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SUBTLETIES OF THE MINIMAX SELECTOR

by Qiaoling WEI

ABSTRACT. In this note, we show that the minimax and maximin critical values
of a function quadratic nondegenerate at infinity are equal when defined in homology
or cohomology with coefficients in a field. However, by an example of F. Laudenbach,
this is not always true for coefficients in a ring and, even in the case of a field, the
minimax-maximin depends on the field.

1. INTRODUCTION

Given a Lagrangian submanifold . in the cotangent bundle of a closed
manifold A/, obtained by Hamiltonian deformation of the zero section,
the minimax selector introduced by J.-C. Sikorav [14] provides an almost
everywhere defined section M — I of the projection T*M — M restricted
to L. As noticed by M. Chaperon [5, 6], this defines weak solutions of
smooth Cauchy problems for Hamilton-Jacobi equations; in the classical
case of a convex Hamiltonian, the minimax is a minimum and the minimax
solution coincides with the viscosity solution, which is not always the case for
nonconvex Hamiltonians. For a recent use of the minimax selector in weak
KAM theory, see [1].

The minimax has been defined using homology or cohomology with various
coefficient rings, for example Z in [5, 15], Q in [3] and Z; in [13]. Also,
in [15], the maximin was mentioned as a natural analogue to the minimax. But
there is no evidence showing that all these critical values coincide. G. Capitanio
has given a proof [3] that the maximin and minimax for homology with
coefficients in Q are equal, but the criterion he uses (Proposition 2 in [3])
is not correct — see Remark 3.11 hereafter.
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In this note, we investigate the maximin and minimax for a general function
quadratic at infinity, not necessarily related to Hamilton-Jacobi equations. We
give both algebraic and geometric proofs that the minimax and maximin with
coefficients in a field coincide; the geometric proof, based on Barannikov’s
Jordan normal form for the boundary operator of the Morse complex, improves
our understanding of the problem. The Barannikov normal form also plays a
crucial role in the proof of Arnold’s 4 cusps conjecture [7].

A counterexample for coefficients in Z, due to E Laudenbach [11], is
constructed using Morse homology; in this example, moreover, the minimax-
maximin for coefficients in Z, is not the same as for coefficients in Q.
However, if the minimax and maximin for coefficients in Z coincide, then all
three minimax-maximin critical values are equal.

2. MAXIMIN AND MINIMAX

HYPOTHESES AND NOTATION. We denote by X the vector space R™ and
by f a real function on X, quadratic at infinity in the sense that it is
continuous and there exists a nondegenerate quadratic form Q: X — R such
that f coincides with  outside a compact subset.

Let f¢:= {x | f(x) € ¢} denote the sub-level sets of f. Note that for ¢
large enough, the homotopy types of f¢, f~¢ do not depend on ¢, we may
denote them as f°° and f~°°. Suppose the quadratic form ¢ has Morse
index A, then the homology groups with coefficient ring R are

R in dimension A

Hf7 R ~ { 0

otherwise .

Consider the homomorphism of homology groups
few? Ho(f,f "R = HoA(f7 TR
induced by the inclusion i.: (f°,f~°°) — (f™,f ).
DEFINITION 2.1. If Z is a generator of H\(f™,f ", R), we let
y(f,R) ;= inf{c: E € Im(ic.)},

Le. ¥(f,R) = inf{c: i HA(f*, [ R) = HA(f™,. /7™ B}
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Similarly, we can consider the homology group

R in dimensionn — A
0 otherwise,

HAX\ %, X\ [ R) = {
and the homomorphism

Jext HWX A\ XN\ R) = H(X\f X\ R
induced by je: X\ £, X\ %) o (X \ £, X\ f).

DEFINITION 2.2. If A is a generator of H, A(X\f ™, X\ f™; R), we let

~(f,R) :=sup{c: A € Im(jo.)}
—sup{e ety A\ X N\ R) = Hy AKX\ f~, X\ f<: R},

LEMMA 2.3. One has that

~y(f,R) =infmaxf = inf_ max f(x)

[0]=E x£|a]|

T(,R) = supminf = sup min f),
[o1=a%E|o

where o is a relative cycle and |o| denotes its support. We call o a descending

(resp. ascending) simplex if [o0] =E (resp. [o] = A).

Proof. A descending simplex o defines an element of Hy(f°,f ";R)

if and only if |o| < f°, in which case one has m?xl fx) < ¢, hence
xE|o

~(f,R) = inf maxf; choosing ¢ = m?xl f(x), we get equality. The case of %

- xC|a

is identical.
DEFINITION 2.4.  y(f, R) 1s called a minimax of f and 7(f,R), a maximin.

REMARK. As we shall see later, in view of Morse homology, these names
are proper for excellent Morse functions.

One can also consider cohomology instead of homology and define
olf,Ry:=inf{e: i #0}, &0 HNS™.f 1R = HNfO.f ™R
a(f,Ry:=sup{c: jE £ 0}, j5 HX\ X\ R) — HE\ X\ R).

PROPOSITION 2.5 ([15], Proposition 2.4). When X is R-oriented,

alf, By =~(f,B) and off,R)=~(fR).
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Proof. We establish for example the first identity : one has the commutative
diagram
H\(f*, ™R =~ HX\f™,X\f%R)

Hy( % J % R) EP NI o0 K\ "% R)
l Lr':
Hy(f>~,f5R =~ HMX\f.X\f7R

where the horizontal isomorphisms are given by Alexander duality ([9],
section 3.3) and the columns are exact. It does follow that i.. is onto if

12

and only if j 1s zero.

DEFINITION 2.6 ([8]). As long as X 1is finite dimensional, the Clarke
generalized derivative of a locally Lipschitzian function f: X — R can
be defined as follows: by Rademacher’s theorem, the set dom(df) of
differentiability points of f is dense in X; we let df(x) be the convex
hull of the set of limits of convergent sequences df(x,) with limx, = x.
A point x € X is called a critical point of f if 0 € Jf(x).

PROPOSITION 2.7. If f is C? then Y(f,R) and ~(f,R) are critical values
of [, they are critical values of f in the sense of Clarke when f is locally
Lipschitzian.

Proof. Take ~ for example: if ¢ = ~4(f,R) is not a critical value then, for

small € > 0, f ¢ is a deformation retract of f<¢ via the flow of —%,
hence 7(f,R) < ¢ — ¢, a contradiction. The same argument applies when f

is only locally Lipschitzian, replacing Vf by a pseudo-gradient [4].

LEMMA 2.8. If f is locally Lipschitzian, then

Proof. Using a (pseudo-)gradient of f as previously, one can see that X\ f¢
and (—f)~° have the same homotopy type when ¢ is not a critical value of f.
Otherwise, choose a sequence of non-critical values ¢, ¢ = F(f,R), then
—c, = Y(—f,R), taking the limit, we have ~(f,R) < —~(—f,R). Similarly,
taking CTH N Y(—f,R), then —¢, < F(f,R), from which the limit gives us the
reverse inequ_ality —W—F Ry = R):
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REMARK. The extension of the minimax selector to Lipschitzian functions
is natural in the framework of Hamilton-Jacobi equations: even for smooth
initial data, the minimax solution at time # is not smooth in general, but it is
Lipschitzian; now, it can be interesting to take it as a new Cauchy datum.

The following two questions arise naturally:
(1) Do we have v(f,R) =~(f,R)?
(2) Do ~(f,R) and 7(f,R) depend on the coefficient ring R ?

Here are two obvious elements for an answer:

PROPOSITION 2.9. One has f_y(f, D=7, 2).

Proof. As the intersection number of E and A is +1, the support of any
descending simplex ¢ must intersect the support of any ascending simplex 7
at some point X, hence max f(x) > f(X) > min f(x).

xC|a| x€|7|

PROPOSITION 2.10.  One has (f,2) = ~(f,R) and 5(f,Z) <~5(f,R) for
every ring R.

Proof. A simplex ¢ whose homology class generates H)(f,f ™, 7Z)
induces a simplex whose homology class generates H\(f°,f°°; R), whence
the first inequality and, mutatis mutandis, the second one.

THEOREM 2.11. If F is a field, then v(f,F) =75(f,F).

Proof. By Proposition 2.5, it is enough to prove that

Recall that ~(f,F) (resp. a(f,F)) is the infimum of the real numbers ¢
such that ic:: Hy\(fC. 7% F) — H\(f*.f°°;F) is onto (resp. such that
i HM ™ = F) — HMNf°,f~°°; F) is nonzero). Now, as H\(f®,f~ > F)
is a one-dimensional vector space over F, the linear map #.. is onto if and
only if it is nonzero, i.e. if and only if the transposed map i} is nonzero.

REMARK. This proof is invalid for coefficients in Z since a Z-linear map
to Z, for example Z 2 m — km, k € Z, k > 1, can be nonzero without
being onto; we shall see in Section 4 that Theorem 2.11 itself is not true in
that case.
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COROLLARY 2.12. If v(f,Z) = 7(f,Z) =~ then v(f,F) =75, F) =~
for every field F.

Proof. This follows at once from Theorem 2.11 and Proposition 2.10.

COROLLARY 2.13. [let v € R have the following property: there exist
both a descending simplex over Z. along which ~ is the maximum of f and
an ascending simplex over Z along which ~ is the minimum of f. Then,

YL =75 L) = v(f,F) =75(f,F) = v for every field F.

Proof. We have ~v(f;Z) <~ <A(f;Z) by Lemma 2.3 and ~7(f;Z) <
~(/f:Z) by Proposition 2.9, hence our result by Corollary 2.12.

3. MORSE COMPLEXES AND THE BARANNIKOV NORMAIL FORM

The previous proof of Theorem 2.11, though simple, is quite algebraic.
We now give a more geometric proof, which we find more concrete and
illuminating, based on Barannikov’s canonical form of Morse complexes. It
will provide a good setting for the counterexample in Section 4.

First, there is a continuity result for the minimax and maximin:

PrOPOSITION 3.1 ([14, 16]). If f and g are two contimious functions
quadratic at infinity with the same reference quadratic form, then

VR — (g, B < |f — gleo
R = (g, B < |f — gleo-

Proof. For f < g, from Lemma 2.3, it is easy to see that ¥(f) < ¥(g).
In the general case, this implies y(g) < A(f + g —f) < () + g — fleo:
exchanging f and g, we get Y(f) <@+ |f — gleo.

COROLLARY 3.2. To prove Theorem 2.11, it suffices to establish it for
excellent Morse functions f: X — R, ie. smooth functions having only
nondegenerate critical points, each of which corresponds to a different value

of f.

Proof. By a standard argument, given a non-degenerate quadratic form Q
on X, the set of all continuous functions on X equal to Q off a compact
subset contains a C°-dense subset consisting of excellent Morse functions;
our result follows by Proposition 3.1.
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To prove Theorem 2.11 for excellent Morse functions, we will use Morse
homology.

HYPOTHESES. We consider an excellent Morse function f on X, quadratic

at infinity '); for each pair of regular values b < ¢ of f, we denote by f, .
the restriction of f to f°N(—f) ¥ = {b <f <c}.

MORSE COMPLEXES. Let

Celfoe) 1= {&: 1 < € <my}

denote the set of critical points of index & of f, ., ordered so that f(£¢8) < f(€%)
for £ < m. Given a generic gradient-like vector field V' for f such that (f, V)
is Morse-Smale ?), the Morse complex of (fp.,V) over R consists of the free
R-modules

Mo, B) = {D @k, aw <R}
£
together with the boundary operator @: Mi(fpc, R) = My 1(fpc,R) given by

8 = vy vl S e

where, with given orientations for the stable manifolds (hence co-orientations
for unstable manifolds), 14y is the intersection number of the stable manifold
WA (&L of & and the unstable manifold W% 1)y of €51, i.e. the algebraic
number of trajectories of V' connecting fif and £-1; note that

. yf,v(g’g,g,’;;l) is the same for all b ,¢ with f(f’g)j(f,ﬁ_l) in [b,c];

o vy (&R €571 £ 0 implies F(€5) > F(€E 1) otherwise, the stable manifold
of £~ and the unstable manifold of f’g for V, which cannot be transversal
because of their dimensions, would intersect, contradicting the genericity
of V.

o vrv(€, €5y = 0 for two distinct critical points of the same index.

This does define a complex, i.e. dod = 0: see for example [10, 12]. The
homology HM.(fb ¢, R) == H.(M.(fpc,R)) is called the Morse homology?)
of fp..

1y The theory applies as well to functions on a closed manifold, for example.

2) Being Morse-Smale means that the stable and unstable manifolds of all the critical points
are transversal.

3) Morse homology is defined in general for any Morse function.
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LEMMA 3.3 (Barannikov [2]). If R is a field F, then this boundary oper-
ator O has a special kind of Jordan normal form as follows : each Mi(fp ., F)
has a basis

M Bf = > apif, cue#0

i<t

such that either 9% = 0 or 9% = ZX-1 for some m , in which case no ' # (
satisfies o=k = :" L If (@k) is another such basis, then J=% = v = " U (resp. 0)
is equivalent fo 8@"@ = @ﬁl Y (resp. 0); in other words, the matnx of & in
all such bases is the same.

Proof. We prove existence by induction. Given nonnegative integers £, i
with i < my, suppose that vectors EZ of the form (1) have been obtained for
all (p,q) with either p < k, or p =k and g < i, possessing the required
property that either % = & (q) (with j,(q) # j,(¢") for q £ g por @5, = UL
If 3£+1 = 0 (e.g., when k = 0, we take fz+1 = HiH and continue the

induction. Otherwise, 8& i ZCYJ B z a; € F. Moving all the terms

N . o .
By = 98,4 S i from the right-hand side to the left, we get
ki~ 1
z+1 Zajk(q)'—‘ Zﬁj '
g=<i
Let
r—|k =
Sl Zaﬂc(‘i‘)'—‘ :

g<i

If 8, =0 for all j, then aEf = 0 and the induction can go on. Otherwise,

Hk 1 E H
1+1 ZBJ = B U with B, #0;
J<h

as Bujo = @0=;, | = 0, we can replace Z: " by =

and continue the
Jo Jo

induction*).

DEFINITION 3.4, Under the hypotheses and with the notation of the
Barannikov lemma, two critical points £ and 571 of f, . are coupled if
Ok = Bk -1 A critical point is free (over F) when it is not coupled with any
other critical point.

In other words, & is free if and only if =% is a cycle of M(f;,F) but
not a boundary, hence the following result:

4) Note that if F were not a field, this would not provide a basis for noninvertible !8,"0-
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COROLLARY 3.5. For each integer k, the Beiti number dimg HM(fp .. )
is the number of free critical points of index k of f,. over F. [

THEOREM 3.6.

(1) The Barannikov normal form of the Morse complex of f,. over F is
independent of the gradient-like vector field V .

(2) So is the Morse homology HM.(fy ., R) ; it is isomorphic to H.(f°, fb ‘R).

(3) For b <b < ¢ <<, the inclusion i: f* — f"’ , restricted to the critical
set C.(fp,), induces a linear map i.: M. (fpo,R) — M.(fp o, R) such
that 0 o i, = i, 0 0 and therefore a linear map i.: HM.(fp..R) —
HM.(fir o, R), which is the usual i.: H.(f, /%R — H.(f<, /"R
modulo the previous isomorphism.

Idea of the proof [10]. (1) Connecting two generic gradient-like vector
fields V;, V| for f by a generic family, one can prove that each of the Morse
complexes defined by V, and V; is obtained from the other by a change
of variables whose matrix is upper-triangular with all diagonal entries equal
to 1.

(2) When there is no critical point of f in {b < f < ¢}, both HM.(f;, ., R)
and H.(f¢,f"; R) are trivial (the flow of V defines a retraction of f¢ onto f?).

When there is only one critical point £ of f in {b < f < ¢}, of index A,

R, if k=,

0 otherwise :

?

HM(fiy 0, R) =~ Hy(f¢, f71 R) =~ {

the class of & obviously generates HM,\(f,.,R), whereas a generator
of HA\(S", fb ;R) is the class of a cell of dimension A, namely the stable
manifold of & for V;,<s<. ; the isomorphism associates the second class to
the first.

In the general case, one can consider a subdivision b = by < --- < by = ¢
consisting of regular values of f such that each f, , , has precisely one
critical point. One can show that the boundary operator @ of the relative
singular homology 8: Hi 1(fo+ . f%) — H(fY.f% ) can be interpreted
as the intersection number of the stable manifold of the cntical point 1n
{b; <f < b1} and the unstable manifold of that in {b;, ;| < f < b}, ie,
their algebraic number of connecting trajectories.

(3) The first claims are easy. The last one follows from what has just
been sketched. [
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COROLLARY 3.7. If f is an excellent Morse function quadratic at infinity,
then it has precisely one free critical point £ over F ; its index X\ is that of
the reference quadratic form Q and

Y, F) = £(©).

Proof. Clearly, the dimension of
HM(f,F) = HMU(f 0,00, ) = H(f™ f 7 F) = Hi(Q™, Q7% F)

is 1 if £ = A and O otherwise. The first two assertions follow by Corollary 3.5.
To prove ~(f,F) = f(&), note that ~(f) is the infimum of the regular
values ¢ of f such that the class of £ in HMy(f_,~,F) lies in the
image of i..: HM)(f_ o, F) = HM(f_cc o,F) by Theorem 3.6 (3), which
means ¢ > f(£).

PROPOSITION 3.8. The excellent Morse function —fp. = (—f)_c,_p has
the same free critical points over the field ¥ as f, ..

Proof. Assuming V fixed, this is essentially easy linear algebra:

* One has Ci(—f) = C,_1(f) and the ordering of the corresponding critical
values is reversed. Thus, the lexicographically ordered basis of M. (—f)
corresponding to (fﬁ)lgggmkﬁogkgn 18 (f;’;kk,£+1)1gegmn_k,ogkgn-

* The vector field —V has the same relations with —f as V has with f,

n—k n—(k—1) _ n—(k—1) n—k
henee gl " i1 Em g merid = Y&, oo mis Sy o1

That is, the matrix of the boundary operator of AM.(—f».) in the basis
(§;’;_kr p +1) is the matrix A obtained from the matrix A of the boundary
operator of M.(fp,c) in the basis (£4) by symmetry with respect to the second
diagonal (i.e. by reversing the order of both the lines and columns of the
transpose of A).

Lemma 3.3 can be rephrased as follows: there exists a block-diagonal
matrix

P = diag(Po, ..., Py)

where each P, € GL(my,F) is upper triangular, such that
@ P AP =3

is a Barannikov normal form, meaning the following: the entries of the column

of indices % are O except possibly one, equal to 1, which must lie on the line

k—1

of indices

for some m and be the only nonzero entry on this line. The
normal form B is the same for every choice of P and V. Clearly, & is a
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free critical point of f,. 1if and only if both the line and column of indices IE
of B are zero.
Equation (2) reads

3) PAP ' =B,

Now, ﬁ_l and P = (1‘5_1)*1 are block diagonal upper triangular matrices
whose k™ diagonal block lies in GL(m,_;,F); therefore, by (3), as B is a
Barannikov normal form for the ordering associated to —f, it is the Barannikov

normal form of the boundary operator of M.(—f,.), from which our result
follows at once.

COROLLARY 3.9. For any excellent Morse function | quadratic at infinity,
the sole free critical point of —f over F is the free critical point £ of f;
hence (f,F) = f(§) = —(=f X&) = —(~f,F) = 3(f,F) by Corollary 3.7
and Lemma 2.8, which proves Theorem 2.11. L]

Before we give an example where y(f,Z) > F(f,Z), here is a situation
where this cannot occur:

PROPOSITION 3.10. Assume that M.(f,7Z) can be put into Barannikov
normal form by a basis change (1) of the free Z-module M. (f,Z) :

@) Efe=Y abtk, ol . EZ, of,=:%l.

i<f
Then, v(f, 1) =~(f,2) = f(§), where § is the sole free critical point of f
over Z.

Proof. We are in the situation of the proof of Proposition 3.8 with
P € GL(my, Z), which implies that the Barannikov normal form 5 of the
boundary operator is the same for Z as for Q; it does follow that there is a
unique free critical point £ of f over Z (the same as over Q) and that it is the
unique free critical point of —f over Z; moreover, the proof of Corollary 3.7
shows that y(f,Z) =7(f,Z) = f({). We conclude as in Corollary 3.9.

Now that the coefficients are in Z, the classical method called handle
sliding [10, 12] states that, under an additional condition imposed on the
index of the change of basis in (4), namely 2 < k < n — 2, the Barannikov
normal form can be realized by a gradient-like vector field for f.

More precisely, let P: M,(f) — M.(f) be a transformation matrix where
P = diag(Py, . . ., P,) with each P, € GL(my, Z) such that P, = id for k= 10,1
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or n —1,n, and P; is upper triangular with +1 in the diagonal entries for
2 <k < n—2. Then one can construct a gradient-like vector field V' such
that, if the matrix of the boundary operator for a given gradient-like vector
field V is A, then the matrix for V’ is given by B = P~!AP.

Roughly speaking, one modifies V, each time for one i < ¢, by sliding
the stable sphere ) S;(£5) of & for V so that it sweeps across the unstable
sphere SR(ff‘) of ff‘ with indicated intersection number. In other words, Si(ff)
for the resulted V'’ is the connected sum of SL(féf) and the boundary of a
meridian disk of SR(ff) described in section 4.4 of [10]. One may refer to the
Basis Theorem (Theorem 7.6 in [12]) for a detailed construction of V7.

REMARK 3.11 (on the “proof” of Corollary 3.9 in [3]). Capitanio uses
the following:

CRITERION. A critical point & of [ is free (over Q) if and only if, for
any critical point n incident to £, there is a critical point £, incident to 1,
such that

| FEDY = fl < [FE —fOpl,

where, given a generic gradieni-like vector field V for [, two critical points
are called incident if their algebraic number of connecting trajectories is
nonzero.

Unfortunately, this is not true: one can construct a function f: R™ — R,
n > 2, quadratic at infinity with Morse index », having five critical points,
two of index » — 1 and three of index n, whose gradient vector field V
defines the Morse complex

=", &g=g" 8g=0
This complex can be reformulated into

e =& —ghH+ !
G+ EH =& - H+ 28
HE+ =1,

Hence, for a change of basis

e gl g7 8848, 848

*) The stable and unstable spheres are Sp(€5) = W'(EHYN L and Sg(¢h) = W*(EHNL where
L=f"Yo) for some c € (f(),F(¢5).
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one can construct a gradient-like vector field V' for f by sliding handles,
such that

o =gt g, eg =g o, g =g

Obviously, £} 1s the only free critical point, but &7 satisfies the criterion
(with incidences under V’). L]

4. AN EXAMPLE OF LAUDENBACH

PROPOSITION 4.1.  There exists an excellent Morse function f: R™ — R
as follows:
1. it is quadratic at infinity and the reference quadratic form has index and
coindex n > 1;
2. it has exactly five critical points : three of index n, one of index n— 1 and
one of index n+1;
3. its Morse complex over 7. is given by
o8 =0
(5) ogl =€, o =2, g =-&
o =g -2,

hence, for any field ¥> of characteristic 2 and any field ¥ of characteristic + 2,

©) V(. 2) = (f,F2) = 3(f,F2) = F(&)
> fED =1, F) =3, F) = 5(f, 7).

Proof that (5) implies (6). The Morse complex of f over F, is written

dt =0
o =g, 0 =0, AE+ENH=0
o =4,

implying that £7 1s the only free critical point, hence, by Corollary 3.7,
~(f, Fa) = 5(f, F2) = f(&3);
as 1(f= 7)) > f_y(f, F;) by Proposition 2.10 and f_y(f, Z) < f(&5), we do have

YLy = f(&3) .
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Similarly (keeping the numbering of the critical points defined by f) the
Morse complex of —f over F has the Barannikov normal form

N2y =0
1
ey = —26mt | agr + S8 =0, A& -25+£)=0

o6 = & - 25 1 g
showing that the free critical point is &£7; hence, by Corollary 3.7 and
Proposition 3.8,
FE) = o(f,F) = f(§3);
finally, as we have 7(f,Z) < 5(f,F) by Proposition 2.10, and 7(f,Z) > f(£{D),
we should prove 7(f,Z) > f(£]), which i1s obvious since ¢ and f’f“ are
boundaries in M. (—f,Z).

How to construct such a function f. It 1s easy to construct a function
fo: R* — R with properties (1) and (2) required in the proposition and
whose gradient vector field V; provides a Morse complex given by

o =0
o =g, 0g =0, =0
o =g

For a change of basis

&8, GG 2AG £
one can construct a gradient-like vector field V/ for fy by sliding handles,
such that
ol =0
=", og=—¢", g=-2"
0" = 25+ &5
Since (fy, V') is Morse-Smale, the invariant manifolds of those critical
points of the same index are disjoint, hence one can modify fy to f such that
* f has the same critical points as fj;
* the ordering of critical points for f i1s f(&5) > f(&) > f(&]);
» V' is a gradient-like vector field for f.
This can be realized by the preliminary rearrangement theorem (Theorem 4.1
in [12]).
In other words, we have made a change of critical points £ <> £, hence
obtain the required Morse complex in the proposition.
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