude de Peres, Simon et Solomyak, plus élémentaire et au cœur du sujet [10].

2. La méthode de Kenyon, seconde démonstration

Je vais maintenant donner une autre preuve, calquée sur une étude de

Richard Kenyon [7]. On va montrer que mes\Eu 0 quand u est irrationnel;
cela suffit pour établir que B est un ensemble de Besicovitch. Voici une

description plus complète des propriétés des Eu.
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Introduisons d'abord une notation. A tout entier n positif, associons

n* G {1,2,3}, le premier chiffre non nul à partir de la droite dans l'écriture
de n en base 4 :

n* — n4~J mod 4, j* — sup{j : 4j divise n}

Remarquons que si ^ est une fraction irréductible, on a soit p* et q* impairs,
soit p* + q* impair.

THÉORÈME 1. Si u ^ avec p* -\~q* impair, E contient un intervalle,
et c'est l'adhérence de son intérieur. Si u ^ avec p* et q* impairs,
mes\Eu — 0 et la dimension de Hausdorff de Eu est < 1. Si u est irrationnel,
mes\Eu — 0.

La démonstration reposera sur les lemmes que voici.

LEMME 1. Si mes\Eu > 0, Eu contient un intervalle.

LEMME 2. Si Eu contient un intervalle, c'est l'adhérence de son intérieur.

LEMME 3. Si Eu contient un intervalle, u est rationnel.

Le lemme 1 joue un rôle clé. Le lemme 2, dont la démonstration est

immédiate, sera utilisé dans celle du lemme 3. La démonstration du lemme 3

fait intervenir un pavage par des translatés de Eu, idée ingénieuse qui était
naturelle pour Kenyon.

L'implication

(9) u irrationnel => mes\Eu — 0

résulte des lemmes 1 et 3. On examinera le cas de u rationnel après la

démonstration du lemme 2.

Démonstration du lemme 1. L'égalité (8) signifie que 4Eu est la réunion
de quatre translatés de Eu, distincts si l'on suppose 0 < u < 1. Comme

4

mesi(4Eu) < mes\ (translaté de Eu) — 4 mes\Eu,
î

les intersections deux à deux de ces translatés sont de mesure (mes\) nulle;
nous dirons que ces translatés sont disjoints presque partout. En itérant, 4nEu
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est la réunion de 4" translatés de Eu, qui sont deux à deux soit confondus,
soit disjoints presque partout. L'ensemble des vecteurs de translations est

Vn — {0? 1, m, 1 + m} + 4{0,1, u, 1 + m} + • + 4" ^0,1, m, 1 + m}

et

(10) 4nEu Vn + Eu.

Supposons mesEu > 0. Soit x un point de densité de Eu. Alors la mesure
I I"
2' 2-

de 4n(Eu — x) fl [— x, 4] tend vers 1 quand n —> oo, soit

(11) lim mesi ((V„ + Eu - 4nx) n [ - \ 1.
n—J-oo Z Z

On peut remplacer V„ —4nx dans (11) par l'ensemble Wn des wn £ Vn — 4nx

tels que w„ + Eu rencontre [— |, | ], soit

w„ ((V'„ I».u n([-i i] - Eu)

et comme les wn + Eu sont soit confondus soit disjoints presque partout, leur
1+3 mes\Eu

nombre ne dépassé pas :

mes\Eu

1+3 mes\Eu
(12) t}W„<

mes\Eu

L'important dans (12) est que le second membre ne dépend pas de n.
Il existe donc une sous-suite de Wn qui converge, et soit W sa limite.

Alors (11) entraîne que

mesi ((\+ + Eu) n [ - i j 1.

Comme W est fini, W + Eu est fermé, donc

(13) W + Eu I.
Le premier membre est une réunion finie de translatés de Eu, qui sont fermés.

L'un au moins de ces fermés contient un intervalle (Baire). Donc Eu contient

un intervalle.

oo
Démonstration du lemme 2. Soit x G Eu, x ^ afî~J comme en (6).

j=i
Ecrivons

n

xe ^2 aj4~J + 4~nEu

7=1

Si on suppose que Eu a des points intérieurs, il en est de même pour 4~nEu

quel que soit n, donc x est limite de points intérieurs de Eu. Donc Eu est

l'adhérence de son intérieur.
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EXAMEN DU CAS où m EST rationnel. Les ensembles V„ introduits

pour avoir l'égalité (10) peuvent être définis de plusieurs façons:

(14) f,, {0,1,K, 1 + 4 + 4{0, i:H. I ir j 4"-1{0,1,u, 1 + u}
n

{ ' aJ e {0' 1'"' 1 +"}}
7=1

n

bk4k 'bk e i'i+
/t=i
n—1

— | + M^)4^ (s*, e£) G {0,1}2J
/t=0

Quand m est irrationnel, il est clair qu'aucun V„ n'a de point multiple. Nous
allons nous intéresser à cette propriété quand u est rationnel.

Commençons par une remarque générale. Le fait qu'aucun Vn n'ait de

point multiple peut s'exprimer ainsi: l'équation

Y £^k + u Y 44* t; (* G Z)

où £ (£k) et s' — (e'k) appartiennent à {0,1}Z et sont nuls hors d'un
ensemble fini, admet au plus une solution pour chaque f G Z donné. Sous

cette forme, il est évident que la propriété est invariante quand on change u

en 4u ou en m/4.
Partant de la fraction irréductible u 2, on se ramène donc, sans modifier

q
la propriété, au cas où p — p* mod 4 et q — q* mod 4, ce que nous

supposerons maintenant. Le fait qu'aucun Vn n'ait de point multiple signifie

que l'équation

£ Y, £k^k 4P ^2 'k^k ~ % £'k^k 4P Yj £'k^k '

k>0 jfc>0 k>0 k>0

où e, £f, £n et £r" appartiennent à {0,1}N et sont nuls pour k assez grand,
n'admet que les solutions £ — £", £f — £r", c'est-à-dire que l'équation

(15) # +
/t>0 k>0

où (7O et (7p appartiennent à {—1,0,1}N et sont nuls pour k assez grand,
n'admet que la solution (7*) — (7J) — 0. Or l'équation (15) entraîne

<?*7o + p*7o 0 m°4 4.

L'hypothèse que p* -\-q* est impair, c'est-à-dire p* resp. q* — 2 et q* resp.

p* — 1 ou 3, entraîne 70 7^ 0, puis, en remontant à (15), 71 =7} 0,
et finalement 7* 7J 0 pour tout k.
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Conclusion. Si p* + q* est impair, aucun Vn n'a de point multiple.

Prenons maintenant comme hypothèse que u — £, 0 < w < 1, et

qu'aucun Vn n'a de point multiple. Chaque Vn se compose donc de 4" points
contenus dans l'intervalle [0,4"] et mutuellement distants d'au moins ^.

Soit pn la mesure de probabilité portée par 4~"V„ et chargeant également
tous ses points. Pour tout intervalle J de longueur |/| > ±4-", on a

(16) pn(J)<2q\J\.

Les p„ convergent faiblement vers une mesure de probabilité p portée par Eu

(n —> oo), et (16) implique que p est absolument continue, avec une
dérivée < 2q. Donc la transformée de Fourier de p, p, tend vers 0 à l'infini. Or

OO
J

(17) m=[[a4-H) avec C«). =-(1+e'Y) (1+«*'),
j= 1

°° t °° t
\p(t)\ — I cos4_J-| Y[ I cosd^w-l

j= 1 7=1

Prenons t — 2q4nir :

n 00 n 00

\p(t)\ I cos q4n"% I I cos q4n~^7T | | cosp4n"% | | cosp4n"% \

7=1 7'="+l 7=1 7="+l

n 00
Les produits Yl valent 1, et les produits Yl sont indépendants de n. Le

7=1 7=»+l
CX)

dernier, qui vaut Yl I 008/74"%|, n'est nul que si un facteur est nul, c'est-à-dire
7=1

si p4~^iT — y mod 7r pour un certain j, c'est-à-dire si p* — 2. De même, le
CX)

premier Yl n'est nul que si q* 2. Donc, si p* et q* sont impairs, on a

7="+l

lim /KO >0
t—bOO

ce qui est incompatible avec Fhypothèse.

Conclusion 1. Si p* et q* sont impairs, l'un des Vn, disons Vno, a

un point multiple, c 'est-à-dire que le cardinal de V„o est strictement inférieur
à 4n° :

tlV* u < 4"°.
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Poursuivons. L'égalité (10), itérée, entraîne pour m — 1,2,3,

4mn°Eu K + K + 4- V„ +EU

et comme Eu C [0,1] puisqu'on a supposé 0 < u < 1, Thypothèse u — |
avec p* et q* impairs entraîne que, pour un no et un v < no convenables et

pour tout m, 4mn°Eu est recouvert par vm intervalles de longueur 1, c'est-
à-dire que Eu est recouvert par vm intervalles de longueur 4~mn°. Il en

résulte
logu

dim£H < — < 1

4 log nD

dim signifiant la dimension de boîte (ou de Minkowski), par conséquent aussi

la dimension de Hausdorff.

Revenons plus haut.

CONCLUSION 2. Si p*4~q* est impair, Eu porte une mesure de probabilité
absolument continue, donc mes\Eu > 0 et, d'après les lemmes 1 et 2, Eu

est l'adhérence de son intérieur.

La partie du théorème 1 concernant le cas u rationnel est établie par les

conclusions 1 et 2. Reste à démontrer le lemme 3.

Démonstration du lemme 3. Supposons que Eu contient un intervalle

ouvert, J. Cela impose que, quel que soit n, la distance de deux éléments

distincts de Vn soit minorée par |/| ; sinon, deux translatés de J par des

éléments distincts de Vn empiéteraient l'un sur l'autre, ce qui est impossible.
Pour N assez grand, J contient deux translatés de 4~NEu disjoints

vi + 4-neu v, e4-"T| a - o <>u n.

On supposera vQ < vi, c'est-à-dire

Jo l'o

à gauche de

/! „j + 4'"J
On a vu que si un Vn a un point multiple, dimEu < 1. Donc ici tous

les V„ sont constitués de points distincts, à distances mutuelles > |/|. Prenant

n 2N dans la formule (10), on voit que Eu est recouvert par 42N translatés

de 4~2NEu, les vecteurs translations appartenant à 4~2NV2n, et l'ensemble
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recouvert plusieurs fois est de mesure nulle. Extrayons de ce recouvrement
les recouvrements minimaux de J, Ja et J\ :

i U fa> + 4-2A,,e„)

wêw)

À c ij (m + 4-2%„)

a c y
wewi)

Observons que le recouvrement de J\ est le translaté par v\ — v0 du

recouvrement de J0. Montrons comment reconstituer le recouvrement de J
à partir de celui de J0. Soit G0 —]a,b[ le plus grand intervalle ouvert
contenant JQ et contenu dans [J (w-\-4~2NEu). Remarquons que tous les

w + 4~2NEu tels que w G W(J)\W(J0) sont disjoints de Ga ; en effet, si

l'un d'eux avait un point dans Ga, il y aurait aussi un intervalle (lemme 2),
donc il ne pourrait être disjoint p.p. de tous les autres w + 4~2NEU. Comme
leur diamètre est plus petit que \G0\, chacun d'eux est soit à droite, soit à

gauche de Ga. Comme les w + 4~2NEU (w G W(J)) recouvrent J et que
ceux pour lesquels w G W(J0) ne recouvrent pas un voisinage de b, il en

existe au moins un pour lequel w ^ W(Ja) et qui contient b et un point
à droite de b, disons w(b) + 4~2NEU ; la suite va montrer qu'il est unique.
Il est à droite de G0, donc b est son extrémité gauche. Réunissons-le aux

w + 4~2NEu pour lesquels w G W(J0), et soit G'0 le plus grand intervalle

ouvert contenant G0 et contenu dans [J (w + 4~2NEU), posons
vjÇLWUO) ou w=w(b)

G'0 =]<*,&'[, et définissons w(b') à partir de G'0 comme w(b) à partir de Ga.

D'après notre observation initiale,

b' — b — w(b') — w(b) > 4~2N\J\.

En poursuivant de la sorte, on définit G"Q —]a,b"[ et w(b"), et

b" - b' > 4_2AVl

et ainsi de suite. On construit de cette façon une chaîne de translatés de 4~2NEU

qui va rejoindre J\, puis comprendre les w-\-4~2NEu (w G W(Ji)). La chaîne

se poursuit en se répétant au delà de J\ jusqu'à la frontière de Eu. En partant
de J\ vers la gauche au lieu de JQ vers la droite, la chaîne comprend les

w-\-4~2NEu (w G W(J0)) et se prolonge à gauche au delà de JQ jusqu'à 0. La
construction est périodique, de période vi — va, et elle réalise un pavage du plus
grand intervalle ]0,x[ contenu dans Eu, périodique et de période Vi —v0. Ce
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pavage se prolonge à droite en remplaçant Eu par 4EU, 42EU etc... Ainsi R+
est recouvert par un pavage périodique, de période vi — vQ dont les éléments

s'écrivent w + 4~2NEU avec

w 4-2N Yfilt + «4)4*
k>0

la somme étant finie et les et e'k égaux à 0 ou 1. Ces w se répartissent

en un nombre fini de progressions arithmétiques de raison vi — va. Au moins

une de ces progressions contient deux ^£k4k différents, dont la différence

est donc un multiple de vi — v0 De même il existe deux u e'k4k dont la

différence est un multiple de vi — v0. Il s'ensuit que u est rationnel.

Cela achève la démonstration du théorème 1.

3. Interprétation du théorème 1 sur le modèle réduit,
ET COMPLÉMENT

Le modèle réduit est l'ensemble B défini par (1), (2), (3), et ses sections

horizontales sont les Bh de (4). Puisque B0 — E et B\ — E', bornons-nous
à 0 < h < 1. Rappelons (5), que

u h u- — r >l — •
2 1 -h M + 2

Dire que u est irrationnel, c'est dire que h est irrationnel; alors mes\Bh — 0.
Si h — £ irréductible, u Dire que u est le rapport de deux nombres

impairs, c'est dire que p et sont impairs; dans ce cas, mes\Bh — 0 et

dïmBh < 1. Il en est de même si p* et sont impaires. Si p* ou
est paire (il n'est pas possible que les deux le soient), Bh contient un intervalle
et c'est l'adhérence de son intérieur. Ces propriétés sont invariantes par le

changement de u en 4u, donc par le changement de h en

Nous avons vu de deux manières que B est un ensemble de Besicovitch

(au sens large). Pour obtenir un ensemble de Besicovitch au sens strict (le sens

usuel), on peut faire pivoter B de kJ autour de 0 (k — 1,2,3,4,5,6,7,8) et

prendre la réunion des huit ensembles ainsi obtenus.

On peut aussi écraser B sur la droite réelle et prendre la réunion
des B écrasés, complétée par le segment réel [0, |]. Précisons: il s'agit
de l'adhérence de

oo

«=1
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où A„ est la transformation affine (a, y) —> (x,any), (a„) étant une suite

positive quelconque tendant en décroissant vers 0.

La démonstration du théorème 1 contient des informations intéressantes

sur la mesure ß dont la transformée de Fourier, écrite en (17), est

où la somme est finie et les ek et e'k valent 0 ou 1. Groupons-les.

THÉORÈME 2. Si u est irrationnel, ß est singulière et portée par un
ensemble fermé de mesure nulle (mes\Eu 0), et V contient des points
arbitrairement proches mais jamais confondus. Si u est rationnel, u — ^

irréductible, on a l'alternative suivante :

a) si p* et q* sont impaires, ß est singulière et portée par un ensemble

fermé de dimension inférieure à 1 (dim.EM < 1), ß(t) ne tend pas vers
0 à l'infini, et V contient des points multiples.

b) si p* + q* est impaire, c'est-à-dire l'un des deux pair et l'autre impair,

ß est absolument continue, sa dérivée est bornée et son support est

l'adhérence de son intérieur, V n'a pas de point multiple et c'est une
réunion finie de progressions arithmétiques de même raison :

On connaît le comportement asymptotique de ß(t) quand u est rationnel :

lim ß(f) > 0 dans le cas a), et lim ß(t) — 0 dans le cas b). Il est possible
f—)-oo t—¥ oo

que ß(t) tende vers 0 à l'infini quand n est irrationnel, mais je ne sais pas
le démontrer.

n, l UL
cos 4 J - cos 4 J —

7=1

et sur la réunion V de tous les Vn, c'est-à-dire de l'ensemble

(18)
k>0

V — aN + A, a>0, JjA<oo.

4. Variantes

Commençons par des variantes très proches du modèle réduit, pour aller
ensuite vers des variantes hors du plan.
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4.1 Changer 2 en 3

Au lieu de (1) et (2) on peut partir de

oo

E= fo,i,2}}
7=1

E' 3E + i

B étant toujours défini comme la réunion des segments de droites joignant
un point de E et un point de E' (formule (3)).

L'étude est la même. On voit que E + 3E [0,1], et que
oo oo

3E-E={EN - ^9~J} {EN+<2 - - w}=[-4.4].
7=1 7=1

donc les segments de droites constituant B ont toutes les directions dans un
certain angle. Les Eu — E + uE sont de mesure nulle (mes\Eu — 0) pour
tous les u irrationnels, on le voit en transcrivant les lemmes 1, 2, 3. Reste

le cas où u est rationnel, u — \ irréductible. On définit p* et q* comme
les premiers chiffres non nuls à partir de la droite dans les écritures de p et
de q en base 9, on transcrit de manière évidente les définitions des Vn, de

V et de la mesure p, et on a l'analogue des théorèmes 1 et 2 en remplaçant
comme il convient les conditions sur p* et q*, à savoir «3\q* ou 3|p*» pour
assurer que V n'a pas de point multiple, et «3 \q* et 3 \p*» pour entraîner

lim 1/1(01 > 0.
t—¥00

4.2 Changer 2 en un autre nombre premier
Plus généralement, quand r est un nombre premier, on peut partir de

00

£= {ET&r~*"' ^ e {°, i,... r — i}}
7=1

E' — rE-\-i

r n— 1 -1

et définir Eu — E-\-uE, Vn < V2* !• et V UVn, et p comme mesure
^ k=0 J

de probabilité canonique sur Eu, avec

00

Pit) ]7 C(r-2h), C(t) IXnlXun
7=1

1 — eirt
Dit) 1 + g* + e2* + • • + Jr-1*

1 — e"
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De nouveau, les segments joignant E et E' constituent un ensemble de

Besicovitch dont les sections horizontales de hauteur h sont de la forme

(19) Bh (1 - h)Eu + ih, u=
1 — h

Pour u 2, p* et q* représentent les premiers chiffres non nuls en partant
de la droite dans les écritures de p et q en base r2. Les théorèmes 1 et 2 se

transcrivent ainsi.

THÉORÈME 3. Si u est irrationnel, mes\Eu 0, ß est singulière et V
contient des points arbitrairement proches mais jamais confondus. Si u — ^

irréductible on a l'alternative suivante :

a) si r ne divise ni p* ni q*, dimEu < 1, ß est singulière et lim \ß(t)\ > 0,
t—ïoo

et V contient des points multiples.

b) si r divise p* ou q*, Eu est l'adhérence de son intérieur, ß est absolument

continue et sa dérivée est bornée, et V est simple et de la forme

V — aN + A, a > 0, A fini.

4.3 Jouer avec des nombres premiers différents

On peut aussi jouer avec deux nombres premiers différents, r et s, en

considérant

oo

Er { Vj ^ {0,1,... ,r - 1} j
7=1

oo

7=1

Eu Er + uEs (u > 0)

V {Yvk(rs)k T}k {0,1, -.., r — l}j
/t>0

V Ï ^ e "t0' !' !}} '
k>0

les derniers J] représentant des sommes finies. Maintenant ß, la mesure de
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probabilité canonique sur Eu, a pour transformée de Fourier

oo

m H C((")'() ' C(t) - °r(t)Ds(ut)
7=1

DM 1 + eu + + e*r~l)t

DM 1 + eü + + eKs~l)t.

L'ensemble de Besicovitch associé est la réunion des segments joignant les

ensembles Er, porté par la droite y — 0, et rEs + i, porté par la droite y — 1.

On remarque que

Er + rEs Er [0,1],

ce qui assure que les segments ont toutes les directions dans un ensemble

ouvert de directions, les sections horizontales sont données par (19) en fonction
des Eu, et les propriétés de Eu, p, et V s'expriment par l'extension suivante
du théorème 3.

THÉORÈME 4. Même énoncé que le théorème 3 pour u irrationnel. Pour u

rationnel, u — ^ irréductible, on désigne par p* (resp. q* le premier chiffre
non nul dans l'écriture de p* (resp. q*) en base rs. Même énoncé que le

théorème 3 en prenant comme hypothèse dans a) que r ne divise pas p* et

que s ne divise pas q*, et dans b) l'hypothèse opposée, c'est-à-dire que r
divise p* ou que s divise q*.

4.4 Les ensembles de Kenyon

Si on laisse de côté les ensembles de Besicovitch, on peut étudier pour
eux-mêmes les ensembles Eu de la forme

oo

(m > 0)
7=1

L'exemple type est r — 3, et c'est le cas traité dans l'article de Kenyon [7].
Son résultat principal est le suivant

Théorème de kenyon [7]. Pour avoir mes\Eu > 0, il faut et suffit

que u soit rationnel, égal à | irréductible avec p-\-q — 0 mod 3 .Si u — ^

irréductible avec p + q ^ 0 mod 3, dimEu < 1.
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4.5 LE CAS MULTIDIMENSIONNEL

On peut construire un ensemble de Besicovitch dans Rrf+1 en partant
de Ed, E étant défini en section 4.2, ou à partir de (E7)d et (Es)d, Er
et Es étant définis en 4.3. Je me bornerai au cas r — s 2, c'est-à-dire à

l'ensemble E de départ, donné par (1), en considérant Ed.

J'écrirai Rrf+1 Ri x R2 x x Rj x R^+i, et je désignerai par i le

vecteur unitaire de R^+i. L'ensemble B et ses sections «horizontales» Bh

seront encore définis par (3) et (4), avec ici Ed à la place de E, et (2E)d + z

à la place de E'. L'enveloppe convexe de Ed est le cube [0, |] et celle de

(2E)d + i le cube [0, |]d + i. Les segments de droite joignant un point de Ed

à un point de (2E)d + i, dont la réunion est B, ont toutes les directions des

segments joignant les deux cubes. Pour montrer que B est un ensemble de

Besicovitch, il suffit de montrer que mesdFu 0 pour presque tout u, avec

Fu — Ed-\- uEd

00

— { j, £j G {0, \}d £j G {0, l}rf|
j=1

OO

{aJ4~J ' aJe {°' i'm' 1+•
j= 1

En fait, on a mesdFu — 0 pour tout u irrationnel.

THÉORÈME 5 (Transcription du théorème 1). Si u — | avec p* + q*
impair, Fu est l'adhérence de son intérieur. Si u — ^ avec p* et q* impairs,
mesdFu — 0 et dimF„ < d. Si u est irrationnel, mesdFu 0.

La preuve est une retranscription de celle du théorème 1. Les lemmes 1

et 2 se retranscrivent verbatim. Le lemme 3 nécessite de remplacer au départ
les intervalles par des boules, puis par des pavés. Je me borne à d — 2 pour
expliquer la situation. On considère R2 euclidien, on pose

n— 1

V„ — I bkAk bk E {0,1, m, 1 + M}2I.
k=0

On suppose que Fu contient un disque D de rayon p. La distance de deux

points de Vn est alors minorée par p. Pour N assez grand, D contient deux

morceaux disjoints du recouvrement de Fu par les v + 4~NFu(v G 4~NV^)
soit vo + 4~nFu et v1 + 4~NFU, avec la condition additionnelle que v1 soit

sur la même horizontale que va et à sa droite, ou sur la même verticale et
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au-dessus. Le premier, v0 + 4~NFU, contient un rectangle ouvert J0 dont un
côté est parallèle à v \ — v0, et le translaté de JD par v \ — v0, J\, occupe
dans vi + 4~NFu la même position que JD dans v0 + 4~NFU. Soit B le côté

de J0 faisant face à J\. Chaque point de B appartient à un tu + 4~2NFu

(tu G 4~2NV2n) disjoint de Ja, et c'est un point extrémal de ce w -\-4~2NV2n

dans la direction v0 — V\ (parmi d'autres peut-être). On réunit ces w-\-4~2NV2n
à ceux qui recouvrent Ja de façon minimale. L'ensemble obtenu contient un
translaté de JD dans la direction v\—v0, J', dont le côté qui fait face à J\, B',
est le plus proche possible de J\. En partant de J' et B' au lieu de Ja et B,
on définit J" et B" et ainsi de suite. Les segments B, B', B", ne

peuvent pas s'accumuler parce que les w G 4~2NV2n sont à des distances

mutuelles > 4~2Np. La suite JD, J', J",... se prolonge donc jusqu'à ce que
le dernier terme coïncide avec J\, et on peut la prolonger indéfiniment par
périodicité de vecteur v\ — v0. Le fait que u est rationnel en dérive comme
en dimension 1.

En partant de J\ vers JQ on a une chaîne de rectangles qui s'arrête au

voisinage du bord gauche du quart de plan (R+)2, à savoir quand on se trouve à

une distance de ce bord inférieure à 4~Np. En alternant les v\ —v0 horizontaux

et verticaux, on obtient un pavage doublement périodique de [e,oo[2 par des

w + 4~2NFu, w G 4_2AV avec V \JV„, pour N > N(e).
n

L'étude pour r rationnel se ramène au cas d — 1.

5. Commentaires sur les références

L'histoire des ensembles de Besicovitch et leurs liens avec l'analyse
harmonique, l'arithmétique et la combinatoire se trouvent excellemment décrits
dans [8]. Besicovitch les avait introduits dès 1918 pour montrer que les

intégrales de Riemann ne se prêtent pas à un théorème de Fubini. Il en a

repris la description en 1928 dans [1] comme réponse au problème de Kakeya,

puis en 1938 dans [2] à l'occasion d'un film montrant la construction. La fin
de cet article énonce une propriété remarquable des ensembles de droites dans

le plan: on associe à chaque droite D son pôle P par rapport à un cercle

fixé, et ainsi à un ensemble de droites Da (a G A) un ensemble de points Pa

(a G A), soit E. Cette propriété est redonnée, et démontrée, dans [3] :



SUR UN ENSEMBLE DE BESICOVITCH 323

THÉORÈME ([3] p. 706). Si l'ensemble E est irrégulier (purement non

rectifiable), l'ensemble [J Da est de mesure plane nulle. S'il est régulier
a ÇA

(rectifiable), la réunion des Da est de mesure plane infinie.

Besicovitch ajoute dans [2] que la construction d'un ensemble E irrégulier
tel que les Da aient toutes les directions ne présente pas de difficulté. Cela

occupe quelques lignes dans [3], et se trouve expliqué complètement dans [4].

L'exposé moderne le plus accessible sur les théorèmes de projection et

sur les ensembles de Besicovitch et leurs généralisations se trouve dans

le chapitre 18 du livre de Mattila [9]. L'existence d'ensembles dans R"
constitués de plans ayant toutes les directions possibles, et de mesure nulle en

dimension n, est un problème ouvert ([9] p. 263). Mattila donne un exemple
d'ensemble de Besicovitch par une variante de la méthode de dualité de

Besicovitch (1964 [4]), en associant au point (a,b) la droite y — ax-\-b.
La méthode de Kenyon exploitée ici dans la partie 2, et son théorème

énoncé en 4.4 sont tirés de [7]. Kenyon part du tamis défini dans C par
oo

> J v V* '. fpfu,#}
7=1

qui est un ensemble de Sierpinski de dimension 1, et purement non-rectifiable.
La projection qui amène x + iy sur x + uy amène S sur

oo

Su a,-G {0,1,M}},
7=1

l'ensemble considéré en 4.4. J'ai juste transcrit sa méthode pour l'étude des

ensembles Eu. Le théorème de 4.4 est un abrégé très incomplet des résultats

de Kenyon sur les Su.

L'article de Kahane et Salem de 1958 [6] traite dans sa dernière partie des

mesures ß dont les transformées de Fourier sont les produits 7^(07^(^0. où

oo

7ç(0 n cos TÉ*'.
0

Il considère les cas £ > J (ß absolument continue pour presque tout À) et

S < \ (ß singulière pour tout À), et laisse de côté le cas £ f. C'est le

cas traité ici par le théorème 2.

Mon article de 1969 [5] nécessitait une correction. Elle est faite.

Je remercie le referee pour ses observations, en particulier pour la

référence [10] et pour m'avoir incité à réécrire un passage crucial dans

l'argument de pavage de Kenyon.
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