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HOW TO TURN A TETRAHEDRON INTO A CUBE
AND SIMILAR TRANSFORMATIONS

by G.C. SHEPHARD

ABSTRACT. Suppose that the surface of a polyhedron P; is cut in such a way
that it can be opened out flat to form a connected region R in the plane and that R,
by introducing suitable folds, can be made into the net of a polyhedron P.. Then
we write Py = P, and say that P is transformed into P;. In this paper we give
many examples of the transformation of polyhedra and investigate the properties of
the relation =-.

1. INTRODUCTION

Consider the following example. In Figure 1(a) we show a strip of four
congruent acute-angled triangles (heavy solid and dashed lines). This is a
set of a tetrahedron T because, if the strip is cut out of paper or similar
material, folded along the (heavy) dashed lines, and edges with the same
labels (x,y or z) are joined together we obtain a model of (the surface of)
the tetrahedron 7. Now cut the model along the (lighter) solid lines indicated
in Figure 1(a). It will be found that the surface can be opened out flat in the
plane, yielding the shape shown in Figure 1(b). This can be made into a net
of a cube C, because if it is folded along the dashed lines, and edges with
the same labels (a,b,c,...,g) are joined together, we obtain the surface of
the cube . Thus we have turned the tetrahedron 7 into the cube C'!

We may say that 7' is transformed into the cube C and write 7 = C. In
general, if the surface of a polyhedron P is cut in such a way that it can be
opened out flat in the plane (without overlaps) to form a connected region R,
then R is called a development of P. If this development only involves cuts
along the edges of P then, following Akiyama [1], we refer to R as an
edge-development, or net of P. With this terminology P, = P, means that
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FIGURE 1

some development of P; is an edge-development of P,. The relation P; = P,
implies that P; and P; have the same surface area — it does not imply that
they are isometric. Further, though trivially P = P, except in special cases,
the relation = is neither symmetric nor transitive (see Section 4).

The tetrahedron 7T in the above example will be called an almost regular
tetrahedron since it has, as its faces, four congruent acute-angled triangles.
(We note, in passing, that there exists no tetrahedron whose faces are four
congruent obtuse-angled triangles or four congruent right-angled triangles.)
A tetrahedron is almost regular if it has three pairs of opposite edges of
equal length. If these lengths are @, » and ¢ then we denote the tetrahedron
by T'(a, b, c). Thus the tetrahedron in the above example is T(2, \/§/ 2 3\/5/2)
where the cube C has edge-length 1.

It was shown in [8] that some nets may represent more than one polyhedron
if the edges to be joined are not labelled (see Section 4). We have labelled the
edges of the polygons in Figure 1 but, in general, we omit the labels unless
there is the possibility of ambiguity.

2. REGULAR-FACED TESSELLATION POLYHEDRA

THEOREM 1. If T = P where T is an almost regular tetrahedron, then P
must be a tessellation polyhedron, that is, a polyhedron of which some net R
of P tiles the plane.

The idea of a fessellation polyhedron was first introduced in [9]. Consid-
ering the net R of P as a closed set, “tiles the plane” means that the plane
may be covered by copies of R without gaps or overlaps. That is, the union
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of copies of R is the whole plane, and the intersection of any two copies
of R is either empty or of zero area. If such an intersection is non-empty it
will be a union of edges, or parts of edges, of copies of R.

Proof. This result follows immediately from the following remarkable
theorem (see [1]):

AKIYAMA’S THEOREM. FEvery development of an almost regular tetra-
hedron T tiles the plane.

In fact Akiyama stated and proved this theorem only for regular tetrahedra,
but there is no difficulty in extending the result to almost regular tetrahedra.

¢ [

FIGURE 2

Theorem 1 greatly simplifies the search for polyhedra into which almost
regular tetrahedra may be transformed. Initially we shall consider regular-faced
polvhedra, that is, polyhedra all of whose 2-faces are regular polygons. A
complete enumeration of these was given by Norman Johnson in 1966 [7].
They comprise the five regular (Platonic) and thirteen archimedean solids, the
a-prisms, and a-antiprisms for (rn > 3), and 92 others. We shall refer to the
latter by the numbers J1-J92 assigned to them in Johnson’s original paper [7].
This list can also be found in Wikipedia. That Johnson’s list is complete was
proved by Zalgaller [10]. Of the regular-faced polyhedra it is now known that
twenty-two are tessellation polyhedra namely, eight polyhedra all of whose
faces are regular (equilateral) triangles (the regular tetrahedron, octahedron,
icosahedron, J12, J13, J17, J51 and J84) and twelve with both square and
regular triangular faces (J1, J8, J10, J14, J15, J16, J49, J50, I86, I87, I8, I89
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and J90). In addition there is the cube with square faces and the hexagonal
antiprism with hexagonal and regular triangular faces. The completeness of
this enumeration was established in [2].

In Figure 2 we show a tessellation T for a net of a cube C and the net of
an almost regular tetrahedron is superimposed on it. From this we can deduce
the example above: the lines along which the surface of the tetrahedron must
be cut to transform it into a cube are the edges of ¥ that lie within the net.

For each of these twenty-two tessellation polyhedra P; there exists an
almost regular tetrahedron 7; such that T; = P;. This statement is established
by the diagrams in Figure 3. Each part of this diagram shows a net of P;,
the corresponding tessellation T by this net, and, superimposed, a net of 7;.
Of course, the tetrahedra 7; are different in each case; their edge-lengths
can be read off from the diagrams. All the nets are shaded. Each of the
tessellations has symmetry groups of type p2 (see [6, §1.4]) in which the
centres of 2-fold symmetry form a (non-rectangular) lattice. Each tetrahedron
is a fundamental region (or union of fundamental regions) of the symmetry
group of the tessellation %, all its vertices are points of 2-fold rotational
symmetry, and edges of T pass through all the vertices of the tetrahedron.

CONJECTURE. If P is a convex tessellation polyhedron, then T = P for
some almost regular tetrahedron T .

As we have just shown, the conjecture is true for regular-faced polyhedra.
The question as to whether the conjecture is true in general is open. In the
next section we give further examples of tessellation polyhedra into which
a suitable almost regular tetrahedron can be developed, thus giving further
evidence of the truth of the conjecture. No counter-examples are known.
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(a) I1 (Square pyramid) (by Cube

FIGURE 3
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(e) 112 (Triangular dipyramid)

(g) J13 (Pentagonal dipyramid)

(1) J15 (4-spindle) (3) 116 (5-spindle)
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(0) I51 (Deltahedron Dy, )

FIGURE 3
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(p) J84 (Deltahedron Dy5)
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3. OTHER TESSELLATION POLYHEDRA

An n-spindle (n > 3) is a polyhedron consisting of two n-pyramids
adjoined to opposite faces of an n-prism based on a regular n-gon (see Fig-
ure 4(a) for an example with » = 6). We may denote this spindle by P,(r,s, )
where the heights r, s and ¢ of the components, as indicated in the diagram,
are any (strictly) positive quantities. It has 3n faces: a rectangular faces and
2r isosceles triangular faces of two kinds. For 3 > s > 5, an n-spindle may
be regular-faced (see Figure 3 part (h) for # = 3, part (i) for n = 4 and part (j)
for # = 5). In all cases, independent of the choice of n, r, s and ¢, the spin-
dle is a tessellation polyhedron. See Figure 4(b) which shows the tessellation
corresponding to the 6-spindle in Figure 4(a). Moreover, as indicated on the
tessellation, there is an almost-regular tetrahedron T with 7 = P,(r,s,1).

AAAANA
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() (b)

FIGURE 4

If we put s = 0, then we obtain the n-dipyramid (see Figure 5(a) for
an example with » = 8). This is also a tessellation polyhedron, but only if
the heights 7 and ¢ are equal. If # =3, 4 or 5 then the n-dipyramid may
be regular-faced (see Figure 3 part (¢) for n = 3, part (f) for n = 4, the
octahedron, and part (g) for = 5). In Figure 5(a) we also show a tessella-
tion for a net of a dipyramid Dg, and indicate the net of an almost regular
tetrahedron T such that T = Dg. An analogous result holds for all » > 3.

Further possibilities arise, such as that shown in Figure 5(b). If »r is even
we can cut an r-dipyramid (here » = 8) into two equal parts by a plane
through the apexes of the constituent pyramids and four of its edges. The
corresponding tessellation and net of an almost regular tetrahedron are also
shown in Figure 5(b).
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(b)

FIGURE 5

Further examples of tessellation polyhedra are the twisted spindles. Each
of these consists of two r-pyramids adjoined to the n-gonal faces of an
n-antiprism, see Figure 6(a) for the case » = 6. Here r,s and ¢ must
satisfy the inequalities 0 < #r(A—1) < s and 0 < f(A—1) < s where
A = (cos(m /)~ if the resulting polyhedron is to be strictly convex. There
are 4n triangular faces, of three kinds. If » = 4 or 5, all the faces can
be regular (equilateral) triangles (See Figure 3 part (k) the deltahedron D ¢
for n =4, and part (1), the icosahedron, for n = 5). In Figure 6(b) we show
a tessellation for a net of this polyhedron (with » = 6), and also a net of the
almost regular tetrahedron which can be transformed into it.

Certain special cases are of interest. If r = £ = s(A — 1)™! | where A
is defined as above, then the faces of the antiprism and pyramids merge to
vield a polyhedron with 2a kite-shaped faces which we call a kite-polyhedron.
See Figure 7(a) for an example for which » = 6. In Figure 7(b) we show a
tessellation for a net of this kite polyhedron and also indicate a net of the
almost regular tetrahedron which can be transformed into it.
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In Figure 7(c) we show the case of a twisted spindle with #» = 3, and
¥ =5 = t. The six faces are thombs and the polyhedron is a rhomboid. The
corresponding tessellation is shown in Figure 7(d). Notice that the net is an
affine image of a net of a cube, and that the rhomboid itself is the affine
image of a cube.

In general, a non-singular affine image of a net is not a net of any
polvhedron. Those nets shown in Figures 4, 5, 6 and 7, have the unexpected
property that there exist affine images of each of the nets which are also nets
of polyhedra of the same type.

Further examples are provided by multiple polyhedra. We write T = nP if
a development of 7 is the union of # nets of the polyhedron P. An example
is shown in Figure 8. Here P is a cube and nets of the various almost regular
tetrahedra 7 for which T = nP are indicated for n = 1,2,3,4,5. Similar
constructions clearly apply for larger values of n.

All these examples serve to strengthen confidence in the truth of the
conjecture.

4. THE RELATION =
We have remarked that the relation = is reflexive. Now we shall show:

THEOREM 2. The relation = is not symmetric.

Proof. All we need to prove the theorem is to display one counter-example.
In the Introduction we showed that T = C where C is a cube and 7T 1is
the almost regular tetrahedron T(2, v/5/2,3v/2/2). We shall now show that
C = T where C is a cube and T is any almost regular tetrahedron.

To do this we remember that P; = P> means that some development R
of Py is a net of P,. Such a development R of P; is obtained by cutting
the surface of P; along the edges of a hamiltonian tree T. Because T is
a tree (a graph with no circuits) the resulting region R will be connected
and because it is hamiltonian (incident with every vertex of P ;) the region R
is planar. Now every tree has at least two edges of which an end-point has
valency one. Consider such an end-point. Clearly it must be a vertex of P,
(if it were an interior point of a face or an edge the cut would not yield
the development R). In the case of a cube, since the sum of the angles of
the faces at any vertex is 37/2 the development R must have at least two
vertices with this angle. But then R cannot be a net of any almost regular



125

HOW TO TURN A TETRAHEDRON INTO A CUBE

(b)

(a

e

(a)

(c)



126 G.C. SHEPHARD

FiGURE 8

tetrahedron T. In fact C & P where P is any polyhedron whose faces are
all regular (equilateral) triangles (J12, J13, J17, J51, J&4, the octahedron and
icosahedron) since no net of such a polyhedron can have a vertex angle 37/2.
More generally, if P is a regular-faced polyhedron, it is impossible for C = P
unless P has at least three squares or two octagons as faces. Thus C = P is
impossible for all the “Modified Platonic Solids™ J58-J64 in Johnson’s list [7].
It is also impossible in the case of the 8-prism and 8-antiprism, each with
two octagons, since the octagons are not adjacent.

A modification of the above argument shows that the region R must have at
least v(P1)—p(P;) vertices, where v(P;) is the number of vertices of P; and
p(P1) is the number of vertices at which the sum of the angles of the faces is .

In the case of a cube, v(C) =8, p(C) = 0 and so any development R will
have at least eight vertices. But R cannot be a net of any tetrahedron since
all such nets (as is easily verified) have at most six vertices. This proves the
assertion.
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THEOREM 3. The relation = is not transitive.

Proof. As in Theorem 2, we need only display one counterexample.
Although a polyhedron P may have several nets, each of which may lead to
several tessellations, with a very few exceptions (such as, for example J1, J12,
J13, J17, J&4, octahedron and icosahedron) there are only a finite number of
triples (a, b, c) such that 7(a, b,c) = P. However, it is not difficult to show
that for any given (a,b,c) there are infinitely many triples (7,s,¢) such that
T@r,s,0) = T(a,b,c). Clearly we may choose (r,s,?) so that T(r,s,£) = P.
Then we have T(r,s,8) = T(a,b,c) and T(a,b,c) = P but these do not
imply I(r,s,t) = P. Hence = is not transitive.

FIGURE 9

From the above we infer that there are very few examples of Py = P,
where P is nof a tetrahedron. One possible reason for this is that there seems
to be no theorem for general polyhedra analogous to Theorem 1. We conclude
this section with two examples where P < P».

In Figure 9(b) we show a development R of the triangular dipyramid J12
(Figure 9(a)). Here R is a parallelogram. This can be split into four congruent
triangles in such a way as to form the net of an almost regular tetrahedron
T=17(1,3/2, \/7/2) (Figure 9(c)). Hence J12 = T.

Other examples arise when two distinct polyhedra have identical (unla-
belled) nets. One such, reproduced from [8], is shown in Figure 10. The net,
shown in Figure 10(a) and (b), is a chain of eight triangles with edges of two
different lengths. (In the diagram the lengths are 1 and 1.25). In these figures
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FiGure 10

we have indicated two distinct labellings of the edges. If the similarly labelled
edges in Figure 10(a) are joined, we obtain the net of a stack polyhedron §
(Figure 10(c)), whereas the labelling in Figure 10(b} leads to the (non-regular}
octahedron O in Figure 10(d). As the nets of the polyhedra are identical,
clearly S = O. Also O = §. A few other examples of distinct polyhedra
having identical (unlabelled) nets are known, but there is no general theory
on how these can be constructed. In all these cases the relation is symmetric,
and we may write S < O.

5. FINAL REMARKS

Nets of polyhedra have been known for nearly five hundred years [5] and
hundreds of examples of nets of polyhedra can be found on the internet. A
complete set of nets for all regular and archimedean polyhedra can be found
in [4]. However, there seems to be very little mathematical literature on the
subject and many fundamental questions remain unanswered. We now state
some of these:
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(&) Does every convex polyhedron have a net?

It is a common experience of model builders that the construction of a
net for a convex polyhedron P fails because, after slitting along the edges
of P that form a hamiltonian tree, and opening out the surface in the plane,
the resulting region R has overlaps, and so is not a net. One reason that
this problem has not been solved is that until recently, it seems that few
mathematicians realised that there was any problem at all! And even if they
did, they assumed that the answer was positive. One of the first explicit
statements of the problem appears in [8]. It is trivial to show there is a
negative answer to the question to the corresponding problem for polyhedra
with non-convex faces, and several mathematicians have also shown that the
answer is negative for non-convex polyhedra with convex polygons as faces,
see [3], but the question for convex polyhedra in general remains open.

(B) Given a set of (closed) convex polygons in the plane which are
disjoint (except for their edges) and whose union is a connected set. Under
what conditions do these polygons form the net of a convex polyhedron ?

More generally:

(C) Given a plane polygon R, what are necessary and sufficient conditions
for it to be possible to introduce fold lines into R so as to make it into a net
of some polyvhedron P ?

One might hope that, if the polygon is convex, the answer would be
positive since many convex developments are known (see [8]). But notice that
the answer is negative without some clarification of the types of polyhedra
that are allowed. For example, it seems that a rectangle cannot be made into
the net of any strictly convex polyhedron (but can be made into the net of a
(flat) degenerate tetrahedron bounded by four congruent right-triangles).

Another problem related to (B), is to determine the number of distinct
nets of a given polyhedron. Again, careful definitions are required if this
question is to be meaningful. In [1] Professor Jin Akiyama shows that a
regular tetrahedron has two distinct nets, a cube has eleven distinct nets, and a
regular octahedron also has eleven distinct nets. But if the faces are labelled, or
otherwise distinguished, (for example if the polyhedron is distorted so that the
faces are of slightly different shapes) then the number of nets is considerably
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larger. For example, in the case of a labelled cube, the number of distinct
nets is 11 x 6 x 4 = 264. The number of nets of the regular dodecahedron
and regular icosahedron (43,380) have been determined by S. Bouzette and
E Vandamme and also by Ch. Hippenmeyer (see [3] for references to the
relevant works). In [2] the number of nets of twenty-one of the regular-faced
polyhedra is given. In each case, it is not known how many of these are
“genuine” nets since they may involve “overlaps™ and it remains an unsolved
problem to determine the numbers of “genuine” nets. All these numbers are for
“labelled polvhedra”. They are surprisingly large, for example there are over
five billion distinct nets of the polyhedron J44 (the gyroelongated triangular
bicupola). The numbers were determined by computer; for details see [2].
There seems to be no general theory, and all the numbers have been found
empirically, either by counting hamiltonian edge-trees, or the number of dual
trees.

There are further problems relating to tessellation polyhedra. As stated
above, a complete list of regular-faced tessellation polyhedra is given in [2].
This list was determined by computer. It would be interesting to decide whether
these polyvhedra, and those in Section 3, are the orly tessellation polyhedra,
and so whether the conjecture in Section 2 is correct. There are many other
problems, such as:

(D) Does there exist a comvex polyhedron P of which no net tiles the
plane (so it is not a tessellation polyhedron) but two distinct nets of P do so,
thus forming a dihedral tiling in the sense of [6, p.23] 7

If such a polyhedron exists we may call it a 2-tessellation polyhedron
and, in a similar manner an n-fessellation polyhedron can be defined. No
si-tessellation polyhedra are known for any » > 2 though their discovery
would appear to be a not very difficult problem.

Finally, it would be interesting to discover more examples of unlabelled
nets (other than those shown in Figure 10), which, if labelled in a suitable
manner can represent two (or more) distinct polyhedra.
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