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TRIANGLE GROUPS, AUTOMORPHIC FORMS, AND TORUS KNOTS

ABSTRACT. This article is concerned with the relation between several classical
and well-known objects: triangle Fuchsian groups, Cx-equivariant singularities of
plane curves, torus knot complements in the 3-sphere. The prototypical example is the
modular group PSLiCL) : the quotient of the nonzero tangent bundle on the upper-half
plane by the action of PSLiCL) is biholomorphic to the complement of the plane curve
z3 — 21w2 0. This can be shown using the fact that the algebra of modular forms
is doubly generated, by gi, gz, and the cusp form A g^ — 21g2 does not vanish on
the half-plane. As a byproduct, one finds a diffeomorphism between PSI^.(R)/PSLz(Zi)
and the complement of the trefoil knot - the local knot of the singular curve. This
construction is generalized to include all (p, q, oo) -triangle groups and, respectively,
curves of the form zq +wp 0 and (p,q)-torus knots, for p,q co-prime. The general

case requires the use of automorphic forms on the simply connected group SLaQH).
The proof uses ideas of Milnor and Dolgachev, which they introduced in their studies
of the spectra of the algebras of automorphic forms of cocompact triangle groups
(and, more generally, uniform lattices). It turns out that the same approach, with some
modifications, allows one to handle the cuspidal case.

by Valdemar V. TsANOV
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1. Introduction

The motivation for this study came from the author's desire to understand

in detail a simple example of a geometric structure on a 3-manifold in the

sense of Thurston. The 3-manifold in question is the complement of a torus
knot in the 3-sphere and the geometric structure is modeled on SLq(R). The
existence of such a geometric structure is known from the work of Raymond
and Vasquez, [17]. The novelty presented here is an explicit construction using
automorphic forms, which, to the author's knowledge, has previously appeared
in the literature only for the trefoil knot. This construction has a complex
analytic flavour, and the result concerning 3-manifolds comes as a byproduct.

Let p7q be a pair of co-prime positive integers and Kp>q denote the

corresponding torus knot in S3. Let SLz(R) denote the universal covering

group of the Lie group SL2(R). In [17], Raymond and Vasquez have shown
that S3 \ Kp>q is diffeomorphic to a coset of SL2(R) with respect to a

suitable discrete subgroup. This result is obtained as a part of a general

topological classification of 3-manifolds covered by Lie groups, based on
the theory of Seifert fibrations. It turns out that the only nontrivial knot
obtained as a coset of the simple group PSL2(R) is the trefoil knot, and the

corresponding discrete group is none other than the modular group, so we
have S3 \^2,3 — PSL2(R)/PSL,2(Z). The latter curious fact has an interesting
analytic proof due to Quillen, see [8, §10]. Here is a sketch of Quillen's
argument.

Let H2 denote the upper half-plane with the Poincaré metric. Recall that the

algebra of modular forms for T — PSL2(Z) is generated by two elements, often
denoted #2? #3 • The modular form À g\ — 27g\ is the cusp form of lowest

positive degree, vanishes with order 1 at 00 and does not vanish in the upper
half plane H2. Let T'H2 denote the tangent bundle of H2 with removed zero
section, and UH2 denote the unit tangent bundle. Classically, modular forms
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are defined as functions on H2 with some specific behavior under the action

of r. However, it is well known that modular forms can be regarded as specific
functions on T'YL2 invariant on the orbits of (the tangent action of) T. Now
define a map T'H2 —> C2 sending v to (^(v), 53(v)). Since the modular
forms are constant on T-orbits and À is nonvanishing, T* factors through a

map Vf: r'H2/r —» C2 \ V, where V — {z\ — 27= 0}- It turns out that W

is biholomorphic. Now notice that PSL2(R) acts simply transitively on t/H2,
hence the two are diffeomorphic and furthermore UH2/r PSLzQO/F Thus

PSLi{R)/T embeds into C2 \ V. On the other hand, if S3 is the unit sphere
in C2, the intersection ^2,3 — S3 fi V is a trefoil knot. One can show that

W(UH2/T) and S3\K2,3 are related by an isotopy in C2, and this completes
the argument.

The present article provides a generalization of this construction incorporating

all torus knots. Recall that K — Kp>q is obtained as the intersection
in C2 of S3 and the algebraic set V(F) of any polynomial F — c \z\ + C2ZP2

with C\, C2 nonzero complex numbers, i.e. K — S3 Pi V(F). We intend to find
a discrete subgroup G C SLzQO whose cusp form of lowest degree matches

the polynomial F for suitable c 1, <?2. The known structure of torus knot
complements suggests that G should be a central extension of a (p7 q, 00)-triangle

group TPtq. Indeed, let Tp>q C P5"L2(R) be a (p, q, 00)-triangle Fuchsian group,
i.e. the subgroup of orientation preserving elements of a group generated by
the reflections on the sides of a geodesic triangle in H2 with angles 7r/p,
7r/q and 0 (one cusp). Then Tp>q has a presentation

rp,q - {a0,ß0 ; ag 1,01 - 1>,

where ao and ßo are elliptic elements in PSZ^R) representing rotations

by angles 2ir/p and 2ir/q, about the two finite vertices of the triangle,
respectively. The full preimage T C SX2(R) of TPtq has a presentation

f {a,ß- cf ß"),

where a and ß denote suitable preimages of ao and ßo, namely those for
which ap is a generator £ of the center of SX2(R) • There is an exact sequence

i-»(0—>1,
On the other hand, let us recall the structure of a torus knot complement
and the torus knot group G& — 7Ti(S3 \ K). The zero locus of F is

invariant under the linear Cx-action on C2 given by A(zi,Z2) — (A^Zi, A?Z2)-

The quotient of C2 \ {0} under this action is the weighted projective
line P1(p,q). Hence the complement C2 \ V(F) is a Cx-bundle over the
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orbifold © — P 1(p,q)\ {regular point}. This orbifold is isomorphic to
the quotient H2/rp>q, and hence the orbifold fundamental group 7Ti(©) is
represented as Tp>q. If A is restricted to the unit circle, the action preserves
the unit sphere S3 cC2, and defines a Seifert fibration of S3 \ K over ©.
The two singular fibres correspond to generators A, B of Gk, while a regular
fibre S is expressed as S — Ap — Bq and represents the center of the group.
We have a presentation

Gk — {A,B ; Ap — Bq)

Since knot complements are aspherical, the exact sequence of homotopy groups
associated with the Seifert fibration has the form

1 — (S) — Gk — Tp>q — 1

In particular, there is an isomorphism Gk — T. This implies a weak homotopy

equivalence SZ^CRVr ~ S3 \K. The immediate question is, whether this

equivalence is induced by a homeomorphism. It turns out that the answer is

"yes" only for the trefoil knot. Notice that, for any natural number r co-prime
to both p and q, the elements ar — of and ßr ßr generate a subgroup
Gr C T which is normal, of index r, and abstractly isomorphic to T. There
is a presentation

Gr — (ar, ßr ; oÇ — ß*).
Thus Gr Gk, and SLi(K)/Gr is weakly homotopy equivalent to S3 \ K.
Now, our task is to determine for which r a diffeomorphism occurs. An
interesting result, presented in this paper, is that the requested r is naturally
"chosen" by the automorphic forms of T. To achieve this we need to consider
the appropriate automorphic forms for discrete subgroups of SZ^CR), i.e. we
allow fractional degrees and characters. To this end, we follow the approach
of Milnor, who has determined in [9] the algebras of automorphic forms for
centrally extended co-compact triangle groups.

The main results are contained in Sections 4.5, 5, 6, and are briefly
summarized as follows : The algebra of automorphic forms for T is generated

by two forms uja,(jJb, viewed as functions on the universal cover T'H2 of T'H2.
The cusp form of lowest positive degree is expressed as caufa + CbO^l

and does not vanish anywhere in T'H2. This allows us to define a map
T*: T'H2 —> C2, which factors through W: T'H2/G —» C2 \ V(F), where

F — caz\ + 0,^2 and G C T is the common kernel of the characters of T
corresponding to the generators u)a and u)b- We have G — Gpq_p_q. There
is a diffeomorphism SX2(R)/G S3 \ K obtained from the map lT. Finally,
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the homogeneous space PSL2(R)/Tp,q is found to be diffeomorphic to a knot

complement in a suitable lens space.

The paper contains a fair amount of known material included in order to
reduce the necessary prerequisites to a minimum. Besides [9], another very
important reference is Ogg's book [12]. Ogg works in the classical setting
where the automorphic forms are defined as functions on H2, fractional
degrees and characters are allowed but SZ^CR) is not mentioned explicitly.
The first chapter of [12] contains a treatment of (2, q, oo)-triangle groups, and

a construction for the generators of the algebra of automorphic forms. The

approaches in [9] and [12] are combined to obtain generators of the algebra
of automorphic forms for T.

Other sources presenting similar perspectives on the relation between

automorphic forms and quasi-homogeneous singularities include the following.
Dolgachev, [5], gives an outline of the relation just mentioned, in the case of
co-compact Fuchsian groups, with an emphasis on special triangle groups. The

same author, in [6], outlines a generalization of these ideas, considering uniform
lattices acting on higher dimensional complex homogeneous space. Wagreich,
[23], [24], [25], considers Fuchsian groups of the first kind, not necessarily

co-compact. In particular, Wagreich [24] provides a classification of all such

groups whose algebra of automorphic forms admits a generating set of at most
3 elements. This result does not cover our case because Wagreich considers

only forms of integral degree, while here we allow fractional degrees. Perhaps

it would be interesting to try to carry out Wagreich's program from [24],
but allowing fractional degrees and characters. More recently, Natanson and

Pratoussevitch, [11], have used and developed this framework in their study
of moduli spaces of Gorenstein singularities.

Very recently, Pinsky [16] has obtained results related to the ones presented
here, using completely different methods. In particular, she has given an
alternative explicit construction of the diffeomorphism from Corollary 6.2.

Pinsky's work appeared only after this paper was posted on arxiv.org. The
author would like to thank the referee for this remark.

2. Background

2.1 Geometric structures

A complete and locally homogenous Riemannian metric j on a manifold

M is called a geometric structure on M. Here complete means that every
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geodesic in M may be extended to (—00, 00) ; locally homogenous means that

any two points in M have isometric neighborhoods. A complete, homogenous,

simply connected Riemannian manifold (N, h), whose isometry group is maximal,

is called a geometry. We shall say that the geometric structure (M,g)
is modeled on the geometry (N,h), if each point of M has a neighborhood,
isometric to an open set of N.

Let M be a manifold and let M be the universal cover of M. If M admits

a geometry g such that the covering action of 7Ti(M) is by isometries, the

covering map induces a geometric structure on M modeled on (M,g).
In dimension 2, the theory initiated by Poincaré and Klein culminates in

the uniformization theorem proven independently by Poincaré and Koebe. It
states, that there are three geometries: the Euclidian plane, the hyperbolic
plane and the sphere:

E2 H2 S2.

Any 2-manifold has a geometric structure obtained by identifying its universal

cover with one of the three geometries above. Some 2-manifolds (R2,
R2 \ {point}, Möbius band) have geometric structures modeled on two distinct

geometries.

The situation with 3-manifolds is much more complicated. Thurston, [22],
showed that any 3-dimensional geometric structure is to be modeled on one

of the following eight geometries:

E3 S2 xE Nil
(2.1) H3 H2 x E Sol

S3 sl2(R)

However, it is not true that any 3-manifold readily admits a geometric structure,
the situation is far more complicated than in the case of 2-manifolds. The

theory was led to a great success culminating with the work of Perelman,

[13], [14], [15]. See e.g. [10] for an exposition and further references. We

shall refrain from comments on the general results, as our concerns here

are modest in this respect. We only consider concrete, well-known manifolds
and we are interested in explicit construction, rather than abstract existence,

of geometric structures. We refer the reader to the surveys of Scott [18]
and Bonahon [3], which predate the general existence theorem, but contain
excellent descriptions of the eight geometries, as well as many examples.
The definitions and results needed for our purposes are stated in the text
below.
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2.2 SEIFERT FIB RATIONS AND ORBIFOLDS

In this section we discuss briefly a class of 3-manifolds introduced by
Seifert [20]. These are manifolds admitting a so called Seifert fibration —

a special kind of circle foliation. The "base" has an orbifold structure as

described below. The Seifert fibration structures on 3-manifolds are closely
related to their geometric properties, as explained in Scott's article [18], which

we follow here to some extend.

We start with the general definition of an orbifold as introduced by Thurston
in [21]. Intuitively, an orbifold is a space locally modeled on R" modulo finite

group actions.

DEFINITION 2.1. An «-dimensional orbifold 0 consists of the following
data. A Hausdorff paracompact topological space X©, called the underlying

space, covered by a collection {£/*} of open sets, called charts, closed under

finite intersections. To each Ui is associated a finite group Tj, an action

of Tj on an open subset Ui of R", and a homeomorphism ipf. Ui —> t/j/Tj.
Whenever Ui C Uj there is an injective homomorphism

/ • i.
and an embedding

W- Ù, ^ Ùj

equivariant with respect to f3 (i.e., for 7 G Tj, (pifyx) — fjUf)(pij(x)) such

that the diagram below commutes:

ùjr, JSSSäfi* Ûj/Tj

fij

Uj/TJ

Uf Uj

If a G X© and U — U/V is a chart about x, we denote by Tx the isotropy group
of any point in the preimage of a in U. The set 2© := {a G X© : Tx {1}}
is called the singular locus of ©. The points of 2© are called singular, the

rest of the points of X© — regular.



80 V.V. TSANOV

Note, that the maps (py are defined up to composition with elements

of Tj, and the fy are defined up to conjugation by elements of Ty. It is not

generally true that (pik — (pjk °(pij when U( C Uj C Uk, but there should exist

an element 7 G T* such that 7- (pjk o and 7/^)7_1 fjk ofy(g).
Another remark to be made is that the covering {f/j} is not an intrinsic

part of the structure of the orbifold: two coverings give rise to the same

orbifold structure if they can be combined consistently to give a finer cover
still satisfying the above conditions.

Note also, that any manifold is an orbifold with empty singular locus.

DEFINITION 2.2. An orbifold-cover of an orbifold 0 is an orbifold 3
together with a projection p\ Xs —> X©, such that every point x G X© has a

neighborhood U — U/T such that each component Vi of p~l(U) is isomorphic
to U/Tu where Tj is a subgroup of T. The isomorphism p~l(U) U/Ti is

required to respect the projections. We use the notation p\ S —> ©.
An orbifold-cover g : © —> © is called universal, if for any other orbifold-

cover p\ 3 —> ©, there is a lift q: © —> S which is an orbifold-cover, and

Q pop.
An orbifold is called good if it admits an orbifold-cover which is in fact

a manifold, and bad — otherwise.

Proposition 2.3 (Thurston [21]). Let M be a manifold and let G be a

group acting properly discontinuously on M. Then M/G has the structure of
an orbifold and the projection M —> M/G is an orbifold-cover.

In the above notation, if H is a normal subgroup of G, then M/H is

an orbifold-cover of M/G under the action of the factorgroup G/H. If M
is a simply connected manifold, it is the universal orbifold-cover of M/G.
Existence of a universal orbifold-cover © for an arbitrary orbifold is shown
in [21], along with the description of the corresponding group of deck

transformations called the orbifold fundamental group and denoted 7Ti(©).
In the 2-dimensional case, both the universal cover and the fundamental

group of an orbifold are easier to describe. An outline can be found in [18].

If 0 is a good 2-dimensional orbifold, covered by a manifold M, then we
can define a geometric structure on © using the geometry of the universal

cover M of M, which must be E2,S2 or H2.

From now on we consider only 2-dimensional orbifolds and we restrict the

type of allowed singularities to cone points, which are defined as follows. A
singular point x G X© is called a cone point of index k, if there is a chart U
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about x such that the corresponding group Tx is isomorphic to and acts by
rotations around a point x e U. Note that if © is an orbifold whose singular
locus contains only cone points, then the singularities of any orbifold-cover of
© are also limited to cone points. Scott, in [18], gives the following method to
compute the fundamental group of a 2-dimensional orbifold with cone points.

Proposition 2.4. Let S be a 2-dimensional orbifold with singular locus

consisting of a finite number of cone points a\,... ,an with indexes ki,... ,kn

respectively. Let D\,..., Dn be disjoint disc neighborhoods of a i,... ,an. Set

N \ — X&\(Di U • • U D„). Let H be the smallest normal subgroup of n\(N)
containing the elements cJ1,..., éf, where c] represents the circle dDj. Then

7Ti(@) ^ iri(N)/H.

Suppose 7Ti(A0 has a presentation with generators X\ ,...,xi and relations

r\ — 1,... ,rm — 1, where rj is some word in the generators. Then 7Ti(©)
has a presentation

7Ti(©) {xi,..., xi ; ri 1,. rm 1, c\l 1,..., ckn" 1}

We are now ready to proceed with the definition of Seifert fibred
3-manifolds, and to describe some of their basic properties.

DEFINITION 2.5. The solid torus T .— D2 x S1 is a trivial circle bundle

over the disc D2 := {z G C : \z\ — 1}. The fibres are (z, e2mt), te [0,1]. The

torus T with this fibration structure is called a trivially fibred torus.

Let p and q be co-prime integers. The solid torus D2 x S1 with the circle
foliation

1 e [°> $
is called (p, q) -twisted fibred torus and denoted by T(p, q). The central fibre

{0} x S1 of a fibred torus is called the core.

DEFINITION 2.6. A 3-manifold M is called Seifert manifold, if it can be

presented as a disjoint union of circles, called fibres, satisfying the following
property. Each fibre I admits a tubular neighborhood Ti in M, consisting of
fibres, such that Ti is a fibred torus (possibly trivial) with core I.

If a given fibre possesses a neighborhood which is a trivial fibred torus,
the fibre is called regular. Otherwise the fibre is called singular.

A fibration of this kind is called a Seifert fibration on M. The fibred
tori Ti are called trivializing tori of the fibration.
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A fibred torus T(p,q) can be covered by a trivially fibred torus in different

ways. Each of the following transformations generates an action of the cyclic

group Zq on D2 x S1, which sends fibres to fibres.

The first transformation keeps all points in the core fixed, and its action
results in an orbifold-covering between the solid tori. The second one defines

a regular covering of manifolds.

The set of fibres in a fibred torus forms an orbifold described as follows.
In the notation of the definition of a fibred torus, put Z) D2x{l}c7\
If T is trivially fibred, then each fibre intersects D exactly once, and hence

D parametrizes the fibres. In this case we have a regular fibration, and the
base space is the manifold D. If T is (p, q) -fibred, then the core intersects D
once, while each of the other fibres intersects D at q distinct points. The set

of fibres is the orbifold D/Zq, where Zq is viewed as the group of ^-th roots

of 1 acting on D by multiplication; the singular locus consists of a single
cone point. More generally, the set of fibres in a Seifert fibred 3-manifold M
is a 2-dimensional orbifold © whose singular locus consists of cone points
corresponding to the singular fibres in M. In such case © is called the base

orbifold of the Seifert fibration M. When the singular fibres are finite in
number, we can compute the fundamental group of the base orbifold using

Proposition 2.4.

REMARK 2.7. Let M be a connected Seifert fibred manifold.

(*) All regular fibres in M are isotopic. Indeed, let I and V be two
regular fibres. Let 7 be a path connecting I with V, which does not intersect

a singular fibre. Then 7 can be covered by a finite number of open trivially
fibred solid tori T\,... ,T„, such that T\ D / and Tn D I'. Now the result
follows from the fact that all fibres in a trivial fibred solid torus are isotopic.

(**) Let I be a regular fibre, let m be a base point for 717 (M) lying
on a regular fibre, and let 7 be a path from the point m to I. Then the
element r G 77(M,m) represented by /y~l.l./y does not depend on the choice

of 7. Indeed, if 71 is another path from m to I and lm is the regular fibre

containing m, then, by (*) above, /y~l.l./y ~ ~ 7j~1./.7i, where ~ denotes

a homotopy keeping the base point m fixed.

(2.2)
D2 x S1

(z,e2nit)

(2.3)
D2 x S1

(z,e2nit)
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Hence, the subgroup of 7Ti(M, m) generated by r is normal, and does not

depend on the choice of m and I. We refer to this subgroup as the subgroup

of 7Ti(M) generated by a regular fibre.

LEMMA 2.8. Let M be a connected Seifert fibred manifold with base

orbifold ©. Let L be the subgroup of n\(M) generated by a regular fibre.
Then L is contained in the center of and there is an exact sequence

(2.4) 1 —>L —> 7T1 (M) —» 7Ti(©) —» 1

Proof. See e.g. [18, lemma 3.2].

EXAMPLE 2.9. Let © be a good 2-dimensional orbifold and let P be its
universal cover. Thus P is either S2, E2 or H2, and © is isomorphic to P/T
for some discrete subgroup T C Isom(P). Let UP be the unit tangent bundle

on P, i.e. the bundle whose total space consists of all tangent vectors to P
with unit length. Then T acts freely on UP and the quotient M — UP/V is

a smooth manifold. There is a Seifert fibration on M whose fibres are the

images of the fibres UpP, for p G P. The base orbifold of this Seifert fibration
is ©. It is natural to call M the unit tangent bundle on 0. The fundamental

group 7Ti(M) is a central extension of T by tti(UP). For the three possible
cases we have 7Ti(t/S2) — Z2, 7Ti(t/E2) — Z, 7Ti(t/H2) — Z.

2.3 Torus knots

We refer to Bürde and Zieschang [4] for the classical knot theoretic notions,

some history and bibliography. In this section we focus on some properties
of torus knots needed for our purposes.

An embedded circle K S3 is called a knot. The knot type of K is the

isotopy equivalence class of the embedding. We only consider tame (smooth)
knots; for such knots K and L the relation of isotopy is equivalent to the

existence of an orientation preserving homeomorphism of S3 sending K to L.
The 3-sphere will be considered as the unit sphere in the complex plane C 2, i.e.

(2.5) S3 {(-!,%! C2 : |2l|2 + |-2|2 1}

A knot is called trivial (or unknotted), if it is equivalent to the circle
U {|zi| — 1, Z2 — 0}. A nontrivial knot is called a torus knot, if it is

equivalent to a simple closed curve on the torus

(2.6) r2 :={(-!,-,) ec2 : [s2| &} c S3
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where a and b are positive numbers satisfying a2-\-b2 — 1. The isotopy class of
such a curve K is determined by the pair of co-prime integers (p, q), which
represent K as an element of the fundamental group of T2 in terms of the standard

generators {|zi | — tf,z2 — and {zi — a, |z21 &}.In such a case K is called

a (p,q)-torus knot and is denoted by Kp>q. We have the relation Kp>q ~ Kp> >q>

if and only if (p',q') equals (—p,—q),(^^p) or (——p)- The knot KPi-q
is the mirror image of Kp>q ; the complements S3 \ Kp>q and S3 \ Kp,~q are

homeomorphic but not under an orientation preserving homeomorphism.
The fundamental group 7Ti(S3 \ K) is called the knot group and is

denoted by Gk One important result characterizing torus knots, conjectured by
Neuwirth and proved by Bürde and Zieschang, is the following: a knot group
admits a non-trivial center if and only if the knot is either an unknot or a torus

knot; see [4] for details and further references. This algebraic characterization
is related to the presence of a Seifert fibration in a torus knot complement,
the classical result of Seifert mentioned earlier.

Let us be more explicit. Let p and q be co-prime natural numbers, fixed

for the rest of the paper. Assume p < q. Consider the linear C x -action on C2

given by

Cx x C2 —> C2

A-(zi,Z2) CVzi, A?Z2)

The origin o : (0,0) G C2 is a fixed point of the action. The quotient

P\p,q) (C1\ {o})/Cx

is the so called (p,q)-weighted complex projective line. Restricting A to S1

we obtain the unitary flow

/ llTipt Q \
«0 />,:=( 0

' R.

Proposition 2.10. The action of the flow ht defines a Seifert fibration
in S3. The base orbifold, denoted P l(p,q), has underlying topological

space S2, and two singular points : cone points of indices p and q respectively.
The orbifold fundamental group is trivial.

Proof. All 3-spheres centered in o are invariant under ht. Thus ht defines

a circle foliation in S3. To show that this foliation is actually a Seifert fibration
we need to find a system of trivializing tori (see Definition 2.6). The coordinate

complex lines Ci and C2 in C2 are also ft,-invariant. Ci\{tf} and C2\{tf}
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consist of the orbits with periods X and ^ respectively. The remaining orbits
have period 1. Put

ëf Cj ns3 - {(-!,%) e c2 : |î!| l, - 0},
s2 c2 ns3 {{-J,-2) ec2122 0, |-2| 1}.

The solid torus S3 \ S\ is ht-invariant. The orbits of the flow are of
the form (z\e2nipt,Z2^2mqt), and by reparametrization t' — tq we obtain
(zie2^1 ,zie2nit Hence, the flow ht defines a structure of a (p, q)-twisted
fibred torus in S3 \ S\. The core of this fibred torus is Sj- It is fixed by the

transformation hi. Analogously, S3\5,2 is a (q,p)-twisted fibred torus, whose

core S\ is fixed by the transformation hi All orbits except S\ and S2 have
p

period 1, and are regular in the sense of Seifert. Thus S3 is a Seifert fibration
with two singular fibres S\ and S2. The base orbifold P^p, q) has two singular
cone points a and b of indexes p and q respectively. The set of regular points
Pl(p,q) \ {a,b} is an annulus, because it is the orbit space of S3 \ (S\ U S2)

which is a fibred torus with removed core. It follows that the underlying
surface of S(p, q) is a 2-sphere. The fact that the orbifold fundamental group
of S(p,q) is trivial can be obtained directly from Proposition 2.4 using the

fact that p and q are co-prime. Alternatively, it follows from Lemma 2.8 and

the fact that S3 is simply connected.

Any regular orbit of ht is a (p,q)-torus knot in the 3-sphere in which
it belongs. Explicitly, let Zoi,Zo2 be two nonzero complex numbers, then the

orbit through (Zoi,Zo2) is a (p, #)-knot lying on the torus

{(Zi,z2) e C2 : \zi\ - Izoil, |z2| |Z02|} C S|Zoi|2+|Zo2|2

Now let C\, c?2 be any two nonzero complex numbers, and consider the

polynomial

f(.Z\,Z2) := Ciz\ -\-c2zp2

The analytic set V(f) := {(Zi,z2) ^ C2 : C\z\ + C2Z2 — 0} has a unique
singularity at the origin. We have

(2.8) f(X • (zi, z2)) Xpqf(zi,z2).

Hence, V(f is invariant under the action of C x. It does not intersect the

coordinate lines Ci and C2, except at the point o, and so it does not contain
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singular orbits of ht. The intersection

K V(f) n S3

is a regular orbit of ht, and hence a (p,q)-torus knot in S3.

To simplify the notation, we take c i c2 — 1. Then K can be expressed

as

(2.9) K -
with

Zl - ax e27TiP1

Z2 «2
t G [0, 1]

a\ + a\ — 1, a\ — a?2 — 0, a\, «2 > 0.

K lies on the torus T {|zi| «i, |z21 — ai} Since is itself one regular
orbit of ht, its complement S3 \ K is ht-invariant. As a direct consequence
of Proposition 2.10 we obtain

Proposition 2.11. The flow ht defines a Seifert fibration in S3 \ K.
The base orbifold, ©, is a 2 -dimensional orbifold with underlying space R2

(a punctured 2 -sphere) and two singular points : cone points of indexes p
and q.

We have a decomposition

S3 \ K T(p, q) U (T \ K) U T(q,p),

where

51 T(p,q) {|zi| < ai |z2| yj 1 - |zi|2}

(2.10) K^T:={\Zi\ ai \z2\ a2}

52 ^ T(q,p) := {|ziI yj1 - |z2|2 [zi\ < ß]

From this decomposition of S3 \K we can produce the well-known presentation
of the torus knot group :

(2.11) GP,,-.= GK n(S3\KPtqy^ {.suszi S? sl}.
The element S — represents a regular fibre. This element is a generator
of tti(T\K) and of the center Z{G£) (see Remark 2.7 and Lemma 2.8). We

have the central extension

1 —> {£) —> Gk —> 7n(0) l.
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Thus 7Ti(©) Gk/Z(Gr) Zp * 7jq. The universal orbifold-cover of © will
be constructed in Section 4.1, see Proposition 4.2.

3. AUTOMORPHIC FORMS ON SL2(R)

The Lie group SL2ÇR) is defined as the universal covering group of the

simple Lie group PSL2(R). In this section we describe the group SL2(R) by
identifying it with the universal cover of the unit tangent bundle t/H 2 on the

hyperbolic plane. We start by identifying PSL2(R) with UH2. Thus SL2(R)
is endowed with the structure of a topologically trivial R-fibration over the

hyperbolic plane. This construction can be used to obtain a left invariant
metric on SL2(R) which makes it a 3-dimensional geometry, one of the eight
geometries of Thurston's list. Furthermore, this allows us to view automorphic
forms for discrete groups acting on the upper half plane as functions on SL2(R).
The fact that we pass to the universal cover allows the consideration of forms
of fractional degrees which we need for our main construction.

3.1 Isometric group actions on the hyperbolic plane

We work with the upper half plane model of the hyperbolic plane

\dz\2
H2 {z e C : Im(j) > 0} ds2

Im(zr
The matrix Lie group

SI^iR) := |a — ^ ^ : a, b, c, d G R, ad — be — 11

acts isometrically on H2 by Möbius transformations:

az + b
A.z := :.cz + «

This action is transitive. The stabilizer of the point i G H2 is S02(K),
isomorphic to the circle group S1. The center of SL2(K) consists of the

elements I,—I, and acts trivially on H2. To make the action effective, we
take the quotient

P\ SL2(R) —> PSL2(R) ^ SL2(R)/{±I}

The action of PSL2(R) is effective and transitive. The stabilizer of the point i
is PS02(R), also isomorphic to S1. The coset space PSL2(R)/PS02(R) is
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diffeomorphic to the hyperbolic plane, the stabilizer being simply transitive

on the circle UiH2 of unit tangent vectors at the point i. Thus PSL2QI) is

diffeomorphic to the unit tangent bundle on H 2
:

UH2 := {(z, v) : z G H2, v e TzH2 ||t?||H 1}

To fix a diffeomorphism we choose (i, ^ G ITH2 to be a base point, and

identify PSZ^CR) with its orbit through that point. Since the hyperbolic plane
is homeomorphic to a 2-cell, the fibre bundles TH2 and UH2 are topologically
trivial. Hence UH2 is diffeomorphic to H2 x S1 and the fundamental group
7Ti(t/H2) 7Ti (PSZ^R)) is an infinite cyclic group.

The Lie group SL2QH) is defined as the universal covering group
of PSL2(R). We denote the canonical projection by P\ SL2QH) —> PSZ^R).
The fundamental group of PSL2(R) is identified with the center C of SL2ÇR).

Thus we have a central extension

(3.1) 1 —> C —> SL2(R) -A PSL2(R) —> 1

The group SZ^R) acts, via P, on H2 and UH2. Since PSL2(R) is identified

with UH2, it follows that SZ^CR) is identified with the universal covering UH2

(which is in turn diffeomorphic to H2xR). This endows SZ^R) with the structure

of a topologically trivial R -bundle over the hyperbolic plane. We fix the

generator c of C corresponding to a simultaneous counter-clockwise rotation
of all unit tangent vectors to H2 by angle 2ir keeping the base points fixed.

For any integer r > 1 we can consider the group SZ^R)/ (cr), which is a

r-fold covering of PSZ^R)- Clearly SZ^R)/ (cr) has cyclic center of order r
and is diffeomorphic to H2 x S1.

REMARK 3.1. The hyperbolic metric on H2 can be used to induce a left
invariant metric on PSZ^R) and from there on SL2ÇR). This turns SL2ÇR)

into a model for a geometry, in the sense discussed in Section 2.1. The exact
form of this metric is not important for the purposes of this paper, so we
omit the precise formulation.

3.2 Automorphic forms for discrete subgroups of SL2(R)

If G is any subgroup of SZ,2(R), then G fi C C Z(G) and P(G)
G/(GfiC). Clearly there are discrete subgroups of SZ^R) which project
to non-discrete subgroups of PSX2(R). On the other hand, if T is a discrete

subgroup of PSZ^R), i.e. a Fuchsian group, then its preimage T — P (T) is

discrete in SZ^R). We are mainly interested in discrete subgroups T of SZ^R)
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arising as preimages of Fuchsian groups and, more generally, subgroups G C T
which are obviously discrete as well, and project to Fuchsian groups.

Let G be a discrete subgroup of SZ^R)- We assume that the projection
P(G) C PSL2(R) is a Fuchsian group of the first kind, i.e. has a fundamental
domain with finite volume. In such a case the quotient H2/P(G) can be

compactified (holomorphically) by adding a finite number of points. This
section is devoted to the notion of an automorphic form for G. We consider
forms of rational degrees as defined by Milnor in [9]; this approach is

somewhat non-standard, but suitable for our purposes.
Let Cx denote the universal covering group of the multiplicative group

Cx — C \ {0}. As a complex Lie group Cx is isomorphic to the additive

group C, but we prefer to keep the multiplicative notation. Recall that

for £ G Cx we have a well-defined r-th root £* for any positive integer r,
and hence we have a well-defined k-th power Cfi for any rational number k.

Let TH2 denote the tangent bundle on the hyperbolic plane with removed
zero-section. This bundle has a nonvanishing holomorphic section Hence
T'H2 is holomorphically trivial, i.e. biholomorphic to H 2 x Cx. Notice
that r'H2 contains the unit tangent bundle UH2 considered earlier. The

isomorphism T'H2 H2 x Cx associated with the section is such

that UzH2 is identified with {z} x {C G Cx : |£| Im(z)}. The universal

cover FH2 is biholomorphic to H2 x Cx. The group SZ^R) acts on T'H2,
and hence on H2 x Cx in an obvious way and all stabilizers are trivial. Thus

any orbit of this action is diffeomorphic to SZ/AR). We fix the embedding
SL2(R) C H2 x Cx given by the orbit map through the point (i,l)eH2xCx.

Let 7 G SL2(R). The expression for the transformation of H2 x Cx
associated with 7 is

7(z, w) (7(z), 7'(X)w),

where 7(z) is given by the usual action of SL2ÇR) on H2 and 7' : H2 —> Cx
is the lift of the (nonvanishing) derivative determined by the requirement
to satisfy the chain rule (7271 )'(z) — 72(71 (z))7i(z)-

DEFINITION 3.2. A (differential) form of degree k G Q, or a k-form,
on H2 is defined to be a complex valued function u) of two variables z G H 2

and dz G Cx of the form

oj(z, dz) f(z)dzk,

where / is a holomorphic function on H2. The product of /(z) and dzk is
taken after projecting dzk from Cx to Cx via the universal covering map.
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Let uj — f(z)dzk be a form on H2. For any 7 e SL2(R) we have the

pullback
7*oj(z,dz) oj(^.(z,dz)) =f<rf(z))<zy'(z))kdzk

DEFINITION 3.3. Let oj(z,dz) — f(z)dzk be a form on H2. If x ^
Hom(G, U( 1)) is a character of G, a form w on H2 is called automorphic,
if the following two conditions are satisfied:

(i) 7*w — x(7)w f°r all 7 G G.

(ii) Suppose P(G) has a fundamental domain with a cusp at oo (the case

of a different cusp is treated by sending it to oo). Let z H> z + A

be a generator of the parabolic subgroup of G fixing oo. Then the

function f(z) is required to have an expansion of the form

oo

m
n=0

which is convergent for z G H2. In such a case/ is said to be holomorphic
at oo.

If x is the trivial character of G, a x-automorphic form will be called

G-automorphic; in such a case we have 7*w uj for all 7 G G. When the

group is understood from the context, by automorphic form we will mean a

form which is x -automorphic for some character x- An automorphic form
vanishing at a cusp of P(G) is called a cusp form.

The automorphy property of a form oj(z,dz) — f(z)dzk is reflected on a

property of the function /. Namely,

7*W x(7)w f(/y(z))(Y(z))k x(7)/(£) •

The space of x -äutomorphic k-forms will be denoted by AqX. The

algebra of forms on H2 generated by all automorphic forms for G will be

denoted by Ä^*. This is a bi-graded algebra with components AqX. The G-
automorphic forms generate a subalgebra, to be denoted by Aq, with degree

components AkG — Aq1 Since we have embedded SL2(R) into H2 x Cx any
form to on H2 can be viewed, via restriction, as a complex valued function

on SLa(R). The elements of AG are then well-defined functions on the coset

space SL2(R)/G.

LEMMA 3.4. Let r,s be co-prime integers, r > 0, and let oj(z,dz) —

f(z)dz 7 be a form of degree ^ on H2
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(i) The form oj is invariant under the action of the central subgroup

(cr) C SLiÇR), and hence is a well-defined function on the group
SL2(R)/(cr).

(ii) If oj is G-automorphic, then G fi C C {cr).

Proof. The generator c of the center of SL2(R) satisfies c(z) — z and

c'(z)k projects to e27Tik G Cx for all z G H2 and k G Q. Hence, for n G N,
we have

(cn)*uj(z,dz) f(c\z))c'(z)n*dz* f(z)e2m^dz7 e2m^ oj(z, dz).

Now, since s and r are assumed co-prime, we see that (c")*oj — oj if and

only if r divides n. Both parts of the lemma follow immediately.

The following lemma is taken form [9] ; it describes roots of automorphic
forms.

LEMMA 3.5. Let oj(z,dz) — f(z)dzk be a 7-automorphic form. Suppose
that f possesses an n-root, i.e. there is a holomorphic function f\ on H2

such that fi(z)n —f(z). Then the form oj\(z,dz) —fi(z)dz is \i -automorphic

for some character °f G satisfying x" X-

Proof. Let 7 G G. Then oj\ and 7*^1 are both forms of degree £ on H2.

Hence the quotient a well-defined meromorphic function on H2. The

H-th power of this function is fff- — 7(7) which is constant. Therefore

is constant as well. Define 71(7) — Then Xi is a character of G and

we have x" — X-

4. Triangle groups and torus knot groups

4.1 Triangle groups

In this section, we discuss a beautiful class of Fuchsian groups — the

triangle groups. They have been extensively studied, a basic introduction may
be found in Beardon's book [1].

For any two distinct points a and & in H2 denote by ab the directed

geodesic segment connecting a and b. The same notation will be used for the

limit case, when one or both points lie on the absolute. Consider a geodesic

triangle À in H2, with vertices a, b, c (some of them may lie on the absolute).
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To fix the notation, suppose that the triple a,b,c is positively oriented. Suppose
that the interior angles of À, at the vertices a,b,c respectively, are equal

to J, 7, 7, with p,q,r G NU {00} 1). Denote by cra,a7,,crc the reflections

in H2 with respect to bc,ac,ab. The triangle À is a fundamental polygon
for a discrete group of isometries of H2, with presentation

r*(p, q, r) - (aa, ab, ac ; a* 1,

(VbVcY — {(Tc(Ta)q — (c7a<Jbf 1)-

Such a group is called a (p,q,r)~triangle group. The elements ao := crbac,
ß0 <7c<Ja, 7o cracrb are elliptic or parabolic2) elements of PSL?(R), with
fixed points a,b,c and angles of rotation —, —, ^ respectively. We have

70 - ß(ß1 Q!q~ 1.

If Ai is another triangle in H2, similar (same angles) to À, then there exists

an isometry of H2 sending À to Ai. Thus any two (p, q, r)-triangle groups
are conjugate in Isom(H2). The generators of T*(p, q,r) do not preserve the
orientation in H2, so this group is not Fuchsian.

To obtain a Fuchsian group we take the subgroup of index 2 of T*(p, q, f)
consisting of all orientation preserving elements. We denote this group
by T(p,q,r) and, following the tradition, also refer to it as a (p,q,r)~
triangle group ; the distinction should be easily made from the context. We are

mostly concerned with the orientation preserving triangle groups. To obtain a

fundamental domain for T(p,q,r), denote A; := crc(A), d ac(c), and set

D:= AUA'.

Then D is a quadrangle in H2 with vertices a,d,b,c and angles 7^? 7? 7
respectively. The edges of D are identified by ao and ßo as follows:

ao : cid \—> etc
(4.1) _ _ßo : be 1—> bd.

According to Poincaré's theorem for fundamental polygons, ao and ßo

generate a Fuchsian group with fundamental domain D and presentation

(4.3) r(p,q,r)Z. {a^ßo ; og \,ßq0 - l,(a0ß0)' 1)

1 We assume that ^ 0 for a vertex on the absolute. To obtain a hyperbolic triangle, one

must have ^ ^ ^ < 1. This is certainly true when 1 < p < q, r oo.

2) In the case when some of the parameters p,q,r equal oo, for instance r oo, the
corresponding element 70 owfc is parabolic. The relation ^ 1 is omitted.
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It is easy to see that abiA) — o^A') and cra(A) — thus

Di := À U crfe(A) and Dj := À U aa(A) are alternative fundamental domains

for T(p, q,r). The independence of the choice of reflection generating the fac-

torgroup is obvious from the definition, and also in view of the presentation

(4.3) T(/?, q, r) ^ <a0, ßo,7o ; ag 1, 1,75 1, a0/3o7o 1)

A classical example is the modular group PSL2ÇZ). Its traditional
fundamental domain and generators are

DdPSLi(Z» {.T + iy e H2 : y/l -.#}

««.KD, «iH-v, ((; -1), r=(;
The relations are S2 — 1 and (ST-1)3 — 1. This group is Fuchsian, it preserves
the orientation of H2. In the notation introduced above, PSL2(Z) T(2,3,00)
is a triangle group. It is a subgroup of index 2 of the triangle group T *(2,3,00)
with fundamental domain

A(PSL2(Z)) {.Ï + iy e H2 : 0 .v
'

v y'l X2 }

Alternative fundamental domain and generators for PSL2(Z) are

D(PSL2(Z))= {x + ïy GH2 : 0 < x < i y > y/l-(x- l)2}

P(S) P(U), where U ST~1.

Hence, if we denote ao P(S), ßo := P(U), we have

PSL-AZ) m po,ßo ; «5 Ï^O 1) sr(2,3,»).

We now focus on the class of triangle groups which actually concern us

for the rest of the paper. Let p and q be co-prime numbers, and set

(4.4) TPiq := Tip, q, oo) ^ (a0, ßo ; ag 1,= 1).

Abstractly, r^tÇ is isomorphic to the free product Zp*Zq. The triangle A has

exactly one vertex, say c, lying on the absolute. The fundamental domain D
corresponding to the above presentation is a quadrangle with two cusps c
and d, and two vertices a and b inside H2 with angles — and — respectively.
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We can take
7r • ^ i r> i ^ .TT

a — — cos —\- i sm —, a — 0, b — cos —|- i sin —, c — oo

(4.5) D a + iy e H"

— COS — < X < cos -p

y > 2 cos — - \X + 2 cos

y>y(i^) -

ao P(Ao), ßo — P(Bo) j 2 cos - 1

5n
0 1

-1 2 cos

The action of the generators is given in (4.1). The two cusps are identified
by the generators.

REMARK 4.1. An alternative fundamental domain with one cusp for TPtq is

D\ := À U cr^(A) (P n ao(D)) U ao(D).

It corresponds to the following generators and relations

rp,q <a0,7o ; aj 1 (7o«o)? — 1>

The element 70 — (aoßo)~l is parabolic with fixed point 00.

The quotient W2fTp>q is an orbifold with underlying topological space
S2 \ {point}. The missing point corresponds to the cusp of the fundamental

domain D\. This orbifold is an important ingredient in our construction, it
was already encountered as the base orbifold © of the Seifert fibration in a

torus knot complement, see Proposition 2.11.

Proposition 4.2. The projection H2 —

covering of the orbifold ©, i.e. © H2/r^>?.
H2/Tp.q is the universal

Proof. The generators of Tp>q give the following identifications of edges

of D \

ao : ad \—> ac, ßo : be bd

The diagonal cd cuts D into two triangles, say Da and Dt, containing the
vertices a and b respectively. These triangles are mapped under the action

of ao and ßo on two cones i92/Z^ and Z)2/Zç. These two cones are the base
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orbifolds of the fibred tori T(q,p) and T(p,q) given in (2.10). The projection
of the annulus T\K, from formula (2.10), is the diagonal cd. The cusps c
and d are identified by both ao and ßo, and correspond to the knot K.

4.2 The COMMUTATOR SUBGROUP OF A (p, q, oo)-TRIANGLE GROUP

Let T'p>q denote the commutator subgroup of Yp>q. The main result in

this section states that T'p is a free group of rank (p — 1 ){q — 1). This
result is somewhat tangential to the main line of the paper, and in fact can
be deduced easily from well-known properties of torus knot groups, cf. [4].
However, the proof we give here is somewhat interesting in that it uses the

geometry of triangle groups. In particular we construct a fundamental domain

for the action of Y'pq on H2 and give free generators. The freeness of the

commutator subgroup of a torus knot group can be deduced from this result.

Since YPtq is isomorphic to the free product Zp * Zq, it follows that the

factorgroup Yp>q/Ypq is isomorphic to the direct product Zp x Zq. Since p
and q are co-prime, we can conclude that Yp>q/Y'p is cyclic of order pq.
For 7 £ Tp>q let 7 £ YPtq/Yp denote the image of the canonical projection.

Remark 4.3.

(i) If Yi is a normal subgroup of Yp>q such that Yp>q/Yi is cyclic of order

pq, then Y1 coincides with the commutator Y'pq.

(ii) The factorgroup Yp>q/Y'pq consists of the elements a^ß^, i — 0,... ,p—l,

Proposition 4.4. The commutator subgroup Y'pq is free of rank

(p — 1 ){q — 1). Any of the following two sets generates Y' freely :

j — 0,... ,q — 1.

(iii) Each of the two elements below generates YPtq/Yp

70 - (äo^o)-1 > ^0 - ^oßo >

-ppi-ïïi x0

(4.6) foa,,) := K, ßo\ <ßJo<ßiF
for i — I,...,/?— 1 and j 1,..., q - 1,

(4.7) r]0ik,j) '= [ao, &oßoao A] ^[ao, ßJ0~]a0
k

for k — 0,— 2 and j — 1,... ,q — 1.



96 V.V. TSANOV

Proof. The commutator Tpq is the smallest normal subgroup of Tp>q

containing [ao,ßo\- Denote by S the subgroup of Tp>q generated by the

elements The inclusion S C Tj)? is clear. To prove that T'pq C 3, we
will show that 3 is a normal subgroup of Tp>q. It is sufficient to see that the

conjugates of foei,ß by and ßo are still in 3. Direct computations show

that

(4.8) aofo(iJ)aO Çoa+l,j)Ço(l,j) ' ßo£o(i,j)ßo — ^0(1,1)^0(1^+1) •

Hence, 3 is a normal in TPtq and 3 P'p>q-

The elements (4.6) are expressed in terms of (4.7) in the following way.
First we have

Voioj) fo(ij), j=l,...7q-l.
Using (4.8) and induction on i, it is easy to show that

î?0(i-l,j)î?0(i-2,j) ^0(1,J)%(0,J) fo(i,j) i 1, ,p - 1, j 1, • • q - 1
•

Hence, the elements tjog,/) also generate P'p>q-

To obtain a fundamental domain for Tp q one may take the union of the

images of the fundamental domain D of Tp>q under the action of the elements

representing the factorgroup TPtq/T'pq. We denote

where Dfj (D), for i — 0,...,/? *-* 1 and j — 0,..., q — 1. D' is a

polygon in H2 with 2p(q— 1) vertices, of which p(q — 1) cusps and p{q— 1)

points inside H2, changing alternatively. The interior angles at the vertices
inside H2 are all equal to y-. The edges of D' are

The arcs af,(ad) and af,(etc) lie in the interior of D'. A direct computation
shows that

mij)- I'ij 1—> G z(modp),j= l,...,q-l.
According to Poincaré's theorem, D' is a fundamental polygon for a Fuchsian

group with generators

Voaj) I i 0,... ,p - 1, j 1,... ,q - 1

(4.9)

lij : o?0ß£(ac), i 0,... ,p - 1,

I'ij okßoiad), j= 1, 1
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and relations

WtKp-i,j)Vo(p-2,fi Voaj)Vo(oj) 11 j 1, • • q - 1

These relations correspond to the cycles of vertices of D' (inside H2). At
every cycle of vertices the sum of the angles is equal to p^j- —2ir. Hence,

the group acts freely on H2 and the quotient is a smooth surface. Moreover,

we can express rçoo-i j) from the relations, and we are left with a free group
of rank (p — l)(q — 1) generated by the elements

Voa,J), i 0,... ,p - 2, j 1,..., q - 1.

This completes the proof.

REMARK 4.5. Proposition 4.4 implies that the quotient F ÏÏ2/Y'p q
is

an orientable smooth open surface, whose homotopy type is a bouquet of
(p — 1 )(q~ 1) circles. In fact, F can be embedded in S3 as the interior of a

Seifert surface for a (p,q)-torus knot.

Since p and q are co-prime, all the cusps of the fundamental polygon D'
are equivalent under the action of Y'pq. To show this in a simple way
we shall construct another fundamental domain D[ for Y'pq with only one

cusp. We use the fundamental domain D\ for Yp>q given in Remark 4.1.

In Remark 4.3 we observed that the image of the element 70 (aoßo)~l

generates YPtq/Yp q Zpq. Thus

pq-l
D[ (J 7*(ö1)

k=0

is a fundamental polygon for Y'pq. The only cusp of D\, the point 00, is the

fixed point of the element 70. Hence the polygon D\ has only one cusp, 00.
The two infinite edges of D[ are identified by the element 7q? — (aoßo)~pq
which belongs to Y'p q.

4.3 A REPRESENTATION OF THE TORUS KNOT GROUP IN SL2(R)

The following lemma gives a representation of the torus knot group
Gk tti(S3 \K) as a discrete subgroup of SL2QI).
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LEMMA 4.6. Let rp>q be the triangle Fuchsian group described in (4.4).

The pre-image T P (Tp,q) in SL2(R) is a discrete subgroup, isomorphic
to the torus knot group presented in (2.11). There is a commutative diagram

1 — Z(T) — r — Tp>q —> 1

-1* 4* 4*

1 —> C —> SxJ(R) —» PSL2(R) —> 1,

where the rows are central extensions, the leftmost downarrow is an isomorphism

and the other two — monomorphisms.

Proof. The group Tp>q is generated by the elliptic elements ao and ßo.
The angles of rotation are ^ and ^. The elements oj and ßl represent
rotations by angle 2ir centered at the respective fixed points. Hence, these

elements correspond to the generator c of C — 7r 1 (PSZ^R)). We have

already identified c as an element of SLz(R). Let a and ß be the unique

elements in P (ao) and P (ßo) respectively, such that ap ßq — c. It
is clear that a and ß generate T. The relation ap — ßq is (essentially) the

only relation in T, because the factorization by C maps SLz(K) on PSL2QI)
and T on Tp>q. Obviously T is a discrete subgroup of SL2(R). The center

is Z(T) — C because Tp>q has no center. We have obtained a presentation

(4.10) f ^ (a,ß ; ßq)

which is exactly the presentation (2.11) of the torus knot group.

4.4 Properties of the discrete group (a, ß ; ap ßq)

In this section we discuss some properties of the group T defined by
the above presentation. Most of these properties, if not all, are well-known,
but we shall sketch the proofs for completeness and to be able to give the

formulations suitable for our purposes. In particular, we shall see that for

any natural number r co-prime with p and q, there is a normal subgroup
Gr C T of index r, isomorphic to T as an abstract group. Although many
of the properties of T can be deduced from the presentation, we shall use
the notation and some facts resulting from Lemma 4.6. In particular, the

center Z(T) coincides with the center of SL2QH), i.e.

Z(T) <c), c — ap — ßq

We have f/Z(f) ^ Tp>q.

Let us set some notational conventions. For g G T we denote by g gV
and go — gZ(T) the corresponding cosets with respect to the commutator
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subgroup and the center of T respectively. Also, we let N~(g) denote the

smallest normal subgroup of T containing g (and similarly for other groups
instead of T).

Proposition 4.7.

(i) The factorgroup H T/V is infinite cyclic, generated by the projection x
of the element x aqi ßpi, where pp\ + qq\ — 1.

(ii) The canonical projection T —» T/Z(T) Tp>q induces an isomorphism

of the commutator subgroups V T'p q

(iii) We have Np(x) — T,in other words, the group T is completely destroyed
by adding the relation x — 1.

Proof. From the presentation (2.11) one can see that the elements of T/V
are of the form älßJ. The equalities xp — ß and xq — ä imply that x
generates T/V. To see that T/V is infinite, notice that it can be obtained from
the free abelian group of rank two by adding only one relation äpß q

— 1.

This proves (i).
To prove (ii), notice that any surjective homomorphism of groups induces

a surjective homomorphism of the commutator subgroups. We have to prove
injectivity. Let us take g G r' and suppose go — 1 in r/Z(T). This means

g — cm for some m G Z. Hence g — xpqm. On the other hand, g G V implies

g — 1. Hence m — 0 and g — 1.

To prove (iii), in view of (i), it suffices to show that Np(x) D T'. We
have xpq — c, so we can work in TPtq and show that Arp9(^o) O T'p>q-

Notice that T'p q — Nrp q([all, ß^J) since q\ is co-prime with p and p\ is

co-prime with q. Now, we have [ap1,/^1] — xoogj*11x$loQ E Nrpq(xo) and

hence Nrp q(x0) D T'p>q.

From Proposition 4.7 (ii) and Proposition 4.4 we obtain the following
classical result.

COROLLARY 4.8. The commutator subgroup V, of the group T, is free of
rank (p— l)(q— 1). Any of the following two sets of elements generates G' :

(4.11) := [a\M aißja~iß~j,

for i — 1,... ,p — 1 and j — 1,... ,q — 1,

(4.12) rj^j, ~[a,akßJa-kl^akla,ßJ]a-ki
for k — 0,...,p — 2 and j — 1,..., q — 1.
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It is a well-known fact that knot complements are aspherical. Hence knot

groups do not admit elements of finite order. In our case this is immediately
deduced by the fact that T' and T/V are free. It also follows from the

presence of the faithful representation T —> SL2(R) obtained in Lemma 4.6,
and the fact that SZ^CR) has no elements of finite order.

Now we identify a family of subgroups Gr of T such that each Gr is

isomorphic to T, parametrized by natural numbers r co-prime to both p
and q. Fix one such r and let rp,rq,pr,qr be integers such that

ppr + rrp 1 qqr + rrq 1.

LEMMA 4.9. Let us denote ar of, ßr ßr, and let Gr be the

subgroup of r generated by ar and ßr. Then Gr is isomorphic to T, and
has the following properties.

(i) The center Z(Gr) is contained in Z(F) and generated by cr cr.

(ii) The commutator subgroup G'r of Gr coincides with the commutator

subgroup V of T.
(iiï) The factorgroup Hr := Gr/G'r is generated by the projection xr of

the element xr afl ß?1, where as earlier pp\ + qq\ — 1. We have

N~(xr) NGr(xr) Gr.

(iv) Gr is a normal subgroup of T and the factorgroup is cyclic of order r.
There are isomorphisms

f/Gr H/Hr ^ Z(f)/Z(G,) ^ Z,.

(v) The restriction of the projection P\ T —> T/Z(T) to Gr is surjective, i.e.

P(Gy) rp>q.

Proof. We obviously have af — ß? — cr — cr. The group T can be

obtained as a free product with amalgamation of the free groups (a), (ß),
with the amalgamated subgroups {ap) ~ (ßq)- The cyclic groups {ar) and

(ßr) are subgroups of (a) and (ß) respectively. We have (ar)n(a;7) — (a?)
and (ßy) H (ßq) — {ßq). Thus

Gr {ar,ßr ; c?T=ft).

Hence Gr is isomorphic to T and an isomorphism is given by

(4.13) Xy-.f^Gy, a 1—> ar, ß 1—) ßr.

Since cr — oFr — ßq, property (i) is obvious. Moreover, we have

Z(T)/Z(Gy)^Zy.
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To prove property (ii) it is sufficient to see that the elements — [a1, ß*]
belong to G'r (see Corollary 4.8). We have

a? oT' arrp+pp'c~p' ac~Pr, & ßc~qr.

Hence [a?,/^] e G'r.

The proof of property (iii) is completely analogous to the proof of parts (i)
and (iii) of Proposition 4.7.

To prove (iv) we observe that, since G'r — T', there is a natural

monomorphism

Hr M- H
xr I—> xr

The quotient is H/Hr Zr.
The subgroup Gr is normal in T, because T' — G'r C Gr and for any pair

of elements g G T and g\ G Gr we have ggig~l — [g, g\\g\ £ Gr. We obtain

fjG, s (f/f')/CGr/:©;) s ((jf>/<^>) (C*)/CO)

It remains to prove (v). Recall that P(T) — Tp>q — {ao,ßo',o% — ßq — 1)

Zp * Ziq, where ao — P(fit) and ßo — P(ß). We have P(arYp — and

P(ßrYq — ßo Hence P(Gr) — Tp>q. The lemma is proved.

COROLLARY 4.10. For any natural number r co-prime to both p and q,
the coset space SL2(R)/Gr is weakly homotopically equivalent to the torus
knot complement S3 \ Kp>q

Our task now becomes to identify an r for which SX2(R)/Gr is in fact

diffeomorphic to the torus knot complement. As pointed out in the introduction,
this has been done by Raymond and Vasquez, in [17], using the theory of
Seifert fibrations. We intend to find an explicit diffeomorphism using the

results on automorphic forms proven in the next section.

4.5 Automorphic forms for a (p,q, oo)-triangle group

In this section we study automorphic forms related to the (p7 q, oo)-triangle

group

TP,q (a0,ßo-, oj 1,^ 1).

We shall refer to the fundamental domain D\ for the action of TPtq on H2

described in Remark 4.1. Recall that the parabolic element 70 (aoßo)~l
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generates the stabilizer of the cusp oo. According to formulae (4.5), we have

7r 7r
(z) — z + A where A — 2(cos —|- cos —

P q

The preimage T — P (Tp>q) in SLi(R) is generated by the preimages a, ß
as defined in the proof of Lemma 4.6. We want to understand the algebra of
automorphic forms A~*. Let us interpret the definition of automorphic forms

for the group in question. Let oj(z,dz) — f(z)dzk be a &-form on H2, with
k G Q and /(z) holomorphic on H2. Let x e Hom(T, U(1)) be a character.

Then uj is \ -automorphic if
(a) f(a0(z))a'(z) x(a)/(z)
(b) f(ßo(z))ß'(z) x(ß)f(0
(c) /(z) a»e27Tli •

REMARK 4.11. Notice that a character \ °f T is completely determined

by its value on the element x — aqißPl. This follows directly from the facts

that the kernel of any character must contain the commutator subgroup T'
and that x generates Y/V.

LEMMA 4.12. Let 0j(z,dz) —f(z)dzk be a nonzero x -automorphic k-form
for T. Let na, nt and n^ denote the orders of vanishing of f at a, b

and oo respectively ; let N denote the total number of other zeros off in the

fundamental domain D\, counted with multiplicities, with the identifications
of the edges taken into account. Then

na nb 1 pq — p — qN + «oo H 1 — k
p q pq

The proof is standard, uses a contour integral, and is analogous to the

proof of Lemma 1 on page 1-14 of [12].

COROLLARY 4.13. In the notation of the above lemma, the number

m — k(pq —p — q) is an integer. The integer m is divisible by p (respectively,
by q) if and only if na (respectively, nb) is. In particular, if na — m — 0,
then kpq~p~q is an integer.

Put

k ~ M
pq-p-q
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(This number has some geometric meaning. Namely, the fundamental triangle À

(see Section 4.1) has Lobachevsky area f-. This follows directly from the

formula f 1 ** 1 1.)
ka P 9

The following two lemmas are taken from Milnor's article [9]. They relate

the character of an automorphic form to the order of vanishing of the form
at the vertices a and b.

LEMMA 4.14. In the notation of Lemma 4.12, the values of the character x
on the generators a and ß of T are

27ri(^±M) ,Q\X(a) e " p X(ß) e q

2iri— 2iriqqi "a~*~PPl"b

In particular, the value of \ on element x is xCO — e pie pt

Proof. We will evaluate x(a)> the case of ß being analogous. Since uj
is x -automorphic, / satisfies the relation

f(a(z))(a'(z))k xWfiz)
Notice that (a'(a))k projects to e2mp in Cx. Expand /(z) and /(a(z)) as

Taylor series about a :

OO CX)

f(z) - 5~2,fn(z - a)n /(a(z)) - ^fne2mp{z - a)n

n=na n=na

Now the automorphy relation can be written as

CX) CX)

^2 e2m~pfne2nihz - a)n ^ xMMz - a)n

n=na n=na

A comparison of the coefficients in front of (z — a)na yields the desired

27ri=a±^
e p - x(a).

The last statement in the lemma follows immediately from the expression

x — aqi ßpi.

Now, we identify a character Xo> which is of some particular importance.
Set

f •. 2iri— 2iri
Xo\x) — e PI e pi-P-1

On the generators a and ß we get

/• \ 2iri— 2iri 2— s a\ „2iri— „2iri—-—XoW e p e p*-p-i Xo(ß) e 9 e pi-p~i

Clearly, we have x5?~P~q — 1
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LEMMA 4.15. In the notation of Lemma 4.12, assume na — n^ — 0. Then

k/k0 is a non-negative integer and \ — xJk° •

Proof. The fact that kfk0 is a non-negative integer follows directly from

Lemma 4.12. From Lemma 4.14 we obtain x(a) — e27Tl? and x(ß) —

whence

X(a) — e2mw — e2mw è _ Xo(x)k^k° •

Since the characters of T are determined by their values on x, we get
kjk0

X Xo'

We now proceed to construct some specific automorphic forms. Recall

from Proposition 4.2 that the orbifold © — H2/Pp,q has underlying surface X©

isomorphic to C. The singular locus 2© consists of two cone points of indices

p and q respectively: the images of the vertices a and b of the fundamental

domain D\. Thus we have a uniformizing function for ©,

0: H2 —» C =XB

which can be chosen so that 9(a) — 0 with multiplicity p, 9(b) — 1 with

multiplicity q. Let H2 H2 U {oo} and C C U {oo} — CP1. Then 9

extends to a function 9 : H2 —> C with a simple pole at oo.
The function 9 is invariant3) on the orbits of Tp,q, i.e. 9(x(z)) 9(z) for

all 7 G Tp>q. The derivative 9'(z) satisfies

0'(x(z))^(Y(z)rl9'(z), jerp>q.
Set

/ (9'y \^ (9'y
fa ~ -prrp. r——r fb9(9-iy~l J

7 ^ \9P~K0- 1)

(9'yq
/oo - 9(p-^(9 -1yfo-

It is a matter of direct verification, by counting zeros and poles in numerator
and denominator, to show that fa,fb,foo are holomorphic functions on H2 and

at oo. Furthermore, fa (resp. fb, /oo) has a simple zero at a (resp. b, oo)
and nowhere else in the closure D\ — D\ U {oo} of the fundamental domain

of TPtq given in 4.1.

3) In many texts such a function would be called automorphic, but it does not satisfy the
definition adopted here because of the pole at oo.
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LEMMA 4.16. The forms

U)a(z, dz) fa(z)dzPf~p~i U)b(z, dz) Mz)dzw-Pp-1

Wco(z, dz) foo(z)dZM-P-*

are automorphic forms for T. The character of u)^ is \0. The characters

Xa and Xb of uja and u)b evaluated at x give

„ / \ 27Ti~p— r 2iri— „ / \ JZni—,— r 2iri—
Xa\x) — e f*pi-p-&e p 7>(X) — e ?(/*?-?-?> e

Zfte relations yfa — xb — Xo hold.

Proof. For 7 G T we have

fa(l(z)) -
{0'(rf(z)))q

\ 0(7^)) («7(2))- I)®-1

Vöte)(ö(2> - i)? 7
x(7) (YOO) pq~"~qfa(z),

where Xa(7) *s a (P#-P — #)-th root of 1. The mapping 7 1—^ Xa(7) defines

a character, and w is a Xa"automorphic form. Since the zeros of fa are known,
Lemma 4.14 yields

/ \ 2iri—p— t 2izi—
Xa{x) — e p<-pi-p-&e p

The situation with ujb and is completely analogous. The relation between

the characters follows immediately from the explicit formulae.

LEMMA 4.17. The forms uja, u)b, uj^ defined above satisfy a relation of
the form

k-'oo — T Cb0J^

for some nonzero complex numbers ca,cb.
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Proof. For u, v G C we compute

/ yyq \S=*=Ï «9'Y9
m + Vfoo — U 7^ ,w„_n + V

0P(ß - iycff-i)y - 1 y(?-1)

0O>-1)<7(0_ l)g

- f— h

(u£l0(0 — 1)
1 + — 1)

1

_ q U£i6 + V£2\

H 9-1 J '

where £i and e2 are suitable roots of unity of order pq — p — q. Hence for
u — ef1 and v —sf1 we get uf£ + vfoo —ft which implies the statement

of the lemma.

THEOREM 4.18. The forms oja and uJt, generate the algebra A~*

Proof. Let oj(z, dz) — f(z)dzk G A~x be a nonconstant automorphic
form. In view of Lemma 4.17, it is sufficient to express / as a polynomial
m fa-, fb-, foo• We shall use the notation from Lemma 4.12 for the orders of
vanishing of/. According to Corollary 4.13, the number m — k(pq—p—q) is an

integer, which is divisible by p if and only if na is. We shall consider two cases.

Case 1 : Suppose that p divides m, say m—ps. Then n\ — y is also an

integer. Then the form u)sb is a &-form. Moreover, we have \ — X%- T° see

this we just evaluate the two character at x using Lemma 4.14:

27ri * 27Timna+m"b 27Ti * 2lzimP"i+PPinb
X(x) — e p^pi-p-ve pi —e ^pi-p-'pe PI

27TÎ-T r 27
— q e

„ s/„\ 2iri~?— r 2iri^-
Xb{x) — e 9<p9-p-9) e i

2 'Pi"b 2Thus x — Xb *s equivalent to e 7ri e
1X1 i which in turn holds if and

only if q divides s—nb. The identity proven in Lemma 4.12, properly rewritten

according to the present assumptions, becomes

ps pqN + pqnao + qpni + pnb

The above equality implies that q divides s — nb. Hence x — Xb- We can
conclude that both uj and ujsb belong to the vector space A~x. Hence any

linear combination of these two forms belongs to A~x. There exists C\ G C
such that the form f — c\fb vanishes at oo and can be written as

/ t\.f.
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where Xi ~ XXÖ1 and ki k - ka pq-~p-q ' Put m ~ P^S ~ q^ NoW

notice the following: the fact that A~x contains cusp forms implies, via
Lemma 4.12, that m > pq. Thus s > q. There are two possible outcomes,

depending on whether s — q or s > q. First, if s — q, then k\ =0, so that

/i is a holomorphic function on YV2/TPtq and hence constant. In this case

f — C\fl +/1/00» and we are done. Second, if s > q, then p divides m\ and

we can restart the procedure. Eventually / is expressed as a polynomial in ft
and /oo.

Case 2: Suppose now that p does not divide m. Then na> 0. Consider
f mi _fx — Put mi — m — qna- Then f\(z)dzn-p-i is \Xa n" -automorphic. We

have f\(a) ^ 0 and hence p divides m\, which brings us to case 1.

This completes the proof of the theorem.

COROLLARY 4.19. Let G — Gpq-p-q be the subgroup of T generated
apq-p-q and ßpq-p-q

generated by uja and uJt,.

by apq p q and ßpq p q. Then Aß — A~*, and hence the algebra Aß is

Proof. To prove the corollary it suffices to show that G equals the kernel

of each of the characters \a and \b • According to Lemma 4.9 the group G

is isomorphic to T as an abstract group, and equals the smallest normal

subgroup of T containing the element xpq~p~q. Also, we have P(G) — TPtq.

From Lemma 4.16 we know that \a — xt — Xo- We also know that
2 l

Xo(x) — e so that Xo has order pq — p — q. Let s be the order

of Xa- Then 1 — yff — xs0, whence pq— p — q divides s. On the other hand,

we have

^ 27tj-^— t liri— >'+7rw'"wl 27Tim+m+pm-m-m
Xa(x) — e pw-p-iï e p — e — g pip?-?-?)

,-ppi +p??i27rr ' 7' 2iri ' W1 "
Q P(P?-P-?) Q P?-P-?

Hence yfa~p~q — 1 and so s divides pq — p — q. Thus s — pq — p — q.
An analogous argument shows that the order of Xb equals pq — p — q. This
completes the proof.

5. THE UNIVERSAL COVERING SL2(R) —> S3 \ Kp>q

In this section we show that SLi/G is diffeomorphic to the complement
S3 \ KPtq of a torus knot in the 3-sphere, where G is the group defined in
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Corollary 4.19. Consider the map

W: H2xfx —> C2

(z,w) I—> (u)b(z, w), wa(z, w))

Corollary 4.19 asserts that the map 4* factors through the projection P g'- H2 x
Cx —(H2 x Cx)/G. Put M — (H2 x Cx)/G and denote the resulting map
by

4P M—>C2

Now recall that we have Wqq — Cb4 + caufa. The cusp form u)^ does not

vanish on H2 x Cx It follows that the image of 4* sits in the complement
of the curve FcC2 defined by the equation Cbz\ + cazf2 — 0.

THEOREM 5.1. The map 4P M —> C2 \ V is biholomorphic and Cx -

equivariant.

Proof. We shall prove that 4* is a bijection. Since u)a and u)b are

holomorphic functions on M, this will be sufficient to conclude that 4/ is

biholomorphic (see [2], p. 179). Put r —pq — p — q.
First we prove the injectivity of 4P Recall that uja and uJt, generate Aq.

Hence if 4f(z,w) — T^ZojWo), then oj(z, w) — oj(zo,Wo) for all lj G Aq. To

prove injectivity it is sufficient to show that for any two points (z, w), (zo, Wo) G

H2 x Cx which are not congruent under the action of G, there exists a

G-automorphic form oj such that oj(zo,Wo) oj(z,w). We can assume that
both z and Zo belong to the fundamental domain D\ of Tp>q. Recall that ufa

and <4 belong to Aq Also, fa vanishes at the vertex a with multiplicity p
and has no other zeros in D \. Similarly, ff vanishes at b and nowhere else

in D\. Thus there exists a unique (up to a scalar multiple) linear combination

/ — C\ff-\-C2fa which vanishes at Zo - This/ does not vanish at any point in D\
not congruent to Zo Now the point z is either congruent to Zo, or not. If z is not

congruent to Zo, then oj(z,dz) =f(z)dzk° vanishes at (zo, Wo) but not at (z, w).
If z is congruent to zo, we can assume that z Zo and that uj(z,dz) does not
vanish at (zo,Wo) nor at (zo, w). However, an elementary direct computation
shows that, if T^zo, Wo) — 4/(zo,ty), then Wo — w(c'(zo)yr for some integer j,
so that (zo,tyo) and (zo,w) are congruent under (the center of) G.

Now we prove the surjectivity of 4P Start by noticing that both H2 x Cx
and C2 carry Cx-actions with respect to which 4/ is equivariant. These
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actions are given by

<?* x (H2 x Cx) —> H2 x C* fxxC2 —> C2

A-(z,w) (z,Xw) ' A (zi,z2) (\hi,\*z2)

(Recall that Cx acts on C via the projection to Cx.) The second action

was already introduced in Section 2.3. Let us recall and reexamine the orbit
structure. It is easy to see that each orbit closure has the form

{(zi,z2) e C2 : cxz\ + c2zp2 0}

for some suitable pair of complex numbers (c\,c2). Conversely, each pair of
complex numbers (c\,c2) corresponds to an orbit closure. We want to show

that all orbits, except the ones corresponding to pairs proportional to (cb,ca),
are contained in the image of T*. Let (c\,c2) be a pair not proportional
to (cb,ca). Set

U) CXU)qb + C2U%

Then uj is a form in Aq and we have uj{z,dz) — f(z)dzk° with/ — c\fb -\-c2fp.
The choice of c\,c2 implies that / is not a scalar multiple of Hence /
vanishes somewhere inside H2, say /(zo) — 0. Then oj(zo,dz) 0 and we
have

x CX) gzaà e C2 \ (0,0) : aJ? + c24 0}

Thus the image of T* equals C2 \ V, which implies the surjectivity of lT.

The Cx -equivariance V follows from the Cx -equivariance of T* and the

fact that on H2 xCx the Cx-action and the G-action commute.

COROLLARY 5.2. The coset space SL2(R)/G is diffeomorphic to the

complement S3 \ K of a (p, q)-torus knot in the 3-sphere.

Proof. Recall that we have identified SL2(R) with its orbit in H2 xCx
through the point (i, 1). Restrict the two Cx-actions from the above proof
to R+-actions, i.e. consider only real positive A. Then each R +-orbit in
H2 x C x intersects each orbit of SL2(R) at exactly one point. On the other

hand, each R+-orbit in C2 intersects the three sphere S3 {|zi| H- |z21 — 1}
at exactly one point. The curve V and its complement C2 \ V are invariant
under the R+-action. The intersection K — S3 fi V is a (p,q)-torus knot.

Thus each R+-orbit in C2 \ V intersects both W(SL2(R)) and S3 \ K, each

at a single point.
Define a map p\ ^(SLAR)) —» S3 \ K sending a point of R)) to

the unique point in S3\^T which belongs to the same R+-orbit as (zi,Z2)- The
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R+-orbit through a point (zi,Z2) G ^(SZ^CR)) has the form {(A^Zi,A^Z2) :

I I2
A G R+}. The function F(A,Zi,Z2) (ArZi, A^Z2) takes all positive values,

and has nonvanishing partial derivative at all points. The implicit function
theorem implies that the value of A for which F(A,zi,Z2) 1 depends

smoothly on (zi,Z2)- We can conclude that the map p is a diffeomorphism.

REMARK 5.3. The above corollary shows that the torus knot complement
is a homogeneous manifold, i.e. admits a transitive group action. On the other

hand, SLi(K) with its left invariant metric is a model for one of the eight
3-dimensional geometries, as discussed in Section 2.1 and Remark 3.1. This
metric is not right invariant. The coset SLzQO/G is obtained by letting G
act on SL2ÇR) on the left. Thus the coset, and consequently S3 \ K, inherits a

locally homogeneous metric. However, the latter metric is not homogeneous,
i.e. S3 \ K does not admit a transitive isometry group. There is only a

1-parameter isometric action on the torus knot complement, induced by the

right action of the subgroup SO2(R) on SL2(R), and providing the Seifert
fibration structure.

6. A KNOT IN A LENS SPACE

We saw, in Corollary 5.2, that the complement S3 \KPtq of a (p,q)-torus
knot in the 3-sphere is diffeomorphic to the coset space SLz(R)/G where G

is a certain subgroup of the preimage T — P (Pp,q) of a (p, q, 00)-triangle

group TPtq C PSL2(R). The index of G in T is r — pq—p — q The only case

when G T is p — 2, q — 3, which gives YPtq — PSL2ÇZ1). In this case we

get S3 \ 7^2,3 — PSL2ÇR)/PSL2PL). It is natural to ask whether the coset space

SL2(R)/r — PSL2(R)/Tp!q can be identified with some other space, perhaps
related to the knot complement S3 \Kp>q. The answer is not hard to find, and

we present it in this section.

In Theorem 5.1 and its proof we have constructed a Cx -equivariant
biholomorphic map (H2 x Cx)/G —» C2 \ V. Recall that the action

of the center C of SZ^CR) on H2 x Cx coincides with the action of the

subgroup of Cx which is the preimage of 1 G Cx under the universal

covering map. Now observe that together G and C generate exactly T, so
that

((H2 x Cx)/G)/C - (H2 x C*)/f.
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Moreover, since CfiG {cr), the action of C on (H2 x Cx)/G reduces to a

cyclic action of order r. From the construction in the proof of Theorem 5.1 it
follows that this cyclic action is transmitted to an action on C2 \ V generated

by the linear transformation

Clearly the latter action (as well as the Cx-action) extends from C2 \ V
to C2, the curve V being an orbit closure. The action of (hi) on C2 \ o is

free. The quotient 2 C2/(hi) is a singular surface. Let W C 2! denote the

image of V, which is a singular curve in 2. Clearly

(C2\V)/(hi) z\ w.

Thus we have a Cx -equivariant biholomorphic map between (H2 x Cx)/T and

2 \ W. Now recall that we have identified H2 x Cx with the universal cover

of the bundle T'H2 of nonzero tangent vectors to H2. Since T P l(Tp>q),

we have (H2 x Cx)/r ru2/rp>q. To summarize, we have obtained the

following.

THEOREM 6.1. The quotient T'YP/Yp^ is Cx -equivariantly biholomorphic

to the complex surface 2 \ W.

Now let us turn our attention to the 3-manifolds. Recall that PSL2(R) acts

simply transitively on the unit tangent bundle t/H2. Hence PSL2(R)/rPtq
UH2/rp>q C T'H2/rp>q. The above theorem implies that PSL2(R)/Tp>q embeds

in 2] \ W in such a way that it intersects each R + -orbit exactly once. On the

other hand, consider the image of S3 \ K in 21 \ W. Let C and K denote

respectively the images of S3 and K in S. Notice that £ is a lens space: the

quotient of S3 under the free action of the cyclic group generated by hi. In
the notation of [18] we have £ — lfr,p(q 1 — p\-\-pp\)). Clearly K — £ PI W
and £ \ K is the image of S3 \ K in 21. Observe that £\K intersects each

R+-orbit in S \ W exactly once. Thus we can use the R +-action to obtain

a diffeomorphism between £\JC and the image of PSL2(J£)/Tp,q, as in the

proof of Corollary 5.2. Let us record this fact.

COROLLARY 6.2. The coset space PSL2(R)/TPtq is dijfeomorphic to the

knot complement in a lens space £\K.
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