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L'Enseignement Mathématique (2) 59 (2013), 39—72

LE PRODUIT HARMONIQUE DES SUITES

par Bernard CANDELPERGHER et Marc-Antoine CoPPO

ABSTRACT. By means of an involutary binomial transformation on complex
sequences, we define a new product called "harmonic" because of its remarkable
properties towards harmonic sums. The Euler series transformation allows one to
deduce from these properties some new and remarkable identities.

1. Introduction

Dans l'espace CN des suites à valeurs complexes, on considère la

transformation linéaire D associant à toute suite a — (a(l),a(2),a(3),...)
la suite D(a) définie par

D(a)(n + 1) 1)* #(& +1) pour tout n > 0.
k=o W

L'opérateur D est un automorphisme involutif du C-espace vectoriel CN
c'est-à-dire

a D(D(ä))

Formellement, les suites a et D(a) sont liées par la relation d'Euler :

y:D(a)(ri)zn - a(n) — "j

n>1 n>1 '
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La relation précédente montre en particulier que la suite harmonique »4 -
n

est invariante par D. En notant — cette suite, on peut donc écrire

KN) N
Si D{a)D{b) désigne le produit de Hadamard {i.e. le produit terme à terme)

des suites D{a) et D{b), on définit un nouveau produit dans CN noté x,
par la formule

a m b D(D(a)D(b)).

Il en résulte (par involutivité de D) que D(ab) — D(a) m D(b). Muni
du produit x, l'espace vectoriel CN est une C-algèbre commutative,
associative et unitaire (mais non-intègre), l'élément unité étant la suite
So — (1,0,0,...) — D{1) où 1 est la suite (1,1,1,...). Une suite a est

inversible pour le produit x si et seulement si D(a) est inversible pour le

produit de Hadamard {i.e. D{a){ri) ^ 0 pour tout n).
Une expression explicite du produit a m b est donnée par la formule

suivante :

{a n b){n + 1) y2 (j a(k + +1-0 {n > 0)
0<l<k<n V / V /

qui permet de le calculer pour de petites valeurs de n ; on obtient ainsi

{a n b){l) a{l)b{l),
{a n b){2)=a{2)b{l)-\-a{l)b{2)-a{2)b{2),
{a n b){3) a{3)b{l) + a{l)b{3) + 2a{2)b{2) - 2a{3)b{2) - 2a{2)b{3) + a{3)b{3)

etc.

Le produit ix possède des propriétés remarquables vis-à-vis des sommes

harmoniques qui justifient sa dénomination de produit harmonique. On
démontre (Théorème 2) la relation suivante: pour toute suite a, on a l'identité

{h M a) ^ n
+ ^ ^ '

De cette propriété d'harmonicité découlent plusieurs applications remarquables.
On obtient notamment (Théorème 4) la formule suivante :

1 * /n\ 1

E E^-D""1 "
JXaXnn
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qui s'applique à toute suite a et pour tout entier k > 1. Dans le cas particulier

où a est la suite harmonique —, on retrouve la classique « formule de Dilcher»

(cf. [2], [3], [5]):

Z —!— £(-*f'Mln\... m
n>ni > >»/;> 1 m= 1

dont on donne une formulation plus générale (Corollaire 8).

On introduit les nombres

S(k\ä)(n) V) <*("*)
4^ «i • • -nk-\n>n\ > 1

qui apparaissent comme une généralisation naturelle des nombres

harmoniques cjp de Rota et Roman (cf. [9], [10]): on a en effet la relation

c(k) — S(k) (n). Par transformation d'Euler, on obtient la relation

z' n n V z — 1 /ri> 1 ri> 1 V 7

qui permet notamment, dans le cas où a est la suite n i—>• —-, d'étendre11 (2n — l)2
une formule de Ramanujan ([1], chapitre 9, Entry 34) pour la constante de

Catalan (Exemple 23 d)).

2. Préliminaires : Opérateurs dans l'espace des suites

2.1 L'isomorphisme <3>

Notation. Le C-espace vectoriel CN* des suites

a - (a(l), a(2), a(3),a(n),...)
à valeurs dans C est noté £*.

DÉFINITION 1. Si C[[z]] désigne l'espace des séries formelles, on a un

isomorphisme naturel:
<&: £*—>C[[z]]

défini par

z"

n\
a(n + 1)^- a(l) 4- tf(2)z + a(3)^- + a(4)^- +^ «" M V r~\

n>0
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DÉFINITION 2. Les opérateurs sur S* se transforment en opérateurs

sur C[[z]] via l'isomorphisme d>. Plus précisément, si U désigne un opérateur

sur £*, il lui correspond l'opérateur u sur C[[z]] défini par la relation

<t>U wd? -o- u — Ot/O-1

Ê* —^ £'

que l'on appelle l'image de U. On a donc le diagramme:

S*

I*
C[[z]] —^ C[[z]]

L'image de l'opérateur I d'identité sur £* est notée Id.

Exemple 1.

a) La suite 8k définie pour k > 0 et n > 1 par

1 si n — k + 1

8k(n) -
vérifie la relation

0 sinon

z*
®(4)(î) TTk

On a ôo:= (1,0,0,...), Si := (0,1,0,...), etc.

b) La suite 1 := (1,1,1,...) vérifie d>(l)(z) — ez.

c) La suite N := (1,2,3,... vérifie la relation

d>(A0(z) V(n + 1)—T zà + ez (1 + z)ez.
ni

n>0

d) Pour a G C, la suite géométrique o^~l (1, a, a2, a3,... vérifie la

relation

ni
n> 0

1 111 ^e) La suite — :=(1,vérifié la relation

0(-)(z) V—= Y" V - 1)W' n-\- 1 n\ ^(n+1)! z
n>0 n>0

Dans la suite de l'article, on désignera la suite — sous le nom de suite

harmonique.



PRODUIT HARMONIQUE DES SUITES 43

NOTATION. Si a et & sont deux suites dans £*, on note ab la suite

définie par

(ab)(n) — a(ri) b(ri)

On a en particulier: la — a et — a(k-\- 1 )Sk pour tout k > 0. Muni de

ce produit (appelé produit de Hadamard), S* est une algèbre commutative,
associative et unitaire notée A. L'élément unité de A est la suite 1.

2.2 Les opérateurs L et R

DÉFINITION 3. L'opérateur L de décalage à gauche sur S* est défini par

L(a)(n) a(n-\- 1)

autrement dit

(fl(l)s«(2),«(3),... («(2),«(3), a(4)t...

L'image de L est l'opérateur de dérivation formelle d, car on a

<!>!/«/> (.:> Kt)| - «(2) + fl(3)î + «(4;::!- + - ma)(z).
n>0

DÉFINITION 4. L'opérateur R de décalage à droite sur £* est défini par

{a(n
— 1) si n > 1

0 si n — 1,

autrement dit

(«ü),ff(2),ö(3),...) A (0, rt(l),a(2), «(3),...)

La suite R(a) (0, a(l), a(2),...) est notée (0,a). L'image de R est

l'opérateur d'intégration formelle f, car on a

7«+l T-2 ÇZ

O(Rio))(z) Y]a(n-\- 1). - «( 1 )z + a{2) — H / <t>(a)(t)dt.^ (w+1)! 2! Jo

REMARQUE 1. On a la relation LR I, mais on notera que RL n'est pas
T identité:

u/( I ).»(2).(((3|. ..|Ä (0, a(2),a(3), ff(4),.. ,'J
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2.3 Les opérateurs D et S

DÉFINITION 5. Soit V: S* —^ C le morphisme d'évaluation défini par

V(a) a(l).

Son image est l'application v. C[[z]] —> C telle que i>(0(a)) — 0(a)(0).
L'opérateur D\ S* —> S* est défini par

D(a)m v ((/ - Ly-1«) v ((-S)"-'0(a))

c'est-à-dire

n
— 1\

D(à)(n) — ^^(— l/-1 y j a(k) pour tout n > 1,
a=I ^ '

ou encore

D(a)(n + 1) \^(—1)* a(k + 1) pour tout n > 0.
k=o W

On obtient ainsi

Z)(a)(1) a(l)
D(a)(2) a(l) - a(2)

D(a)(3) a(l) - 2a(2) + a(3)

REMARQUE 2. On définit dans [3] une version "continue" de l'opérateur D
dans un cadre différent.

Proposition 1 (Relation entre D et la transformation binomiale). Soit T
la transformation binomiale définie sur S — CN par

Tm«) é(-i>AffrW'>'
k=0 ^ '

et 7r: S —> S* la projection naturelle:

(a(0),a(l),«(2),«(3),...) nA («(1), «(2), a(3),...

On a la relation

(2.1) £>(4?r(«)j =£ «(0)i - iff (n«))
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Démonstration. On a pour n > 1,

,{«))(») g : I) \<m

- - Yi-1/^ a(k) - -T(a)(n) + a(0)
k=l ^ '

Proposition 2 (Image de D). On a la relation

(2.2) <S>(D(a))(z) é<I>(a)(-z),

autrement dit, l'image d de l'opérateur D est telle que pour tout f G C[[z]],

d(f)(z) ezf(-z).

Démonstration. On a

4>(««))(î) XX + 1)^
w>0k=0 ^ '

n jç „n—

k\ (n — k)\
n>o k=o v 7

E:Ya(k+l)(Y
l>0 ' k>0

— f<&(a)(-z).

COROLLAIRE 1. L'opérateur D est un automorphisme involutif, autrement

dit,
D — D~l.

Démonstration. Pour montrer que D — D~l, il suffit de montrer que
d — d~1. On a

d(f) - 9 ezf(-z) - g(z) <^>/(-z) - e~zg(z,)

f(z) - ezg(-z) / - d(#)

Exemple 2.

a) Z)(1) D(A0 <50 — <5i, %) 1 — iV.
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b) On a vu que 0(a^_1) — eaz. Il en résulte par (2.2) que D(aN~l) —

(1 — a)N_1. En particulier la suite
1

est invariante par D.

c) On a vu que <3>( — — ~(ez — 1). Il en résulte par (2.2) que la suite
N z

harmonique est invariante par D :

/
1

N
1

N'

Proposition 3. Pour toute suite a, on a

(2.3) DL(d) (/ - L)D(a)

Démonstration. On a

0(DL(a))(z) — ez<3>(L(tf))(—z) — ezd<î>(a)(—z) — ez<î>(a)(—z) — d(ez<î>(a)(—z)),

d'où DL — D — LD — (I — L)D.

DÉFINITION 6. L'opérateur de sommation S\ S* —> £* est défini par

n

S(a) (n) — a(k)
k=i

Exemple 3.

a) S(ôo) l, S(X) N.

b) S(aN~l) — —-—(1 — aN) pour a ^ 1. En particulier,
1 — a

- di + t-D""1) -(1,0,1,0,...).

Proposition 4. L'opérateur S est un automorphisme d'inverse

S~l —I — R.

Démonstration. On a

b(ri) S(a)(n) a(n) — b(n) — b(n — 1)

pour n > 1 et a( 1) — b{1).
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Notation. On pose H S(-), O —^)> et Pour ^ ^ 2,

//<*> : et O® : 5(-
1

.jV*/ ' \(2N- l)k/

111 1 1 1

M'_ÎV'"ÎV 6
(2N- — 1)* ~ 2N- 1

" 2N- 1

k

Pour n> 1, on a donc

/t=l A=1

//'r<"'=è p ' '/2i'"=g (2A

'

ll? •

EXEMPLE 4. Les relations

VJ® (n + l)tf(») -h et J]^ 1 (ffl»)2 +
K Z Z

/fc=l A=1

se démontrent facilement par récurrence; elles se traduisent par

S(H) (N-\-l)H-N et S(jjH) \(h2 +

Proposition 5. On a la relation

(2.4) i®sÉÉ»=$(«)&) - b' [ é<î>(a)(-t)dt,
./o

Autrement dit, l'image s de S est l'opérateur Id — d J d.

Démonstration. On a la relation (L — I)S — L qui se traduit par

(d-Idy&(S(à)) d<ï>(a).

En résolvant l'équation différentielle (d — Id)<î>(S(a)) — <9d>(a), on obtient

d>(a)(z) + ez f e *<î>(a)(t)dt
Jo'0

— d>(a)(z) — ez f el^{a){-t)dt.
Jo
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Proposition 6. Pour tout entier naturel p, Vautomorphisme DSP est

involutif:
DSP S~PD (DSp)~l

En particulier,
DS S~lD (I-K)D

Démonstration. Le cas p — 0 traduit l'involutivité de D. On a vu que
l'image s de S est l'opérateur Id — d f d. On en déduit que

S I - DRD.

D'où DS — D — RD — (/ — R)D — S~lD — (DS)~l. On procède alors par
récurrence sur p > 1 en écrivant que DSp+l — DSPS — S~PDS — S~pS~lD —

s~(p+»d.

EXEMPLE 5. Comme a — — est invariante par D, on en déduit que

D(H) (I-R)(-) — + (0, ——) S0 + (0,
yNJ N ^ NJ U^V' N(N+1)j'

c'est-à-dire
1

si n > 1,
D(H){n) < n{n- 1)

1 si n — 1.

Proposition 7. Pour toute suite a e £*, on a la relation

(2.5) D (^S(a)j
Démonstration. Comme S~l —I — R, on a 5_1 Id — f, d'où

4>()rV))© f Wamdt Wam " ç Y --
'

'o „>o " + 1

aOi 1); "

n!

1

d>(a)(z) - z®(—a).

En remplaçant a par S(a) dans la relation précédente, on obtient alors l'égalité

.N J z

D'après (2.4), on a donc
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O (J^S(a)j -J I é<V>(a)(-t)dt.

D'où
1

I e'&m-t)dt

- '
^ «|S|é)(Mt <K

EXEMPLE 6. Par (2.5) appliquée à la suite —, on déduit

1 \ 1,1, 11 1

D ;
A' ÎV2 '

d'où aussi

D(- -D(
\N J N v

1

~~H= —2HN2) NN N2

2.4 Formule de Vandermonde

Notation. Pour a G C, on note (a)0 1 et pour n > 1,

(a)„ a(a + 1)... (a + n - 1).

On note (a)N la suite n i-A (a)„. On pose N"! : (1)^.

Proposition 8. Pour a G C et pour ß G R — {0,-1, —2,...}, on a la
relation

(2.6)
1

N(ß)NJ N N (ß)N

En particulier, pour a G R — {0, — 1, —2,... },

f {N — 1)! \ 1 (a-l)N 1

(2.7) D
V (a)* N N(a)N N + a-1

Démonstration. D'après la formule de Vandermonde (cf. [7], p. 25), on

peut écrire

Vr-n* fn \ _ y- Mk(~n\ _ (ß ~ a\
s wo% ès (/5)**! (/5)»

La relation (2.6) s'en déduit alors par (2.1).
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REMARQUE 3. La formule de Vandermonde peut s'écrire plus simplement

(2.8) ö/üS'-A (ß -«)«-!
v (ß)N-1 (ß)N-1

EXEMPLE 7. En appliquant (2.7) avec a - il vient

dI22x(N\)2\ 1 1 -1/2
N(2N)\ N NN- 1/2 2N - 1

En posant
(2N\

_ (2N)!
[nJ m2 '

on en déduit

1 \ 1 21N~l
(2.9) D

d'où aussi par (2.5)

2N-1) N (%)
'

t., 1 ^ 1 ^ 1 A 1 22N~l

N )~N

3. Le produit harmonique

3.1 L'algèbre H (£*, m)

On rappelle que A désigne l'algèbre (£*, munie du produit de Hadamard
des suites.

DÉFINITION 7. On définit le produit harmonique a m b de deux suites a
et b dans £* par

a ix b D(D(a)D(b)).

Comme D — Z)-1, on déduit immédiatement de la définition précédente les

deux relations fondamentales suivantes:

(3.1) D(a ix b) D(a)D(b),

et

(3.2) D(ab) — D(a) n D(b).
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Exemple 8.

a) On a 1 n a a(1)1, car

D(1 m a) Z)(l)Z)(a) d0D(«) D(«)(l)d0 «(Wo «(1)0(1)

b) On a N" m a — a(2)1 + («(1) — a(2))N, car

Proposition 9. L'espace (£"*,1x1) est une C-algèbre commutative,
associative et unitaire notée Li, isomorphe à l'algèbre A. L'élément unité dans Li
est la suite £0

Démonstration. La bilinéarité du produit m résulte de la linéarité de D et

de la bilinéarité du produit de Hadamard. De plus, il résulte immédiatement des

propriétés (3.1) et (3.2) que l'opérateur D réalise un isomorphisme d'algèbre
entre les C-algèbres A et Li.

Il en résulte que Li hérite des propriétés d'associativité et de commutativité
de A. En particulier, l'élément unité de Li est l'image de 1 par Z), c'est-à-
dire do.

REMARQUE 4. L'algèbre Li contient des diviseurs de zéro. On a par

COROLLAIRE 2. Une suite a est inversible dans Li si et seulement si la
suite D(a) est inversible dans A (i.e. D(a)(n) A 0 pour tout n). Dans ce

cas, l'inverse harmonique de a est donné par la formule

D(N)D(a) (d0 - di)D(a) D(a)(l)S0 ~ D(a)(2)di

- a(\)D(N) + a(2)D(l - N).

c) On a a^-1 x ßN~l — (a + ß — aßf^~l, car

D(aN~1 [xi ß"-1) (1 - 1 - ß)N~l

(1 -(a + ß-aß)f-1
mm fß- aßf-1).

d) Enfin, par la formule de Vandermonde (2.8), on a

(7 - ßh-i (ß-a)N-i (7-a)tf-i
N —

(7)A^-1 (7)Af-l
X

exemple
1 N di 0.

(3.3)
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Démonstration.

a \/\ b — So O D(a)D(b) D(So) 1 D{b) —.D(a)

Exemple 9.

a) Les suites 1 et N ne sont pas inversibles dans

/ i \ H(-D
b) f-J =D(N) ôo-ôi,

c) K-')^u=(^î)
N-l

3.2 Puissances harmoniques &-ièmes

DÉFINITION 8. Pour toute suite a e £*, on définit pour tout entier k > 0:
la puissance harmonique k-ième de a notée ak par

cC° =Sa et aM'-k+1> =#% a.

Par récurrence sur k, on en déduit immédiatement la formule suivante:

„Mk D(J)^ £)(a)) D ((£>(«))*)

En particulier, si a est invariante par D, alors ak D(ak).

Exemple 10.

•»

M, _ IN si k est impair,
b) Nmk £>((<?0 l + (-Iftl ~ m {

I 2 — N si k est pair.

c) Soient les nombres de Stirling de deuxième espèce

771=0

On a
k

m,n)=
n! z—^ \/n/

(b)""-
71=0

car

(<5#* £>( (-l)*(JV- l)4
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et

(n+ 1) V( If ; n\S(k,n).
m=0 ^ '

3.3 Image de H dans C[[z]]

THÉORÈME 1. Pour toutes suites a et b, on pose

(#ÏBÉ 0*)(i,v) := <î>(aKxmb)(y).

On a alors

(3.4) <É>(a m 6)(z) 0 Vy)0x + dy- dxdy)n(O(a) 0 0(&)) ^
n>0

Il en résulte que pour tout entier n> 0,

(a M />.)(« + 1) Y. C»
' a{-k + 1)b(' + 1} '

0<k<n
0<l<n

où les nombres Ck'1 sont définis par l'identité

(X + F-xf)" ^2 CkJXkYl.
0<k<n
0<l<n

Démonstration. On a

<!>(« n />)<;•> <I>( />:/>(«)/>(/>)'](.:) (£>(«)£>(« )(-î)
et

D(a)(n + 1) v ((Id - d)wO(a)) avec u(0(a)) 0(a)(0) a(l).

D'où

(D{a)D{b)){n + 1) 0 ^)[(Id -&)(Id -^)]"(0(a) 0 <m)(x,y)
— (% 0 vy)[Id ~{dx + dy- dxdy)T (O(a) 0 O(fr)) (x, y).

On en déduit que

4>(D(a)D(b))(-z) =* (t-, 0i'y)^ [Id-(0A+dy-4%,)] "(4>(fl)0l>(fc))(-1)"-
w>0

- e~\vx 0 Vy)eid*+dy~d*dy)z (O(a) 0 O(fr)).
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Il en résulte que

<É>(a m b)(z) — (vx 0 vy)e(-dx+dy~dxdy)z^>(a) 0 <3>(&)

- - 4^)"(0(a) 0 <!>(&))

n>0

Par identification du terme général, on en déduit que

(a m b)(n + 1) (vx 0 vy)(dx + dy - dxdy)n 0 <£(£))

- (% <8> ^O(a)
0</fc<w
0<l<n

^ C^aa+1)K/+D
0</fc<w
0</<w

avec

(x + r-xn" J]
0</t<n
0</<w

COROLLAIRE 3 (Expression explicite du produit harmonique).

(a m &)(« + 1) y2 K a(k + 1) Kn + 1 - 0 (» > 0).
0<K*<w V / V /

Démonstration. En développant (X + F — XF)W par la formule du binôme
et en identifiant le coefficient de XkYl, on vérifie que

C»
'

81 " * k+l' et C"' ° smon'

d'où

(A n fr)(n + 1) V et'1 a(k + IMl + 1)

0</t<n
0<Kw

0<K<n
0<Kw

F « ii' )« • m» /

0<KA<n V / V /
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Corollaire 4. On a la relation

(3.5) <Ê>(a m b)(z) — vy (d>(a)[(Id —dy)z\®(b)\y + z])

Il en résulte que

(3.6) m a)(z) — eaz<3>(a)(( 1 — a)z)

ce qui se traduit par l'identité

(3.7) (a*-1 m a)(n + 1) a" jé ("fj (—a(k + 1).
k=o V / V a /

Démonstration. On a

e^+dy-dxdy^a) edx(id -dy)z^a)e(dy)z ^a)[x + (Id -dy)z~\e^z

donc

<3>(a m b)(z) — (vx O vyy&(à)[x + (Id —dy)z\eidy)z®(b)

— (vx O ^)0(a)[x + (Id -dy)z]<&(b){y + z]

vy (0(a)[(ld -dy)z\<Kb)\y + z]).

On a vu que <I>(a:*-1)(z) — eaz donc

^(a*-1 m a)(z) (<I>(a*~1)[(Id-o^)z]<I>(a)[y + z])

Vy (ea(ld -^)z<I>(a)ty + z])

eaz^(e-az^O(a)ty + z])

>
* * " ''

- '"<!»( </)(^ttn\
n>0

eazO(a)((l - a)z)

Exemple 11.

N-11
1X1 «)(« + »= (*)**+

Proposition 10 (Caractérisation des suites invariantes par D). t/«e suite

a G £* est invariante par D si et seulement si elle peut s'écrire sous la forme

m"-1 a

OM la suite b G £* est telle que b(2k) — 0 pour tout k > 1.
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Démonstration. On a

D{a) 0(Z)(a)) O(a) ezO(a)(-z) <ï>(a)(z)

Posons 0(z) — e_^d>(a(z)). On a done Z)(a) « o- 0(z) — 0(—z). Dans ce

cas, 0 peut toujours s'écrire

0(^) <3>(&) — avec b(2n) — 0 pour n > 1,

et on a alors

f 1
^ \

0(a(z)) eM(z) e *<!>(&) (|) d>( f -J n fcj(z)

Exemple 12.

a) La suite harmonique s'écrit

1 /r"-1
N b

N \2

avec b — — n (— l)^-1 — (1,0, -, 0,
N ' '3' '5'

b) La suite
1 111

est invariante par D. Elle s'écrit

l\N~l
a= I -J n (1,0,1,0,...).

REMARQUE 5. On comparera le critère d'invariance précédent avec celui
donné par Sun ([11] Corollary 3.3 (a)).

REMARQUE 6 (Sommation d'Euler des séries). Pour q > 0, on définit la

suite apar

+ 33= -0— V (f) q'-ka(k + D (» > 0).

D'après [6], la série 2B>i a(n) est dite (E,q) sommable si la série 2w>i ^q\n)
converge; on pose alors

(E ,q)
^

00

^ a{n) := aiq)(n + 1)~ q + 1
n> 1 ^ «=0
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D'après (3.7), on a l'interprétation suivante de cfà :

a(q) _
1

^ a avec a — ——-
q + 1

On obtient ainsi une reformulation du théorème de Hardy ([6], p. 178-179) :

THÉORÈME (Hardy). Si la série ß(n) est convergente alors elle est

(E,q) sommable et on a

3.4 Harmonicité

THÉORÈME 2. Pour toute suite a £*, on a la relation

(3.8)
1

N
m a — —S(a).

N

Démonstration. Il suffit de montrer

Corollaire 5. Pour tout entier k > 1,

Démonstration.

Exemple 13.
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Notation. Pour tout p e R — {-1,-2,... }, on note p\ — T{p + 1) ; on
note T(N +p) la suite n i-A r(n -\-p) On pose

p T{N)

Pour p entier naturel, on a (N)0 — 1, et pour p > 1

(N)p=N(N+\)--(N+p-\).

Le théorème 2 se généralise alors de la manière suivante:

THÉORÈME 3. Pour toute suite a E S* et tout réel p yé -1,-2,-3
on a la relation

p\ p\ ({NX

'

ce qui, pour p entier > 0, se traduit par

^ n am y m+1)- -(k+p~1)a«y
yN{N+1) (N+p) J n{n+1) (»+/>) ^ p\ w

Démonstration. En appliquant (2.7) avec p a — 1, on obtient

D(
i x (N-iy. r(jv>r(p + i) p!

(p+1)n m+p+1) (N)p+l'

par conséquent,

^
m a Z) f Z)(a) I

(A%+i \N+p
Posons alors

On a

fp+i(z) (£>(«))(» + !)—7Y
w>0 + 1 +p n

et donc

1 f+P+1
e_z^+Vp+iOO (£>(«))(« + y

w>0 +1 +p m
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Par conséquent,

e Zzp+1f„+i(z) [ tpSy^(D(a))(n-\-
n>0

Z tn
a(n + 1 )—dt

n W0 w>0

'Z

HpQ>(à)(j)dt
Fo

- f tpY.(D<-a))(n+ix-D"-
''° w>0

H

- [°-'Z.'0

-f-J0

On obtient donc

fp+x(z) e1-^ f e-Hp^{a){t)dt.
^ «/o

Par le changement de variable u — tz, on a aussi

fp+i(z) [ é(l~u)up<t>(a)(uz)du
Jo

Je J
— ——«(&+ 1) / (1 — u)lif+kdu

t—* ki Ii L
k,i ,/0

^ {
k\ l\ (p + & + / + 1)!

-?L ct-i n ^-(p + fe)!

"2-«! 2- A:!/! (/? + £ + /+1)!

^ z" ^ n\ (p + k)\
2^H'XkUp-

n k=0

Or,

n j j ^
w+1

T7 —-a(k-\-l) — k(k-\-1)... (k+p — l)a(k)^k\(p+n+1)! ' (»+1)...(*+1+/»^ F

ce qui montre que

* (4b ~ *) -fcb(wv0 -* (4bs (tH) D

EXEMPLE 14. Pour p 1, on a

1 1

N a — TTTTr 7TS(NO)
N(N + 1) N(N + 1)
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c'est-à-dire
1

N(N + 1)

On en déduit que

\ 1 "
*«)(») ———- Y] ka(k)

n(n-\-l) ^
1 \ 1

"
A

— n a (n) - ——— VY« + 1 - k) a(k).
Af + 1 J n(n + 1)

k= 1

COROLLAIRE 6. Pour toute suite a £ £* et pour tout entier p > 0,

<3'io)

Démonstration. Par récurrence sur p. Pour p — 0, c'est la formule (2.5).
En écrivant (AO^+i — (N + p)(N)p, on obtient

P' -
1

SP-^IXa))
(N)p+1 (AO,

p! 1

(A0,+1
"

V pi (AO,
1

S" (£>(«))
«B>+1

Exemple 15.

a) Pour a — — et p — 1

Z)
H \ H

N(N+l)J N(N + 1)

b) Pour a — — et p — 2,

D( H » -? ^ +
\N(N + 1)(N+2) y N(N+ 1)(N -\-2) NQf+ 2) N+l N+ 2

c) Pour « — et p — 1,

cf U '
+

N(N + 1 ; N(Af H- 1) V 2V 7 2N(N + 1) 2N(N + 1)
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Corollaire 7. Pour tout réel p ^ — 1, —2,on a

d*,-*) - ~ y f—U-v : /"•"/ (A'v+i "wf+, (iv)^+1 Viv+p

Démonstration. Par (3.9),

/>! PÎ 0 P! A />! ^ 1 A
ix] —ci- —s s

(N)P+1 (A%+1 (A%+i Vp!(^+i; (2S0p+i \N+pJ'

Exemple 16.

a) Pour p 1,

1 \ 1 / 1 \ H 1

D — — - — -S
(N-\-l)2J N(N+1) \N-\-lJ N(N+1) (N+l)2

ce qui peut se réécrire:

H 1 / i
N(N + 1)

~ (iV+ l)2
+ l(JV+ l)2

b) Pour p — —

ai
1

ce qui peut se réécrire:

/ 1 \ _
22Af-!

^(2iV-l)2J " JVQ '

c'est-à-dire

/ 1 \ 22"-1 " 1

D (») —V — (cf. [1], p. 293 (34.3)).\(2N-l)2J n 2k — \ F
x y \ n / K=1

REMARQUE 7. Plus généralement, on peut montrer que, pour tout entier
k > 1, on a

D {(N+p)w) Nfp+l)/^'' '^ '

avec, pour 1 < m < k,

S(ri) V —£? (P +/)"
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où les Pjk(Xi,... ,Xk) sont les polynômes de Bell modifiés (cf. [3], [5]) définis

par la fonction génératrice

e\inV v.,A >>f.Y ..Y* A.
m>1 k>0

En particulier, pour p — 0,

"(v'-0 v,-i//'//: "
1

et pour p — — —,

4. Les sommes harmoniques

On rappelle la propriété d'harmonicité (3.8): txi a ^S(a). Cette

propriété justifie la généralisation suivante.

DÉFINITION 9. Soit une suite a e £*, on définit pour tout entier naturel k,
la somme harmonique k-ième de a notée S^k\a) par la formule

/ 1 \ 1

an - h«=-^
Exemple 17.

<42> (ï) / 1 \ 1 lf«1
\N N N N

D'où

vNk+]

ce qui se traduit par

m= 1 V y

Plus généralement, on a l'identité suivante,
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Proposition 11. Pour toute suite a e £* et pour k > 1,

(4.3) S<k\am Ti-ir-1 (") 4tS««t7—' \mlmr 1

m=l x 7

Démonstration. D'après (4.1) et la définition du produit harmonique,

l / 1\1-Sik\a) - m a D(—rD(a»
N \NJ yNk

d'où

v/)( x';/)(,„).

ce qui se traduit par

1 " \ 1
S^CaX«) nD(—rD(a))(n) V/-l)m_1 "

J —r-j-Z)(a)(m)N* 7—' \m} mr 1

771=1 V 7

On va à présent donner une autre expression des sommes harmoniques.

Proposition 12. Pour toute suite a £ £*, on a S^°\a)(n) — na(n) et la
relation de récurrence :

n
1

(4.4) S(k+l\a)(n) V -S(k\a)(m) pour k>0.
m

777=1

Il en résulte que ip-\a) — S(a), et pour k > 1,

(4.5) Sik\a)(n)= Y] - a(nk).
"1 • • -»A-l

Démonstration. On a do n tf —S®\à), c'est-à-dire S®\à) — Na. Pour
N

k > 0, on peut écrire par (3.8) et (4.1),

NÂ; \
(i) ixi « — ixi f — 1 n a I —5" f — ] a

N \\N N \ \N.

On en déduit la relation de récurrence

qui se traduit par (4.4). La formule (4.5) s'en déduit aussitôt par récurrence.
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Exemple 18.

#"(1) =1, H, y +IP>).

THÉORÈME 4. Pour toute suite a G £*, et pour k>\, on a l'identité

1 " fn\ 1

(4.6) Y] a(nk)=Y(- \r-1 "
Z—' n\...itir-\ \mj mr 1

n>m> - >nk> 1
1 * 1 m=l v 7

Démonstration. La formule (4.6) résulte des formules (4.3) et (4.5).

COROLLAIRE 8 (Formule de Dilcher généralisée). Pour k> 1 et q > 1,

(4.7)
1 1 V% 1 v- 1r i v

» > -> "î m-i "À " V'i;»>»1 >••• >»/; > 1 " m=l m>m\ > >mq—\> 1 3

Démonstration. On applique (4.6) à la suite a — —. Par (4.2), on a

D{a) — -&-»(-).N yNJ

Exemple 19.

a)

4—' Hi \m/n>m>->ni>l 1 * 1 k m= 1 V 7

b) a W
1 J_

_ y^(_ i)m-1 ^w ^ + H(2\m)

4y «i...4-j Vm/ 2m*
n>ni m=l

1

c) a
2N — 1

y 1 i yViy-'f") 22""1

é„à,:>i » - "1 ü W «H$
d) « (W- l)2

v i i y 22m-iQ(»i)

yy «i • • • «A-1 (2/1*; - l)2 yn/ mk(2m)
n>ni > - >nk>l m= 1 x x \ m /
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5. La transformation d'Euler

5.1 Transformation d'Euler formelle dans C[[z]]

THÉORÈME 5. Soit a £ £*, on a la relation dans C[[z]]

(5.1) ^2 D(a)(n)z" - a{n) f \
ri> 1 n> 1 '

Démonstration. Par définition de D(a), on a

X] D(«)(" + 1)2" ]T 7"fj -1f •) M + 1 >

h—n \ /n>0 n> 0 k=0

Or

J2z" é(-i)fc f)a(k+i}=+i)z"ait) z"~k

n>0 k=0 ^ ' k>0 n>k ^ '

k>0

/t>0

D'où

V/'(«>(« • I».:"

w>0 /t>0 ^ /
qui est la relation cherchée.

EXEMPLE 20. D'après les exemples 15 a), b), c) et 16 a), on a les relations
suivantes :

a
H(n) HW) fj_y

4-^ »oh-1) 4-^ «(«+i) vz_1/w>l w>l x '

_y 1

,g"-T
1 f—^ («+1)2 (n+1)2 \ z— 1(n+1)2 ^ (n+1)2 \Z-:w>l n>l x

5) y^ _J^}_7n _ y^ z"
_ _ y^ z

4-^(« + 2) 4^(«+l)(« + 2) l)(n + 2) Z-1 '
w>l n>l w>l
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I (^O)) » I y- H^\n)_ y- //^(ft) z y2^/i(n+l) 2^n(«+l) ^«(«+l)z-lw>l w>l n>l

COROLLAIRE 9. Pour toute suite a E S* et tout entier naturel k, on a
l'identité

(5.2) £ • - V V«|#0 (--L-Ï
n V z — 1 /w>1 n>1 V 7

Démonstration. D'après (4.1), on a j^D{a) — D^—S^Xa)). La

formule (5.2) résulte alors de (5.1).

Exemple 21.

a) En appliquant (5.2) avec a — — on obtient pour k > 1

(5.3) Lit+1(z) -Tv, E« ni m \z — 1

w>l n>ni > - >Hi>l

où Lù désigne (formellement) le polylogarithme

i2"-
m

n> 1

b) En appliquant (5.2) avec a — on obtient pour k > 1

(») « V- 1 V- 1 1 z
(5,4) _y^I y^

WA+1 ,Z_^ « Wi »? V z — 1

n> 1 n> 1 n>ni> — >nt> 1 "

c) En appliquant (5.2) avec a — —-, on obtient pour k > 1

as) iv"" 1

2 ^ (ln) nk+l
n> 1 \nJ

— Er V« yy «i • • «A-i 2% -1 vz -1w.>l w.>wi1
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d) En appliquant (5.2) avec a — on obtient pour k > 1,

1 ^ 22" 0(n) _(5.6)
2 Z—/ /2B^ n/c+l

b>1 V n

— E; E
„>1 " '" (2'u ~1)2 1

5.2 Transformation d'Euler analytique
THÉORÈME 6. So# une suite a G £*. Si la série 2w>i a(n)zn est

convergente dans le disque unité D(0,1) alors la série 2w>i D(a)(n)zn est

convergente dans le disque ouvert D(0, et on a pour tout z G D(0,

+00 +00ï-00 -|-00 y \ïl
y: D(a)(ri)zn -y «(«) f —^
B=1 B=1 '

z
L'application z 1—>- étant involutive, il en résulte que si la série

z — 1

2b>1 D(a)(n)zn est convergente dans le disque D(0,1) alors la série

2„>i ct(ri)zn est convergente dans le disque ouvert D(0, et on a pour
tout z G D(0, i)

+00 +00Ï-OO -|-00 / \ïl
y: Ci(ri)zn - £>(«)(«) f
M=1 M=1

Démonstration. Pour z G D(0,1), posons A(z) — 2?!3) a(w+ l)z". On a

pour tout 0 < r < 1 et pour tout entier k > 0

A(w)
a{k+l)=2^ L,^du-tllTT Jc

é pc

que pour tout entier n > 1 on a

C(0,r)

où C(0, r) est le cercle paramétré par t i-A relt, avec t G [0,27t]. On en déduit

1 f 1 \ wA(m)
D(a)(n + 1) — —— / (l ] du

2in JC(0,r) V M/

On va montrer que

y£)(«)(«+ l)z"+1 — / y fz(l — -)^ A(u)-du.
2ï7T /rm r) V m / un>0 ,Llu'r) b>0 X 7
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1 n Z
Pour cela, il suffit que la série X]n>o(z(l A(u)- soit normalement

convergente sur le cercle C(0, r), ce qui est le cas si

\z\ <
u — 1

M / T f \Or, si m G C(0,r), on a G C( — -), donc
u — 1 x rL — 1 1 — rL '

u r>
u —1 r+1

On en déduit que si |z| < r+ 1
alors on a

TD(a)(n+ 1)Z"+1 ± j
~I2ïtt ,/Ci

-A(u)du
uz — z — u

Comme 0 < r < 1, ceci prouve que la série ^2n>0D(a)(n -\- l)zw+1 est

convergente dans le disque D(0, -). D'autre part,

z z
-A(m)

1 A(u)
uz — z — u Z — 1

y
1 Z u -£

w>0

z \"+1A(m)

Z — 1 / Mw+1

u z — 1

Cette dernière série converge normalement sur C(0, r) si

z
< lu\ — r

z - 1

i
ce qui est le cas si z G D —

x r1 — 1 1 — rL '
2

En conclusion, si z G D(^—,———) fiD(0,—-—) — D(0,—-—'r2-l 1-r2' v 'r+ V K r A 1

alors on a

w>0 w>0

du

Comme 0 < r < 1, ceci prouve qu'on a l'égalité dans le disque D(0, -).

Par le Lemme d'Abel sur les séries entières, on déduit du théorème

précédent le corollaire suivant.
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Corollaire 10.

(1) Si les séries J]w>i fl(w)(— 1)" et Ew>i convergent, alors on

a l'égalité
+00 t i >. n -|-oo

Touim (-) |
n= 1 ^ 7 «=1

(2) Si les séries 2w>i D(a)(n)(—l)n et 2w>ia(n)(i)" convergent, alors on

a l'égalité
+00 +00too -|-OO / 1 n

y^(-l)n~xD(a)(n) ^a(n) f - j
«=i «=i ^ 7

EXEMPLE 22. D'après l'exemple 20a), on a (cf. [1], p. 248)

V I- V (-iy"'g(") 2Ll,(l) + Li2(-1)- V) - log»a).^ 2"n(n + 1) ^ n(n-\- 1) y2} 2S é
«=i «=i

COROLLAIRE 11. Si la série Yln>i a(n)zn est convergente dans le disque

D(0,1), alors on a pour tout z G D(0, et pour k> 0,

(5.7) -nK n \ Z — 1 /n=l M=1 V 7

En particulier, pour k — 1,

(5.8) g « -f; lsmn) JUf.
n z—' n V z— 1 /w=l n=î v 7

De plus, si les séries e* Süi -S^k\a)(n)(—l)n convergent,

alors on a l'égalité

^ E^^x«) E^-n=1 w=l

Démonstration. Si la série 2w>i a(n)zn converge dans le disque D(0,1),

rs il en est de même de la é

relation de récurrence (cf. (4.4)):

alors il en est de même de la série -S^k\a)(n)zn. Cela résulte de la
- n

-Sik+l\a) -s( -Sik\a)]
N N \N
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et du fait que si une série 2w>i converge dans le disque D(0,1), alors

il en est de même de la série J]w>i -S(b)(n)zn. On peut alors appliquer le

Théorème 6 car D —S^k\a) ] — rD(a).
\N Nk

Exemple 23.

a) Pour a — — on a D(a) — a, d'où pour k — 1,

m(~) -<(2) - | log2® (cf. [1], p. 248),
M 1

et pour k — 2, (cf. [1], p. 249)

-|«2)log2+ 1«3)
n= 1 m=l

b) Pour a — —, on a D(a) — d'où pour k — 0,

V(-i)-i y:^ ic(2)
' «' fi2 t J 0nn 9
w=l w=l

n2 2"n 2
«=i

pour k — 1

=C(3)_ iC(2)log2 (cf. [1], P- 258),

n= 1

et pour k — 2,

2"n2
n= 1 w=l

~ (_l)"-i " tf2\m) _ ^ H(n)
n m 2—j 2"n3

n= 1 m= 1 n= 1

1 1 2-1
c) Pour a — on a D(a) — /0.,x d'où pour k — 0,

2N - 1 N(n)
00

^ /_ ]\n-1 1
00

^ 2" 71Y — - V — — (formule d'Euler: cf. [8]),
«=1 «=1 \ n

pour k — 1, (formule de Jean Bernoulli : cf. [8])

~ _1 -F* 2"

»=1
2 n2 (2") 16'

rt=l \n/
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pour k — 2, (cf. [4] (2.67))

^(-1y-l^O(m) 1^ 2" TT2, 0iTTG 35^E^^E^-2^^=Î6l0g2+^-32C(3)'
«=1 m=1 «=1 \n/

où G désigne la constante de Catalan:

<?=£ (-I)"-'
(2m - l)2

2N-11 12 vd) Pour a — -, on a D(a) — O, d ou pour & 0,
(2N - l)2 A/- (2^)

1

1 ^ 2" Q(n) ^2 2_^ /2«\ nw=l Vny

(formule de Ramanujan pour la constante de Catalan: cf. [1], p. 293-294).
Pour k—1, (cf. [4] (2.36) et (2.37))

«=i

pour k — 2,

y t!^o®o.)=Iv ZC(3) _ ^2^ n
W 2^(2n) M2 4 2
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