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GEOMETRIC COVERING ARGUMENTS AND ERGODIC THEOREMS

FOR FREE GROUPS

by Lewis BoWEN *) and Amos NevcU)

ABSTRACT. We present a new approach to the proof of ergodic theorems for
actions of non-amenable groups, and give here a complete self-contained account
of it in the case of free groups. Our approach is based on direct geometric
covering arguments and asymptotic invariance arguments generalizing those developed
in the ergodic theory of amenable groups. The results we describe go beyond
those previously established for measure-preserving actions of free groups, and
demonstrate the significant role the boundary action of the free group plays in
the ergodic theory of its measure-preserving actions. Furthermore, our approach
suggests the possibility of putting the ergodic theory of amenable groups and non-
amenable groups on an equal footing : both can be viewed as special cases in the
general ergodic theory of amenable ergodic equivalence relations with finite invariant
measure.
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1. Introduction

Let T be a countable group and let Bt for t G N or t G R be a family of
finite subsets of T. Let p,t be a probability measure supported on Bt. Suppose
T acts by measure-preserving transformations on a probability space (X, A).
For any f £ Ll(X, A) we consider the averaging operator

Pt(J)(*):= ^2f(ry~lx)pt(rr).
7Cß,

Let E[/|T] denote the conditional expectation of / with respect to the

a-algebra of T -invariant subsets. We say that {pt} is a pointwise ergodic

family in LP if pt(f) converges to E[/|T] pointwise almost everywhere and

in LP-norm for every / G LP(X, A) and for every measure-preserving action

of T on a probability space (X, A).
Some of the most useful pointwise ergodic families are those in which the

sets Bt are naturally connected with the geometry of the group. A basic case

to consider is when Bt is the ball of radius t > 0 with respect to an invariant
metric, and pt is the uniform probability measure on Bt. Such averages are
referred to as ball averages. Spherical averages and shell averages are defined

similarly.
Most of the research on ergodic theorems has focused on the case when the

group is amenable and the averages are uniformly distributed on sets which
form an asymptotically invariant (F0lner) sequence. The covering properties
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of translates of these sets and their property of asymptotic invariance play an

indispensable role in the arguments developed in the amenable case. We note
that ball averages on amenable groups do form an asymptotically invariant

sequence in some cases, but often do not, and we refer to [Ne05] for a detailed

survey of these methods and current results.

In contrast, non-amenable groups do not admit asymptotically invariant

sequences, and so the arguments developed to handle amenable groups are

not directly applicable. An alternative general approach to the ergodic theory
of group actions based on the spectral theory of unitary representations was

developed and applied first to the case where G is a semisimple S-algebraic

group, and then to the case of lattice subgroups T C G. We refer to
[GN10] for a detailed account of this theory. Naturally, reliance on harmonic

analysis techniques limits the scope of this theory to groups whose unitary
representation theory can be explicated, and to their lattice subgroups.

For general groups, and certainly for discrete groups such as (non-

elementary) word-hyperbolic groups for example, spectral information is

usually unavailable and harmonic analysis techniques are usually inapplicable.
Exceptions do exist, and for example it was proven by spectral methods
that ball averages with respect to certain invariant metrics on the free group
do indeed form pointwise ergodic sequences. The metrics allowed are those

arising from first fixing an embedding of the free group as a lattice in a

locally compact group G. Thus in [Ne94] [NS94] the free group is viewed

as a lattice in the group of automorphisms of a regular tree, and in [GN10]
as a lattice in PSLziR), and the metric is obtained by restricting a suitable

G-invariant metric to the lattice subgroup. Note that in the case of the tree
metric a periodicity phenomenon arises, and as a result the balls form a

pointwise ergodic sequence if and only if the sign character of the free group
does not appear in the spectrum.

In the case of spheres and balls with respect to the tree metric on the

free group, a proof of the ergodic theorem in LlogL was given by [Bu02],
using Markov operators techniques (inspired by earlier related ideas in [Gr99]),
which rely on Rota's theorem [Rot62]. This method extends to a certain extent

to some groups with a Markov presentation, and in particular, to Gromov-

hyperbolic groups. Thus [BKK11] and [PS] are devoted to the study of uniform

averages of spherical averages on Gromov-hyperbolic groups with respect to
a word metric. Norm convergence is established for integrable functions, and

pointwise convergence is established for bounded functions. However, the

limit function is not identified in these results, but has recently been shown to
coincide with the ergodic mean in the case of surface groups in [BS 10].
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In the present paper we develop a new approach to proving pointwise
ergodic theorems for measure-preserving actions of groups. Our method is
based on intrinsic geometric covering arguments and asymptotic invariance

arguments, and is completely self-contained. Our goal in what follows is to
explain this general method in detail in the most accessible case, namely
that of free groups, and show how to use it to generalize the existing ergodic
theorems for free groups described briefly above. The main results stated below
establish new maximal inequalities and pointwise convergence for a wide class

of geometrically defined averages. We also establish the integrability of the
maximal function associated with these sequences when the original function
is in LlogL, and thus also pointwise convergence of the averages acting on
functions in this space.

We note that our method has two significant advantages : first, it constitutes

a direct generalization of the classical arguments employed to prove ergodic
theorems for amenable groups, and in fact reduces the proof of ergodic
theorems for the free group to the proof of ergodic theorems for a certain
amenable equivalence relation. Second, as will be shown in forthcoming work,
this new approach extends well beyond the class of free groups and also well
beyond the specific problem of establishing pointwise ergodic theorems. For
further explanation of the scope of this approach we refer to the remarks at

the end of §3 below.

1.1 Statement of the main theorems

Let F (ct\,..., ar) denote the free group on r generators. Let S —

{tfj, a~lYi=l be the associated symmetric generating set. For every nonidentity
element g G F, there is a unique sequence tn of elements in S such

that g — t\- • tn and n > 1 is as small as possible. Define \g\ n, with
\e\ — 0. Let OF be the boundary of F which we identify with the set of
all infinite sequences (s\7 S2,...) G SN such that 1 ^ sfl for all i > 1. If
g — t\ • • • tn as above then the shadow of g (with light source at e) is the

compact open set

O(g) {(ji, 52, G OF : Si U for 1 < i < n}
The boundary admits a natural probability measure v such that v(0(g)) —

(2r)-\2r- 1)"W+1.
We denote the sphere of radius n in F by Sn(e) {j G F : \g\ n}.

Let ip be any probability density function on OF ; namely ip > 0 and

IdF ip du — I. Define the associated probability measures ßf on Sn(e) given

by ßi(g) f0(g)ip du.



COVERING ARGUMENTS AND ERGODIC THEOREMS 137

Let F2 < F be the subgroup generated by all elements g such that \g\ is

even. It is a subgroup of index 2 in F. Given a probability space (X, A) on
which F acts by measure-preserving transformations, we let E[/|F2] denote

the conditional expectation of a function / G Ll(X, A) on the a-algebra of
F2-invariant sets.

THEOREM 1.1. Fix any continuous probability density function ip on the

boundary dF. Then for every measure-preserving action of F on a standard

probability space (X, A), and for every f G LP(X) for 1 < p < oo, the

averages G LP(X) defined by

g£S2n(e)

converge pointwise almost surely and in If -norm to E[/|F2]. Furthermore,

pointwise convergence to the same limit holds for any f in the Orlicz space
(LlogL)(X, A).

REMARK 1.2. In the special case in which the density is identically 1,

each p2n is the uniform average on S2W(e), and the theorem states that even-
radius spherical averages converge pointwise a.e. to E[/|F2], for all / G LP,
1 < p < oo and / G LlogL. The proof of Theorem 1.1 is completely different
and independent of the previous proofs of this fact in [Ne94], [NS94] and

[Bu02],

REMARK 1.3. Given w G F, define the probability density pw —

Xow /v(OVJ) to be the normalized characteristic function of the basic compact

open subset Ow of dF. Thus, the sequence ptff unif°rm averages on the

set of all words of length 2n > |tt/| with initial subword w is a pointwise
ergodic sequence. It is natural to call these averages (in analogy with the

hyperbolic plane) sector averages.

Theorem 1.1 is a special case of a more general result, whose statement

requires further notation. For g G F, let Sg G ^(F) be the function 6g(g') — 1

if g — g' and 0 otherwise. Let izq\ ^(F) —> Ll(dF, u) be the linear

map satisfying tt9(6g) — v(0(g))~lXo(g) where Xo(g) is the characteristic
function of O(g). Note that if p G il(F) and p > 0 then irgip) > 0 and

HttôCaOIIi — ||m||i- Thus if p2n is a sequence of probability measures on Fr,
and 7Td(p2n) converges in Lq(dFr,v) to some limit function iß, then ip is

necessarily a probability density.
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THEOREM 1.4. Let {p2n}fL\ he a sequence of probability measures
in f*(F) such that p2„ Is supported on the sphere Sjjfß). Let 1 < q < oo,
and suppose {7rd(p2n)}^=i converges in Lq(dF, v). Let (X, A) be a probability
space on which F acts by measure-preserving transformations. Iff G LP(X),
1 < p < oo and ^ + ^ < 1, then the sequence {p2n(f)}^=i C LP(X) defined by

ß2n(f)(X):= f(9~lx)ß2n(g)
g£S2„(e)

converges pointwise almost surely and in LP -norm to E[/|F2]. Furthermore,

if q — oo and {'Kd(ß2n)}(fLi converges uniformly, then pointwise convergence
to the same limit holds for any f in the Orlicz space (LlogL)(X, A).

Theorem 1.1 follows from Theorem 1.4. To see this, fix a continuous

probability density ij) on OF. Then the associated averages pf (defined
above) satisfy lim^oo irgipt) ijj in Lq(dF, v), for all 1 < q < 00. Indeed,

the continuous functions itd(ßn) converge to ijj uniformly. Hence Theorem 1.4

applies.

Theorem 1.4 demonstrates the fundamental role that the boundary OF plays
in the ergodic theory of F, and raises several natural questions. For example,
does the conclusion of Theorem 1.4 hold if the hypothesis that p, 2n is supported

on {g G F : \g\ — 2n} is weakened to the condition lim^oo p2n(g) — 0 for
all g G F Does it hold if the inequality f + f < 1 is replaced by the weaker

constraint ^ ~ ^ 1 What if instead of being convergent in Lq(dF,v),
{7Td(p2n)}^=i is only required to be pre-compact or norm-bounded?

Finally, we remark that motivated by the results of the present paper, in
the recent preprint [BK] the authors give another proof of Theorem 1.4, using
the Markov operators method developed in [Bu02], which relies on Rota's

theorem [Rot62] and a 0 — 2 law for Markov operators.

1.2 On the ideas behind the proof

To illustrate our approach, consider the following scenario. Suppose that G
is a group and H < G is a subgroup. We say that H has the automatic

ergodicity property if whenever G acts on a probability space (X, p) by
measure-preserving transformations ergodically then the action restricted to H
is also ergodic. In this case, any pointwise ergodic sequence for H is a

pointwise ergodic sequence for G. If H is amenable then we can use the
classical theory of amenable groups to find such an ergodic sequence supported
in H. Then conjugate copies of such an ergodic sequence can be averaged
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to construct additional pointwise ergodic sequences, giving rise to geometric

averages supported on G.

For example, if G — SL2ÇR) then, by the Howe-Moore Theorem, any closed

noncompact subgroup H < G has the automatic ergodicity property. Thus
the foregoing observation can be used to prove pointwise ergodic theorems

for SL2(R) actions by averaging on conjugates of a horospherical (unipotent)
subgroup, which is isomorphic to R in this case. Similar considerations apply
to other Lie groups as well.

To handle free groups we will have to modify this approach by considering
an appropriately chosen "amenable measurable subgroup". This "subgroup"
is a sub-equivalence relation 7Z of the orbit relation of F acting on its

boundary, which we call the horospherical sub-relation. Whenever F acts on
a probability space F rv (X, A), there is a natural extension F rv (XxOF, Ax v)
and a natural sub-equivalence relation 7lx of the orbit relation of F acting on
X x OF. We show that if the action F rv (X, A) is ergodic then this sub-relation
has at most 2 ergodic components. Moreover, this sub-relation is amenable,
and in fact, hyperfinite. Theorem 1.4 is obtained by first averaging over finite-

sub-equivalence relations of this sub-relation and proving their convergence by
a direct geometric covering argument, and then averaging the result over the

boundary OF. This method establishes convergence for a variety of sequences
on F, since in the final argument we can average with respect to a variety
of probability densities (or measures) on the boundary. For a more detailed
overall description of the proof we refer to §4.

1.3 Outline of the paper

We begin by proving ergodic theorems for hyperfinite equivalence relations
in §2. This involves a direct generalization of classical arguments. In §3 we
review the boundary of F. In §4.1 we turn to ergodicity and periodicity,
and prove that an ergodic action of F gives rise to a 'virtually ergodic'
sub-equivalence relation. In the last section we integrate the averages on the
sub-relation over the boundary and prove Theorem 1.4.

2. AN ERGODIC THEOREM FOR EQUIVALENCE RELATIONS

2.1 Ergodic equivalence relations
Let (B, v) be a standard Borel probability space. A Borel equivalence

relation 1Z C B x B is called discrete if every equivalence class is finite or
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countable. It is called finite if every equivalence class is finite. Let c denote

counting measure on B (so c(E) — #E, VE C B). The measure v on B is

71-invariant if v x c restricted to 71 equals c x v restricted to 71. A Borel

map 0:5—^5 is an inner automorphism of 71 if it is invertible with Borel
inverse and its graph is contained in 71. Let [R] denote the group of inner

automorphisms, also called the full group. If v is 71 -invariant then 4>*v — v
for every 0 G [7Z]. For the rest of this section, we assume v is an 71 -invariant
Borel probability measure on B.

A basic example to keep in mind is the following special case : suppose G
is a discrete group acting by measure-preserving transformations on (B,v).
Then the orbit-equivalence relation 7Z := {(b, gb) : b G B,g G G} is such

that v is 71 -invariant. In fact, a result of [FM77] implies that all probability
measure-preserving discrete equivalence relations arise from this construction

(up to isomorphism).
The relation 7Z is hyperfinite if there is an increasing sequence

of finite Borel sub-equivalence relations (namely equivalence relations whose

equivalence classes are finite) whose union is 71. For b G B, let 71 „(b) denote

the 7£„-equivalence class of b. For / G Ll(B), let

We are interested in the convergence properties of these averages, which

play the roles of balls and spheres of radius n in the 7Z-equivalence class

of b. To describe the limit function we recall the following two definitions.

A set E C B is 71 -invariant if (E x B) Pi 71 — (B x E) Pi 71 — (E x E) Pi 71

(up to v x c-measure zero). For a Borel function / on B, let E[/|7£] denote

the conditional expectation of / with respect to the a-algebra of 7Z-invariant
Borel sets and the measure v.

2.2 An ergodic theorem for hyperhnite relations
The main result of this section is the following pointwise convergence

theorem.

THEOREM 2.1. Let 71 be a hyperfinite Borel equivalence relation on
(B, v). Assume v is 71 -invariant. Let be an increasing sequence of
finite subequivalence relations whose union is 71. Then for any f G Ll(B),

A'[f\7i„m —
i

b'(=nn(b)\izn-db)
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A[/|7£„] converges pointwise a.e. to E[/|7£], and in the Ll -norm. Moreover,

if there is a constant C > 0 such that

(2.1) C\Rn(b)\nn-X{b)\ > \Rn(b)\

for a.e. b and every n then A'[f\JZn\ also converges pointwise a.e. afid in
1} -norm to E[/|7£], as n —> oo.

Theorem 2.1 is obtained from the next two theorems which are also proven
in this section. Before stating them, define L\(B) to be the set of all functions

/ L\B) with E[/|ft] 0 a.e.

THEOREM 2.2 (Dense set of good functions). With the hypotheses as in
Theorem 2.1, there exists a dense set Q C Ll(B) such that for all f G Q,
A[f\7Zn] and A'[/|7^„] converge pointwise a.e. to E[/|7£]. Similarly, there

exists a dense set Qo C L\(B) with same property.

Consider now the maximal functions

M[/] : sup A[|/||7£„], M'[/] := sup A'[|/| |ft„].
n n

THEOREM 2.3 (weak-type L1 maximal inequality). With the hypotheses

as in Theorem 2.1, for every f G L1 (B) and any t > 0,

v ({beB: M[/](b) > /}) < Mi
Moreover, if (2.1) holds for a.e. b and every n then

i'({beB-. M'[/](fc) > /}) < MM.

Given the two foregoing results, Theorem 2.1 follows easily using the
standard classical argument.

Proof of Theorem 2.1. Let / G Ll(B). We will show that {A[/|7£„]}~ 1

converges pointwise a.e. E[/|7£]. After replacing / with / — E[/|7£] if
necessary we may assume that E[/|7£] 0 a.e.

For Ö > 0, let E$ {b G B : limsup^^ |A[/|7£„](fr)| < <5}. We will
show that each E$ has measure one. Let e According to Theorem 2.2,

there exists a function f\ G Ll(B) with ||/—/i||i < e such that {A[/i|7^„]}~ 1
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converges pointwise a.e. to 0. Let n > 0. Observe that

\Mf\Hn\\ < |a[/-/i|^„]| + |a[/i|n„]\ < m[/-/ü + |a[/!|^w]|
Let

D:={beB: M[/-/[](&)<
Since A[/i|7£„] converges pointwise a.e. to zero, for a.e. b G D there is an

N > 0 such that n> N implies

\Mf\nnm\ < m[/-fxm+|a[fx\Rnm\ <2^ 5.

Hence D C E§ (up to a set of measure zero). By Theorem 2.3,

iks§i m» 11 - <rl/2n/-hiii > l - sß -1 - -

For any <$i <62, E§x C E$z. So v(E$z) > v(E> 1 — y for all < 62

which implies v(E$z) — 1. So the set E has full measure. This

implies pointwise convergence of {Af/lT^-n]}^!.
The fact that A[/|7£„] converges to E[/|7£] in Ll(B) follows from the

pointwise result. To see this, observe that it is true if / G L°°(B) by the
bounded convergence theorem. Since L°° is dense in L1 and A[/|7£„] is a

contraction in L1 this implies the result. The proof for A7 in place of A is
similar.

2.3 Asymptotic invariance and pointwise convergence

Theorem 2.2 is based on the following asymptotic invariance argument.
Before stating it, recall that [7Zm] denotes the full group of the equivalence
relation 1Zm, so that each automorphism <f> G [7Zm] acts as a permutation
when restricted to the finite equivalence class 7Zm(b), for almost every b G B.
Since 7Zm C 7Zn when n > m, the equivalence class 7Z„(b) is a union of
7Zm -equivalence classes, and hence <p(7Z„(b)) — 7Z„(b) for almost all b G B.

LEMMA 2.4. Let 4> £ VZm] for some m > 0 and let f G L°°(B). Then

A[/ —/ o 4>\lZn\ converges pointwise a.e. to E[/ —/ o 4>\K\ 0 as n —> 00

Similarly, A'[/ —/ o 0|7£„] converges pointwise a.e. to 0 as n —> 00.

Proof. For any b G B,

lim |A[/-/o0|ft„](&)| lim WM ^ W»-*»
1 "W| b'ÇTZn(b)

i- \nn(b)Emnm\ n<211/1100 lim f—— 0.
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The last equation holds because if n > m then 7Zn(b) — (ß(7Zn(b)) (since the

7£„-equivalence class of b is preserved by 0). Note also that if n > m then

n„(b) \ Kn-iib) 4>Oln(b)) \ 4>0ln-xm <f>(7l„(b) \ Kn-im
So the same argument shows that lim^oo |A'[/ —/ o 0|7£„](&)| — 0.

Since v is 7Z -invariant, E[/|7£] E[/o0|7£]. Hence E[/—/o0|7£] — 0

a.e. So this proves the lemma.

Proof of Theorem 2.2. Let T C L2(B) be the space of 71 -invariant L2

functions. That is, / G X if and only if f(b) —f(b') for a.e. (b,b') G 71. Let
Go C L2(B) be the space of all functions of the form / —fo 0 for / G L°°(B)
and 0 G [7Zm] for some m > 0. We claim that the span of T and Go is dense

in L2(B). To see this, let /* be a function in the orthocomplement of Go-

Denoting the L2 inner product by {,), we have

o - (f*7f)-(f*,f°<P) {/*,/}-</*°<rl,/>
for any / G L°°(B) and 0 G U^=l[7Zm]. Since L°°(B) is dense in L2(B),

we have /* /* o 0_1 for all 0 G U^L1 [7Zm\. Because U^=17Zm — 71, this

implies /* G X ; i.e., /(&) — f(b') for almost every (b,b') G 7£. Since /* is

arbitrary, this implies X and Go span L2(B) as claimed.

By Lemma 2.4 for every / G X + Go, A[/|7£„] and A'[/|7£,,] converge
pointwise a.e. to E[/|7£]. Since X + Ç/o is dense in L2(B), which is dense

in L1 (B), the first statement of the theorem follows. The second is similar.

2.4 Covering argument and weak-type maximal inequality

Proof of Theorem 2.3. For n > 0, let

M„[/](&):= max A[|/||7^]0?).
l<j<n

Let Dn>t {b G B : M„ [/](&) > *}. We will show that v(Dn>t) < for
each n > 0.

Let pf : —> N be the function p'(b) — m if m < n is the smallest

integer such that A[\f\\7Zm~](b) > t. Let p\ Dn t —> N be the function p(b) — k
where k — p'{b') is the largest number so that there exists b' G D„tt with
b G 7lp>(b')(b'). Note that A[\f\\7ZP(b)](b) > t for every b G Dnt, and so

H/>„.,) < I f A[|/||^Â)](î) Mz).
* ./n

Note further that for almost every a,y G Dn t, the sets 7Zp(x)(x) and 7Zp(y)(y)

are either identical, or disjoint.
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Let K : B x B ^ R be the function

I/GO I

K(y,z)
|7^-p(z)00|

if z G D„tt and y G 1ZP(Z)(z). Let K(y,z) — 0 otherwise. Since v x c\-ji —

c x v\n-.

I I/GO I dv(y) f K<y,z) du(y) f K(y>z) dv(&
% D"'' ' z£Dn>,

•>
y£Dn,t

[ A[\f\\npiz)](z)du(z).
JD„tt

So

KA»,t) <7 [ A[|/||ftpfe)](z) dz I [ |/(y)| di^GO " "^"1
* </£„, * ./a,

<~ £

Because this holds for all n > 0, this proves the first statement. Now suppose
there is a constant C > 0 such that

c\Rn{b)\nn-x(b)\ > \n„(b)\

for a.e. b and all n. Note that if A'tl/HT^Kfr) > t then A[|/||7£„](&) > t/C.
Therefore,

i'({bB : M'[/](&) > (}) <v{{b e B : > t/C}) < GiTIG

This concludes the proof of Theorem 2.3.

3. The free group and its boundary

3.1 The boundary action

Let F Fr (ai,...,ar) be the free group of rank r > 2. Let
S {a^1 : 1 < i < r}. The reduced form of an element g £ F is the

expression g — s\ ••• sn with ij G S and Si+\ yk s~l for all i. It is unique.
Define \g\ := n, the length of the reduced form of g. The distance function

on F is defined by d(gug2) := |gflgi\.
The boundary of F is the set of all sequences £ — (£i,£2,...) G SN

such that 1 7^ Ç"1 for all i > 1. We denote it by d¥. A metric d$
on OF is defined by dd((£i, £2? -X (h, h, •)) — ^ where n is the largest
natural number such that — tf for all i < n. If is any sequence
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of elements in F and gi tit\ • • ti>ni is the reduced form of gi then

lim, gi — (£1, ^2j G 8F if tij is eventually equal to ^ for all j. If £ G OF

then denote by £ G S the i-th element in the sequence f (f 1, £2, £3, •)
We define a probability measure v on OF as follows. For every finite

sequence t\,..., t„ with ti+1 ^ t~l for 1 < i < n, let

6 £>F : >$ fi VI < Iff«}) : U^tT" (2r-ir"+1(2rr1.

By the Carathéodory extension Theorem, this uniquely extends to a Borel

probability measure u on OF.

There is a natural action of F on OF by

(h t„)£ k-*,&+i,&+2,
where t» G S, t\ t„ is in reduced form and k is the largest
number < n such that Ç"1 — for all i < k. Observe that if g — t\ • • • tn

then the Radon-Nikodym derivative satisfies

— (~r ~ 1)2A_"
du

Note that the level set of the Radon-Nikodym derivative for a given

£ G OF, namely {3 G F; ^r"(£) — l} consists of those words g of even

length n — 2k (say), whose last k letters form a word which is the inverse

of the word formed by the first k letters of £.

3.2 The horospherical and synchronous tail relations
Let 71 be the equivalence relation on OF given by (£, if) G 71 if and only

if when writing £ — (£i,£2, and r) — (771,1)2,...), there exists n such

that r)i — & for all i> n. Thus 777ZÇ if and only if r) and £ have the same

(synchronous) tail, if and only if they differ by finitely many coordinates only.
Let 71» be the equivalence relation given by (£, rj) G 71» if and only

if £* rfi for all i > n. Then 71 is the increasing union of the finite
subequivalence relations 71». Thus 71 is hyperfinite.

Consider now the relation VJ on OF such that rfR!^ if and only if there

exists g G F such that g^ — rj and ^r(£) — 1 Recall that according to our
description above of the words belonging to level set, g has even length n — 2k

(say), and the word formed by its last k letters coincides with the inverse of
the word formed by the first k letters of £. It follows that g — </£ has the

same synchronous tail as £, from the (k + l)-th letter onwards. Equivalently,
g~l belongs to the horosphere based at £ and passing through the identity
in F, namely the geodesic from g

~1 to £ and the geodesic from e to £ meet
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at a point (namely the word formed from the first k letters of £ and g~l)
which is equidistant from e and g~l. It is therefore natural to call 7Z' the

horospherical relation: r\7Z'Ç if and only if r) — g£, where g~l belongs to
the horosphere based at Ç passing through the identity. Similarly, it is natural

to call the equivalence class of £ under 7Z „ the horospherical-ball of radius n
based at f.

Since £ and r) — g£ have the same synchronous tail, 71' coincides

with the synchronous tail relation 71, and so it is an equivalence relation.

We note that this property is in fact a consequence just of the fact that
the Radon-Nikodym derivative is a cocycle and 7Z' constitutes its kernel.

Thus to see that 71' is symmetric note that for f — g~lfj, we have

The transitivity of the horospherical relation 7Z' follows from the cocycle

identity which the Radon-Nikodym derivative satisfies. Finally note that by
definition, the measure v is 7Z' -invariant.

3.3 On the scope of the method

Let us make three brief remarks on the scope of our approach.

REMARK 3.1. The observations in the previous subsection point to the

following underlying fundamental idea. Utilizing the action of a discrete group
on a suitable boundary B and the associated Radon-Nikodym derivative, it
is possible to define a useful notion of "horospheres" and "horoballs" in the

group, using the level sets of the Radon-Nikodym derivatives. Furthermore,
B carries an associated equivalence relation, which is amenable and has

an invariant probability measure. Finally, there exist natural subsets in the

equivalence classes which are asymptotically invariant under the equivalence
relation in a suitable sense.

Given a measure-preserving action on X, the equivalence relation on B can
be extended to product space X x B, which again has an invariant probability
measure and asymptotically invariant subsets on the equivalence classes. We

may integrate the averages on these sets over B and thus construct averages

on the group itself, and then deduce pointwise ergodic theorems for the group
action on X from a pointwise ergodic theorem for the equivalence relation.

This general approach to the problem is developed in [BN1] and [BN4], and

more concretely for Gromov-hyperbolic groups in [BN3].

relation is indeed symmetric.
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REMARK 3.2. It is natural to consider the synchronous tail relation, more
generally, in any Markov chain coding the elements of a Markov group. We can
then appeal to the general pointwise convergence result we have established for
hyperfinite equivalence relations with finite invariant measure in Theorem 2.1.

This approach to proving ergodic theorems for Markov groups is developed
in [BN5].

REMARK 3.3. The geometric covering arguments we have used in the proof
of Theorem 2.1 can of course be replaced by an appeal to the martingale

convergence theorem. Nevertheless, we have chosen to give a self-contained

proof, the reason being that this proof can be greatly generalized. In particular,
it leads to a proof of a ratio ergodic theorem for non-singular hyperfinite
equivalence relations in the absence of an invariant measure, where the

martingale theorem does not apply. In turn, this implies a horospherical ratio

ergodic theorem for non-singular actions of the free groups, and other Markov

groups. This approach to the ratio ergodic theorem for non-amenable groups
is developed in [BN2].

4. IDENTIFYING THE LIMIT IN THE ERGODIC THEOREM

The present section and the following one are devoted to the proof of
Theorem 1.4, and we begin with a very brief description of our proof plan.
Given an ergodic probability preserving action of F on (X, ß), we will consider

X x OF with the measure ß x v. We extend the horospherical relation 1Z

on 8F to a relation 7ZX on X x dF, which is still hyperfinite, with invariant

measure ß x v. We consider the operators of averaging on the finite classes

approximating 7ZX, and appeal to Theorem 2.1, which guarantees the averages

converge pointwise to the conditional expectation on the a-algebra of 7ZX -

invariant sets. We then prove the crucial fact that this a-algebra coincides

with the a-algebra of subsets of X x dF invariant under the action of F2, the

subgroup of F consisting of words of even length ("automatic ergodicity").
We then use the fact that the action of F2 on dF is weak-mixing, namely that
the product action of F2 on X x OF is ergodic for every probability measure

preserving ergodic action of F2 on a space X. These arguments identify the

limit in the ergodic theorem we seek to prove, as the conditional expectation

on the a-algebra of F2 -invariant sets. We will then integrate the averages
defined on the finite classes in X x OF, over the boundary OF. This gives rise

to averages acting on functions on X, given by certain probability measures
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on F, which converge to the limit stated in Theorem 1.4. Analyzing these

measures, we recognize that they coincide with the measures described in
Theorem 1.4.

4.1 Automatic ergodicity of the extended horospherical relation

Let F act on a standard probability space (X,X) by measure-preserving
transformations. Let F2 be the subgroup of F generated by words of length 2,

which has index 2 in F. For any / G Ll(X), let E[/|F2] G Ll(X) be the

conditional expectation of / on the a-algebra of F2-invariant measurable

sets.

Let ltx be the equivalence relation on X x OF given by ((a, £), (x/,f/)) G

ltx O El# G F with x — gx', f gg and (f,£') G lt. Equivalently,
1, or £ and £' have the same synchronous tail and g~l is in the

horosphere based at £' passing through e. For / G Ll(X x OF), let F[f\1tx]
denote the conditional expectation of / on the sigma-algebra of Itx -invariant
sets.

For / G Ll(X), define i(f) G Ll(X x OF) by i(f)(x,Ç) — f(x). The map

/ ^ Kf isometrically embeds in Ll(X) into Ll(X x OF). The purpose of this
section is to prove the following "automatic ergodicity" property:

Theorem 4.1. For any f G Ll(X), E\i(f)\ltx] i(E[/|F2]).

Similar results were proven in [Bo08] for all word hyperbolic groups.

We remark that it is necessary to consider the action of F2 rather than F.
For example, if X is a two-point set, A is the uniform probability measure
and all generators of F act nontrivially on X then the action

of F on X is ergodic but the equivalence relation ltx on X x <9F is not.

Theorem 4.1 is based on a more general result. Before stating it, we
introduce the following definitions.

DEFINITION 4.2. Let X C Ll(Xx <9F) be the cr-algebra of sets A that are
invariant under the relation ltx, i.e., for all 0 G [ltx] (the full group of ltx)
we have 0(A) — A.

Let X2 C Ll(X x <9F) be the a-algebra of F2-invariant sets A, namely
such that for all g G F2, g(x, f — (gx, gÇ) G A if and only if (x, f G A.

The corresponding conditional expectations are denoted by E[F\ltx] and

E[F|X2] (for F G Ll(X x dF)).
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In the next subsection we prove:

THEOREM 4.3. For any F G Ll(X x OF), E[F|Z2] — E[F|7£X], or
equivalently X — X2.

Theorem 4.1 clearly follows from Theorem 4.3 and the following lemma,
whose proof is included below.

Lemma 4.4. For any f G Ll(X), E[i(/)|X2] i(E[/|F2]).

Proof. Without loss of generality, we may assume that the action of F2

on (X, A) is ergodic. It suffices to show that the diagonal action F2 r\ X x OF

is ergodic.

Let ß be the uniform measure on the generating set S. Then the action

of F on the Poisson boundary of the random walk determined by ß is

canonically identified with the action of F on (OF, v) (e.g., see [KaOO]). Note
that the support of the convolution ß * ß generates F2. Hence the action

of F2 on the Poisson boundary of the random walk determined by ß * ß is

identified with the action of F2 on (OF, v). By [Ka03] and [AL05], this action
is weakly mixing. This implies the diagonal action of F2 on (OF x X, v x A)
is ergodic.

4.2 IDENTIFYING THE LIMIT: PROOF OF AUTOMATIC ERGODICITY

We now turn to the proof of Theorem 4.3.

Definition 4.5. For (a, f) G X x OF, write £ (£i,£2, .)> a°d define

P(a, f) G X x OF by P(a, f) — Çf *(a, £). More generally, if n > 1 then let

LEMMA 4.6. Let F G 0(X x OF) .If F0P2 — F a.e. then F is measurable

w.r.t. X2, namely F is F2 -invariant.

Proof. Let (a, GXx OF and g — t\ • • • tin £ F2 be in reduced form.

By definition,
9£ (fi tin—ki ^+1 ^\k-\-2i • • 1

where k is the largest number such that Ç"1 — Ï2n+i-j for all i < k. For

any a G X, if k is even then (gx,gQ G P_(2w_/:)P^(a, f). If k is odd then

(gx,gÇ) G P~(-2n~k+l)Pk+l(x,Ç). Thus if f o P2 —f a.e. then fog —f a.e..

This implies the lemma.
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Proposition 4.7. To prove Theorem 4.3, it suffices to prove that FoP2 F
for all F measurable w.r.t. T, namely for all 7ZX -invariant functions.

Proof. From Lemma 4.6 it follows that if F o P2 F for all 7ZX-

invariant functions F then T C T2. To see the reverse inclusion, let

(x, f), (*', f) £ X x dF be ^-equivalent. By definition, there exists g G F
such that (x',Ç') — (gx,gÇ). As noted in §3.2 above, g is necessarily in F2.
Thus if F if F2-invariant then for a.e. pair (a, f), (x', f) of 7ZX -equivalent
points in X x OF, F(x, f) — F(x',(f), namely F is 7ZX -invariant. This shows

X2cX.

The next proposition is the key geometric result in the proofof Theorem 4.3.

Define P3: OF —> OF by P^(0 ff 1£- Recall that dg is a distance function

on OF defined by dgifÇi, £2, (h, h, • — where n is the largest
natural number such that fj — h for all i < n.

Proposition 4.8. There exist measurable maps ipn, oj„ : OF -A OF (for
n > 5) such that

(1) n em, dg(^0„O I ;

(2) OF. dg{4^„(Q,Pfw„(0) - ;
(3) the graphs of uj„ and ipn are contained in 71 ;
(4) Vf G OF, El# G F such that £)nujn(^) — #w„(f) and P|w„(f) — #f. Except

for a countable set of f G OF, g is uniquely determined.

(5) V/ G Ll0F), 11/ocli„||j — II/||j and \\f°i>n\\i < (2r — l)2, w/iere r is
the rank of the free group F.

Proof. We begin by defining lj„ and ipn. Recall that S — {a\,... ,ar,
afl,.,,, a/1} is the chosen generating set of F. Let K \ S3 —> S3 be a bijection
so that for any G S3, K(sk_usk,sk+i) CsA_ 1,4,^+1) for
some 4 £ {s^s^s^}.

We now fix n > 5 and define lj„: OF —> OF by oj„(si,s2,..— (fi, t2,...)
where h — Si for all i 4 n and tn — s'n where K(s„_i,s„,sn+i) —

(5„_i,4?^n+i)- By its definition uj„ is invertible, Borel, d$(f,u;„(f)) — f
for any f G OF and (oJn)*v — v. Moreover since lj„ does not change the tail
of the sequence (i.e., because ti — Si for all sufficiently large i), the graph

of u)n is contained in 7Z. Because uj„ is measure-preserving, ||/ow„||i — ||/||i
for any / G L1 (OF).

Define OF —» OF by

ij)nu)n(si,s2,...) (53,... ,sn_us'n,s~\s,n,sn+usn+2,.
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where ÄT(5„_i,5„,5„+i) — Because u)n is invertible, ipn is
well-defined.

Note that the m-th coordinate of ip„oj„(si,S2,...) equals the m-th
coordinate of u)n(si,S2,...) if m > n. Therefore, the graph of is contained

in 71. If £ ($1,52? then

— (*^3 • • ^n—1 *^«+1

Thus dd(i/jnu)n(t;), Pq w„(f)) — This concludes the proofs of parts (1), (2)
and (3).

Note that setting g — (s3 • • • s„_ i)^(5i • • -5W)_1 we have P|w„(£) g£,
and similarly, ipnujn(^) — gu)n(Ç). Since only countably many points £ G OF

have a non-trivial stabilizer in F, and g is uniquely determined when the

stabilizer of £ is trivial, and this proves part (4). Anticipating the argument
of the next proposition, let us note that S\S2g satisfies S\S2gÇ — ojn(Ç).

We now claim that is at most (2r— l)2-to-l (that is, for each b G OF, b

has at most (2r—l)2-preimages under ip„). Because uj„ is invertible, it suffices

to show that is at most (2r — l)2-to-l. Suppose that (ui,u2,...) G OF

and

• • •) ii„u„(sus2,...) (53,... J„+i, J„+2,

By definition of ip„oJn, Ui Si for i > 3. Since there are (2r — l)2 choices

for (u\, w2) the claim follows.
Since the graph of ipn is contained in 71 and v is -invariant, the

claim implies ||/o < (2r — l)21|/|| 1 for all / G Ll(dF), and this proves
part (5).

LEMMA 4.9. There exist measurable maps d>„, Q„ : X x OF —> X x OF

(for ft 5 ^ sttoh that

(1) for all F G Ll(X x OF), lim«^ ||F o Wn o Q„ - F o P2 oO„|| 1 0 ;
(2) for all F G Ll(X x OF), lim^^ ||F o Q„ -/|| 0 ;
(3) the graphs of d>„ ««J are contained in 7ZX.

Proof. For n > 5 an integer, let ipn and lj„ be as in Proposition 4.8.

Fix (a, f) G X x OF and let <71,02 £ F be such that gif wB(0 and

As noted already, for almost every £ (and every n), g\ and

g2 are uniquely determined. Define Q„(a, f) := (a, <710, <I>„(a, 0 := (gix,</i0
and *?„(*, 0 := (g2x,g20-

Since the graphs of and lj„ are contained in 71, the graphs of
and are contained in 7ZX. Let dx be a metric on X that induces its
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Borel structure and turns X into a compact metric space. For (a, £),(*', £') £=

X x OF, define d*((x, f), (a7, £')) dx(x,x')-\-dQ^, £') By Proposition 4.8(1),
d*(Q„(A, 0, (a, 0) rfa(tj„(£), 0 l/w- Furthermore

d*Qyn o Q„(a, 0, P2 oO„(a, 0) d*((g2x, ipnu)n(0), P2(di<*>„(£))),

where cj„(0, and g2u)n(0 Writing f (ji, j2, j3,...),
we have P2(<?ia, cj„(0) — (j^j^^a, F|w„(0). Recalling from the proof of
Proposition 4.8(2) that g — (53 • • • 5„_ 1)5^(51 • • *sw)_1 satisfies F%u)n(0 — 9%

as well as ij)nûJn{Ç) — gujn{Ç), we conclude that g — g2 — sfls^lg\. Since

by Proposition 4.8(2), we have dQ^nujn(^), Pg wn(0) it follows that

o Q„(a, 0, P2 oO„(a, 0) for almost every (a, 0elx OF.

Thus if F is a continuous function on X x OF then the bounded convergence
theorem implies

lim ||F o *[>„ o Q„ — F o P2 o<I>„||x — 0
n—¥00

lim ||F oQ„ -F||i — 0.
n—¥00

It follows from Proposition 4.8(5) that the operators F 1-4 FoQ„, F 1-4 F o<3>„

and Fh>FoW„ are all bounded for F G Ll(X x OF) with bound independent
of n. It is easy to see that F 4 F o P2 is also a bounded operator on
Ll(X x OF). Since the continuous functions are dense in Ll(X x OF), this

implies the lemma.

We can now prove Theorem 4.3.

Proof of Theorem 4.3. By Proposition 4.7, it suffices to show that

F o P2 F for every F which is 1ZX -invariant. Let d>„, Q„, n > 5

be as in Lemma 4.9. Because F is 1ZX -invariant and the graph of is

contained in 1ZX, it follows that F o — F for all n. An easy exercise

shows that P preserves the equivalence relation: if (a,0 is 7lx-equivalent
to (y, 0) then P(a, 0 is ^-equivalent to P(y, £'). It follows that F o P2 is

also -invariant. Now since the graph of d>„ is also contained in 7lx, it
follows that F o P2 o<3>„ F o P2 for all n. We now have

||F — F o P2 Hi ||F — F o P2 o<I>„||i

< ||F - F o 4>n o Q„|| + ||F o Wn o Q„ - F o P2 oO„||

— ||F — F o Q„||i + ||F o o Q„ — F o P2 o<ï>„|| x

The previous lemma now implies F F o P2 as claimed.
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5. Proofs of ergodic theorems

5.1 Convergence along the hyperfinite relation on X x OF

Let F act by measure-preserving transformations on a probability space

(X, A). Let be the equivalence relation on X x OF defined by
((a, 0, (*',£')) £= Un if and °nly if there exists g G F with (gx7gÇ) — (a', £')
and (£,£') G Hn (i.e., if £ (0,...) G SN and £' (0,...) G SN then

0 — Q for all i > n).
We will need the next easy lemma (which is left as an exercise).

LEMMA 5.1. For any (a,()Glx OF,

[tßv.OI IfetOI =(2r- 1)".

So

|7?|fe 0 \M-®Ol \KM) \ 7^-iffil (2r - 1 f-\2r - 2)

2r — 2. 2r — 2. v
jl^O-f.OI

For / G Z/(X, A), recall that i(f) G LP(X x OF) is the function i(f)(x, 0 —

/(a). Collecting results of the previous sections, we can now prove:

COROLLARY 5.2. For f G Ll(X), let E[/|F2] be the conditional expectation

of f with respect to the a -algebra of F2 -invariant sets. Then for
A x v-a.e. (a,()gXx OF,

I'-l./ l''l(u lim AtoMÊJWt).
n—¥oo

Proof. Lemma 5.1 implies that the assumption in Theorem 2.1 is satisfied,
and thus for a.e. (a,()GXx OF,

ZCMfv.;) lim \'\Uf).R„\lx.l).
n—¥ oo

By Theorem 4.1, E [i(f)\1lx)](x, 0 E[/|F2](a) for a.e. (a, 0 G X x OF.

In the next section, we will need the following strong Lp -maximal

inequality. For / G Ll(X x OF), define

M l./ l : / /C,;|.
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Proposition 5.3. For every p > 1 there is a constant Cp > 0 such

that for every f E LP(X x <9F), HM't/]^ < Cp||/||^. Moreover, there is a

constant Ci such that iff E L\og+ IPX, A), then

Proof. It follows from Theorem 2.3 that for any / E Ll(X x OF) the

weak-type (1,1) maximal inequality holds:

for some constant C > 0. (In fact we can take C — ^.)
The first part of the proposition now follows from standard interpolation

arguments. Namely, since the operator / i-A M'[/] is of weak-type (1,1) and

is norm-bounded on L°°, it is norm-bounded in every Lp, 1 < p < oo (see

e.g. [SW71, Ch. V, Thm 2.4]).

Finally, given the weak-type (1,1) maximal inequality, the fact that when

/ E Llog+ IfX, A), the maximal function is in fact integrable and satisfies the

Orlicz-norm bound is standard, see e.g. [DS, p. 678].

We now turn to the proof of Theorem 1.4, and show that by integrating the

converging averages A,[i(f)\'R%~\(x, f) over <9F, we obtain converging averages
defined by probability measures on F. We begin by considering integration
with respect to weighted averages on the boundary.

5.2 Averaging over the boundary dF

From now on we let 1 < p, q < oo be such that j ^ — 1 Let
ip E Lq(dF, v) be a probability density on the boundary, namely ip > 0 and

J ip du — 1. The goal of the present subsection is to prove :

Proposition 5.4. For f E Lp(X, A) and n>0, define A^[/|ft„] E LP(X)

by

Then A^[/|7£„] converges pointwise a.e. to E[/|F2]. Furthermore, if iß is
essentially bounded then the same conclusion holdsfor any f E Llog+ IXX, A).

The proof of Proposition 5.4 uses the following :

IIMtfllL, <^11/11^.

A x v ({(„r, 0 e X X £>F : M'|/l > t}) S
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LEMMA 5.5. Let p,q,iß,f be as above and define

MU/]:=supA^[|/||7?„].
n

Then there exists a constant Cp > 0 (depending only on p) such that for
every f G If(X, A)

Furthermore, there is a constant Ci > 0 such that if iß is bounded, then for
any f G Llog+L(X, A) we have

IlMypi <<ÄWII»II/I|l,^-

Proof. Without loss of generality, let us assume / > 0. We start with the

case 1 < p < oo. For a.e. x G X,

iM'J/lWr sup|A;[/|7?.„](.r>r

— sup
idF

< sup ||A'p(/)|7?.;](.ï, Sll^sFjII'f/'llwaF,
n

The last line above is justified by Holder's inequality. Next, we observe that

for any n > 1,

f sup 11 A' \i(f)11Z^](x, | \pmm d\(x) f sup f \ A' [i(f) \ 0 \p dv(f)d\(x)
JX n Jx n JOF

<[ [ M'wfm^y dv(0d\(x)
Jx JOF

\\mm\pmx^y
Putting this together with the previous inequality we obtain

umu/]|Iwy,= /
Jx

< 11M'[/(/)] I

The first part of the lemma now follows from

WiX) < IIV'llw(ÔF) WQCxdF)

< Cp\\ip\\iß(dF)\\Kf)\\Lj>(xxdF) — CPII^II^ÔDII/Ulpcx)

where Cp> 0 is as in Proposition 5.3.
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The second part of the lemma follows in exactly the same way, taking

/ G Llog+L(X), p 1 and q — oo above. Using the integrability of the
maximal function and the norm bound

iiM'R/an L1 (X X ÔF) — H/ll(LlogL)(X)

together with the boundedness of ip, the desired estimate follows.

Proof of Proposition 5.4. We will first prove the proposition in the special
case in which / G L°°(X). By Corollary 5.2, A'\i{f)\Vff\ converges pointwise
a.e. to i(E[/|F2]). By Lebesgue's dominated convergence theorem, this implies
that for a.e. x G X, {A,^J[f\'R.n](x)}^=l converges to jEf/lF2]^)^^) du(£) —

E[/|F2](a). This finishes the case in which / G L°°(X).
Now suppose that / G LP(X). After replacing / with / — E[/|F2] if

necessary, we may assume that E[/|F2] =0. Let e > 0. Let f G L°°(X) be

such that II/— f'\\p < e and E[/'|F2] — 0. Clearly:

|a^[/|^„]| < |A^[/ + \A!^f\nn-\\ < M^[/ —/'] + \A!^f\nn-\\.

Since A^lffän] —> 0 pointwise a.e., it follows that for a.e. x G X,

lim sup |A^[/|ft„](x)| < M^[/ -/'](*)
n

Lemma 5.5 now implies:

|| lira sup |A^/|7?,,]||P < ||M-/']||? < CpWf -f\\p < Cpt.
n

Since e > 0 is arbitrary, it follows that || limsup„ | A^[/|7^„]| ||^ — 0.

Equivalently, A^[/|7£„] converges to 0 pointwise a.e.

The second part of the proposition follows similarly using approximation
in the Orlicz norm.

5.3 Convergence for probability measures on F

We now turn to establish that each operator / i-A A^[/|7^„] is given

by averaging with respect to a probability measure r/fn on the group F.
We will then prove pointwise convergence of spherical averages and their
generalizations.

DEFINITION 5.6. Let t\ t2n — 9 be the reduced form of an element

g G F2. Define

O'ig) Oiti tn)~ Oih tntn+1) C dF,
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where O(-) is as defined in the introduction (namely £ — (f1;...) G

0(ti - tn) o £ U, 1 < i < n). Recall that (£,£') G 1ln O & £
for all i > n. Thus £ G 0'(<7) if and only if (f, g~lQ G V,n \ Hn- \ •

Define r)fn G I1 (F) by

^y-=Gr-2)(lr-^ljdV
if \g\ — 2n and 0 otherwise.

LEMMA 5.7. For any function f G LP(X) (p > 1 any n > 0 and any

xeX,
Kj\f\Kn\(x)

g£F

Proof. By definition

I w 'S \ n—i I

By Lemma 5.1, and since / depends only on x,

•V'l'i/) /C,;l(A.i) - (2r - l)-+\2r - 2)"' ^JiT1*),
9

where for each £ the sum is over all g G F such that (f, g~l0 G

TZ-niO \ Un-i(0- Such </ necessarily has length 2n, and as noted above,

the latter condition is equivalent to £ G 0'(<7). Thus when integrating the

expression

A; 1/ «„1(A) [ A'\i(f)\H^(X,04K0 dv(0
JdF

over the boundary, we integrate over the sets O'(g), as g ranges over the

sphere SjJß). For a given x, in each such set A'[i(f)\'R%~\(x, f) has the value

given above (independent of £ and hence we obtain

(2r- l)~B+1(2r-2)_1 ^ f(g~lx) f ip dv ^f(g~lx)r$n(g).
g(=s2„(e)

«/o'Cff)

We can now state the following corollary, proved previously for Lp, p > 1

in [Ne94] [NS94] and for Llog+L in [Bu02].
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COROLLARY 5.8. Let p > 1 and f G Lp(X) or more generally f G

L log+ L(X). Then for a.e. x G X,

E[jfï#» lim —V /(g-Kx).
n^oo \S2„{é)\ fr*g&S2„(.e)

Proof. Set iß 1. By the previous lemma,

A^t/I^K*) ^2f(g~lx)vt(g)
g(=F

- - f(g~1x)v(0'(g)).
(2r - 2)(2r - l)*"1 ^ J y y

gÇ.S2nie)

If g g\ • • gm then £ G 0'(g) if and only if Çi — gi for all 1 < i < n and

£n+i ± 9n+i • This implies v(0'(g)) (2r)_1(2r - l)~"(2r - 2). So

A^[/|^w](A) (2r)-1(2r-l)-2w+1 ^ f(g-^x) =—1— ^ f(g~lx).
g(=SZn(e)

I 2bW'
<7es2„(e)

By Proposition 5.4, A^[/|7^„] converges pointwise a.e. to E[/|F2].

5.4 Boundary behavior of probability measures on F

Recall that we have defined ttq: ^(F) —> Ll(dF, u) to be the linear map
satisfying ird(Sg) v(0(g))~lXo{g)-

Thus far, we have established that the probability measures ijfn on F (for a

given probability density iß G Lq(dF)) have good convergence properties. Our

goal is to establish good convergence properties for a general sequence ß2n
of probability measures, with ß2n supported on S2n(e), where we assume that
the functions 7Td(ß2n) converge in Lq(dF). The limit is then necessarily a

probability density iß G Lq(dF).
We now recall that given a probability density iß G Lq(dF), ßf denotes

the probability measure on F given by

ßt(9)= f
Jo{g)

if g is in the sphere S„(e), and otherwise ßt(g) — 0.

We begin by showing that the two sequences rrgißt) and 7rd(X)2n)

converge to iß in Lq-norm. This fact will be used in the next subsection, in
a comparison argument which reduces the convergence of ß 2n to that of r}fn.

LEMMA 5.9. Let iß G Lq(dF, v) be a probability density. Then the

sequences {7rd(pi)}^±o and d(X)tr))n^=\ both converge to iß in Lq-norm
when 1 < q < oo, and uniformly if iß is continuous.
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Proof. For n > 1, let Ef0|Z„] be the conditional expectation of iß on
the cr-algebra generated by {0(g) : g G Thus

E^ls,](4) —[ i<(0 dv{(!),
vWg)ï JO(g)

if £ G G(</) with g e S„(e). Kote that i'(Ö(g)) IMöl-1 ar)ar-ij— >
and

that E[t/>|S„](0 =tt9UiÎ)(Q.
We now claim that Ef0|Z„] converges to ^ in L?-norm as n —> oo. This

is clearly the case when iß is continuous, and hence uniformly continuous, in
which case Ef0|Z„] in fact converges uniformly to iß on OF. In general when

iß G Lq, there is a sequence of continuous functions iß^ converging in Lq -norm
to iß, and the claim follows by an obvious approximation argument.
(Alternatively, one can of course appeal to the martingale convergence theorem.)

Noting that

(2r-2X2r- 1)-' ~ |K,+CM ^('</'l«U|

convergence of ttd(V2n) to ^ -norm follows immediately. When iß is
continuous then since Ef0|2„] converges uniformly to iß, so does iTQirfjßf)- D

The next result is not needed for the proof of the main theorem; we state
and prove it since it seems interesting in its own right.

Proposition 5.10. As above, let 1 < p,q < oo be such that ^ ^ 1.

Let f G LP (X) for some p' with p < p'. For x G X and n > 0, define

fx,2n e ip(F) by fx>2n(g) /(£_1*) if g G S2»(é) and fx>2n(g) 0 otherwise.
Let 7Td(fx,2n): $F —^ R be the function

îtd<Jx,2n)(0 := f*,2»(9)Xotg)(.0
g£S2n(e)

Then, for a.e. x G X, {7fô(^,2n)}^i converges to the constant function
£ ha E[/|F2](a) in the weak topology on LP(J.9F, u).

Proof. For p G Lp0F, u) and iß G Lq(dF,u), let (p,iß) J piß du. It
suffices to show that for any iß G Lq(dF,u) and a.e. x G X, {7Td(fx,2n),iß)

converges to E[/|F2](a) f iß du. By linearity, we may assume that iß > 0 and
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f ip du — 1. Observe that

(5.1) (ÎTd(fx,2n), i^d(fx,2n), *d(vf„)) + {^d(fx,2n), $ ~ ^d(.vf„))

It follows from Proposition 5.4 and Lemma 5.7, that for a.e. x £ X,

i^d(fx,2n),^d(vî„)) A^[/|^„]
converges to E[/|F2](a). It follows from the previous lemma that ijj — irdiwtn)

converges to zero in norm. Note that ||7rd(/à,2n)||^ involves the uniform
spherical average of \f\p :

W^difx^Wp [
JdF

P

diKO -
g£Szn

Y \S2n\~l Y \f^\p
gÇ.S2n g£Szn

Hence it follows from Corollary 5.8 that ||7rd(/j,2w)||£ converges to
E[|/HF2](a) for a.e. x £ X, where we also use p < p' to conclude that

I f\P £ lf'/p(X) with p'/p > 1.

By Holder's inequality,

ïïd(Jx,2n\ ~ ^diVin) < \\nd(fx,2n)\\p\\i> ~

tends to zero as n —> oo. Thus equation (5.1) implies the proposition.

REMARK 5.11. Typically, îTQ(Jxt2n) does not converge to E[/|F2](a) in

norm. To see this, observe that \\^d{fx,2n)\\p converges to E^/I^F2]^)1/^
(for a.e. x £ X). The norm of the constant function £ i-A E[/|F2](a) is
|E[/|F2](a)| Unless / is constant on the ergodic component containing x,
Jensen's inequality implies E[|/|-p|F2](jc)1//' ^ |E[/|F2](a)| This uses p > 1.

5.5 Proof of the main theorem

We now turn to the proof of Theorem 1.4, whose formulation we recall
for the reader's convenience.

THEOREM 1.4. Let {ß2n}fL\ he a sequence of probability measures
in £l(F) such that p,2n is supported on S2n(e). Let 1 < q < oo, and suppose
that {2Td(p2n)}^Li converges in Lq(dF, u). Let (X, A) be a probability space on
which F acts by measure-preserving transformations. Iff £ LP(X), 1 < p < oo
and ^ ^ < 1, then the averages

ß2n(f)(x) := Y] f(9~lx)ß2n(g)
gÇSin
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converge pointwise almost surely and in LP -norm to E[/|F2]. Furthermore,

if q — oo and Tid(ß2n) converge uniformly, then pointwise convergence to the

same limit holds for any f in the Orlicz space (Llog+ L)(X, X).

Proof of Theorem 1.4. To begin, we assume 1 < q < oo. Let p' > 1 be

such that pP ^ — 1
• Since ^ ^ < 1

> it follows that p' < p. Let / G LP(X).

Choose a measurable version E[/|F2] of the conditional expectation. Let
ip G Lq(dF) be the probability density which is the limit of {ttd(ß2n)}^=1 •

Let I'cl be the set of all x G X such that

E[/|F2]Cr] lim -f— V
oo \S2n(e)\ f-^(g£S2„(.e)

lim MAf\Rn\{x)
n—¥oo ^

(Etti/r'iFE
i !p

By Proposition 5.4 and Corollary 5.8, A(X') — 1. For rGl' and n > 0, let

A,2« e ^'(F) be the function fx>2n(g) : /(£_1x) if ^ G ^„(e) and/*>2„(#) : 0

otherwise. By Lemma 5.7 and Holder's inequality for functions on F,

\ß2n(f)(x) ~ A^[/|ft„](*)| I Y f(9~l*)(ß2n(g) ~ Vln^)) \

g£S2„(e)

E 11 fx,2n 11
(j>' (jp)

11 ß2n ~ vfnW&tF)

Recall that ttq\ ^(F) —> L1(dF,v) is defined by ttd(Ög) — v(0(g))~lXo(g) —

\S2n(e)\xo(g) if \g\ —2n. Since 0(g), g G S2n form a partition of OF, clearly

Kd(ß2nKO - ^divfnXO
q

Y I tote) - vî„(g)
q

v(O(g)yqXO(g)(0
g£Sin

It now follows that

i/?
Il/I'2„ - t?2tl|f'(F; E Vl2*W - «É#)l

E ^)Ly^-^cA
g.S2n(.e)

KOte»?
1 [ ß2n)(0 - Kd(vî„)(0 qdv(0)

E,-c J0(a) J

1/?

g(=S2n(e) " 0(5,)

— I^te)! ^ W^d(ß2n) — ^öte^llwcaF,!/)
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Combining this with the previous inequality, we conclude

< I$2n(ß)I l^P Wfx^nWip'wlWdißln) ~ ^d(vfn^W^idF^)

The definition of X' implies \S2n(e)\~x^p ||./x,2w||#>'(f) tends to

E[\f\p'\F2](x)l/p'

as n —> oo. Since by assumption ^eißin) converges to iß in Lq(dF),
Lemma 5.9 implies that \\ird(l~<>2n) ~ ^divfn^IU9(3f,i/) tends to zero as n —> oo.
So

lim \ß2n(f)(x) - AL[f\Rn](X)\ 0
n—J-oo 1 ^ 1

The definition of X' now implies

lim - E[/|F2]Çv>.
n—ïoo

This proves the pointwise result if 1 < q < oo.
As to the case q — oo, uniform convergence of implies

that the limit function iß is continuous on the boundary. Therefore the
second part of Lemma 5.9 gives the uniform convergence of 7rd(j}fn) to iß,

and thus also the convergence of ||7t^(/u.2n) ~ ^divfn^W^idF^) to zero.

Corollary 5.8 gives the convergence of \S2n(^)\~1\\fx,2n\\^(F) to E[|/||F2](a)
if / G L\og+ IXX, A). Using these two facts the same arguments used above

establish the desired result also in the case when p — p' — 1 and q — oo

provided / G Llog+L(X, A).

Finally, we note that the fact that ß2n(f) converges to E[/|F2] in LP -norm
(if p > 1) follows from the pointwise result by a standard argument (e.g., see

the end of the proof of Theorem 2.1).
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