Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 59 (2013)

Artikel: Sur un ensemble de Besicovitch

Autor: Kahane, Jean-Pierre

DOI: https://doi.org/10.5169/seals-515838

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR UN ENSEMBLE DE BESICOVITCH

par Jean-Pierre KAHANE

Un ensemble du plan est appelé ensemble de Besicovitch s'il est d'aire nulle et contient un segment de droite dans toute direction. Si un ensemble du plan est d'aire nulle et qu'il contient un segment dans toute direction appartenant à un certain angle, il suffit d'en prendre les images par des rotations en nombre fini, et de réunir ces images, pour avoir un ensemble de Besicovitch. Je me permettrai dans cet article d'étendre le sens du terme, et d'appeler ensemble de Besicovitch, dans le plan ou dans l'espace (C, R², Rⁿ) tout ensemble dont la mesure de Lebesgue est nulle dans la dimension considérée, et qui contient des segments de droite dans toutes les directions appartenant à un ensemble ouvert de directions.

Mon point de départ sera un exemple que j'ai donné en 1969 dans l'Enseignement Mathématique, à savoir la réunion dans le plan des segments de droites dont les extrémités appartiennent à deux ensembles de Cantor de dimension 1/2, homothétiques l'un de l'autre dans le rapport 2, et non colinéaires [5]. L'exemple est bon mais la justification que j'avais donnée est incorrecte. Il y a deux manières de justifier cet exemple, l'une, très rapide, par l'utilisation du théorème de projection de Besicovitch [2, 9], et l'autre, qui entre plus profondément dans les propriétés arithmétiques de l'ensemble, par une méthode de Richard Kenyon [7]. Je donnerai les deux démonstrations, puis des variantes de cet exemple dans le plan et dans l'espace, et quelques commentaires.

1. LE MODÈLE RÉDUIT ET LA PREMIÈRE DÉMONSTRATION

L'exemple donné en [5] est le transformé par affinité du modèle réduit que voici.

Dans le plan de la variable complexe z = x + iy, on considère les deux ensembles de Cantor

(1)
$$E = \left\{ \sum_{j=1}^{\infty} \varepsilon_j 4^{-j}, \varepsilon_j \in \{0, 1\} \right\}$$

$$(2) E' = 2E + i,$$

dont les segments supports sont l'intervalle $\left[0,\frac{1}{3}\right]$ de la droite réelle y=0, et l'intervalle $\left[0,\frac{2}{3}\right]+i$ de la droite y=1. La réunion des segments de droite qui les joignent est

(3)
$$B = \{(1-h)z + hz', z \in E, z' \in E', 0 \le h \le 1\}.$$

Les sections horizontales de B sont les

(4)
$$B_h = \{(1-h)z + hz', z \in E, z' \in E'\} \quad (0 \le h \le 1)$$

qu'il sera commode d'écrire $B_h = (1 - h)B_u^*$ avec

(5)
$$B_u^* = E + \frac{u}{2}E', \quad \frac{u}{2} = \frac{h}{1-h} \quad (u > 0, \ 0 < h < 1).$$

Les parties réelles des B_u^* s'écrivent

(6)
$$E_{u} = ReB_{u}^{*} = \left\{ \sum_{j=1}^{\infty} (\varepsilon_{j} + u\varepsilon_{j}')4^{-j}, \ (\varepsilon_{j}, \varepsilon_{j}') \in \{0, 1\}^{2} \right\}$$
$$= \left\{ \sum_{j=1}^{\infty} a_{j}4^{-j}, \ a_{j} \in \{0, 1, u, 1 + u\} \right\}.$$

Remarquons que

$$E_2 = [0, 1], E_{1/2} = [0, \frac{1}{2}],$$

 $E_1 = \left\{ \sum_{i=1}^{\infty} \alpha_i 4^{-i}, \alpha_i \in \{0, 1, 2\} \right\}$

donc E_1 est de mesure nulle et sa dimension est $\log 3/\log 4$, et

$$(7) E_{1/u} = \frac{1}{u} E_u \,,$$

ce qui permet de borner l'étude à 0 < u < 1. Enfin

(8)
$$4E_{u} = \left\{ a_{1} + \sum_{j=1}^{\infty} a_{j+1} 4^{-j} \right\} = \left\{ 0, 1, u, 1 + u \right\} + E_{u},$$

égalité qui va jouer un rôle essentiel dans l'étude arithmétique.

Examinons les directions des segments joignant les points z de E aux points z' de E'. Ils ont tous 1 pour hauteur, et leurs projections sur l'axe réel ont pour mesures

$$Re(z'-z) = \sum_{j=1}^{\infty} (2\varepsilon_j' - \varepsilon_j) 4^{-j}$$
$$= \sum_{j=1}^{\infty} (2\varepsilon_j' + (1 - \varepsilon_j) - 1) 4^{-j}.$$

L'ensemble de ces mesures est $E_2 - \sum\limits_{j=1}^{\infty} 4^{-j}$, c'est-à-dire $\left[-\frac{1}{3}, \frac{2}{3}\right]$. Les segments ont donc toutes les directions entre $\frac{y}{x} = -3$ et $\frac{y}{x} = \frac{3}{2}$, c'est-à-dire les directions des segments joignant les intervalles-supports de E et de E', $\left[0,\frac{1}{3}\right]$ et $\left[i,\frac{2}{3}+i\right]$.

L'ensemble B contient bien des segments de droites dans toutes les directions appartenant à un ensemble ouvert de directions.

Reste à montrer que $mes_2 B = 0$, soit $mes_1 B_h = 0$ pour presque tout h, soit $mes_1 E_u = 0$ pour presque tout u (mes_α est la mesure de Lebesgue en dimension α).

La preuve rapide repose sur le théorème des projections de Besicovitch. En effet, E_u est la projection de $E \times E$ dans la projection qui amène (x, y) en x+uy. Or $E \times E$ est un ensemble de dimension 1 irrégulier selon Besicovitch, purement non-rectifiable dans la terminologie actuelle ([2], [9] p. 204). Le théorème de Besicovitch dit justement que $mes_1E_u = 0$ pour presque tout u ([2], [9] p. 250). Au lieu du théorème de Besicovitch, on peut se référer à l'étude de Peres, Simon et Solomyak, plus élémentaire et au cœur du sujet [10].

2. La méthode de Kenyon, seconde démonstration

Je vais maintenant donner une autre preuve, calquée sur une étude de Richard Kenyon [7]. On va montrer que $mes_1E_u = 0$ quand u est irrationnel; cela suffit pour établir que B est un ensemble de Besicovitch. Voici une description plus complète des propriétés des E_u .

Introduisons d'abord une notation. A tout entier n positif, associons $n^* \in \{1, 2, 3\}$, le premier chiffre non nul à partir de la droite dans l'écriture de n en base 4:

$$n^* = n4^{-j^*} \mod 4$$
, $j^* = \sup\{j : 4^j \text{ divise } n\}$.

Remarquons que si $\frac{p}{q}$ est une fraction irréductible, on a soit p^* et q^* impairs, soit $p^* + q^*$ impair.

Théorème 1. Si $u=\frac{p}{q}$ avec p^*+q^* impair, E contient un intervalle, et c'est l'adhérence de son intérieur. Si $u=\frac{p}{q}$ avec p^* et q^* impairs, $mes_1E_u=0$ et la dimension de Hausdorff de E_u est <1. Si u est irrationnel, $mes_1E_u=0$.

La démonstration reposera sur les lemmes que voici.

LEMME 1. Si $mes_1E_u > 0$, E_u contient un intervalle.

LEMME 2. Si E_u contient un intervalle, c'est l'adhérence de son intérieur.

LEMME 3. Si E_u contient un intervalle, u est rationnel.

Le lemme 1 joue un rôle clé. Le lemme 2, dont la démonstration est immédiate, sera utilisé dans celle du lemme 3. La démonstration du lemme 3 fait intervenir un pavage par des translatés de E_u , idée ingénieuse qui était naturelle pour Kenyon.

L'implication

(9)
$$u \text{ irrationnel } \Longrightarrow mes_1 E_u = 0$$

résulte des lemmes 1 et 3. On examinera le cas de u rationnel après la démonstration du lemme 2.

Démonstration du lemme 1. L'égalité (8) signifie que $4E_u$ est la réunion de quatre translatés de E_u , distincts si l'on suppose 0 < u < 1. Comme

$$mes_1(4E_u) \leq \sum_{1}^{4} mes_1$$
 (translaté de E_u) = 4 mes_1E_u ,

les intersections deux à deux de ces translatés sont de mesure (mes_1) nulle; nous dirons que ces translatés sont disjoints presque partout. En itérant, 4^nE_u

est la réunion de 4^n translatés de E_u , qui sont deux à deux soit confondus, soit disjoints presque partout. L'ensemble des vecteurs de translations est

$$V_n = \{0, 1, u, 1 + u\} + 4\{0, 1, u, 1 + u\} + \dots + 4^{n-1}\{0, 1, u, 1 + u\},\$$

et

$$4^n E_u = V_n + E_u.$$

Supposons $mesE_u > 0$. Soit x un point de densité de E_u . Alors la mesure de $4^n(E_u - x) \cap [-\frac{1}{2}, \frac{1}{2}]$ tend vers 1 quand $n \to \infty$, soit

(11)
$$\lim_{n\to\infty} mes_1\left((V_n+E_u-4^nx)\cap\left[-\frac{1}{2},\frac{1}{2}\right]\right)=1.$$

On peut remplacer $V_n - 4^n x$ dans (11) par l'ensemble W_n des $w_n \in V_n - 4^n x$ tels que $w_n + E_n$ rencontre $\left[-\frac{1}{2}, \frac{1}{2}\right]$, soit

$$W_n = ((V_n - 4^n x) \cap ([-\frac{1}{2}, \frac{1}{2}] - E_u),$$

et comme les $w_n + E_u$ sont soit confondus soit disjoints presque partout, leur nombre ne dépasse pas $\frac{1+3 \ mes_1 E_u}{mes_1 E_u}$:

$$\sharp W_n \leq \frac{1+3 \ mes_1 E_u}{mes_1 E_u} \ .$$

L'important dans (12) est que le second membre ne dépend pas de n.

Il existe donc une sous-suite de W_n qui converge, et soit W sa limite. Alors (11) entraîne que

$$mes_1\Big((W+E_u)\cap\Big[-\frac{1}{2},\frac{1}{2}\Big]\Big)=1.$$

Comme W est fini, $W + E_u$ est fermé, donc

$$(13) W + E_{u} = I.$$

Le premier membre est une réunion finie de translatés de E_u , qui sont fermés. L'un au moins de ces fermés contient un intervalle (Baire). Donc E_u contient un intervalle.

Démonstration du lemme 2. Soit $x \in E_u$, $x = \sum_{j=1}^{\infty} a_j 4^{-j}$ comme en (6).

Ecrivons

$$x \in \sum_{j=1}^{n} a_j 4^{-j} + 4^{-n} E_u$$
.

Si on suppose que E_u a des points intérieurs, il en est de même pour $4^{-n}E_u$ quel que soit n, donc x est limite de points intérieurs de E_u . Donc E_u est l'adhérence de son intérieur.

EXAMEN DU CAS OÙ u EST RATIONNEL. Les ensembles V_n introduits pour avoir l'égalité (10) peuvent être définis de plusieurs façons:

(14)
$$V_{n} = \{0, 1, u, 1 + u\} + 4\{0, 1, u, 1 + u\} + \dots + 4^{n-1}\{0, 1, u, 1 + u\}$$

$$= \left\{ \sum_{j=1}^{n} a_{j} 4^{n-j}, \ a_{j} \in \{0, 1, u, 1 + u\} \right\}$$

$$= \left\{ \sum_{k=1}^{n} b_{k} 4^{k}, \ b_{k} \in \{0, 1, u, 1 + u\} \right\}$$

$$= \left\{ \sum_{k=0}^{n-1} (\varepsilon_{k} + u\varepsilon'_{k}) 4^{k}, \ (\varepsilon_{k}, \varepsilon'_{k}) \in \{0, 1\}^{2} \right\}.$$

Quand u est irrationnel, il est clair qu'aucun V_n n'a de point multiple. Nous allons nous intéresser à cette propriété quand u est rationnel.

Commençons par une remarque générale. Le fait qu'aucun V_n n'ait de point multiple peut s'exprimer ainsi: l'équation

$$\sum \varepsilon_k 4^k + u \sum \varepsilon_k' 4^k = v \qquad (k \in \mathbf{Z})$$

où $\varepsilon = (\varepsilon_k)$ et $\varepsilon' = (\varepsilon'_k)$ appartiennent à $\{0,1\}^{\mathbf{Z}}$ et sont nuls hors d'un ensemble fini, admet au plus une solution pour chaque $v \in \mathbf{Z}$ donné. Sous cette forme, il est évident que la propriété est invariante quand on change u en 4u ou en u/4.

Partant de la fraction irréductible $u=\frac{p}{q}$, on se ramène donc, sans modifier la propriété, au cas où $p=p^* \mod 4$ et $q=q^* \mod 4$, ce que nous supposerons maintenant. Le fait qu'aucun V_n n'ait de point multiple signifie que l'équation

$$q\sum_{k>0}\varepsilon_k4^k+p\sum_{k>0}\varepsilon_k'4^k=q\sum_{k>0}\varepsilon_k''4^k+p\sum_{k>0}\varepsilon_k'''4^k,$$

où ε , ε' , ε'' et ε''' appartiennent à $\{0,1\}^N$ et sont nuls pour k assez grand, n'admet que les solutions $\varepsilon = \varepsilon''$, $\varepsilon' = \varepsilon'''$, c'est-à-dire que l'équation

(15)
$$q \sum_{k>0} \gamma_k 4^k + p \sum_{k>0} \gamma'_k 4^k = 0,$$

où (γ_k) et (γ'_k) appartiennent à $\{-1,0,1\}^N$ et sont nuls pour k assez grand, n'admet que la solution $(\gamma_k) = (\gamma'_k) = 0$. Or l'équation (15) entraîne

$$q^*\gamma_o + p^*\gamma_o' = 0 \mod 4.$$

L'hypothèse que p^*+q^* est impair, c'est-à-dire p^* resp. $q^*=2$ et q^* resp. $p^*=1$ ou 3, entraîne $\gamma_o=\gamma_o'=0$, puis, en remontant à (15), $\gamma_1=\gamma_1'=0$, et finalement $\gamma_k=\gamma_k'=0$ pour tout k.

CONCLUSION. Si $p^* + q^*$ est impair, aucun V_n n'a de point multiple.

Prenons maintenant comme hypothèse que $u = \frac{p}{q}$, 0 < u < 1, et qu'aucun V_n n'a de point multiple. Chaque V_n se compose donc de 4^n points contenus dans l'intervalle $[0,4^n]$ et mutuellement distants d'au moins $\frac{1}{q}$.

Soit μ_n la mesure de probabilité portée par $4^{-n}V_n$ et chargeant également tous ses points. Pour tout intervalle J de longueur $|J| \ge \frac{1}{a}4^{-n}$, on a

Les μ_n convergent faiblement vers une mesure de probabilité μ portée par E_u $(n \to \infty)$, et (16) implique que μ est absolument continue, avec une dérivée $\leq 2q$. Donc la transformée de Fourier de μ , $\hat{\mu}$, tend vers 0 à l'infini. Or

(17)
$$\hat{\mu}(t) = \prod_{j=1}^{\infty} C(4^{-j}t) \quad \text{avec} \quad C(t) = \frac{1}{4}(1 + e^{it})(1 + e^{iut}),$$
$$|\hat{\mu}(t)| = \prod_{j=1}^{\infty} |\cos 4^{-j} \frac{t}{2}| \prod_{j=1}^{\infty} |\cos 4^{-j} u \frac{t}{2}|.$$

Prenons $t = 2q4^n\pi$:

$$|\hat{\mu}(t)| = \prod_{i=1}^{n} |\cos q 4^{n-j} \pi| \prod_{i=n+1}^{\infty} |\cos q 4^{n-j} \pi| \prod_{i=1}^{n} |\cos p 4^{n-j} \pi| \prod_{i=n+1}^{\infty} |\cos p 4^{n-j} \pi|.$$

Les produits $\prod\limits_{j=1}^n$ valent 1, et les produits $\prod\limits_{j=n+1}^\infty$ sont indépendants de n. Le dernier, qui vaut $\prod\limits_{j=1}^\infty |\cos p 4^{-j}\pi|$, n'est nul que si un facteur est nul, c'est-à-dire si $p4^{-j}\pi=\frac{\pi}{2}\mod \pi$ pour un certain j, c'est-à-dire si $p^*=2$. De même, le premier $\prod\limits_{j=n+1}^\infty$ n'est nul que si $q^*=2$. Donc, si p^* et q^* sont impairs, on a

$$\overline{\lim_{t\to\infty}}|\hat{\mu}(t)|>0$$

ce qui est incompatible avec l'hypothèse.

CONCLUSION 1. Si p^* et q^* sont impairs, l'un des V_n , disons V_{n_0} , a un point multiple, c'est-à-dire que le cardinal de V_{n_o} est strictement inférieur à 4^{n_o} :

$$\sharp V_{n_2} = \nu < 4^{n_0}$$
.

Poursuivons. L'égalité (10), itérée, entraîne pour m = 1, 2, 3, ...

$$4^{mn_o}E_u = \underbrace{V_{n_o} + V_{n_o} + \dots + V_{n_o}}_{m \text{ termes}} + E_u$$

et comme $E_u \subset [0,1]$ puisqu'on a supposé 0 < u < 1, l'hypothèse $u = \frac{p}{q}$ avec p^* et q^* impairs entraîne que, pour un n_0 et un $\nu < n_0$ convenables et pour tout m, $4^{mn_o}E_u$ est recouvert par ν^m intervalles de longueur 1, c'est-à-dire que E_u est recouvert par ν^m intervalles de longueur 4^{-mn_o} . Il en résulte

$$\dim E_u \le \frac{\log \nu}{4\log n_o} < 1 \,,$$

dim signifiant la dimension de boîte (ou de Minkowski), par conséquent aussi la dimension de Hausdorff.

Revenons plus haut.

CONCLUSION 2. Si p^*+q^* est impair, E_u porte une mesure de probabilité absolument continue, donc $mes_1E_u > 0$ et, d'après les lemmes 1 et 2, E_u est l'adhérence de son intérieur.

La partie du théorème 1 concernant le cas u rationnel est établie par les conclusions 1 et 2. Reste à démontrer le lemme 3.

Démonstration du lemme 3. Supposons que E_u contient un intervalle ouvert, J. Cela impose que, quel que soit n, la distance de deux éléments distincts de V_n soit minorée par |J|; sinon, deux translatés de J par des éléments distincts de V_n empiéteraient l'un sur l'autre, ce qui est impossible. Pour N assez grand, J contient deux translatés de $4^{-N}E_u$ disjoints

$$v_i + 4^{-N} E_u$$
, $v_i \in 4^{-N} V_N$ $(i = 0 \text{ ou } 1)$.

On supposera $v_o < v_1$, c'est-à-dire

$$J_o = v_o + 4^{-N}J$$

à gauche de

$$J_1 = v_1 + 4^{-N}J.$$

On a vu que si un V_n a un point multiple, $\dim E_u < 1$. Donc ici tous les V_n sont constitués de points distincts, à distances mutuelles $\geq |J|$. Prenant n = 2N dans la formule (10), on voit que E_u est recouvert par 4^{2N} translatés de $4^{-2N}E_u$, les vecteurs translations appartenant à $4^{-2N}V_{2N}$, et l'ensemble

recouvert plusieurs fois est de mesure nulle. Extrayons de ce recouvrement les recouvrements minimaux de J, J_o et J_1 :

$$J \subset \bigcup_{w \in W(J)} (w + 4^{-2N} E_u)$$

$$J_o \subset \bigcup_{w \in W(J_o)} (w + 4^{-2N} E_u)$$

$$J_1 \subset \bigcup_{w \in W(J_1)} (w + 4^{-2N} E_u).$$

Observons que le recouvrement de J_1 est le translaté par $v_1 - v_o$ du recouvrement de J_o . Montrons comment reconstituer le recouvrement de J à partir de celui de J_o . Soit $G_o =]a,b[$ le plus grand intervalle ouvert contenant J_o et contenu dans $\bigcup_{w \in W(J_o)} (w + 4^{-2N}E_u)$. Remarquons que tous les

 $w+4^{-2N}E_u$ tels que $w\in W(J)\backslash W(J_o)$ sont disjoints de G_o ; en effet, si l'un d'eux avait un point dans G_o , il y aurait aussi un intervalle (lemme 2), donc il ne pourrait être disjoint p.p. de tous les autres $w+4^{-2N}E_u$. Comme leur diamètre est plus petit que $|G_o|$, chacun d'eux est soit à droite, soit à gauche de G_o . Comme les $w+4^{-2N}E_u$ ($w\in W(J)$) recouvrent J et que ceux pour lesquels $w\in W(J_o)$ ne recouvrent pas un voisinage de b, il en existe au moins un pour lequel $w\notin W(J_o)$ et qui contient b et un point à droite de b, disons $w(b)+4^{-2N}E_u$; la suite va montrer qu'il est unique. Il est à droite de G_o , donc b est son extrémité gauche. Réunissons—le aux $w+4^{-2N}E_u$ pour lesquels $w\in W(J_o)$, et soit G_o' le plus grand intervalle ouvert contenant G_o et contenu dans $w\in W(J_o)$ ou w=w(b)

 $G'_o =]a,b'[$, et définissons w(b') à partir de G'_o comme w(b) à partir de G_o . D'après notre observation initiale,

$$b' - b = w(b') - w(b) \ge 4^{-2N}|J|$$
.

En poursuivant de la sorte, on définit $G''_o =]a, b''[$ et w(b''), et

$$b'' - b' > 4^{-2N}|J|$$

et ainsi de suite. On construit de cette façon une chaîne de translatés de $4^{-2N}E_u$ qui va rejoindre J_1 , puis comprendre les $w+4^{-2N}E_u$ ($w \in W(J_1)$). La chaîne se poursuit en se répétant au delà de J_1 jusqu'à la frontière de E_u . En partant de J_1 vers la gauche au lieu de J_o vers la droite, la chaîne comprend les $w+4^{-2N}E_u$ ($w \in W(J_o)$) et se prolonge à gauche au delà de J_o jusqu'à 0. La construction est périodique, de période v_1-v_o , et elle réalise un pavage du plus grand intervalle]0,x[contenu dans E_u , périodique et de période v_1-v_o . Ce

pavage se prolonge à droite en remplaçant E_u par $4E_u$, 4^2E_u etc... Ainsi \mathbf{R}^+ est recouvert par un pavage périodique, de période $v_1 - v_o$ dont les éléments s'écrivent $w + 4^{-2N}E_u$ avec

$$w = 4^{-2N} \sum_{k>0} (\varepsilon_k + u\varepsilon_k') 4^k,$$

la somme étant finie et les ε_k et ε_k' égaux à 0 ou 1. Ces w se répartissent en un nombre fini de progressions arithmétiques de raison v_1-v_o . Au moins une de ces progressions contient deux $\sum \varepsilon_k 4^k$ différents, dont la différence est donc un multiple de v_1-v_o . De même il existe deux $u\sum \varepsilon_k' 4^k$ dont la différence est un multiple de v_1-v_o . Il s'ensuit que u est rationnel.

Cela achève la démonstration du théorème 1.

3. Interprétation du théorème 1 sur le modèle réduit, et complément

Le modèle réduit est l'ensemble B défini par (1), (2), (3), et ses sections horizontales sont les B_h de (4). Puisque $B_o = E$ et $B_1 = E'$, bornons-nous à 0 < h < 1. Rappelons (5), que

$$\frac{u}{2} = \frac{h}{1-h}, \qquad h = \frac{u}{u+2}.$$

Dire que u est irrationnel, c'est dire que h est irrationnel; alors $mes_1B_h=0$. Si $h=\frac{p}{q}$ irréductible, $u=\frac{2p}{q-p}$. Dire que u est le rapport de deux nombres impairs, c'est dire que p et $\frac{q-p}{2}$ sont impairs; dans ce cas, $mes_1B_h=0$ et $\dim B_h<1$. Il en est de même si p^* et $\left(\frac{q-p}{2}\right)^*$ sont impaires. Si p^* ou $\left(\frac{q-p}{2}\right)^*$ est paire (il n'est pas possible que les deux le soient), B_h contient un intervalle et c'est l'adhérence de son intérieur. Ces propriétés sont invariantes par le changement de u en 4u, donc par le changement de h en $\frac{4h}{3h+1}$.

Nous avons vu de deux manières que B est un ensemble de Besicovitch (au sens large). Pour obtenir un ensemble de Besicovitch au sens strict (le sens usuel), on peut faire pivoter B de $k\frac{\pi}{4}$ autour de 0 (k=1,2,3,4,5,6,7,8) et prendre la réunion des huit ensembles ainsi obtenus.

On peut aussi écraser B sur la droite réelle et prendre la réunion des B écrasés, complétée par le segment réel $[0,\frac{2}{3}]$. Précisons: il s'agit de l'adhérence de

$$\bigcup_{n=1}^{\infty} A_n(B) ,$$

où A_n est la transformation affine $(x,y) \to (x,\alpha_n y)$, (α_n) étant une suite positive quelconque tendant en décroissant vers 0.

La démonstration du théorème 1 contient des informations intéressantes sur la mesure μ dont la transformée de Fourier, écrite en (17), est

$$\hat{\mu}(t) = \prod_{i=1}^{\infty} \cos 4^{-j} \frac{t}{2} \cos 4^{-j} \frac{ut}{2}$$

et sur la réunion V de tous les V_n , c'est-à-dire de l'ensemble

$$(18) V = \sum_{k \ge 0} (\varepsilon_k + u\varepsilon_k') 4^k$$

où la somme est finie et les ε_k et ε_k' valent 0 ou 1. Groupons-les.

Théorème 2. Si u est irrationnel, μ est singulière et portée par un ensemble fermé de mesure nulle (mes₁E_u = 0), et V contient des points arbitrairement proches mais jamais confondus. Si u est rationnel, $u = \frac{p}{q}$ irréductible, on a l'alternative suivante :

- a) si p^* et q^* sont impaires, μ est singulière et portée par un ensemble fermé de dimension inférieure à 1 (dim $E_u < 1$), $\hat{\mu}(t)$ ne tend pas vers 0 à l'infini, et V contient des points multiples.
- b) si p* + q* est impaire, c'est-à-dire l'un des deux pair et l'autre impair, μ est absolument continue, sa dérivée est bornée et son support est l'adhérence de son intérieur, V n'a pas de point multiple et c'est une réunion finie de progressions arithmétiques de même raison:

$$V = \alpha N + A$$
, $\alpha > 0$, $\sharp A < \infty$.

On connaît le comportement asymptotique de $\hat{\mu}(t)$ quand u est rationnel: $\overline{\lim_{t\to\infty}}\hat{\mu}(t)>0$ dans le cas a), et $\lim_{t\to\infty}\hat{\mu}(t)=0$ dans le cas b). Il est possible que $\hat{\mu}(t)$ tende vers 0 à l'infini quand n est irrationnel, mais je ne sais pas le démontrer.

4. VARIANTES

Commençons par des variantes très proches du modèle réduit, pour aller ensuite vers des variantes hors du plan.

4.1 CHANGER 2 EN 3

Au lieu de (1) et (2) on peut partir de

$$E = \left\{ \sum_{j=1}^{\infty} \eta_j 9^{-j}, \ \eta_j \in \{0, 1, 2\} \right\}$$
$$E' = 3E + i$$

B étant toujours défini comme la réunion des segments de droites joignant un point de E et un point de E' (formule (3)).

L'étude est la même. On voit que E + 3E = [0, 1], et que

$$3E - E = \left\{ \sum_{j=1}^{\infty} (3\eta_j' - \eta_j) 9^{-j} \right\} = \left\{ \sum_{j=1}^{\infty} (3\eta_j' + (2 - \eta_j) - 2) 9^{-j} \right\} = \left[-\frac{1}{4}, \frac{3}{4} \right],$$

donc les segments de droites constituant B ont toutes les directions dans un certain angle. Les $E_u=E+uE$ sont de mesure nulle $(mes_1E_u=0)$ pour tous les u irrationnels, on le voit en transcrivant les lemmes 1, 2, 3. Reste le cas où u est rationnel, $u=\frac{p}{q}$ irréductible. On définit p^* et q^* comme les premiers chiffres non nuls à partir de la droite dans les écritures de p et de q en base 9, on transcrit de manière évidente les définitions des V_n , de V et de la mesure μ , et on a l'analogue des théorèmes 1 et 2 en remplaçant comme il convient les conditions sur p^* et q^* , à savoir $(3|q^*)$ ou $3|p^*)$ pour assurer que V n'a pas de point multiple, et $(3 \nmid q^*)$ et $(3 \nmid p^*)$ pour entraîner $\overline{\lim_{t\to\infty}}|\hat{\mu}(t)|>0$.

4.2 Changer 2 en un autre nombre premier

Plus généralement, quand r est un nombre premier, on peut partir de

$$E = \left\{ \sum_{j=1}^{\infty} \eta_j r^{-2j}, \ \eta_j \in \{0, 1, \dots r - 1\} \right\}$$
$$E' = rE + i$$

et définir $E_u = E + uE$, $V_n = \left\{ \sum_{k=0}^{n-1} \eta_k r^{2k} \right\}$ et $V = \bigcup V_n$, et μ comme mesure de probabilité canonique sur E_u , avec

$$\hat{\mu}(t) = \prod_{j=1}^{\infty} C(r^{-2j}t), \qquad C(t) = D(t)D(ut),$$

$$D(t) = 1 + e^{it} + e^{2it} + \dots + e^{i(r-1)t} = \frac{1 - e^{irt}}{1 - e^{it}}.$$

De nouveau, les segments joignant E et E' constituent un ensemble de Besicovitch dont les sections horizontales de hauteur h sont de la forme

(19)
$$B_h = (1 - h)E_u + ih, \qquad u = \frac{rh}{1 - h}.$$

Pour $u = \frac{p}{q}$, p^* et q^* représentent les premiers chiffres non nuls en partant de la droite dans les écritures de p et q en base r^2 . Les théorèmes 1 et 2 se transcrivent ainsi.

THÉORÈME 3. Si u est irrationnel, $mes_1E_u=0$, μ est singulière et V contient des points arbitrairement proches mais jamais confondus. Si $u=\frac{p}{q}$ irréductible on a l'alternative suivante :

- a) si r ne divise ni p^* ni q^* , dim $E_u < 1$, μ est singulière et $\overline{\lim_{t \to \infty}} |\hat{\mu}(t)| > 0$, et V contient des points multiples.
- b) si r divise p^* ou q^* , E_u est l'adhérence de son intérieur, μ est absolument continue et sa dérivée est bornée, et V est simple et de la forme

$$V = \alpha \mathbf{N} + A$$
, $\alpha > 0$, A fini.

4.3 Jouer avec des nombres premiers différents

On peut aussi jouer avec deux nombres premiers différents, r et s, en considérant

$$E^{r} = \left\{ \sum_{j=1}^{\infty} \eta_{j}(rs)^{-j}, \ \eta_{j} \in \{0, 1, \dots, r-1\} \right\}$$

$$E^{s} = \left\{ \sum_{j=1}^{\infty} \eta'_{j}(rs)^{-j}, \ \eta_{j} \in \{0, 1, \dots, s-1\} \right\}$$

$$E_{u} = E^{r} + uE^{s} \quad (u > 0)$$

$$V = \left\{ \sum_{k \geq 0} \eta'_{k}(rs)^{k}, \ \eta_{k} \in \{0, 1, \dots, r-1\} \right\}$$

$$V' = \left\{ \sum_{k \geq 0} \eta'_{k}(rs)^{k}, \ \eta_{k} \in \{0, 1, \dots, s-1\} \right\},$$

les derniers \sum représentant des sommes finies. Maintenant μ , la mesure de

probabilité canonique sur Eu, a pour transformée de Fourier

$$\hat{\mu}(t) = \prod_{j=1}^{\infty} C((rs)^{j}t), \ C(t) = D_{r}(t)D_{s}(ut),$$

$$D_{r}(t) = 1 + e^{it} + \dots + e^{i(r-1)t}$$

$$D_{s}(t) = 1 + e^{it} + \dots + e^{i(s-1)t}.$$

L'ensemble de Besicovitch associé est la réunion des segments joignant les ensembles E^r , porté par la droite y=0, et rE^s+i , porté par la droite y=1. On remarque que

$$E^r + rE^s = E_r = [0, 1],$$

ce qui assure que les segments ont toutes les directions dans un ensemble ouvert de directions, les sections horizontales sont données par (19) en fonction des E_u , et les propriétés de E_u , μ et V s'expriment par l'extension suivante du théorème 3.

Théorème 4. Même énoncé que le théorème 3 pour u irrationnel. Pour u rationnel, $u = \frac{p}{q}$ irréductible, on désigne par p^* (resp. q^*) le premier chiffre non nul dans l'écriture de p^* (resp. q^*) en base rs. Même énoncé que le théorème 3 en prenant comme hypothèse dans a) que r ne divise pas p^* et que r ne divise pas r et dans r b) l'hypothèse opposée, c'est-à-dire que r divise r ou que r divise r has r divise r ou que r divise r ou que r divise r ou que r divise r has r divise r ou que r divise r ou que r divise r ou que r divise r has r divise r ou que r divise r divi

4.4 Les ensembles de Kenyon

Si on laisse de côté les ensembles de Besicovitch, on peut étudier pour eux-mêmes les ensembles E_u de la forme

$$E_u = \left\{ \sum_{j=1}^{\infty} \eta_j r^{-j}, \ \eta_j \in \{0, 1, \dots, r-2, u\} \right\} \quad (u > 0).$$

L'exemple type est r=3, et c'est le cas traité dans l'article de Kenyon [7]. Son résultat principal est le suivant

Théorème de Kenyon [7]. Pour avoir $mes_1E_u>0$, il faut et suffit que u soit rationnel, égal à $\frac{p}{q}$ irréductible avec $p+q=0 \mod 3$. Si $u=\frac{p}{q}$ irréductible avec $p+q\neq 0 \mod 3$, $\dim E_u<1$.

4.5 LE CAS MULTIDIMENSIONNEL

On peut construire un ensemble de Besicovitch dans \mathbf{R}^{d+1} en partant de E^d , E étant défini en section 4.2, ou à partir de $(E^r)^d$ et $(E^s)^d$, E^r et E^s étant définis en 4.3. Je me bornerai au cas r=s=2, c'est-à-dire à l'ensemble E de départ, donné par (1), en considérant E^d .

J'écrirai $\mathbf{R}^{d+1} = \mathbf{R}_1 \times \mathbf{R}_2 \times \cdots \times \mathbf{R}_d \times \mathbf{R}_{d+1}$, et je désignerai par i le vecteur unitaire de \mathbf{R}_{d+1} . L'ensemble B et ses sections « horizontales» B_h seront encore définis par (3) et (4), avec ici E^d à la place de E, et $(2E)^d + i$ à la place de E'. L'enveloppe convexe de E^d est le cube $\left[0,\frac{1}{3}\right]^d$, et celle de $(2E)^d + i$ le cube $\left[0,\frac{2}{3}\right]^d + i$. Les segments de droite joignant un point de E^d à un point de $(2E)^d + i$, dont la réunion est B, ont toutes les directions des segments joignant les deux cubes. Pour montrer que B est un ensemble de Besicovitch, il suffit de montrer que $mes_dF_u = 0$ pour presque tout u, avec

$$F_{u} = E^{d} + uE^{d}$$

$$= \left\{ \sum_{j=1}^{\infty} (\varepsilon_{j} + u\varepsilon_{j}')4^{-j}, \ \varepsilon_{j} \in \{0, 1\}^{d}, \ \varepsilon_{j}' \in \{0, 1\}^{d} \right\}$$

$$= \left\{ \sum_{j=1}^{\infty} a_{j}4^{-j}, \ a_{j} \in \{0, 1, u, 1 + u\}^{d} \right\}.$$

En fait, on a $mes_dF_u = 0$ pour tout u irrationnel.

Théorème 5 (Transcription du théorème 1). Si $u=\frac{p}{q}$ avec p^*+q^* impair, F_u est l'adhérence de son intérieur. Si $u=\frac{p}{q}$ avec p^* et q^* impairs, $mes_dF_u=0$ et $\dim F_u< d$. Si u est irrationnel, $mes_dF_u=0$.

La preuve est une retranscription de celle du théorème 1. Les lemmes 1 et 2 se retranscrivent verbatim. Le lemme 3 nécessite de remplacer au départ les intervalles par des boules, puis par des pavés. Je me borne à d=2 pour expliquer la situation. On considère \mathbf{R}^2 euclidien, on pose

$$V_n = \left\{ \sum_{k=0}^{n-1} b_k 4^k, \ b_k \in \{0, 1, u, 1+u\}^2 \right\}.$$

On suppose que F_u contient un disque D de rayon ρ . La distance de deux points de V_n est alors minorée par ρ . Pour N assez grand, D contient deux morceaux disjoints du recouvrement de F_u par les $v + 4^{-N}F_u(v \in 4^{-N}V_N)$ soit $v_o + 4^{-N}F_u$ et $v_1 + 4^{-N}F_u$, avec la condition additionnelle que v_1 soit sur la même horizontale que v_0 et à sa droite, ou sur la même verticale et

au-dessus. Le premier, $v_o + 4^{-N}F_u$, contient un rectangle ouvert J_o dont un côté est parallèle à $v_1 - v_o$, et le translaté de J_o par $v_1 - v_o$, J_1 , occupe dans $v_1 + 4^{-N}F_u$ la même position que J_o dans $v_o + 4^{-N}F_u$. Soit B le côté de J_o faisant face à J_1 . Chaque point de B appartient à un $w + 4^{-2N}F_u$ ($w \in 4^{-2N}V_{2N}$) disjoint de J_o , et c'est un point extrémal de ce $w + 4^{-2N}V_{2N}$ dans la direction $v_o - v_1$ (parmi d'autres peut-être). On réunit ces $w + 4^{-2N}V_{2N}$ à ceux qui recouvrent J_o de façon minimale. L'ensemble obtenu contient un translaté de J_o dans la direction $v_1 - v_o$, J', dont le côté qui fait face à J_1 , B', est le plus proche possible de J_1 . En partant de J' et B' au lieu de J_o et B, on définit J'' et B'' et ainsi de suite. Les segments B, B', B'', ... ne peuvent pas s'accumuler parce que les $w \in 4^{-2N}V_{2N}$ sont à des distances mutuelles $\geq 4^{-2N}\rho$. La suite J_o , J', J'',... se prolonge donc jusqu'à ce que le dernier terme coïncide avec J_1 , et on peut la prolonger indéfiniment par périodicité de vecteur $v_1 - v_o$. Le fait que u est rationnel en dérive comme en dimension 1.

En partant de J_1 vers J_o on a une chaîne de rectangles qui s'arrête au voisinage du bord gauche du quart de plan $(\mathbf{R}^+)^2$, à savoir quand on se trouve à une distance de ce bord inférieure à $4^{-N}\rho$. En alternant les v_1-v_o horizontaux et verticaux, on obtient un pavage doublement périodique de $[\varepsilon, \infty[^2]$ par des $w+4^{-2N}F_u$, $w\in 4^{-2N}V$ avec $V=\bigcup V_n$, pour $N>N(\varepsilon)$.

L'étude pour r rationnel se ramène au cas d = 1.

5. Commentaires sur les références

L'histoire des ensembles de Besicovitch et leurs liens avec l'analyse harmonique, l'arithmétique et la combinatoire se trouvent excellemment décrits dans [8]. Besicovitch les avait introduits dès 1918 pour montrer que les intégrales de Riemann ne se prêtent pas à un théorème de Fubini. Il en a repris la description en 1928 dans [1] comme réponse au problème de Kakeya, puis en 1938 dans [2] à l'occasion d'un film montrant la construction. La fin de cet article énonce une propriété remarquable des ensembles de droites dans le plan: on associe à chaque droite D son pôle P par rapport à un cercle fixé, et ainsi à un ensemble de droites D_{α} ($\alpha \in A$) un ensemble de points P_{α} ($\alpha \in A$), soit E. Cette propriété est redonnée, et démontrée, dans [3]:

THÉORÈME ([3] p. 706). Si l'ensemble E est irrégulier (purement non rectifiable), l'ensemble $\bigcup_{\alpha \in A} D_{\alpha}$ est de mesure plane nulle. S'il est régulier (rectifiable), la réunion des D_{α} est de mesure plane infinie.

Besicovitch ajoute dans [2] que la construction d'un ensemble E irrégulier tel que les D_{α} aient toutes les directions ne présente pas de difficulté. Cela occupe quelques lignes dans [3], et se trouve expliqué complètement dans [4].

L'exposé moderne le plus accessible sur les théorèmes de projection et sur les ensembles de Besicovitch et leurs généralisations se trouve dans le chapitre 18 du livre de Mattila [9]. L'existence d'ensembles dans \mathbb{R}^n constitués de plans ayant toutes les directions possibles, et de mesure nulle en dimension n, est un problème ouvert ([9] p. 263). Mattila donne un exemple d'ensemble de Besicovitch par une variante de la méthode de dualité de Besicovitch (1964 [4]), en associant au point (a,b) la droite y=ax+b.

La méthode de Kenyon exploitée ici dans la partie 2, et son théorème énoncé en 4.4 sont tirés de [7]. Kenyon part du tamis défini dans C par

$$S = \left\{ \sum_{j=1}^{\infty} s_j 3^{-j}, \ s_j \in \{0, 1, i\} \right\}$$

qui est un ensemble de Sierpiński de dimension 1, et purement non-rectifiable. La projection qui amène x + iy sur x + uy amène S sur

$$S_u = \left\{ \sum_{i=1}^{\infty} a_i 3^{-i}, \ a_i \in \{0, 1, u\} \right\},$$

l'ensemble considéré en 4.4. J'ai juste transcrit sa méthode pour l'étude des ensembles E_u . Le théorème de 4.4 est un abrégé très incomplet des résultats de Kenyon sur les S_u .

L'article de Kahane et Salem de 1958 [6] traite dans sa dernière partie des mesures μ dont les transformées de Fourier sont les produits $\gamma_{\xi}(t)\gamma_{\xi}(\lambda t)$, où

$$\gamma_{\xi}(t) = \prod_{0}^{\infty} \cos \pi \xi^{k} t.$$

Il considère les cas $\xi > \frac{1}{4}$ (μ absolument continue pour presque tout λ) et $\xi < \frac{1}{4}$ (μ singulière pour tout λ), et laisse de côté le cas $\xi = \frac{1}{4}$. C'est le cas traité ici par le théorème 2.

Mon article de 1969 [5] nécessitait une correction. Elle est faite.

Je remercie le referee pour ses observations, en particulier pour la référence [10] et pour m'avoir incité à réécrire un passage crucial dans l'argument de pavage de Kenyon.

BIBLIOGRAPHIE

- $\lceil 1 \rceil$ BESICOVITCH, A. S. On Kakeya's problem and a similar one. Math. Z. 27 (1928), 312-320.
- [2] On the fundamental geometrical properties of linearly measurable plane sets of points III. Math. Ann. 116 (1939), 349-357.
- The Kakeya problem. Amer. Math. Monthly 70 (1963), 697–706. [3]
- [4] — On fundamental geometric properties of plane line–sets. J. London Math. Soc. 39 (1964), 441-448.
- [5] KAHANE, J.-P. Trois notes sur les ensembles parfaits linéaires. L'Enseignement Math. (2) 15 (1969), 185-192.
- [6] KAHANE J.-P. et R. SALEM. Sur la convolution d'une infinité de distributions de Bernoulli. Collog. Math. 6 (1958), 193-202.
- [7] KENYON, R. Projecting the one dimensional Sierpinski gasket. Israel J. Math. 97 (1997), 221-238.
- [8] ŁABA, I. From harmonic analysis to arithmetic combinatorics. Bull. Amer. Math. Soc. (N.S.) 45 (2008), 77-115.
- [9] MATTILA, P. Geometry of Sets and Measures in Euclidean spaces. Cambridge University Press, Cambridge, 1995.
- [10] PERES, Y., K. SIMON and B. SOLOMYAK. Fractals in the plane with positive length and zero Buffon needle probability. Amer. Math. Monthly 110 (2003), 314–325.

(Reçu le 21 juin 2012)

Jean-Pierre Kahane

Laboratoire de Mathématique Université Paris-Sud, Bât. 425 F-91405 Orsay Cedex

France

e-mail: Jean-Pierre.Kahane@math.u-psud.fr