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L’Enseignement Mathématique (2) 59 (2013), 39-72

LE PRODUIT HARMONIQUE DES SUITES

par Bernard CANDELPERGHER et Marc-Antoine COPPO

ABSTRACT. By means of an involutary binomial transformation on complex
sequences, we define a new preduct called “harmonic” because of its remarkable
properties towards harmonic sums. The Euler series transformation allows one to
deduce from these properties some new and remarkable identities.

1. INTRODUCTION

Dans 'espace CN° des suites & valeurs complexes, on considere la
transformation linéaire D associant A toute suite a = (a(1), a(2),a(3),...)
la suite D(a) définie par

Day(n+1) = Z(fl)k (Z) a(k+1) pour tout n> 0.
k=0

L’opérateur D est un automorphisme involutif du C-espace vectoriel CN°,
c’est-a-dire

a= D(D(a)) ;

Formellement, les suites a et D(a) sont liées par la relation d’Euler:

Y D@ =Y an) (Zzl) .

n>1 n>1
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La relation précédente montre en particulier que la suite harmonique n — —
n

L 1 . .
est invariante par D. En notant N cette suite, on peut donc écrire

Si D(a)D(b) désigne le produit de Hadamard (i.e. le produit terme a terme)
des suites D(a) et D(b), on définit un nouveaun produit dans CN' | noté x,
par la formule

a x b =D{D(a)D(b)) .

Il en résulte (par involutivité de D) que D(ab) = D(a) x D(b). Muni
du produit x, 1'espace vectoriel CN° est une C-algebre commutative,
associative et unitaire (mais non-intégre), I’élément unité étant la suite
do = (1,0,0,...) = D(1) on 1 est la suite (1,1,1,...). Une suite a est
inversible pour le produit x si et seulement si D(a) est inversible pour le
produit de Hadamard (i.e. D(a)(n) # O pour tout ).

Une expression explicite du produit a » b est donnée par la formule
suivante:

(@x b)n+1)= 0<§<n(1>"’(:) (’l‘) atk+ Db(n+1 -0 (n=0),
qui permet de le calculer pour de petites valeurs de n; on obtient ainsi
(a x b)(1) = a(L)b(1),
(a X b)(2) = a()b(1) + a(1)b(2) — a(2)b(2)
(a x B)3) = a3HI(1) + a(DHb3) + 2a(DN(2) — 2a(3HN(2) — 2a(Db(3) + a3)b3)

etc.

Le produit X posséde des propriétés remarquables vis-a-vis des sommes
harmoniques qui justifient sa dénomination de produit harmonigue. On
démontre (Théoréme 2) la relation suivante : pour toute suite «, on a 'identité

(% M a) (ny = %(a(l)+a(2)+---+a(n)).

De cette propriété d”harmonicité découlent plusieurs applications remarquables.
On obtient notamment (Théoréme 4) la formule suivante :

1 u AN
> o A = ;(71) L (m) T

wem > 1]
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qui s’applique a toute suite @ et pour tout entier k¥ > 1. Dans le cas particulier

‘ ‘ 1 . .
ol a est la suite harmonique 7 on retrouve la classique « formule de Dilcher »

(cf. [2], [3], [5D):

1 . mo{n) 1
Z nl...nk:mz::l(il) l(m)ﬁ’

n>m > 221
dont on donne une formulation plus générale (Corollaire 8).
On mtroduit les nombres

sO@m= — L amo

ny... Ry _
S LR

qui apparaissent comme une généralisation naturelle des nombres har-
moniques cg‘) de Rota et Roman (cf. [9], [10]): on a en effet la relation

1 ) . ;
c® = S(k)(ﬁ)(n). Par transformation d’Euler, on obtient la relation

Diay(n) , 1 z \"
e oo ()

n>1 n>1

A N . 1 ,
qui permet notamment, dans le cas oll a est la suite »n — Gn 17’ d’étendre
-

une formule de Ramanujan ([1], chapitre 9, Entry 34) pour la constante de
Catalan (Exemple 23 d)).

2. PRELIMINAIRES: OPERATEURS DANS L’ESPACE DES SUITES

2.1 IL’ISOMORPHISME &
NOTATION. Le C-espace vectoriel CN™ des suites
a = (a(l), a(2),a),...,an),...)

a valeurs dans C est noté £*.

DEFINITION 1. Si C[[z]] désigne 1’espace des séries formelles, on a un
isomorphisme naturel :
D: & — C[l=1]

défini par
7" 72 7
Bla)(z) = Z a(n + D = a(h) + a@z + a®)7 +a®< + ...

n>0
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DERNITION 2. Les opérateurs sur £* se transforment en opérateurs
sur C[[z]] via ’isomorphisme . Plus précisément, si U désigne un opérateur
sur £*, il lui correspond 1'opérateur u sur C[[z]] défini par la relation

PU=ud s u=0oUd™"
que l'on appelle I’image de U. On a donc le diagramme :

g Uy g

Tqu lcp
C[lz]l —*— CIlz]]

L’image de 'opérateur [ d’identité sur £* est notée Id.

EXEMPLE 1.

a) La suite ¢ définie pour Kk > 0 et n > 1 par
o= {; -
vérifie la relation
D)) =

Ona dp:=(1,0,0,...), 6 :=(0,1,0,. ) etc.
by La suite 1:=(1,1,1,...) vérifie ®(1)(7) = &*.
¢) La suite N:=(1,2,3,...) vérifie la relation

PO =Y+ D =2+ =1+ e

n>0

d) Pour « € C, la suite géométrique o' 1= (1, o, 0%, o, ...) vérifie la

relation .
B =Y T = e
o
) L it 1'*(1111 ) vérifie la relati
e asuleN.— YT vérifie la relation

1 s
; +1J_Z(n+1)'22(6 - D

. . ‘. 1
Dans la suite de 1’article, on désignera la suite ¥ Sous le nom de suite

harmonigque.
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NOTATION. Si @ et b sont deux suites dans £*, on note ab la suite
définie par

(ab)(n) = a(n) b(n) .

On a en particulier: 1la = a et §a = atk + 1)é; pour tout £ > 0. Muni de
ce produit (appelé produit de Hadamard), £* est une algébre commutative,
associative et unitaire notée 4. L’élément unité de A est la suite 1.

2.2 LES OPERATEURS L ET R
DEFINITION 3. L'opérateur L de décalage a gauche sur £* est défini par
La)m)=arn+1),
autrement dit
(a(l),a(2),a(3),...) Vo (a(2),a@),a(4),...) .

L’image de [ est 'opérateur de dérivation formelle &, car on a

n 2
PL@)D) = D aln+ D7 = a@) + aB) +a; + -+ = I,

n>0

DEFINITION 4. L’opérateur R de décalage & droite sur £* est défini par

Ra)(n) = {g(n— D sin>1

sin=1,
autrement dit
(a(1),a(2),a(3),...) i (0, a(1), a(2),a(3),...) .

La suite R(a) = (0,a(1),a(2),...) est notée (0,a). L'image de R est
I'opérateur d’intégration formelle |, car on a

Zn+1 Z2 z
P(R@)() = ;a(w Doy = Az +a@g 4= fo D)t

REMARQUE 1. On a la relation LR = I, mais on notera que RL n’est pas
I"identité:

(a(1), a2),a@),...) "5 (0,a(2),aB3),a),...) .
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23 LES OPERATEURS D ET §
DEFINITION 5. Soit V: £* — C le morphisme d’évaluation défini par
Via) = a(l).

Son image est 'application v: C[[z]] — C telle que w(P(a)) = P(a)(0).
L’opérateur D: £ — £* est défini par

Dmwy=V (I - Ly 'a) =v (-8 'd@),

c’est-a-dire

H

D(a)(n) = Z:(—l)'k_1 (Z_ i)a(k) pour tout 1> 1,

k=1

ou €ncore

Dia)y(n+1) = Z(—l)k (Z) atk+ 1) pourtout n>0.

k=0

On obtient ainsi

Da)(1) = a(l)
D(a)(2) = a(l) — a2)
D(a)3) = a(l) — 2a(2) + a(3).

REMARQUE 2. On définit dans [3] une version “continue” de 1’opérateur 2
dans un cadre différent.

PROPOSITION 1 (Relation entre D et la transformation binomiale). Soit T
la transformation binomiale définie sur £ = CN par

T(a)m) =Y (1) (Z) a(k),
k=0
et m: & — £* la projection naturelle :

(a(0),a(1), a(2),aB3),...) =+ (a(l), a(2).a(3),...)

On a la relation

.1 D(Ai/w(a)) = a(O)]lV — ]%w(T(a)) :
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Démonstration. On a pour n > 1,
D L@ ) §n(1)"*1"_1"(k>
aD| —m(a) | (n) = — —a
N £ k—1)%

==Y -1 (Z) ak) = ~T@m +a©). O
k=1

PROPOSITION 2 (Image de D). On a la relation
(2.2) D(D(a))(z) = &D(a)(—2),
autrement dit, image d de Uopérateur D est telle que pour tout f € C[[7]],
d(Hx) = ef(—o).

Démonstration. On a

PD@) D= Y (Z) Dfatk+ 1D,

n>0 k=0
" Zk ank
= DB e
; kz:; k' (n — k)
' 2
=D g ak+ DDA
>0 k>0 ’

=dP@(-z. U

COROLLAIRE 1. L’operateur D est un automorphisme involutif, autrement
dit,
D=D"
Démonstration. Pour montrer que D = D!, il suffit de montrer que
d=d!'. Ona

d(f) =g<=€f(—0) = 9@ = f(-=¢" 9@
= fO=¢g(-—=f=dg. U

EXEMPLE 2.
a) D) =dy, DNY=6p— 61, D(61)=1—N.
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b) On a vu que (V1) = ¢*. 1l en résulte par (2.2) que D! =
1.~
(1 — ). En particulier la suite (E)N " est invariante par D.
1

N
harmonique est invariante par D :

¢) Ona vuque () = %(ez — 1). 11 en résulte par (2.2) que la suite
D(ﬁ) =
PROPOSITION 3. Pour toute suite a, on a
(2.3) Di{ay=(U—-L)D{a).
Démonstration. On a
P(DLa))(2) = &P (LUw))(—2) = e IP(a)(—2) = e*Pla)(—2)— e D(a)—2)
dou DL=D—LD=(U—L)D. ]

DEFRINITION 6. L’opérateur de sommation S: £* — £* est défini par

n

S(a) (n) = Z atk) .

k=1
EXEMPLE 3.
a) S =1 S)=N.

1
b SV hH= 17(1 —a™) pour @ # 1. En particulier,
—

S((il)Nil) = (1+(71)N71) :(1,0,1,0,...).

| =

PROPOSITION 4. L'opérateur S est un automorphisme d’inverse
S~'=1-R.
Démonstration. On a
b(rn) = S(a)(n) < a(n) = b(n) — b(n — 1)

pour n > 1 et a(l) = b(1). L]
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1
NOTATIOlN. On pose H = f(N), 0 = S(ZNf 1), et pour k > 2,
k) . k. .
H( = S(]W) et O —S(m) avec:
1 1 1 1 1 1
— e — e — et S= =
Nk N N (2N — 1)} 2N —1 2N —1
S—— o
k &
Pour » > 1, on a donc
H(n) = Xn:l O(n)fzn:é
T =2k 17
k=1 k=1
"1 - 1
75 @y
H((n)—zk—z, 0 (n)_Z(Zkfl)Z'
k=1 k=1
EXEMPLE 4. Les relations
i “HE) 1 2 1
HE) = DH(r) — t = — Z(H —H®
DH® =+ DHm —n et == = (HW) + ZHYm)

k=1 k=1

se démontrent facilement par récurrence; elles se traduisent par

SHY=N+1H-N et S(JLVH) - %(H2 + H®y.
PROPOSITION 5. On a la relation
2.4 D(S(D))(2) = Pla)z) — e* / - e D (a)(—ndt,
Jo

Autrement dit, Uimage s de S est Uopérateur 1d —d [ d.
Démonstration. On a la relation (I — DS = L qui se traduit par
(@ — 1P (S(a)) = dP(a).

En résolvant I’équation différentielle (8 — Id)D(S(a)y) = OP(a), on obtient
P (S(@)) (2) = Pla)(z) + ¢° / e 'Dla)(ndt
Jo

= d(a)(g) — & /‘7 ed(ay(—ndt. [
Jo



48 B. CANDELPERGHER ET M.-A. COPPO

PROPOSITION 6.  Pour tout entier naturel p, Uautomorphisme DS? est
involutif :
DS =S7¥D = D).

En particulier,
DS=5"'D=—-RD.

Démonstration. Le cas p = 0 traduit I'involutivité de D. On a vu que
I'image s de S est 'opérateur Id —d [d. On en déduit que

S=I—-DRD.

Dot DS=D - RD = —RD = $71D = (DS)"!. On procéde alors par
récurrence sur p > 1 en écrivant que DSPH = DSPS = §7°DS = §7FS~'1D =
S—+bp O

1

EXEMPLE 5. Comme a = ¥ est invariante par D, on en déduit que
1 1 1 1
DIH=U-R){=)==+(0,—=) =4 0, -
c’est-a-dire
1
—— sia>1,
DH)(n) = n(n— 1)
1 sin=1.

PROPOSITION 7. Pour toute suite a € £%, on a la relation
(2.5) D 1S( ) 1D( )
. —Sa) | = =D(a).
N N

Démonstration. Comme S~ '=I—R,ona s '=1d— f, d’ ol

a(n+1)§
n+1 n!

O(S™Hw))(2) = la)(z) — / D)D) dt = D)) —2
<0

n>0
DPa)(z) — z9( ! )
= [4] — —d).
2) — (5
En remplacant a par S(a) dans la relation précédente, on obtient alors 1”égalité

& (1S(a)> _ P8@) — d@)
N Z

D’apres (2.4), on a donc
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D (iS(a)> = £ /‘7Z e'®(a)(—tydt .
N z Jo
oD 1S(
()

D’ou

M= N =

/Z eDlay—Hde
0

/ Z & (D)) (Hdt = P (iD(a)) . O
0 N

1
EXEMPLE 6. Par (2.5) appliquée a la suite 5 OB déduit

D lH le(l)fllfi
N/ TN\ T NN N2

d’ ol aussi
1 1 11 1

l Dy - Y- — —pg—
D(NH )_ND(NZ)_NNH_NZH'

2.4 FORMULE DE VANDERMONDE

NOTATION. Pour a € C, on note (o), =1 et pour > 1,
(), =cla+1D...(a+nrn—1).

On note ()y la suite n > (a),. On pose N!:= (1).

PROPOSITION 8. Pour oo € C et pour SR —{0,—1,-2,...}, on a la
relation

1 (O[)N) 1 1(B—ay
2.6 gl iy o SR Oy
@0 (N By N N (B
En particulier, pour « ¢ R — {0,—1,-2,...},
- 5 ((N 1)!) L -y 1
(@ N N@y N+a-—1

Démonstration. D’apres la formule de Vandermonde (cf. [7], p.25). on
peut écrire

(M@ =@ m, (B0,
Z( )()«m 2 Gm T By

La relation (2.6) s’en déduit alors par (2.1). ]
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REMARQUE 3. La formule de Vandermonde peut s’ écrire plus simplement

D ((O[)Nl) _ (B — ey
(B 1 Bv1

(2.8)

1
EXEMPLE 7. En appliquant (2.7) avec o = 3 il vient

D 2PVHEy 1 1 —1/2 2
(N(ZN)!) NN-1/2 2N-1'

- N
2Ny @2V
N/ T e
on en déduit

1 1 22N71
9 b (ZN 1) TN (T

d’ou aussi par (2.5):

2N—1
pllafalpgl 1 Jo 22"
N NN 1) TN

En posant

3. LE PRODUIT HARMONIQUE

3.1 L’ALGEBRE H = (£*, x)

On rappelle que 4 désigne I"algebre (£*, ) munie du produit de Hadamard
des suites.

DEFRNITION 7. On définit le produit harmonique a x b de deux suites a
et b dans £* par
a X b= DWD(a)D(b)).

Comme D = D~!, on déduit immédiatement de la définition précédente les
deux relations fondamentales suivantes:

G.1D D(a x b) = D(a)D(b),
et

3.2) Di(ab) = D{a) x D(b).
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EXEMPLE 8.
a) Onalxa=a(l)l, car
DA x a) = D)D(a) = dpD{(a) = D(a)(1)dy = a(1)dp = a(1)D(1) .
b) Ona N xa=a2)1+ (a(l) — a@))N, car
DWN)YD(a) = (90 — 60)D(a) = D(a)(1)do — D(a)(2)6
= a(1)DINY + a(2D(1 — N).
¢) Onao 'x N l=(@+8—ald¥ !, car
DMt x T =1 -)Ma - B!
= —(a+p-ap)’!
=D+ —af)¥ D).
dy Enfin, par la formule de Vandermonde (2.8), on a

&y — By (B -y, Oy — @y

D1 B (e

PROPOSITION 9. L’espace (£*,X) est une C-algebre commutative, asso-
ciative et unitaire notée 'H , isomorphe a l'algébre A. L’élément unité dans H
est la suite &y .

Démonstration. La bilinéarité du produit x résulte de la linéarité de D et
de la bilinéarité du produit de Hadamard. De plus, il résulte immédiatement des
propriétés (3.1) et (3.2) que 'opérateur I réalise un isomorphisme d’algébre
entre les C-algebres A et H.

1l en résulte que H hérite des propriétés d’associativité et de commutativité
de A. En particulier, I’élément unité de H est I'image de 1 par D, c’est-a-

dire 4y. L1

REMARQUE 4. IL’algebre H contient des diviseurs de zéro. On a par
exemple
1x 51 =0.

COROLLAIRE 2. Ure suite a est inversible dans H si et seulement si la
suite IXa) est inversible dans A (i.e. D(a)(@) # O pour tout n). Dans ce
cas, Uinverse harmonique de a est donné par la formule

M(—1) _ 1
33 a¥b = p (D(a) :
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Démonstration.
1
axnb=4% < D@Dby=D6yp=1 < Dby=——. [
Dia)
EXEMPLE 9.
a) Les suites 1 et N ne sont pas inversibles dans H.
1\ XCD
b — =DWN)=3dy)—9
) ( N) (N) =do — 01,
i a \V!
N—1yM(=D
c) (oz ) = (oz - 1) .

3.2 PUISSANCES HARMONIQUES k-IEMES

DEFINITION 8. Pour toute suite @ € £*, on définit pour tout entier k > 0,

la puissance harmonique k-iéme de a notée a** par

a® =68, et %D =" g,
Par récurrence sur k, on en déduit immédiatement la formule suivante:
a™ = D(D()...D@) =D ((D@)) .
N—— ——
k

En particulier, si a est invariante par D, alors a®k = D(a"‘).

EXEMPLE 10.
1\ 1

b) N = D5 — 60 =1+ (10 —N) = {

N si k est impair,
2—N sik est pair.

c) Soient les nombres de Stirling de deuxieme espéece

_ 1 - m—kf{ Y &
Stk,m) = Hij%(—l) (m)m .
On a
k
GO =" alStk, m)dy,

n=0

car

("% = D((l)k(N - 1)")
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et

D((-D"N-1D")(n+ D= Z(—n'""( >m" = nlStk, n).

n
m
m=0
3.3 IMAGE DE H DaNs CI[z]]
THEOREME 1. Pour toutes suites a et b, on pose

(D@ @ D)) (x,y) := P@DPBH)P).

On a alors

H

G ax DO =Y @@ u)E + I, — AR (P @ DB)

n>0

Il en résulte que pour tout entier n > 0,

@wbn+D= Y Clak+Dbl+1),
0<k<n
0<i<n

oit les nombres CE' sont définis par Uidentite

X4+T7-X0"= Y X7
0<k<n
0Zi<n
Démonstration. On a

B(a 1 b)) = D (D(D@DEB)) ) @) = ED(D@DB)) ()

et

D+ 1)=v(1d—"P@) avec v(P(@) = Pa)y0) = a(l).

D’ou

(D@D®) ) (n + 1) = (v, @ v)[d —8)Ad — )" (P(a) @ D(B)) (£, y)

53

— (1 @ ) —(Bs + By — BN (D) ® BBY) (x, 7).

On en déduit que

O (D@DB))(=2) = (1,80 [1~Ds+8,—2,0,)]" (@@ D) (~1)' S

n>0
= e (1, @ 1,)e 0TI EIE (D(a) @ DB)).
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Il en résulte que

Bla X bY(2) = (v, ® v,)eP B EDD(a) @ D(b)
= 2 5 B )G + 8, — 30 (M) B 2B) .

n>0

Par identification du terme général, on en déduit que

ax byn+1)

(v @ vy ) B + Iy — 8,0, (Pla) @ D(B))
= > (@ v)Cr Hd(a) BDD)

0<k<n
0<i<n

= Y Glak+Dbi+1)
0<k<n
0<i<n

avec
X+Y-xry= > c'xv. O

0<k<n
0<i<n

COROLLAIRE 3 (Expression explicite du produit harmonique).

@xbyntD= 3 (—1)’”(,’(’) (’;’) atk+Dba+1-0 (n=0).

0<i<k<n

Démonstration. En développant (X 4+ Y —XY)" par la formule du bindme
et en identifiant le coefficient de X*¥, on vérifie que

n!

ki _ o qvhH—n -
G = e DI k!

sin <kt et C’,‘;[ = 0 sinon,
d o
(@xb)n+1)= Y Colak+ Dbl + 1)

0<k<n
0<I<n

_ _NkH—n n!

_g;n( D D =Dtk —my @k DR D
0<i<n

ien

-3 (—1)"’(2) (’;) atk+ Dbn—I+1). [

0<i<k<n
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COROLLAIRE 4. On a la relation
(3.5 D(a M b)(2) = vy (P(@[Ad —Iz1DB)y + z]) .
Il en résulte que
(3.6) O (! wa)(z) = e¥Pa) ((1 — a)z),

ce qui se traduit par Uidentité

n k
G.7) @'t =a" (Z) (1 ao‘) atk 1 1).
k=0

Démonstration. On a
OB =080y = 20 02 P(a)el®* = D(a)[x + (1d —B))z]e P
donc
Dla % b)) = (vs @ v)P(@[x + Id —,)z]e @ (D)
= (v @ v)D(@x + (Id —3)z]PBy + 2]
= vy (P(@[Ad -3 PB)y + 21) .
On a vu que o™ 1)z) = e™ donc
B! M @)(@) = vy (Bl DA —D)ZD@]y + 2])
= vy (M~ PD(@)ly +2])
= €™ (efazay D)y + Z])
=y %8’1@@1)(2)

n>0

=M P@y((1—a)x). O

EXEMPLE 11.

1 N—1 1 n 1
() <o oo

k=0

PROPOSITION 10 (Caractérisation des suites invariantes par D). Ure suite
a € & est invariante par D si et seulement si elle peut s’ écrire sous la forme

N—1
a= (l> X b,
2

ot la suite b€ £* est telle que b(2k) =0 pour tout k > 1.
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Démonstration. On a
D(@a) = a = (D)) = Pla) & eDla)(—z2) = Dla)z).

Posons ¢(z) = e*§®(a(z)). On a donc D(a) = a < ¢z) = ¢(—z). Dans ce
cas, ¢ peut toujours s’ écrire

RS Cb(b)(%) avec b(2n) =0 pour n > 1,

et on a alors

l Z N
Dla(z)) = e? p(z) = eiqb(b)(%) = Cb((§> X b) @. O

EXEMPLE 12.

a) La suite harmonique s’écrit

1 lel
ﬁ_(i) il

1
b:— 71 71: 10
avec v M (—1)W (1,
b) La suite

1 1
=0,=,...).
73775? )

L)
2

| =

fl((g 1)*(11
=30 +h=0d73,

est invariante par D. Elle s”écrit
1AV

a=|= x (1,0,1,0,...).

(2> ( 7 ? ? ? )

REMARQUE 5. On comparera le critere d’invariance précédent avec celui
donné par Sun ([11] Corollary 3.3 (a)).

REMARQUE 6 (Sommation d’Euler des séries). Pour ¢ > 0, on définit la
suite @? par

n

1 ny
aPm+1) = (qu—l)" Z (k)q katk + 1) (n>0).

k=0
D aprés [6], lasérie 3" . a(n) est dite (E,q) sommable si la série 3~ .| a9(n)
converge; on pose alors

(E,9) oo

1
Za(n) = i aPn+1).
n>l 4 + n=0
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D’aprés (3.7), on a I'interprétation suivante de a'?

- q
d? ="' xna avee o= —

g+1°
On obtient ainsi une reformulation du théoreme de Hardy ([6], p. 178-179)

THEOREME (Hardy). Si la série Zn>1 a(n) est convergente alors elle est
(E,q) sommable et on a

1 +oo q S ) +oo
X d n)— an).
q+1;((q+1) (n) ;()
3.4 HARMONICITE

THEOREME 2. Pour toute suite a € £*, on a la relation

(€R.)

1
= —Sa).
X a N(a)

zl=

1 1
Démonstration. 11 suffit de montrer que D(ﬁ X a) = D(—S(a)).

par (2.5), on a D(%VS(a)) = ]%D(a) = D(ZLV)D(a) = D(]lv xa). [

COROLLAIRE 5. Pour tout entier k > 1

1

1 1

2k
Démonstration.

1) %t 1
D(Nk+1 = =y ﬁ
1 Kk L
(7)) =52 o

EXEMPLE 13.

A 2)
2N(H + H®).

P
z| =
~—

&
\
=
%l -
[l
I
tn

N
Z| =

o
I
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NOTATION. Pour tout pe R—{—1,-2,...}, on note p! =T (p+1); on
note I'(N + p) la suite # — I'(n + p). On pose

I'(N + p)
N, 1= T

Pour p entier naturel, on a (N); =1, et pour p > 1

Ny =NN+1--WN+p—-1D.
Le théoréme 2 se généralise alors de la maniére suivante:

THEOREME 3. Pour toute suite a € £* et tout véel p# —1,-2,-3,...,
on a la relation

P! P! ((N)p )
3.9 = S| —
G2 Np i1 e Np i1 ! o

ce qui, pour p entier > 0, se traduit par

n

p! Zk(k+1)---(k+p*1)a
n(n+1)...(n+p) p!

(o

NOED o M=

k).

k=1
Démonstration. En appliquant (2.7) avec p =« — 1, on obtient

D( 1 )_(N—l)!_F(N)F(erl)_ p!
N+p Pty TWHp+D Ny
par conséquent,

p! ( 1 )
xa=Dl——D(a)].
(N)erl N +p

Posons alors

@ = (D(LD@)) @.

N+p
On a
. EEENC
frri@=e ;(D(“))(’l MR TSR
et donc
n+p+1
e‘zzp“j;H(z) — Z(D(a))(n + 1)(71)nmz _

n>0
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Par conséquent,

e T @ = / IPZ (D@)n+ DED" 7dt

n>0

Z In
— L 1—dt
/0 e Za(nJr )n!

n>0
= / ‘ e 'PD(a)(Ddt .
J0

On obtient donc

1 z
— GL —tp
@ =€ Joe Dla)(D)ds .

Par le changement de variable u = #z, on a aussi

1
Jo1(2) = / YD (@) (uz)du

7 ' Iop+k
El_' (k+1)‘/0 (1 — wlwdu

N+ B
—Zm e D e T

[(p + !
_Zn' > W“( AR PR

n k-+l=n

_ (p+ 0!
Zn'zk’(ernJrl)' a1

Or,
Z nl @p+h e Ty 1 %k(ﬂl) (k+p—1yak)
E @+n+D) IRCESVNNCERESD) k=1 e

ce qui montre que

p! 1 p! N, ))
(4] =0 —S{N =¢ == .
((N)p+1 ) a) ((N)p+1 ( )Pa)) ((N)p+1 ( ! ¢ -

EXEMPLE 14. Pour p =1, on a

! 1
NNTD YT NNV D

S(Na)
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c’est-a-dire

1 1 .

On en déduit que
(L X a)(n) _ En (n+1—k ak)
N+1 a1 = '

COROLLAIRE 6. Pour toute suite a € £* et pour tout entier p > 0,

1
3.10 D[ ——=58 =
3.10) ( o (a)) o

Démonstration. Par récurrence sur p. Pour p = 0, c’est la formule (2.5).
En écrivant (V), 1 = NV +p)(V),, on obtient

1 1 1
D S =D| —— D[ —3i
(<N>p+1 (“)) (N+p) 5 (ov)p (‘”)

p! 1 —1
= —SPHD
™o M ™, (D(a))

P! W), 1 -1 )
= S| ————8"(D
™ (p5 > (@)

SP(Dw). O

SP(D(@)) .

"W

EXEMPLE 15.

1
P: =—cecp=1,
a) Pour a Nep

b H  H
NN+1/ NN+’
b) P 71 t p=2
oura—Nep—,

D H B S(H) . SN W
NN+DWN+2))  NN+DWN+2)  NN+2) N+1 ' Ntz

c¢) Pour a:ﬁ et p=1,

o 1 1 2 H
(N(N 1 1)) SNV (JT/H> TN ID NN D
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COROLLAIRE 7. Pour tout réel p£ —1,-2, ... ,0ona

D(l)_P!NP!_P!S(1>.
N + p)y? MNpr1 - Ny Ny \N+p

Démonstration. Par (3.9),

p!Np!:p! ((N)pp!)_p!s(1> 0
Npr1 W Ny Pt (N)ppy N1 \N+p)

EXEMPLE 16.
a) Pour p=1,

of 1 L (v N__H 1
(N+12)  NN+D \N+1/  NN+1D) N+1?2°

ce qui peut se réécrire:

v o 1
NNTD o P\ rE)

1 I'(}) 1
(o) =m(v1):
CEDZANCTME
ce qui peut se réécrire:

1 22N71
() - o

N

b) Pourp:—%,

c’est-a-dire

Y e — ()—Ei# (cf. [1], p.293 (34:3)
((2N1)2>n_n(2n") o1 P S

REMARQUE 7. Plus généralement, on peut montrer que, pour tout entier

k>1,ona
1 N!
D = PSSO, sy
N +pfH) T N+ Dy P d

avec, pour 1 <m <k,

n

(m) — 1
SO=D i

J=1
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ol les Pi(Xy,...,X;) sont les polyndmes de Bell modifiés (cf. [3], [5]) définis
par la fonction génératrice

exp(ZXm%m) = PXy,. .. XA

m>1 k>0

En particulier, pour p =0,

1 1
D(W) = D H, L HS),

1
et pour p = 75,

! 2 @ ®
D((ZN_ 1)k+1) =) N(%V)Pk(O,O e, O,

4. LES SOMMES HARMONIQUES

: 5 1
On rappelle la propriété d’harmonicité (3.8): K oa = ﬁS(a). Cette

1
propriété justifie la généralisation suivante.

DEFNITION 9. Soit une suite @ € £*, on définit pour tout entier naturel £,
la somme harmonique k-iéme de a notée S®(a) par la formule

@1 1) = Logg
g N Na’—N a).

EXEMPLE 17.

42 Dla) = R o Nkmifis(’”(i)
' N T AN AN N N~ N

D’ou

1 1
SW(L) =MD ()
ce qui se traduit par
1 1 . n\ 1
) _ _ -1
SO(5) ) = nD () () = ;(fl)m (m> —-

Plus généralement, on a I’identité suivante,
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PROPOSITION 11.  Pouir toute suite a € £* et pour k > 1,

w1

. 1
43) SPaym) =Y (—1y! (") D(a)(m).
m=1 i
Démonstration. D’ aprés (4.1) et la définition du produit harmonique,

L ) ! Mkm DL D@y
— a) = — a = - a
N N NE
S®ay = ND ! D
(@) = ND(p Dé@),
ce qui se traduit par

1
=1

1 n
W@ = Dy D) (n) = Z(l)”‘—l(;) D@m). O
m=1

On va a présent donner une autre expression des sommes harmoniques.

PROPOSITION 12.  Pour toute suite a € £*, on a SO(a)(n) = na(n) et la
relation de récurrence:

44 SEHDay(n) = Z iS(")(a)(m) pour k= 0.

m=1

Il en résulte que SV(a) = S(a), et pour k> 1,

4.5 sP@m= — L .

n...Rn_
wrm om0 L AL

1 .
Démonstration. On a 8y M a = —SP(a), c’est-a-dire S@(a) = Na. Pour
k >0, on peut écrire par (3.8) et (4.1),

1 1 X (k+1) 1 1 Mk 1 1 Xk
]VSUH'»U(“) = (ﬁ) X da= ﬁ X (ﬁ) Xa| = NS (ﬁ) Xoda) .

On en déduit la relation de récurrence

kA Dp oy — £ “* _of Lw
S (a)—S((N Mal|l=>5 NS (a)

qui se traduit par (4.4). La formule (4.5) s’en d éduit aussitot par récurrence. [
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EXEMPLE 18.
(0)lf (l)l, (Dl, l ,1 2 2)
s (N)_1, s (N)_H, S (N)_S(NH)_z(H +H?).

THROREME 4.  Pour toute suite a € £*, et pour k > 1, on a Uidentité

1 _ 1
4.6) > 7na(nk>—2( 1 1( >mk—1

...
n2n 2 2w >l m=1

Démonstration. La formule (4.6) résulte des formules (4.3) et (4.5). [

COROLLAIRE 8 (Formule de Dilcher généralisée). Pour k> 1 et g > 1,
“.7)

11 o\ 1 1
Z n nk,ln_z:Z(il) l(m>ﬁ Z My gy

aEm > mel L mEmy> e >my g >1

1
Démonstration. On applique (4.6) a la suite a = el Par (4.2), on a

1
D(a) = NS@ 1>(N). O

EXEMPLE 19.
1
a) a= ]W

S e e (o) 5
2 k7
nom > o>l - e 1 m=1 " m

1
b) a=—,
) a e
2;
1 1 (0 (H) + H®m)
> L),
wEm > e m 1 ny... .1 nk j— m m

c) a=

IN—1'
1 1 2 p2m—1
> = 20 ()
arm> 2>l BBl e m=1 ", m(m)
1
d S —
) (2N — 1p

1 I 2"~ 10(m)
2 n nkl(anfl)2 Z( K () mh (0

nemzeznzl m
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5. LA TRANSFORMATION D’EULER

5.1 TRANSFORMATION D’EULER FORMELLE DANS C[[z]]

THEOREME 5. Soit a € £%, on a la relation dans C[[z]]

(5.1 ZD(G)(H)Z" =— Z a(n) (ﬁ) )

n>1 n>1

Démonstration. Par définition de D(a), on a

Dian+ D" =S 2 3 —1 (" Vatk+ 1.
k

n>0 n>0 k=0
Or
" . n ny .,
S S (k) atk+ 1) = 3 Deatk + 12 S (k)z ¢
>0 k=0 k>0 n>k
=Y (- Dfatk + DFA - 7!
k>0
k
= —Z( 1y a(k+1)( )
k>0
= —Za(kJr 1)( ) :
k>0
D’ou .
A+l Z Z
> D@+ D" = atk+ 1)(1— 1)
n>0 k>0
qui est la relation cherchée. [

EXEMPLE 20. D’apres les exemples 15a), b).¢) et 16a), on a les relations
suivantes:

Hn ,_ 5~ Hm (2 Y

2 ;n(nJrl) Zn(n+1)( )
B N S I (=Y
_;(HI)ZZ ;(nH)Z(zl) ’

H(m) _ H(w z .,
K gm 7Z<n+1>(n+2) Zn(n+1)(n+2)(zfl)’
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1 (H(n) HO® HPm) 7
©) iz Zn(n+1) Zn(nJrl)z "

COROLLAIRE 9. Pour toute suite a € £ et tout entier naturel k, on a
Uidentité

D 1 !
(5.2) 3 (‘3((") =3 = sP@m (ZLI) .

n>1 n>1

1 1
Démonstration. D’apres (4.1), on a ]WD((J) = D(NS(k)(a)). La for-
mule (5.2) résulte alors de (5.1). ]

EXEMPLE 21.

1
a) En appliquant (5.2) avec a = N on obtient pour k> 1,

GH  Li@=-Y1 3 1 (Z )

... A0
n>l  nrzm>-rm >l

ol Li; désigne (formellement) le polvlogarithme

: I
Lit(z) := Z JZ .

n>1

1
b) En appliquant (5.2) avec a = w2 on obtient pour k> 1,

H(n) 1 1 z Y
G4 k+1 B Z Z Hy ..M ”_1% ( ) :

z—1
n>1 n>1 n>n1> 2wl

c) En appliquant (5.2) avec a =

, on obtient pour k£ > 1,
2N —1

1 22n 1
6 iy L

2 n>1 (n) et

1 1 ! =Y
:*ZE Z nl...nk—lznkl( )

z—1
n>l  wrm>ozn>l
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d) En appliquant (5.2) avec a = on obtient pour k > 1,

1
(2N — 1)’

1 27" O(n) n
(5.6) 5 Z>: (Zn) PYEE Z
n>l

n

-2y ()
- n n .o G — D2 \z—1/ "

n2l  nzmz-ozm2l

5.2 TRANSFORMATION D’EULER ANALYTIQUE

THEOREME 6. Soit une suite a € £*. Si la série Y ., a(m)z" est
convergente dans le disque unité D(0, 1) alors la série En>1 D(a)y(m)z" est
convergente dans le disque ouvert D(0, %) et on a pour tout z € DO, %)

oo +oo 7 n
; Diay(m)z" = — Z a(n) (Z—l) .

n=1

. ; Z P . . ; " . o
L’application z — 1 étant involutive, il en résulte que si la série

Zn>1D(a)(n)z" est convergente dans le disque D(0,1) alors la série
EnZl a(m)z" est convergente dans le disque ouvert D(O0, %) et on a pour
tout z € DO, 1)

“+oca

—+ oo n
S amy = - D@ (ZLI) .
n=1

n=1
Démonstration. Pour z € D(0, 1), posons A(z) = ::og aln+ 1Dz On a
pour tout 0 < r < 1 et pour tout entier £ > 0

atk+ 1) = LY 28

—du
N k 1 1
2im | con +

olt C(0,r) est le cercle paramétré par t s re”, avec t € [0,27]. On en déduit
que pour tout entier n > 1 on a

1 1\"A
JC0,7)

On va montrer que

. 1 1.\, .z
> Dlayn+ D" = = / > (z(l - u)) Adw) .

0 JCO.N =0
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1
Pour cela, il suffit que la série En>0(z(1 — f))nA(u)i soit normalement
= u u

convergente sur le cercle C(0,r), ce qui est le cas si

< |/ -
< |
2
Or, si #€ C0,r), on a " el ! ! ), donc i L
’ v u—1 P—1"1—72"" u—1|"r+1
On en déduit que si [z] < " alors on a
r+1
n+1 1 Iy\n £
> D@+ Dt = — (z(1 — =))"A@) ~du
2”1—. C,n 4] U
n>0 >0

—1
= ;A(u)du.
2imw Jcwo,n UZ —Z— U

Comme 0 < r < 1, ceci prouve que la série >~ . D(a)(n+ Dz est
) >
convergente dans le disque X0, 5). D’autre part,

z z 1 Au) 2\ Aw)
Uz —z—u L 21 1l z ZO(ZI) w1

n_

uz—1
Cette derniére série converge normalement sur C(0,7) si

< —
—1 lu| =r

r? r )
r2—1"1—r2""
2

ce qui est le cas si z € D

. ‘ r r r r
En conclusion, si z € D(ﬁ’ ﬁ) ﬁD(O7 "y 1) = D(O’r—i— 1)7
alors on a
a1 1 Alz)
5D Dt =S () d
— (@) + 1)z nzo(z = 1) 2im Je,n w'! "
Z ntl
e z—1

1
Comme 0 < r < 1, ceci prouve qu’on a 1’égalité dans le disque D(0, 5). L]

Par le Lemme d’Abel sur les séries entiéres, on déduit du théoreme
précédent le corollaire suivant.
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COROLLAIRE 10.
(1) Si les séries anl alm)y(—1)" et ZnZID(a)(n)(%)n convergent, alors on
a légalité

+oo " +oo
> Diaxm (5) =S,
n=1 n=1

(2) Si les séries znle(a)(n)(—l)" et anla(n)(%)n convergent, alors on
a Uégalité
+o0 —+oo 1 "
- 'D = =
;< )" D(a)(m) ;a(n) ( 2)
EXEMPLE 22. D’apres 'exemple 20a), on a (cf. [1], p. 248)

(s e}

= Hm) (— D" 'H(n) 1 ) 1 5
= = 2Lix(= Lir(—1) = =((2) — log™(2).
2:;2"n(n+1) Z n(n + 1) i2(3) + (-1 = 7(2) — log’®)

COROLLAIRE 11.  Si la série 3, a(m)z" est convergente dans le disque
D(0,1), alors on a pour tout z € DO, %) et pour k> 0,

= D(@)®) _, 1 r Y
(5.7 HZ:; TZ = = HZ:; ;S(k)(a)(n) (Z—_l) :
En particulier, pour k=1,
D@ , =1 z \"
(5.8) ; ——=- Z:; —S(a)(n) (Z—_ 1) _
D) 1

1
De plus, si les séries 3~ et >0 —S®(@)m)(—1)" convergent,
n

T 7
alors on a ’égalité

= (—1 D
(59 > SOy = Z—éﬁ,’lﬁ”}.

n=1 n=1
Démonstration. Sila série En>1 d(n)z” converge dans le disque D(0, 1),

1
alors il en est de méme de la série > ., —S®(a)(m)z". Cela résulte de la
2l p

relation de récurrence (cf. (4.4)):

1 1 /1
— SU+D) = —_ 5 =s®
o @=gS @),
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et du fait que si une série >~ ., b(n)z" converge dans le disque D(0, 1), alors

1
il en est de méme de la série > ., —S(B)(mw)z". On peut alors appliquer le
= n

1 1
B, R *) o
Théoréme 6 car D (N_S (a)) =N D(a). ]

EXEMPLE 23.

1
a) Pour a= N ona D(a)y=a, dol pour k=1,

= H o1 1 1
SR S 1 (3) = 560 - 3l€@) . [1), p.248)

n=1

et pour k=2, (cf. [1], p. 249)

Y S Hmy 1, ] g Il 7
; ” mZIT—Lla(E)—g(logz) 5{@log2+ 2((3).

1 1
b) Pour a = e on a D(a)= ﬁH’ d’ot pour £ =0,

- 1 H 1
Do =3 zf];) = 5@,
n=1

n=1

pour k=1,

2 H®m) SN Hw) 1
i f 1— — — — =
,?:1( 1y " > gz = @) — 7(@Dlog2 (ef. [1]. p.258),

n=1
et pour k=2,

i ! Z":H(z)(m) — H(m)

n m 23
n=1 m=1 n=1

1 2N—1

1
¢) Pour a= N1 on a D(a) = ﬁw, d’ol pour k=0,

D DD R i
D :EZ = :% (formule d’Euler: cf. [8]),




d)

(1]
(2]

(31

(4]

(5]

(6l
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pour k=2, (cf. [4] (2.67))

Sy o s = Tee2 T P,
n=1

m=1 2n=1 f’l3 (2;:) 16 2

o G désigne la constante de Catalan:

2N—1

1
Pour a = m, on a D(a): N(ZNT)

1o 2" Om)
PN

(formule de Ramanujan pour la constante de Catalan: cf. [1], p.293-2%4).
Pour k =1, (cf. [4]1(2.36)et (2.37))

D" o T 27 O()
e N L

O, d’ou pour k=0,

pour k=2,
A (DTS 0Py g 2t O(H)
2o n e
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