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GEOMETRIC COVERING ARGUMENTS AND ERGODIC THEOREMS
FOR FREE GROUPS

by Lewis BOWEN *) and Amos NEVO )

ABSTRACT. We present a new approach to the proof of ergodic theorems for
actions of non-amenable groups, and give here a complete self-contained account
of it in the case of free groups. Our approach is based on direct geometric
covering arguments and asymptotic invariance arguments generalizing those developed
in the ergodic theory of amenable groups. The results we describe go beyond
those previously established for measure-preserving actions of free groups, and
demonstrate the significant role the boundary action of the free group plays in
the ergodic theory of its measure-preserving actions. Furthermore, our approach
suggests the possibility of putting the ergodic theory of amenable groups and non-
amenable groups on an equal footing: both can be viewed as special cases in the
general ergodic theory of amenable ergodic equivalence relations with finite invariant
measure.
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1. INTRODUCTION

Let T be a countable group and let B, for t € N or £ € R be a family of
finite subsets of I". Let u; be a probability measure supported on B;. Suppose
I' acts by measure-preserving transformations on a probability space (X, A).
For any f € L}MX, \) we consider the averaging operator

D@ = FOr 0p).

YEB,

Let E[f|T] denote the conditional expectation of f with respect to the
o-algebra of I'-invariant subsets. We say that {y,} is a pointwise ergodic
Jamily in IF if p,(f) converges to E[f|['] pointwise almost everywhere and
in I7-norm for every f € LP(X, ) and for every measure-preserving action
of T" on a probability space (X, ).

Some of the most useful pointwise ergodic families are those in which the
sets B, are naturally connected with the geometry of the group. A basic case
to consider is when B, 1s the ball of radius ¢ > 0 with respect to an invariant
metric, and p, is the uniform probability measure on B,. Such averages are
referred to as ball averages. Spherical averages and shell averages are defined
similarly.

Most of the research on ergodic theorems has focused on the case when the
group is amenable and the averages are uniformly distributed on sets which
form an asymptotically invariant (Felner) sequence. The covering properties
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of translates of these sets and their property of asymptotic invariance play an
indispensable role in the arguments developed in the amenable case. We note
that ball averages on amenable groups do form an asymptotically invariant
sequence in some cases, but often do not, and we refer to [Ne03] for a detailed
survey of these methods and current results.

In contrast, non-amenable groups do not admit asymptotically invariant
sequences, and so the arguments developed to handle amenable groups are
not directly applicable. An alternative general approach to the ergodic theory
of group actions based on the spectral theory of unitary representations was
developed and applied first to the case where G is a semisimple S-algebraic
group, and then to the case of lattice subgroups I' C G. We refer to
[GN10] for a detailed account of this theory. Naturally, reliance on harmonic
analysis techniques limits the scope of this theory to groups whose unitary
representation theory can be explicated, and to their lattice subgroups.

For general groups, and certainly for discrete groups such as (non-
elementary) word-hyperbolic groups for example, spectral information is
usually unavailable and harmonic analysis techniques are usually inapplicable.
Exceptions do exist, and for example it was proven by spectral methods
that ball averages with respect to certain invariant metrics on the free group
do indeed form pointwise ergodic sequences. The metrics allowed are those
arising from first fixing an embedding of the free group as a lattice in a
locally compact group G. Thus in [Ne94] [NS94] the free group is viewed
as a lattice in the group of automorphisms of a regular tree, and in [GN10]
as a lattice in PSI,(R), and the metric is obtained by restricting a suitable
G-invariant metric to the lattice subgroup. Note that in the case of the tree
metric a periodicity phenomenon arises, and as a result the balls form a
pointwise ergodic sequence if and only if the sign character of the free group
does not appear in the spectrum.

In the case of spheres and balls with respect to the tree metric on the
free group, a proof of the ergodic theorem in Llogl was given by [Bu02],
using Markov operators techniques (inspired by earlier related ideas in [G199]),
which rely on Rota’s theorem [Rot62]. This method extends to a certain extent
to some groups with a Markov presentation, and in particular, to Gromov-
hyperbolic groups. Thus [BKK11] and [PS] are devoted to the study of uniform
averages of spherical averages on Gromov-hyperbolic groups with respect to
a word metric. Norm convergence is established for integrable functions, and
pointwise convergence is established for bounded functions. However, the
limit function is not identified in these results, but has recently been shown to
coincide with the ergodic mean in the case of surface groups in [BS10].
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In the present paper we develop a new approach to proving pointwise
ergodic theorems for measure-preserving actions of groups. Our method is
based on intrinsic geometric covering arguments and asymptotic invariance
arguments, and is completely self-contained. Our goal in what follows is to
explain this general method in detail in the most accessible case, namely
that of free groups, and show how to use it to generalize the existing ergodic
theorems for free groups described briefly above. The main results stated below
establish new maximal inequalities and pointwise convergence for a wide class
of geometrically defined averages. We also establish the integrability of the
maximal function associated with these sequences when the original function
is in Llogl., and thus also pointwise convergence of the averages acting on
functions in this space.

We note that our method has two significant advantages: first, it constitutes
a direct generalization of the classical arguments employed to prove ergodic
theorems for amenable groups, and in fact reduces the proof of ergodic
theorems for the free group to the proof of ergodic theorems for a certain
amenable equivalence relation. Second, as will be shown in forthcoming work,
this new approach extends well beyond the class of free groups and also well
beyond the specific problem of establishing pointwise ergodic theorems. For
further explanation of the scope of this approach we refer to the remarks at
the end of §3 below.

1.1 STATEMENT OF THE MAIN THEOREMS

Let F = {a,...,a,) denote the free group on r generators. Let S =
{a;,a1}_, be the associated symmetric generating set. For every nonidentity
element ¢ € F, there is a unique sequence f;,...,# of elements in S such
that g = &-- 4, and » > 1 is as small as possible. Define |g| = n, with
le| = 0. Let dF be the boundary of F which we identify with the set of
all infinite sequences (sy,52,...) € SN such that Sit1 # s;l forall i>1.1If
g =t ---t, as above then the shadow of g (with light source at ¢) is the
compact open set

O ={(s1,%,..)€IF: s;=4 for1 <i<n}.
The boundary admits a natural probability measure 7 such that 1{O(g)) =
@r~i@r — 7l
We denote the sphere of radius # in F by S.(e) = {g € F: |g| = n}.

Let @ be any probability density function on JF; namely 1 > 0 and
/. sp ¥ dv = 1. Define the associated probability measures p,? on S,(e) given

by (@) = [y ¥ dv-
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Let F? < F be the subgroup generated by all elements g such that |g| is
even. It is a subgroup of index 2 in F. Given a probability space (X,A) on
which F acts by measure-preserving transformations, we let E[f|F?] denote
the conditional expectation of a function f € L1(X,)\) on the o-algebra of
F2.invariant sets.

THEOREM 1.1. Fix any continuous probability density function i) on the
boundary OF . Then for every measure-preserving action of ¥ on a standard
probability space (X,)), and for every f € LP(X) for 1 < p < oo, the
averages ,u;pn( ) € I7(X) defined by

E N = > flg  Dumno

GESwle)

converge pointwise almost surely and in LP -norm to E[f|F?]. Furthermore,
pointwise convergence to the same limit holds for any f in the Orlicz space
(Llog )X, N).

REMARK 1.2. In the special case in which the density is identically 1,
each i, is the uniform average on S3,(e), and the theorem states that even-
radius spherical averages converge pointwise a.e. to E[f|F?], for all f € L7,
1 <p< oo and f € LlogL. The proof of Theorem 1.1 is completely different
and independent of the previous proofs of this fact in [Ne94], [NS94] and
[Bu02].

REMARK 13. Given w € F, define the probability density p,, =
X0, /14 Oy) to be the normalized characteristic function of the basic compact
open subset O, of JF. Thus, the sequence pf* of uniform averages on the
set of all words of length 2a > |w| with initial subword w is a pointwise
ergodic sequence. It is natural to call these averages (in analogy with the
hyperbolic plane) sector averages.

Theorem 1.1 is a special case of a more general result, whose statement
requires further notation. For ¢ € F, let §, € £1(F) be the function dqg =1
if g = ¢ and 0 otherwise. Let mwg: ¢4(F) — LY8F,v) be the linear
map satisfying w5(d,) = U(O(g))*1X0(g) where xop(g 15 the characteristic
function of O(g). Note that if ;& € ¢'(F) and g > 0 then m5(u) > 0 and
lmaCid|l1 = ||#]l1- Thus if g2, is a sequence of probability measures on F,,
and wa(pz,) converges in LI(IF,,v) to some limit function ), then ¢ is
necessarily a probability density.
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THECREM 1.4. Let {u2}2, be a sequence of probability measures
in CNF) such that (o, is supported on the sphere Sa(e). Let 1 < g < o0,
and suppose {ma(pan) S, converges in LU(JF, ). Let (X, \) be a probability
space on which ¥ acts by measure-preserving transformations. If f € LP(X),
1 < p<ooand }%Jr% < 1, then the sequence {j12,()}oe, C IP(X) defined by

(N =D flg Wpadg)

GESle)

converges pointwise almost surely and in LP -norm to E[f|F?]. Furthermore,
if =00 and {ma(z)}2, converges uniforimly, then pointwise convergence
o the same limit holds for any f in the Orlicz space (Llogl)(X, ).

Theorem 1.1 follows from Theorem 1.4. To see this, fix a continuous
probability density 1 on JF. Then the associated averages an (defined
above) satisfy lim, ﬂa(ﬂf) =1 in LI(JF,v), for all 1 < g < oc. Indeed,
the continuous functions ‘n'@(und’) converge to ¢ uniformly. Hence Theorem 1.4
applies.

Theorem 1.4 demonstrates the fundamental role that the boundary JF plays
in the ergodic theory of F, and raises several natural questions. For example,
does the conclusion of Theorem 1.4 hold if the hypothesis that x5, is supported
on {g € F:|g| =2n} is weakened to the condition lim, . p2,(g) = O for
all g € F 7 Does 1t hold if the inequality }%+é < 1 1s replaced by the weaker
constraint }7 + é < 1? What if instead of being convergent in L(JF, v),
{mopan)}2, is only required to be pre-compact or norm-bounded ?

Finally, we remark that motivated by the results of the present paper, in
the recent preprint [BK] the authors give another proof of Theorem 1.4, using
the Markov operators method developed in [Bu02], which relies on Rota’s
theorem [Rot62] and a 0 — 2 law for Markov operators.

1.2 ON THE IDEAS BEHIND THE PROOF

To illustrate our approach, consider the following scenario. Suppose that G
is a group and H < G is a subgroup. We say that H has the automatic
ergodicity property if whenever G acts on a probability space (X,u) by
measure-preserving transformations ergodically then the action restricted to H
is also ergodic. In this case, any pointwise ergodic sequence for H is a
pointwise ergodic sequence for G. If H is amenable then we can use the
classical theory of amenable groups to find such an ergodic sequence supported
in H. Then conjugate copies of such an ergodic sequence can be averaged
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to construct additional pointwise ergodic sequences, giving rise to geometric
averages supported on G.

For example, if G = SL,(R) then, by the Howe-Moore Theorem, any closed
noncompact subgroup H < G has the automatic ergodicity property. Thus
the foregoing observation can be used to prove pointwise ergodic theorems
for SL,(R) actions by averaging on conjugates of a horospherical (unipotent)
subgroup, which is isomorphic to R in this case. Similar considerations apply
to other Lie groups as well.

To handle free groups we will have to modify this approach by considering
an appropriately chosen “amenable measurable subgroup”. This “‘subgroup”
is a sub-equivalence relation R of the orbit relation of F acting on its
boundary, which we call the horospherical sub-relation. Whenever F acts on
a probability space F ~ (X, A), there is a natural extension F v (X x 9F, Axw)
and a natural sub-equivalence relation R* of the orbit relation of F acting on
X x JF. We show that if the action F ~ (X, \) is ergodic then this sub-relation
has at most 2 ergodic components. Moreover, this sub-relation is amenable,
and in fact, hyperfinite. Theorem 1.4 is obtained by first averaging over finite-
sub-equivalence relations of this sub-relation and proving their convergence by
a direct geometric covering argument, and then averaging the result over the
boundary OF. This method establishes convergence for a variety of sequences
on F, since in the final argument we can average with respect to a variety
of probability densities (or measures) on the boundary. For a more detailed
overall description of the proof we refer to §4.

1.3 OUTLINE OF THE PAPER

We begin by proving ergodic theorems for hyperfinite equivalence relations
in §2. This involves a direct generalization of classical arguments. In §3 we
review the boundary of F. In §4.1 we turn to ergodicity and periodicity,
and prove that an ergodic action of F gives rise to a ‘virtually ergodic’
sub-equivalence relation. In the last section we integrate the averages on the
sub-relation over the boundary and prove Theorem 1.4.

2. AN ERGODIC THEOREM FOR EQUIVALENCE RELATIONS

2.1 ERGODIC EQUIVALENCE RELATIONS

Let (B,v) be a standard Borel probability space. A Borel equivalence
relation R C B x B is called discrete if every equivalence class is finite or
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countable. It is called finite if every equivalence class is finite. Let ¢ denote
counting measure on B (so ¢(£) = #E, VE C B). The measure v on B is
R-invariant if v x ¢ restricted to R equals ¢ x v restricted to K. A Borel
map ¢: B — B is an inner automorphism of R if it is invertible with Borel
inverse and its graph is contained in 7. Let [R] denote the group of inner
automorphisms, also called the full group. If v is R-invariant then ¢.v = v
for every ¢ € [R]. For the rest of this section, we assume v is an R-invariant
Borel probability measure on B.

A basic example to keep in mind is the following special case: suppose G
is a discrete group acting by measure-preserving transformations on (B, ).
Then the orbit-equivalence relation R := {(b,gb) : b € B,g € G} is such
that » is R-invariant. In fact, a result of [FM77] implies that all probability
measure-preserving discrete equivalence relations arise from this construction
(up to isomorphism).

The relation R is hyperfinite if there is an increasing sequence {R,}5°,
of finite Borel sub-equivalence relations (namely equivalence relations whose
equivalence classes are finite) whose union is R. For b € B, let R ,(b) denote
the R, -equivalence class of b. For f € LI(B), let

> Fwh;

b ERA(B)

1
A[fIRA®) := )]

1
ALfIRAB) = f@h.
‘ [RaB) \ R—1(B) b'enng\:n,.l(b)

We are interested in the convergence properties of these averages, which
play the roles of balls and spheres of radius # in the R-equivalence class
of b. To describe the limit function we recall the following two definitions.
A set EC B is R-imvariant if (EXB)NR =B xE)NR=ExXENR
(up to v X c-measure zero). For a Borel function f on B, let E[f|R] denote
the conditional expectation of f with respect to the o-algebra of R-invariant
Borel sets and the measure v.

2.2 AN ERGODIC THEOREM FOR HYPERFINITE RELATIONS

The main result of this section is the following pointwise convergence
theorem.

THEOREM 2.1. Let R be a hyperfinite Borel equivalence relation on
(B,v). Assume v is R-invariant. Let {R,}5°, be an increasing sequence of
finite subequivalence relations whose union is R. Then for any f ¢ LY(B),
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A[f|R.] converges pointwise a.e. to E[f|R], and in the L' -norm. Moreover,
if there is a constant C > 0 such that

Jor ae. b and every n then A’[f|R,] also converges pointwise a.c. and in
L' -norm to E[f|R], as n — co.

Theorem 2.1 is obtained from the next two theorems which are also proven
in this section. Before stating them, define Lé(B) to be the set of all functions
f e LX(B) with E[f|R] =0 a.e.

THEOREM 2.2 (Dense set of good functions). With the hypotheses as in
Theorem 2.1, there exists a dense set G < LU(B) such that Jor all f € G,
ALf|RA] and AN'[f|R,] converge pointwise a.e. to E[f|R]. Similarly, there
exists a dense set Gy C Ly(B) with same property.

Consider now the maximal functions

MIf1:=supA[[|f[|R.],  M[f]:=supA[|f|[R,].

THEOREM 2.3 (weak-type L! maximal inequality). With the hypotheses
as in Theorem 2.1, for every f € LY(B) and any (> 0,

v({beB:M[fIb) > }) £ @

Moreover, if (2.1) holds for ae. b and every n then

v({beB: M[fIb)>1}) < %

Given the two foregoing results, Theorem 2.1 follows easily using the
standard classical argument.

Proof of Theorem 2.1. Let f € L'(B). We will show that {A[f|R,1}52,
converges pointwise a.e. E[f|R]. After replacing f with f — E[f|R] if
necessary we may assume that E[f|R]1 =0 ae.

For § > 0, let Es:={b € B: limsup, , _ |A[f|R,1(®)| < §}. We will
show that each Fs has measure one. Let ¢ = 57:. According to Theorem 2.2,
there exists a function f; € L'(B) with || f—fi||; < € such that {A[f|R,1}2,
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converges pointwise a.e. to 0. Let n > 0. Observe that

ALfIRA| £ |ALf — AR + [ALAIR] £ MLf — fil + |ALAIR]] -
Let
D:={beB: M[f—flb) < Ve}.
Since A[fi|R.] converges pointwise a.e. to zero, for a.e. b € D there is an
N > 0 such that #» > N implies

[ALfIRAI®)| < MIf — A1B) + [ALAIR®)] < 2ve =34
Hence D C E; (up to a set of measure zero). By Theorem 2.3,

WEs) = D) = 1 — e 2| — Al >17\/;:17§_

For any 01 < 8z, Es; C Es,. So v(ls,) > {Es) > 1 — ‘52—‘ for all &; < &2
which implies (£s,) = 1. So the set E:= M2, F,, has full measure. This
implies pointwise convergence of {A[f|R,1}52,.

The fact that A[f|R,] converges to E[f|R] in L'(B) follows from the
pointwise result. To see this, observe that it is true if f € L°°(B) by the
bounded convergence theorem. Since L°° is dense in L' and A[f|R,] is a
contraction in L' this implies the result. The proof for A’ in place of A is
similar.  []

2.3  ASYMPTOTIC INVARIANCE AND POINTWISE CONVERGENCE

Theorem 2.2 is based on the following asymptotic invariance argument.
Before stating it, recall that [R,] denotes the full group of the equivalence
relation R, so that each automorphism ¢ € [R,] acts as a permutation
when restricted to the finite equivalence class R, (b}, for almost every b € B.
Since R,, C R, when n > m, the equivalence class R, (b) is a union of
R, -equivalence classes, and hence H(R (b)) = R, (b) for almost all b € B.

LEMMA 2.4. Let ¢ € [Ry] for some m > 0 and let f ¢ L>°(B). Then
A[f — fo ¢|Ral converges pointwise a.e. to E[f —fo¢|R1=0 as n — 0.
Similarly, A'[f — f o ¢| R4l converges pointwise ae.to 0 as n — ox.

Proof. For any b € B,

lim |A[f —f o ¢|R.1B)| = > F®) — f b))
e o ERAb)
[RADANRB)|

Ra(®)]

lim ‘ 1
H—r00 ‘Rn(b)‘

<2 f]l lim 0.
n— 00
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The last equation holds because if # > m then R ,(b) = ¢(R,(H)) (since the
R, -equivalence class of b 1s preserved by ¢). Note also that if # > m then

Ra(B)\ Ru—1(B) = d(Ru(®N\ ¢(Ryp—1(5) = ¢(Ru(0) \ Ru—1(5)).

So the same argument shows that lim,_, . ‘A’[f —fo qﬁ\Rn](b)‘ =0.
Since v is R-invariant, E[f|R] = E[f o ¢|R]. Hence E[f —fcp|R]1 =0
a.e. So this proves the lemma. [J

Proof of Theorem 2.2. let T C L*B) be the space of R-invariant 12
functions. That is, f € Z if and only if f(b) = f(b") for ae. (b,b') € R. Let
Go C L2(B) be the space of all functions of the form f —fo ¢ for f € L°(B)
and ¢ € [Ry,] for some m > 0. We claim that the span of 7 and Gy is dense
in I2(B). To see this, let f. be a function in the orthocomplement of Gg.
Denoting the I? inner product by {-,-}, we have

0 = {fu,f~fod) = (f. /)= fesfod) = (fu /) —{fuod™ L f) = {fi—faod™ L. f)
for any f ¢ L™(B) and ¢ ¢ U3, [R,]. Since L(B) is dense in LB,
we have f, = foo ¢! forall ¢ € U [Ri]. Because U2 R, =R, this
implies f. € Z; i.e., f(b) = f(b") for almost every (b,b’) € R. Since f, is
arbitrary, this implies 7 and G, span L*(B) as claimed.

By Lemma 2.4 for every f € Z 4 Gy, A[f|R,] and A'[f|R,] converge
pointwise a.e. to E[f|R]. Since T + Gy is dense in L*(B), which is dense
in L1(B), the first statement of the theorem follows. The second is similar. [

2.4 COVERING ARGUMENT AND WEAK-TYPE MAXIMAL INEQUALITY
Proof of Theorem 2.3. For n > 0, let
M, [f1®) := max AllfI[R:1®).

Let D,,:={bc B: M,[fIb) > t}. We will show that (D, ) < HftH‘ for
each n > 0.

Let p': D,, — N be the function p’'(b) = m if m < n is the smallest
integer such that A[|f||R,1(b) > ¢. Let p: D, , — N be the function p(b) =k
where k = p/(I') is the largest number so that there exists &’ € D, with
b € R, (0. Note that A[|f||R 4 1(6) > ¢ for every b € D, ,, and so

1
WD) < / ATlF IR o)) di).
% Dny,

Note further that for almost every x,y € D, ;, the sets R () and R ()
are either identical, or disjoint.
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Let K: B x B — R be the function
pica)
Ky,0= — =
‘Rp(z)(z)‘

if z¢€ Dy, and y € Ry»(2). Let K(y,2) = 0 otherwise. Since v X clr =
¢ X vlg,

[ rolam=[ ¥ oo am= [ ¥ k0.0 dvo
JD,, ; ;

28D, ¥ED.
- [ AR w10 d.
 Dn

So

1
AlfIIR p1@ dz = =~ / f@)| dv(y) < 1A
¥ Dn,!

1
Dy < =
V( ’I) Tt ‘/l; £

Because this holds for all n > 0, this proves the first statement. Now suppose
there is a constant C > 0 such that

ot

for a.e. b and all a. Note that if A'[|f||R,1(b) > ¢ then A[|f||R,1(b) > ¢/C.
Therefore,

ann

vi{beB: M'[fIb)> ¢}) <v({beB: M[fIb)>t/C}) < .

This concludes the proof of Theorem 2.3. 1

3. THE FREE GROUP AND ITS BOUNDARY

3.1 THE BOUNDARY ACTION

Let F = F, = (ay,...,a,) be the free group of rank r > 2. Let
S = {aFf': 1 < i< r}. The reduced form of an element g ¢ F is the
expression g = 5, ---5, with 5; € S and s;4; # 57! for all i. It is unique.
Define |g| := n, the length of the reduced form of ¢. The distance function
on F is defined by d(g1,92) := |9, ' 62|

The boundary of F is the set of all sequences ¢ = (£;,6,...) € SV
such that &, #£ &' for all i > 1. We denote it by dF. A metric dj
on JF is defined by da((fl,fz, S N €I 2 .)) = % where n is the largest
natural number such that §; = ¢ for all i < a. If {g;}7°, is any sequence
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of elements in F and g; 1= ;- 4, is the reduced form of g; then
lim; g; = (€1, &, ...) € JF if & ; is eventually equal to & for all j. If £ ¢ OF
then denote by &; € S the i-th element in the sequence £ = (£1,&,8&,...).

We define a probability measure v on JF as follows. For every finite
sequence #,... .4, with ;) #£ 1 for 1 <i<n, let

v({€& VeI =4V <i<n}) =[S = @D "N,

By the Carathéodory extension Theorem, this uniquely extends to a Borel
probability measure v on JF.
There is a natural action of F on JF by

()=, . et &1, Gy, - D,

where #,...,t, € S, f---t, is in reduced form and %k is the largest
number < n such that ffl =ty forall i <k. Observethatif g=1¢,---4,
then the Radon-Nikodym derivative satisfies

dvog
dv

Note that the level set of the Radon-Nikodym derivative for a given
¢ € JF, namely {g € F; d;sg(g) = 1} consists of those words ¢ of even
length n = 2k (say), whose last k letters form a word which is the inverse

of the word formed by the first &k letters of £.

© =@r—n*T.

3.2 THE HOROSPHERICAL AND SYNCHRONOUS TAIL RELATIONS

Let ‘R be the equivalence relation on JF given by (£,7) € R if and only
if when writing & = (£1,&,...) and 5 = (1,72, ...), there exists n such
that 1; = &; for all i > n. Thus #RE if and only if  and £ have the same
(synchronous) tail, if and only if they differ by finitely many coordinates only.

Let R, be the equivalence relation given by (£,n) € R, if and only
if & = n; for all £ > n. Then R is the increasing union of the finite
subequivalence relations R,. Thus R is hyperfinite.

Consider now the relation R’ on JF such that nR’¢ if and only if there
exists g € F such that g€ =» and d;%(f) = 1. Recall that according to our
description above of the words belonging to level set, ¢ has even length n = 2k
(say), and the word formed by its last k letters coincides with the inverse of
the word formed by the first & letters of £. It follows that 1 = g& has the
same synchronous tail as &, from the (k+ 1)-th letter onwards. Equivalently,
g~ ! belongs to the horosphere based at £ and passing through the identity
in F, namely the geodesic from ¢! to ¢ and the geodesic from e to £ meet
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at a point (namely the word formed from the first k letters of £ and g~!)
which is equidistant from e and g~!. It is therefore natural to call R’ the
horospherical relation: wR'¢ if and only if 5§ = g&, where g~ ! belongs to
the horosphere based at £ passing through the identity. Similarly, it is natural
to call the equivalence class of £ under R, the horospherical-ball of radius #
based at &.

Since £ and 1 = gf have the same synchronous tail, R’ coincides
with the synchronous tail relation R, and so it is an equivalence relation.
We note that this property is in fact a consequence just of the fact that
the Radon-Nikodym derivative is a cocycle and R’ constitutes its kernel.
Thus to see that R’ is symmetric note that for £ = g~ 'y, we have

- -1
dL;;Ll(n) = (%5(5)) = 1, so that the relation is indeed symmetric.
The transitivity of the horospherical relation R’ follows from the cocycle

identity which the Radon-Nikodym derivative satisfies. Finally note that by
definition, the measure v is R’-invariant.

3.3 ON THE SCOPE OF THE METHOD

Let us make three brief remarks on the scope of our approach.

REMARK 3.1. The observations in the previous subsection point to the
following underlying fundamental idea. Utilizing the action of a discrete group
on a suitable boundary B and the associated Radon-Nikodym derivative, it
is possible to define a useful notion of “horospheres™ and “horoballs” in the
group, using the level sets of the Radon-Nikodym derivatives. Furthermore,
B carries an associated equivalence relation, which is amenable and has
an invariant probability measure. Finally, there exist natural subsets in the
equivalence classes which are asymptotically invariant under the equivalence
relation in a suitable sense.

Given a measure-preserving action on X, the equivalence relation on B can
be extended to product space X x B, which again has an invariant probability
measure and asymptotically invariant subsets on the equivalence classes. We
may integrate the averages on these sets over B and thus construct averages
on the group itself, and then deduce pointwise ergodic theorems for the group
action on X from a pointwise ergodic theorem for the equivalence relation.
This general approach to the problem is developed in [BN1] and [BN4], and
more concretely for Gromov-hyperbolic groups in [BN3].
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REMARK 3.2. It is natural to consider the synchronous tail relation, more
generally, in any Markov chain coding the elements of a Markov group. We can
then appeal to the general pointwise convergence result we have established for
hyperfinite equivalence relations with finite invariant measure in Theorem 2.1.
This approach to proving ergodic theorems for Markov groups is developed
in [BNS5].

REMARK 3.3. The geometric covering arguments we have used in the proof
of Theorem 2.1 can of course be replaced by an appeal to the martingale
convergence theorem. Nevertheless, we have chosen to give a self-contained
proof, the reason being that this proof can be greatly generalized. In particular,
it leads to a proof of a ratio ergodic theorem for non-singular hyperfinite
equivalence relations in the absence of an invariant measure, where the
martingale theorem does not apply. In turn, this implies a horospherical ratio
ergodic theorem for non-singular actions of the free groups, and other Markov
groups. This approach to the ratio ergodic theorem for non-amenable groups
is developed in [BN2].

4. IDENTIFYING THE LIMIT IN THE ERGODIC THEOREM

The present section and the following one are devoted to the proof of
Theorem 1.4, and we begin with a very brief description of our proof plan.
Given an ergodic probability preserving action of F on (X, 1), we will consider
X x OF with the measure g x . We extend the horospherical relation R
on JF to a relation RY on X x dF, which is still hyperfinite, with invariant
measure y X v. We consider the operators of averaging on the finite classes
approximating R¥, and appeal to Theorem 2.1, which guarantees the averages
converge pointwise to the conditional expectation on the o-algebra of R*-
invariant sets. We then prove the crucial fact that this o-algebra coincides
with the o-algebra of subsets of X x JF invariant under the action of F2, the
subgroup of F consisting of words of even length (“automatic ergodicity”).
We then use the fact that the action of F? on OF is weak-mixing, namely that
the product action of 2 on X x OF is ergodic for every probability measure
preserving ergodic action of F? on a space X. These arguments identify the
limit in the ergodic theorem we seek to prove, as the conditional expectation
on the o-algebra of F?-invariant sets. We will then integrate the averages
defined on the finite classes in X x JF, over the boundary JF. This gives rise
to averages acting on functions on X, given by certain probability measures
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on F, which converge to the limit stated in Theorem 1.4. Analyzing these
measures, we recognize that they coincide with the measures described in
Theorem 1.4.

4.1  AUTOMATIC ERGODICITY OF THE EXTENDED HOROSPHERICAL RELATION

Let F act on a standard probability space (X,\) by measure-preserving
transformations. Let F? be the subgroup of F generated by words of length 2,
which has index 2 in F. For any f € LY(X), let E[f|F?] € L'(X) be the
conditional expectation of f on the o-algebra of FZ-invariant measurable
sets.

Let RX be the equivalence relation on X x OF given by ((x,£),(x",£) €
RY @ dg € F with x = g/, £ = g&¢ and (£,&) € R. Equivalently,
%3(5’ y=1, or £ and & have the same synchronous tail and ¢g~! is in the
horosphere based at &' passing through e. For f € L1(X x F), let E[f|R*]
denote the conditional expectation of f on the sigma-algebra of R.*-invariant
sets.

For f € LI(X), define i(f) € L'(X x OF) by {(f)x, £) = f(x). The map
f — i(f) isometrically embeds in L'(X) into L'(X x 8F). The purpose of this
section is to prove the following “automatic ergodicity” property:

THEOREM 4.1.  For any f € L'X), E[i( )R*| = KE[f|[F*]).

Similar results were proven in [Bo08] for all word hyperbolic groups.

We remark that it is necessary to consider the action of F? rather than F.
For example, if X is a two-point set, A is the uniform probability measure
and all generators {e,...,a} of F act nontrivially on X then the action
of F on X is ergodic but the equivalence relation R* on X x 9F is not.

Theorem 4.1 is based on a more general result. Before stating it, we
introduce the following definitions.

DEFINITION 4.2. Let Z C L'(X x OF) be the o-algebra of sets A that are
invariant under the relation R¥, ie., for all ¢ € [RX] (the full group of RY)
we have $(A) = A.

Let I, € LYX x JF) be the o-algebra of F?-invariant sets A, namely
such that for all g € F?, g(x,£) = (gx, &) € A if and only if (x,£) € A.

The corresponding conditional expectations are denoted by E[F|R*] and
E[F|Z,] (for F € L\{(X x JF)).
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In the next subsection we prove:

THEOREM 4.3. For any F ¢ L'(X x dF), E[F|Z;] = E[F|R*], or
equivalently 7 =T, .

Theorem 4.1 clearly follows from Theorem 4.3 and the following lemma,
whose proof is included below.

LEMMA 44 For any f € L'(X), EL(H)|Z,] = i(E[f|F?]).

Proof. Without loss of generality, we may assume that the action of F?
on (X, ) is ergodic. It suffices to show that the diagonal acticn F? ~ X x OF
is ergodic.

Let g be the uniform measure on the generating set S. Then the action
of F on the Poisson boundary of the random walk determined by pu is
canonically identified with the action of F on (OF,v) (e.g., see [Ka00]). Note
that the support of the convolution y % 4 generates FZ. Hence the action
of F? on the Poisson boundary of the random walk determined by g p is
identified with the action of F2? on (dF, ). By [Ka03] and [ALO5], this action
is weakly mixing. This implies the diagonal action of F? on (OF x X, 12 x X)
is ergodic. [

4.2 IDENTIFYING THE LIMIT: PROOF OF AUTOMATIC ERGODICITY

We now turn to the proof of Theorem 4.3.

DEFINITION 4.5. For (x,£) € X x 9F, write £ = (£1,£,...), and define
P(x,£) € X x JF by P(x,&) = ffl(x, £). More generally, if # > 1 then let
Pn(-xv g) = (gl e gn)il(x7 g)

LEMMA 4.6. Let F € LNX x OF). If FoP? = F ae. then F is measurable
wrt. I, namely F is FZ _invariant.

Proof. Let (x,§)c X xJF and g =t;--- b, € F? be in reduced form.
By definition,
gE =", bk Skt Spr2, -4 ),
where k£ is the largest number such that f;l = tyyy1—; for all i < k. Por
any x € X, if k is even then (gx,g€) € P~ 9P £). If k is odd then
(gx, g&) € P~@ 4D Pl r &) Thus if foP? =f ae. then fog =/ ae.
This implies the lemma. [
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PROPOSITION 4.7.  To prove Theorem 4.3, it suffices to prove that FoP* = F
Jor all F measurable wr.t. L, namely for all R* -invariant functions.

Proof. From Lemma 4.6 it follows that if F o P? = F for all RX-
invariant functions F then Z C Z;. To see the reverse inclusion, let
(x,8), (', €N € X x 9F be R¥-equivalent. By definition, there exists ¢ € F
such that (x', £') = (gx, g¢). As noted in §3.2 above, g is necessarily in FZ.
Thus if F if F2-invariant then for a.e. pair (x,£),(x’, &) of R¥-equivalent
points in X x 9F, F(x,£) = F(x',£7), namely F is R*-invariant. This shows
T, CT. U

The next proposition is the key geometric result in the proof of Theorem 4.3.
Define Py: F — JF by Py(§) =&, '¢. Recall that dy is a distance function
on JF defined by da((§1,£27...),(t17t2,. . .)) — % where n is the largest
natural number such that & = ¢ for all i < a.

PROPOSITION 4.8. There exist measurable maps i, w,: OF — 8F (for

# > 5) such that

(1) Y€ € OF, do(€,wnd) = | ;

(@) V& € OF, dp(tnon®), Phwn(®) = 7175

(3) the graphs of w, and i, are contained in R ;

@ V€ € OF, dg € F such that 1,w,(§) = gw,(£) and P(29 wy(€) = g€ . Except
Jor a countable set of £ € OF, ¢ is uniquely determined.

) ¥f € YO, [ fouwdly = | fll, and [ ol < @r — D2, where r is
the rank of the free group F.

Proof. We begin by defining w, and #,. Recall that $ = {a,...,a,,
af17 ...,a; '} is the chosen generating set of F. Let K: S* — $* be a bijection
so that for any (sg—1,8%, Ske1) € s?, K(Sk—1, 8, 8+1) = (Sg—1, S, 8~1) for
some s}, ¢ {sk__ll,sk,s,;fl}.

We now fix n > 5 and define w,: JF = 9F by w,(s,52,.. )=, b,...)
where & = s for all § # n and 1, = s, where K(Sy_ 1,8, 511) =
(Sn_1,8,,8:11). By its definition w, is invertible, Borel, ds(§,w,(£)) = %
for any £ € JF and (w,).v = . Moreover since w, does not change the tail
of the sequence (i.e., because ¢; = s; for all sufficiently large i), the graph

Fownlli = || fll1

of wy is contained in R. Because w, is measure-preserving, |
for any f € LY(9F).
Define ,: OF — JF by

! —1 /
wnwn(‘yl:SZ, . ) - (337 LR ,SH,I,SW,SH ,Snvsn+17sn+27 . ')7
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where K(Sy_1,8s,8:11) = (Sa—1,5,,5,11). Because w, is invertible, 1, is
well-defined.

Note that the m-th coordinate of ,w,(s1,52,...) equals the m-th coor-
dinate of wy(s1,s82,...) if m > n. Therefore, the graph of i, is contained
in R. If &€ =(s1,5,...) then

2 !
Pawn(f) = (S37 R o T, )

Thus da(twn(), Péw,,(f)) = ﬁ This concludes the proofs of parts (1), (2)
and (3).

Note that setting g = (53 - S, )s,(s1 -~ 5,0~ we have P% we(&) = g€,
and similarly, we(€) = gwa(£). Since only countably many points £ € JF
have a non-trivial stabilizer in F, and g is uniquely determined when the
stabilizer of £ is trivial, and this proves part (4). Anticipating the argument
of the next proposition, let us note that s15,¢g satisfies 515,96 = wy(&).

We now claim that ¢, is at most (27 —1)*-to-1 (that is, for each & € 9F, &
has at most (2r —1)?-preimages under 1), ). Because w, is invertible, it suffices
to show that t,w, is at most (2r — 1)?>-to-1. Suppose that (u;,us,...) € IF
and

-1
wnwn(ulvuz, . ) - wnwn(sl7327 . ) - (S?H e 7Sn717‘y:1asn 7S;asn+17sn+27 . ) .

By definition of ¢uw,, #; = s; for i > 3. Since there are (2r — 1? choices
for (uy,u,) the claim follows.

Since the graph of 4, is contained in R and v is R-invariant, the
claim implies || f o ,|l1 < @r — 1)?| f|l; for all f € LY(OF), and this proves
part (5). ]

LEMMA 4.9. There exist measurable maps ®,,W,,2,: X x 0F — X x gF
(for n > 5) such that
1) for all F € LN(X x 3F), lim,_,o0 |[F oW, 0Q, — FoP?od,|; =0;
Q) for al Fc LMX x OF), lim,oo |[FoQ, —fl1=0;
(3) the graphs of ®, and VW, are contained in RX.

Proof. For n > 5 an integer, let i, and w, be as in Proposition 4.8.
Fix (x,§) € X x 9F and let ¢,,90 € F be such that £ = w,(§) and
G326 = ¥(&). As noted already, for almost every £ (and every n), g; and
g2 are uniquely determined. Define Q,(x, &) 1= (x, ;1&), Pu(x, &) := (q1x, ¢1£)
and W,(x, &) := (g2, 28).

Since the graphs of v, and w, are contained in R, the graphs of ¥,
and W, are contained in R¥. Let dy be a metric on X that induces its



152 L. BOWEN AND A. NEVO

Borel structure and turns X into a compact metric space. For (x,£),(x’, £) €
X x 3F, define d.((x,£), (", &) = dx(x,x)+da(£,£"). By Proposition 4.8(1),
d(Q,(x, 8), (x, &) = do(wa(£), §) = 1/n. Furthermore

AWy 0 Qu(x, £, P2 0Dy(x, £)) = du (g, Pnwn(£)), PH01%, wal ),

where 916 = w,(8), and goonl) = Yron(©). Writing & = (s1,52,5,..),
we have P?(gix, w, (&) = (s{lsflglx,Péw,,(S)). Recalling from the proof of
Proposition 4.8(2) that g = (s3 - sp_1)s,(s1 - - -8,)" ! satisfies Péwn(f) = g&
as well as w,(€) = gwu(£), we conclude that g = g, = s;lsflgl. Since
by Proposition 4.8(2), we have da(wnwn(f),P?,wn(f)) = ﬁ it follows that
d.(¥, o Q(x, 5’)7P2 ody(x,£)) = ni—l for almost every (x,£) € X x §F.

Thus if F is a continuous function on X x JF then the bounded convergence
theorem implies

lim [FoW,0Q, — FoFPod,|, =0

H— 0O

lim [|[FoQ, —F|;=0.
H—0Q

It follows from Proposition 4.8(5) that the operators F +— Fof,, F — Fod,
and F s FoW, are all bounded for F € L'(X x 8F) with bound independent
of n. It is easy to see that F — F o P? is also a bounded operator on
L'(X x OF). Since the continuous functions are dense in L'(X x JF), this
implies the lemma. [

We can now prove Theorem 4.3.

Proof of Theorem 4.3. By Proposition 4.7, it suffices to show that
FoP? = F for every F which is R¥-invariant. Let &, ¥,,Q,, n > 5
be as in Lemma 4.9. Because F is R¥-invariant and the graph of ¥, is
contained in RY, it follows that o W, = F for all r. An easy exercise
shows that P preserves the equivalence relation: if (x,£&) is R*-equivalent
to (v,&) then P(x, &) is R¥-equivalent to P(y,£&’). It follows that F o P? is
also R*-invariant. Now since the graph of &, is also contained in RY, it
follows that F o P> o, = F o P? for all n. We now have

|F—FoP|; =|F —FoP o®,|;
S|F—FoW,oQ|; +||FoW, 0, — FoP od,||;
=||F - Foulh+||[FoW,0Q, — FoP? od,|.

The previous lemma now implies F = F o P? as claimed. Il
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5. PROOFS OF ERGODIC THEOREMS

5.1 CONVERGENCE ALONG THE HYPERFINITE RELATION ON X x dF

Let F act by measure-preserving transformations on a probability space
(X,)). Let RY be the equivalence relation on X x OF defined by
(Cx, &), &, €Yy € RE if and only if there exists g € F with (gx, g¢) = (x',&")
and (£,¢) € R, (e, if £ =(,..)c SN and ¢ =(¢],..) € SV then
& =¢ forall i>n).

We will need the next easy lemma (which is left as an exercise).

LEMMA 5.1. For any (x,§) € X x JF,
Ryx, &) = [Ru®)] = @r — D",
So

IRy O\ RY_ 15, 8| = [RuO\ Ra1l©| = @r — )" '2r - 2)
2r—2 2r

— TR0 =

-2 x
TR 0.

For f € LP(X, X)), recall that i( f) € L/(X x JF) is the function i(f){(x, £) =
f(x). Collecting results of the previous sections, we can now prove:

COROLLARY 5.2. For f € L\(X), let E[f|F?] be the conditional expec-
tation of f with respect to the o-algebra of F*-invariant sets. Then for
Axv-ae (x,£) € X x JF,

E[/[F*10) = lim A'TNIRY1,€).

Proof. Lemma 5.1 implies that the assumption in Theorem 2.1 is satisfied,
and thus for a.e. (x,&) € X x JF,

E[i()|R ), &) = lim ATI(NHIRI.E).

By Theorem 4.1, E[i(/)|RY)|(x, &) = E[f|[F*1(x) for a.e. (x,£) € XxIF. [

In the next section, we will need the following strong L#-maximal
inequality. For f € L}'(X x 8F), define

M'[f]:=sup A'[| f||R}].
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PROPOSITION 5.3. For every p > 1 there is a comstant C, > 0 such
that for every f € LP(X x 9F), |M'[fll, < Cl fll,. Moreover, there is a
constant Cy such that if f € Llog™ L(X, )\), then

IM LAl < Coll Al gz -

Proof. It follows from Theorem 2.3 that for any f ¢ LY(X x OF) the
weak-type (1,1) maximal inequality holds:

CllAh
t

Axv{{x,c X xdF: M'[fl>1}) <

2r—1
2r—2 )

The first part of the proposition now follows from standard interpolation
arguments. Namely, since the operator f +— M’[f] is of weak-type (1,1) and
is norm-bounded on L=, it is norm-bounded in every [P, 1 < p < o (see
e.g. [SW71, Ch. V, Thm 2.4]).

Finally, given the weak-type (1, 1) maximal inequality, the fact that when
f € Llog™ (X, A), the maximal function is in fact integrable and satisfies the
Orlicz-norm bound is standard, see e.g. [DS, p. 678]. L]

for some constant C > 0. (In fact we can take C =

We now turn to the proof of Theorem 1.4, and show that by integrating the
converging averages A’[i(f)|RE]1(x,£) over IF, we obtain converging averages
defined by probability measures on F. We begin by considering integration
with respect to weighted averages on the boundary.

5.2 AVERAGING OVER THE BOUNDARY JF

From now on we let 1 < p,g < oo be such that I%Jr% = 1. Let
W € LA(JF, V) be a probability density on the boundary, namely ) > 0 and
J# dv=1. The goal of the present subsection is to prove:

PROPOSITION 5.4. For f € [P(X,)\) and n > 0, define Aiﬂ[ﬂRn] e IP(X)
by

AL LR = /a AR, E(E) dite).
J OF

Then A [f|R4] converges pointwise a.e. fo E[/[F2]. Furthermore, if 1 is
essentially bounded then the same conclusion holds for any f € Llog™t L(X, ).

The proof of Proposition 5.4 uses the following:
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LEMMA 5.5. Let p,q.%, f be as above and define
M, [f]:= sgpAip[\fHRn]-

Then there exists a constant C, > 0 (depending only on p) such that for
every f € IP(X, D)
MLl < Collllgll £l -
Furthermore, there is a constant Cy > 0 such that if < is bounded, then for
any f € Llog" L(X, \) we have
IMLAIL < Cllgllcollfz1egz

Proof. Without loss of generality, let us assume f > 0. We start with the
case 1 < p < oo. Forae x€X,

IM, [F1@) [ = sup |ALLf[RA 1|

p

sup
n

< sup HA/[l(f)‘Rf](x: ')||Z(3F)|\¢||’£q(an -

L AR, ENNE) dine)
JIF

The last line above is justified by Holder’s inequality. Next, we observe that
for any n > 1,

/supHA’[i(f)\Rif](X,-)||1Z},(8F) dX\x) :/sup |A'TICH|REx, OF di(©)d )
JX nm P oF

X n .

<[ [ Miper avoa
Jx Jor
= [|IM GO e xom -
Putting this together with the previous inequality we obtain
ML LAy = /X M1 dA@)

< MGy 1 [y -

The first part of the lemma now follows from

MG L M ercxy < 1190 zocomy MY TN rx < o)
< Gl aom 1D e xory = Cp| ¥l acomy || f | rcoy »

where €, > 0 is as in Proposition 3.3.
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The second part of the lemma follows in exactly the same way, taking
f € Llogt LX), p =1 and ¢ = o above. Using the integrability of the
maximal function and the norm bound

”Ml[i(f)]HLl(XxﬁF) = Cl”f”(ngL)(X)

together with the boundedness of ), the desired estimate follows. O

Proof of Proposition 5.4. We will first prove the proposition in the special
case in which f € L=(X). By Corollary 5.2, A[i( f)|R%] converges pointwise
a.e. to i(E [f|F2]) . By Lebesgue’s dominated convergence theorem, this implies
that fora.e. x € X, {Aip[f"}?’n](x)}?,L converges to fE[f|F2](x)1//(§) dv(€) =
E[f\Fz](x). This finishes the case in which f € L=°(X).

Now suppose that f € LP(X). After replacing f with f — E[f[F?] if
necessary, we may assume that E[f|[F?] = 0. Let € > 0. Let f’ € L*°(X) be
such that || f — /|, < € and E[f’|F?] = 0. Clearly:

IALLRA < [AGLF = £ IRl + AL R < MYLE — 1+ [ALLF IR
Since Aiﬁ [f'|Rx] — O pointwise a.e., it follows that for a.e. x € X,
limsup \Aip[f\Rn](x)\ < M:ﬁ[f — 1.
Lemma 5.5 now implies:

|| lim sup |AG Lf Rl < ML = flp < Cpllf —fllp < Cre.

Since € > 0 is arbitrary, it follows that [ limsup, |Ay[f|R.|[, = 0.
Equivalently, Aflb[ FIR,] converges to 0 pointwise a.e.

The second part of the proposition follows similarly using approximation
in the Otlicz norm. [

5.3 (CONVERGENCE FOR PROBABILITY MEASURES ON F

We now turn to establish that each operator f — A;ﬂ[ﬂRn] is given

by averaging with respect to a probability measure n;pn on the group F.
We will then prove pointwise convergence of spherical averages and their
generalizations.

DEFINITION 5.6. Let # -ty = g be the reduced form of an element
g € F2. Define

O'(gy= 0t -+ t,) — Ot1 - - tyly 1) C IF,
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where O(-) is as defined in the introduction (namely & = (£1,...) €
Oty ty) & & = t,1 < i < n) Recall that (£,) € R, & & = &
for all i>n. Thus £ € O'(g) il and only if (£,¢716) € Ry \ Ru—1.

Define nﬁfn € M) by

1

o .,
D= o ey T o) v

if |g| =2n and O otherwise.

LEMMA 5.7. For any function f € LP(X) (p > 1), any n > 0 and any
xeX,

ALLFIRAD = > g™ omfie).

geF

Proof. By definition

1
ATNHIRIIx, & = — + > (O, E).
REx, O\ RE_ (%, 8)] i RS

By Lemma 5.1, and since f depends only on x,

ATHRIE O = @r— DT @r =271 fg7",

g

where for each £ the sum is over all ¢ € F such that (£,67'6) €
RO\ Ru_1(€). Such g necessarily has length 2n, and as noted above,
the latter condition is equivalent to & € O’(g). Thus when integrating the
expression

ALLFIRI) = [{9 AT REIx, 06 di®)
JoF
over the boundary, we integrate over the sets Q'(y), as g ranges over the

sphere S,,(e). For a given x, in each such set A’ [i(f)|Rif](x, &) has the value
given above (independent of &), and hence we obtain

=@r-0D"Mer-07" Y fen | wde=) flgoml@. O

GESale) SO g<F

We can now state the following corollary, proved previously for L7, p > 1
in [Ne94] [NS94] and for Llog+L in [Bu02].
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COROLLARY 58. lLet p > 1 and f € LP(X) or more generally f €
Llogt I(X). Then for ae. x € X,

2 T # 1
ELAFI) = lim (o D> fg™').

gESwmle)

Proof. Set 1 = 1. By the previous lemma,
ALfIRA® = g omi (@

g€F
1

T2 DL

> HgT ouO0'gy.
gESamle)
If ¢q=gq1- g2 then £ € O'(g) if and only if & =¢g; for all 1 <i<n and
£pi1 # gnr1- This implies (0'(9)) = 2r)~1Q2r — 1)7"(2r —2). So

1
AUfIRI® =@n7'er — D72 N figTn = > fo'w.

9ES(e) 20 o £t
By Proposition 54, Al [f|R,] converges pointwise a.e. to E[f[F?]. [

5.4 BOUNDARY BEHAVIOR OF PROBABILITY MEASURES ON F

Recall that we have defined 75: ¢*(F) — L'(OF,v) to be the linear map
satisfying 7o(85) = 1(09) "~ Xog).

Thus far, we have established that the probability measures ni on F (for a
given probability density ¢ € LI(JF)) have good convergence properties. Qur
goal is to establish good convergence properties for a general sequence o,
of probability measures, with p,, supported on S,,(e), where we assume that
the functions 7s(tiz,) converge in LYU(OF). The limit is then necessarily a
probability density + € LI(OF).

We now recall that given a probability density ¢ € LI(GF), an denotes
the probability measure on F given by

O WE) dd),

JO(g)
if g is in the sphere S,(e), and otherwise ,u,,w(g) =0.
We begin by showing that the two sequences Tl'a(/,l,nw) and 71'3(77;&) both
converge to ¢ in Li-norm. This fact will be used in the next subsection, in
a comparison argument which reduces the convergence of 1,, to that of 172’”".

LEMMA 59. lLet o € LUIF,v) be a probability density. Then the

sequences {T(@(ﬂ,nw)}nzo and {71'3(?721/;)}":1 both converge to + in L?-norm
when 1 < g < oo, and uniformly if v is continuous.
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Proof. For n > 1, let E[%|Z,] be the conditional expectation of ¢ on %,
the o-algebra generated by {O(g): ¢ € Su(e)}. Thus

E[¢[Z,16) = WEH angh,

v(O(D) Jog)

if £ € O(g) with g € S,(e). Note that 1(Q(g)) = |Su(e)| ! =

= eI
that Ef¢)[£,1() = mauu )(E).

We now claim that E[|Z,] converges to v in L9-norm as # — oo, This
is clearly the case when %/ is continuous, and hence uniformly continuous, in
which case E[t|Z,] in fact converges uniformly to ¢» on JF. In general when
w € L9, there is a sequence of continuous functions 74 converging in L?-norm
to ¢, and the claim follows by an obvious approximation argument. (Alter-
natively, one can of course appeal to the martingale convergence theorem.)

Noting that

and

Py ‘SZH(B)‘ - - 1
Ro13) = Gyt Ty (1O B[] — (S @] T E@[S )
;e
= o) — Tl

convergence of ﬁa(nfn) to ¢ in L9-norm follows immediately. When ¢ is con-
tinuous then since E[¢)|Z,] converges uniformly to ¢, so does Tr@(nzzpn). L]

The next result is not needed for the proof of the main theorem; we state
and prove it since it seems interesting in its own right.

PROPOSITION 5.10.  As above, let 1 < p,q < oo be such that 1l7+ % =1.
Let f € [P (X) for some p' with p < p'. For x € X and n > 0, define

Jron € (F) by frio0(q) = flg7%) if g € Sau(e) and Jem(g) = 0 otherwise.
Let 75(fi2n): OF — R be the function

Fo(foz)© = D foal@Xow(©)-

g<Sale)
Then, for ae. x € X, {fa(fi2n)}2, converges to the constant function

£ — E[f|F*1() in the weak topology on LF(OF, v).

Proof. For p ¢ [P(OF,v) and ¢ € LYOF,v), let (p,¢) := [ pp dv. Tt
suffices to show that for any ¢ € LYAF,r) and ae. x € X, {Falfizn) V)
converges to E[f[F?](x) [ ¢ dv. By linearity, we may assume that ¢/ > 0 and
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J % dv =1. Observe that

G (Folfuan ) = (Folhan) TomE)) + (Rolfizns ¥ — malh))

It follows from Proposition 5.4 and Lemma 5.7, that for ae. x € X,
(Folfuznd To(1i)) = Ay [fIRa)

converges to E[f|F2](x). It follows from the previous lemma that 1 — Tr@(nfn)
converges to zero in norm. Note that [|7s( th2,,)|\§ involves the uniform

spherical average of |f|”:

I3
”ﬁa(fx,Zn)Hi = / Zf(gil-x)XO(g)(g) dv(€) =
JOF |ges,
=3 [He 0 w0y =152 D |fe7 0"
gES0m GES2

Hence it follows from Corollary 5.8 that |Ta(fi2n)|5 converges to
E||fP|F?|x) for ae. x € X, where we also use p < p’ to conclude that
[P € IF/P(X) with p//p > 1.

By Holder’s inequality,

{(Fothans ¥ = 7o) | < IFoCanlpll = motElg

tends to zero as # — oo. Thus equation (5.1) implies the proposition. 1

REMARK 5.11. Typically, #5(f;2,) does not converge to E[f\Fz](x) in
norm. To see this, observe that |#a(fi24)|, converges to E[\f\P\FZ](x)l/P
(for a.e. x € X). The norm of the constant function & — E[f\Fz](x) is
|[E[f|F21(x)|. Unless f is constant on the ergodic component containing x,
Jensen’s inequality implies E[\f\P\FZ](x)l/P # |E[f[F?](x)|. This uses p > 1.

5.5 PROOF OF THE MAIN THEOREM

We now turn to the proof of Theorem 1.4, whose formulation we recall
for the reader’s convenience.

THECREM 1.4. Let {p2,}32, be a sequence of probability measures
in £Y(F) such that (i, is supported on Sr(e). Let 1 < q < o0, and suppose
that {m5(liz,) 52, converges in LY(OF,v). Let (X, X) be a probability space on
which F acts by measure-preserving transformations. If f € [P(X), 1 <p < x

and i + % < 1, then the averages

2 @ = > flg Dpiza(@)

G S
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converge pointwise almost surely and in L -norm to E[f|F?]. Furthermore,
if g = o0 and wa(ta,) converge uniformly, then pointwise convergence to the
same limit holds for any f in the Orlicz space (Llog™ L)X, N).

Proof of Theorem 1.4. To begin, we assume 1 < ¢ < 0. Let p’ > 1 be
such that I%Jr% = 1. Since }eré < 1, it follows that p’ < p. Let f € [7(X).
Choose a measurable version E[f|F?] of the conditional expectation. et
1 € LI(OF) be the probability density which is the limit of {m5(u2,)}52,.
Let X’ C X be the set of all x € X such that

EI/FI0 = lim ——— 3 fig')

= n—00 ‘SZn(E)| 9ESm(e)

= lim AL /R0

1/p
’ 1/}7/ 1 %
E 14 F2 S H - —1.a7
(B FK) = him | 3

By Proposition 5.4 and Corollary 5.8, MX’)=1.Forx € X’ and n > 0, let
Jron € EP’(F) be the function f; 7,(g) = flg7 ) if g € Sy.(e) and franlg)y: =0
otherwise. By Lemma 5.7 and Holder’s inequality for functions on F,

2@ — ALFIRA®| = | D A0 (p2n) — 1)) |

gESa(e)
< N feznllgr gy liszn — 0l sy

Recall that 7a: ¢'(F) — LY(OF,v) is defined by wa(d;) = {O(@) X0t =
|S2(e) | xowg if |g| =2n. Since O(g), g € S, form a partition of JF, clearly

To(20©) = moGE@| = 3 |1ane) = w0 0@ xor©.
geSs:
It now follows that

/g
iz = s = (D2 Jnane) — i)l

gE€Sn(e)
1/q
A Y |umter—nt (g)‘qx@(g)(f)dv(i)
gene) HO(g) . og) "
1 i q 1/q
— (X w0 [ fratuan© - moti e duee)
AESaule) 70ty

= |Sou(@)| V7 | mopizn) — oW Locow 01y -
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Combining this with the previous inequality, we conclude
| 12X — AL Ra1())|

< 1820 ™Y | foznll v g | 6 (20) — o@D | oo, -

The definition of X’ implies [Sza(e)] /7| fi2nll o @ tends to
EI 7 F 007

as n — o0. Since by assumption ma(p,) converges to @ in Li(JF),
Lemma 5.9 implies that ||7a(t2,) — ﬂ'a(nfn)HLq(aF,,,) tends to zero as » — oa.
So

lim 2D — ALLFIRAI®]| = 0.
The definition of X’ now implies
Tim p12,(/)() = E[/[F@).

This proves the pointwise result if 1 < g < co.

As to the case ¢ = oo, uniform convergence of mg(s,) implies
that the limit function % is continuous on the boundary. Therefore the
second part of Lemma 5.9 gives the uniform convergence of Tra(nfn) to i,
and thus also the convergence of ||wa(fizs) — ﬁ@(nfﬁ)ﬂ [(6F,y) 1O Zero.
Corollary 5.8 gives the convergence of |S2.(e)| | fizull ey to EL|f]|F21(x)
if f ¢ Llog™ L(X,)). Using these two facts the same arguments used above
establish the desired result also in the case when p = p’ = 1 and ¢ =
provided f € Llog™ L(X, A).

Finally, we note that the fact that pi2,(f) converges to E[f|F?] in I7 -norm
(f p > 1) follows from the pointwise result by a standard argument (e.g., see
the end of the proof of Theorem 2.1). L]
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