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WEIL AND GROTHENDIECK APPROACHES TO ADELIC POINTS

by Brian CONRAD *)

1. INTRODUCTION

In [We, Ch. 1], Weil defines a process of “adelization™ of algebraic varieties
over global fields. There is an alternative procedure, due to Grothendieck, using
adelic points. One aim of this (largely) expository note is to prove that for
schemes of finite type over global fields (i.e., without affineness hypotheses),
and also for separated algebraic spaces of finite type over such fields, Weil’s
adelization process naturally coincides (as a set) with the set of adelic points
in the sense of Grothendieck (and that in the affine case the topologies defined
by these two viewpoints coincide; Grothendieck’s approach does not provide
a topology beyond the affine case). The other aim is to prove in general
that topologies obtained by Weil’s method satisfy good functorial properties,
including expected behavior with respect to finite flat Weil restriction of scalars.
The affine case suffices for most applications, but the non-affine case is useful
(e.g., adelic points of G/P for connected reductive groups G and parabolic
subgroups P). We also discuss topologizing X(k) for possibly non-separated
algebraic spaces X over locally compact fields & ; motivation for this is given
in Example 5.5.

Although everything we prove (except perhaps for the case of algebraic
spaces) is “well known™ folklore, and [Oes, I, §3] provides an excellent
summary in the affine case, some aspects are not so easy to extract from the
available literature. Moreover, (i) some references that discuss the matter in
the non-affine case have errors in the description of the topology on adelic
points, and (ii) much of what we prove is needed in my paper [Con], or
in arithmetic arguments in [CGP]. In effect, these notes can be viewed as

*) This work was partially supported by NSF grants DMS-1100784.



62 B. CONRAD

an expanded version of [Oes, I, §3], and I hope they will provide a useful
general reference on the topic of adelic points of algebro-geometric objects
(varieties, schemes, algebraic spaces) over global fields.

In §2 we carry out Grothendieck’s method in the affine case over any
topological ring R, characterizing the topology on sets of R-points by means
of several axioms. The generalization to arbitrary schemes of finite type via a
method of Weil is developed in § 3. We explore properties of these topologies in
§4, especially for adelic points and behavior with respect to Weil restriction of
scalars. Finally, in §5 everything is generalized to the case of algebraic spaces.

ACKNOWLEDGEMENTS. I am grateful to D.Boyarchenko, A.J. deJong, and
especially L. Moret-Bailly for helpful comments and suggestions.

NOTATION. We write Ap to denote the adele ring of a global field F,
and likewise AJ denotes Euclidean n-space over Ap. There is no risk of
confusion with the common use of such notation to denote affine n-space
over Spec F since we avoid ever using this latter meaning for the notation.

2. PRELIMINARY FUNCTORIAL CONSIDERATIONS

Let F be a global field and S a finite non-empty set of places of F,
with S always understood to contain the set of archimedean places of F'.
We let Aps C Ap denote the open subring of adeles that are integral at all
places away from §, so the topological ring Ar is the direct limit of the open
subrings Ap s over increasing S. For a separated finite type F-scheme X,
we would like to endow the set X(Ap) with a natural structure of Hausdorff
locally compact topological space in a manner that is functorial in A and
compatible with the formation of fiber products (for topological spaces and
F-schemes); in §5 we will address the case of algebraic spaces.

For affine X the coordinate ring T'(X, Ox) is F-isomorphic to F[zy,...,1,1/I,
so as a set X(Ay) is identified with the closed subset of the adelic Euclidean
space A% where the functions f: Ax — Ap for f € I all vanish. This zero
set has a locally compact subspace topology. To see that this topology trans-
ferred to X(Ap) is independent of the choice of presentation of I'(X, Oy), it is
more elegant to uniquely characterize this construction by means of functorial
properties, as the proof of the following result shows:
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PROPOSITION 2.1. Let R be a topological ring. There is a unique way
to topologize X(R) for affine finite type R-schemes X in a manner that is
Sfunctorial in X, compatible with the formation of fiber products, carries closed
immersions to topological embeddings, and for X = Spec R[t] gives X(R) = R
its usual topology. Explicitly, if A is the coordinate ring of X then X(R)
has the weakest topology relative to which all maps X(R) — R induced
by elements of A are continuous, or equivalently the natural injection
of X(R) = Homg.a4(A, R) into Homge(A, R) = R* endowed with the product
topology is a homeomorphism onto its image.

If R is Hausdorff then X(R) is Hausdorff and closed immersions X — X'
induce closed embeddings X(R) — X'(R). If in addition R is locally compact
then X(R) is locally compact.

The Hausdorff property is necessary to require if we want closed immer-
sions to go over to closed embeddings. Indeed, by considering the origin in
the affine line we see that such a topological property forces the identity point
in R to be closed, and compatibility with products makes X(R) a topological
group when X is an R-group scheme, so this forces R to be Hausdorff since
(viewing R = G,(R) as an additive topological group) a topological group
whose identity point is closed must be Hausdorff (because in any category
admitting fiber products, the diagonal morphism for a group object is a base
change of the identity section). Viewing the topology on X(R) as a sub-
space topology from R% is reminiscent of how Milnor topologizes manifolds
in [Mil].

Proof. To see uniqueness, we pick a closed immersion
i: X <= SpecRlty,...,t,].

By forming the induced map on R-points and using compatibility with products
(view affine n-space as product of n copies of the affine line), as well as
the assumption on closed immersions, the induced set map X(R) < R" is a
topological embedding into R" endowed with its usual topology. This proves
the uniqueness, and that X(R) has to be Hausdorff when R is Hausdorff.
Likewise, we see that X(R) is closed in R" in the Hausdorff case, so when R
is also locally compact then so is X(R).
There remains the issue of existence. Pick an R-algebra isomorphism

@.1) A:=T(X,0x) ~R[t1,... tn]/]

for an ideal 7, and identify X(R) with the subset of R" on which the elements
of I (viewed as functions R" — R) all vanish. We wish to endow X(R) with
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the subspace topology, and the main issue is to check that this construction
is independent of the choice of (2.1) and enjoys all of the desired properties.
We claim that the topology defined using (2.1) is the same as the subspace
topology defined by the canonical injection X(R) — R* (so the definition
of this topology is independent of the choice of (2.1)). Let ay,...,a, € A
correspond to 7y mod /,...,t, mod I via (2.1), so the injection X(R) — R" is
the composition of the natural injection X(R) — R* and the map R* — R"
defined by (ay,...,a,) € A". Hence, every open set in X(R) is induced by
an open set in R* because R4 — R" is continuous. Since every element of A
is an R-polynomial in ay,...,a, and R is a topological ring (so polynomial
functions R" — R over R are continuous), it follows that the map X(R) — RA
is also continuous. Thus, indeed X(R) has been given the subspace topology
from R*, so the topology on X(R) is clearly well-defined and functorial in X.

Consider a closed immersion i: X < X’ corresponding to a surjec-
tive R-algebra map between coordinate rings h: A — A. The natural
map j: R* — R defined by (r,) — (rwa) is visibly a topological em-
bedding; it topologically identifies RA with the subset of R cut out by
a collection of equalities among components, so j is a closed embedding
when R is Hausdorff. We have X’(R)Nj(R*) = j(X(R)) because a set-theoretic
map A — R is an R-algebra map if and only if its composition with the
surjection h: A’ — A is an R-algebra map. Hence, i: X(R) — X'(R) is an
embedding of topological spaces, and is a closed embedding when R is
Hausdorff. By forming products of closed immersions into affine spaces, we
see that (X Xgpecr X' )(R) — X(R) x X'(R) is a topological isomorphism via
reduction to the trivial special case when X and X’ are affine spaces.

Finally, to see that (X Xy Z)(R) — X(R) Xyr) Z(R) is a topological
isomorphism (for given maps X — Y and Z — Y between affine R-schemes),
consider the isomorphism

XXyZZ(X XRZ)nyRyY

and its topological counterpart. Since we have already checked compatibility
with absolute products (over the final object in the category), the separatedness
of Y over R reduces us to the case in which one of the structure maps of
the scheme fiber product is a closed immersion. But we have already seen
that closed immersions are carried into topological embeddings, so we are
done. [

EXAMPLE 2.2. If R — R’ is a continuous map of topological rings (e.g., the
inclusion of F into Ar or of Op into Ar g, with the subring having the dis-
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crete topology in both cases), then for any affine finite type R-scheme X with
base change X’ over R’, the natural map X(R) — X(R') = X'(R’) is continu-
ous, and when R — R’ is a topological embedding then so is X(R) — X(R').
Moreover, if R’ is closed (resp. open) in R then X(R) — X(R') is a closed
(resp. open) embedding. These claims are immediate from the construction
of the topologies by means of closed immersions of X into an affine space
over R (and the base change on this to give a closed immersion of X’ into an
affine space over R’). The same argument shows that if R is discrete in R’
then X(R) is discrete in X(R').

EXAMPLE 2.3. Since F is discrete in Ap, so F” is discrete in Al , it
follows that for any affine finite type F-scheme X, X(F) — X(Ar) is a
topological embedding onto a discrete subset. Similarly, if X is affine of finite
type over O g, then X(Op ) is a discrete subset of X(Apg). If X is affine
of finite type over a discrete valuation ring R with fraction field L then X(R)
is open and closed in X(L) = X, (L).

EXAMPLE 2.4. Let R — R’ be a module-finite ring extension that makes R’
locally free as an R-module. Assume that R and R’ are endowed with
topological ring structures such that R’ has the quotient topology from one
(equivalently, any) presentation as a quotient of a finite free R-module. In
particular, R has the subspace topology from R’ because R’ is projective as
an R-module (so the inclusion R — R’ admits an R-linear splitting). The
main examples of interest are a finite extension of complete discrete valuation
rings, local fields, or adele rings of global fields. For an affine R’-scheme X’
of finite type, consider the Weil restriction X = ResR//R(X’) that is an affine
R-scheme of finite type [BLR, §7.6]. (In [CGP, App. A.5] there is given
a detailed discussion of properties of Weil restriction, supplementing [BLR,
§7.6].) There is a canonical bijection of sets X’(R") = X(R), and by viewing X’
and X as an R’-scheme and R-scheme respectively we get topologies on both
sides of this equality.

We claim that these two topologies agree. Using a closed immersion
of X' into an affine space over R’ reduces us to the case when X’ is
such an affine space, because Weil restriction carries closed immersions to
closed immersions in the affine case. Choose a finite free R-module P such
that there exists an R-linear surjection from the dual PV onto the dual
module RV = Homg(R',R). The dual map R’ — P is a direct summand,
so for any R-algebra A the natural map R’ ®x A — P ®g A is injective and
functorially defined by a system of R-linear equations in A. For M = R®"
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with a suitable n > 0 we have X’ = Spec(Sym (M")) with M' =R ®@x M,
so X is naturally a closed subscheme of Spec(Symgp(M ®g PY)). The
set X'(R") = Homgp/(M',R") = Homg(M,R') is endowed with its natural
topology as a finite free R’-module, and via the inclusion R’ < P the set X(R)
is Homg(M,R') = MY ®xR' with the subspace topology from M"Y ®gP. Thus,
the agreement of topologies comes down to R’ inheriting its given topology
as a subspace of P. But R’ is a direct summand of P, so the subspace
topology on R’ coincides with the quotient topology via a surjection from P.
By hypothesis, such a quotient topology is the given topology on R’.

3. ELIMINATION OF AFFINENESS HYPOTHESES

When attempting to generalize Proposition 2.1 beyond the affine case, an
immediate problem is that if U is an open affine in an affine X of finite type
over R then U(R) — X(R) need not be an open embedding; it may even fail to
be a topological embedding. For example, if X is the affine line over R and U
is the complement of the origin, then U(R) — X(R) is the map R* — R
where R has its usual topology but R* has a structure of topological group
coming from the affine model U = G,, ~ SpecR[x,y]/(xy — 1) inside the
plane (i.e., 7,7’ € R* are close when r is near 7/ in R and r~! is near Pl
in R). The example of adele rings shows that the unit group of a topological
ring need not be a topological group with respect to the induced topology
from the ring. Since the topology on R* = G, (R) is a topological group
structure, we see that in such examples the inclusion R* — R cannot be a
topological embedding.

More generally, if X = SpecA and U = SpecAy with f € A, then the
subset U(R) C X(R) is the locus where the continuous map f: X(R) — R is
unit-valued — the preimage of the subset R* — and this preimage might not
be open. Such openness in general (for a fixed R) is equivalent to the set
of non-units in R being closed, but this fails for adele rings (in which one
can find sequences of non-units that converge to 1). Regardless of whether or
not R* is open in R, since Ay = A[T]/(fT — 1) we see that U(R) — X(R)
is a topological embedding onto its image if and only if 1/f: UR) — R is
continuous when U(R) is given the subspace topology from X(R). Taking X
to be the affine line and U to be the multiplicative group, such an embedding
property for general affine finite type R-schemes would force R* to be a
topological group with its subspace topology from R (which is false for
many R).



WEIL AND GROTHENDIECK APPROACHES TO ADELIC POINTS 67

We conclude that the failure of openness of R* in R and the failure
of R* to be a topological group with its subspace topology from R are the
only obstacles to basic open affine immersions inducing open embeddings
on spaces of R-points. Hence, it is natural to try to globalize the topology
on X(R) beyond the affine case by gluing along Zariski-opens in X when R*
is open in R with continuous inversion. In order for the gluing to work, we
also need to ensure that if {U;} is an affine open covering of an affine X of
finite type over R then X(R) is covered by the subsets U;(R). This works for
local R:

PROPOSITION 3.1. Let R be a local topological ring such that R* is open
in R and has continuous inversion. There is a unique way to topologize X(R)
for arbitrary locally finite type R-schemes X subject to the requirements
of functoriality, carrying closed (resp. open) immersions of schemes into
embeddings (resp. open embeddings) of topological spaces, compatibility
with fiber products, and giving X(R) = R its usual topology when X is the
affine line over R.

This agrees with the earlier construction for affine X, and if R is Hausdorff
then X(R) is Hausdorff when X is separated over R. If R is locally compact
and Hausdorff then X(R) is locally compact.

Proof. The key to the proof is to show that if U — X is an arbitrary open
immersion between affine R-schemes of finite type then U(R) — X(R) is an
open immersion relative to the topology already defined in the affine case.
Once this is proved, the rest is immediate by gluing arguments, so we explain
just this assertion concerning open immersions between affine schemes.

Consider the special case that U is a basic affine open in X, say
U = SpecAy and X = SpecA for some f € A. Clearly U(R) is the preimage
of the open R* C R under the map X(R) — R associated to f. To see
that this equips U(R) with a subspace topology coinciding with its intrinsic
topology (using that U is affine of finite type over R), the fiber square

f

U——G,

|

X?A}e

reduces the problem to the special case X = AL and U = G,,. In this case
U(R) acquires the topology of the hyperbola xy = 1 in R?, and this is
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homeomorphic to R* with its subspace topology due to the hypothesis that
inversion on R* is continuous.

To reduce the general affine case to the special case just treated, one uses
that R is local (and that U is covered by basic affine opens of X, each of
which is necessarily a basic affine open in U). The main point is that if {U;}
is an open cover of X, then X(R) = UU;(R) because a map Spec R — X that
carries the closed point into U; must land entirely inside U; since the only
open subscheme of SpecR that contains the closed point is the entire space.
(The equality X(R) = UU;(R) fails for non-local R in general.) []

REMARK 3.2. If X is a locally finite type scheme over a local field k
(such as C or Q,), then X(k) is a locally compact topological space via
Proposition 3.1. The same goes for X(O) with a compact discrete valuation
ring O and a locally finite type O-scheme X.

REMARK 3.3. If Z is a closed subscheme in X and U is its open
complement then the disjoint subsets Z(R) and U(R) in X(R) may not
cover X(R), even if X is affine. The problem is that “Zariski open” corresponds
to a unit condition on R-points whereas “Zariski closed” corresponds to a
nilpotence condition on R-points. If R contains elements that are neither
nilpotent nor units then X(R) may fail to be the union of U(R) and Z(R).
More geometrically, if we consider maps Spec R — X then the image might
hit both Z and U (a simple example being the affine R-line X, its origin Z,
and complement U = X — Z, for which Z(R) and U(R) are both non-empty
and do not cover X(R) = R whenever SpecR is not a point). For local
artinian R this does not happen, which is why the construction of a topology
on X(R) is especially straightforward when R is a field.

In view of the above discussion, it is a remarkable fact that when R = Ap
is the adele ring of a global field F, one can (following a method due to
Weil) naturally topologize X(R) for arbitrary finite type F-schemes X. It
is not true in such generality that immersions of schemes are carried into
topological embeddings, but the topology is functorial and compatible with
fiber products, it gives closed embeddings when applied to closed immersions,
and it recovers the earlier construction in the affine case. We now present a
Grothendieck-style development of Weil’s construction.

The key to Weil’s construction in the affine case is that if X is
a finite type affine F-scheme (for a global field F) then by chasing
denominators in a finite presentation of the coordinate ring of X we
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can find a finite set § of places of F (non-empty and containing the
archimedean places, as always) and a finite-type algebra over Opg whose
generic fiber is the coordinate ring of X. Geometrically, this amounts to
giving an affine finite type Opg-scheme Xg whose generic fiber is X.
As will be recorded below, Grothendieck’s technique of limits of schemes
[EGA, 1V3, §8-§11] shows that an analogous result holds for all finite
type F-schemes (not just the affine ones): every finite type F-scheme X
is the generic fiber of a finite type Opg-scheme Xg for some S. We
can transfer many properties of X to Xs by increasing S, as we now
explain.

We first mention a useful concept: a scheme X over a ring R is
finitely presented if it is covered by finitely many open affines U;, each
of the form U; ~ Spec(R[tl,...,tnil/(ﬁ’,-,...,f,,,hi)), with quasi-compact
overlaps U;NUy (this latter condition being automatic in the separated case, for
which an overlap of two affine opens is affine). Finite presentation coincides
with finite type when R is noetherian, but the adele ring Ar is not noetherian.
Loosely speaking, finite presentation over R means being “described by a finite
amount of information” in R.

Since F = rﬂom and Ap = I'QAF,S (limits taken over increasing §),
the following link between finite presentation and direct limits is an essential
step in Weil’s construction (especially beyond the affine case).

THEOREM 34. Let {A;} be a directed system of rings, A = lim A;. Let X
be a finitely presented A-scheme.

(1) There exists some iy and a finitely presented A;,-scheme X;, whose base
change over A is isomorphic to X. Moreover, if X;, and Y, are two
finitely presented A, -schemes for some iy, and we write X; and Y; to
denote their base changes over A; for all i > iy (and likewise for X and
Y over A), then the natural map of sets

lim Homy, (X, ¥;) — Homa(X, Y)

is bijective.

(2) A map f,: Xi, — Yi, acquires property P upon base change to some
A; if and only if the induced map f: X — Y over A has property P,
where P is any of the following properties : closed immersion, separated,
proper, smooth, dffine, flat, open immersion, finite, fibers non-empty and
geometrically connected of pure dimension d.
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(3) Any “descent” X;, over A, of a finitely presented A-scheme X is
essentially unique up to essentially unique isomorphism in the following
sense : for finitely presented A;,-schemes X;, and X; whose base changes
over A are identified with X, there exists some i > iy and an isomorphism
hi: X; ~ X! compatible with the common identification with X upon base
change to A, and if h; and H; are two such isomorphisms then for
some i > i the induced isomorphisms hy and H; are equal.

Proof. Apart from (2), this is [EGA, IV, §8.8, §8.9]. To handle the
list of properties P is a lengthy task that is exhaustively developed in [EGA,
IVs, §8.10 — §11], where many more properties are also considered (but we
only need the ones mentioned above); a good place to begin is [EGA, IV,
8.105]. [

REMARK 3.5. In practice, the two examples of {A;} of most interest to
us will be {Ars} (with limit Ap) and {Of s} (with limit F). Due to the
example {Of s}, in which X is visualized as fibered over the curve Spec O g
with X as the generic fiber, in general we sometimes call X; a “spreading
out” of X.

We now apply Theorem 3.4(1) to a finite type F-scheme X : pick a
finite set S of places such that there is a finite type Opg-scheme Xg with
generic fiber X. For any finite set S’ of places of F containing S, we
define Xy over Opg to be the base change of Xg. Note that for any
morphism of Op g -schemes Spec Ap g — Xg for some S, if §” is a finite
set of places of F containing S’ then we get an induced map of O g~ -schemes
Spec A v — Xg» by base change since A gv = Op s Q0 Ars . Likewise,
by passing to generic fibers we get an F-scheme map Spec Ap — X . Putting
this together, we get a natural map of sets

(3. l'ﬂxs' (Aps) = MXS(AF,S') — Xs(Ar) = X(AF)

that is readily checked to equal the limit of the base change maps. In this
limit process we only consider S’ containing S, and increasing S at the outset
has no impact. Theorem 3.4(1) makes precise the sense in which the direct
limit on the left side of (3.1) is intrinsic to X. By Theorem 3.4(3), the left
side of (3.1) is naturally a (set-valued) functor of the F-scheme X.

We can do better: the left side of (3.1) is naturally a topological space
in a manner that respects functoriality in X, and (3.1) is bijective. Before
explaining this, we note that the left side of (3.1) is what Weil defines to be
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the adelization of a finite type F-scheme X. It is by means of this bijection

that we shall transport a topological structure to the right side of (3.1) for

general X, recovering the topological construction for affine X in §2.
Bijectivity of (3.1) is obvious for affine X, because if

Flth'"7tnl/(.f]7"'1fm)_>AF

is a map of F-algebras then for some finite set S of places of F, the #’s all
land in Aps and the f;’s all have coefficients in Of . To establish bijectivity
without assuming X to be affine, the key point is that since Ap = l'ﬂAF,s'
and Xy is of finite type over the noetherian ring Of s, we can rewrite (3.1)
as the natural map

lim Homy, , (Spec Ar s/, (Xs)a, ;) — Homy, (Spec Ap, X4,) ,

and this is a bijection by Theorem 3.4(1) (applied to Ar = mAF,S’)-

Before we establish some topological properties of (3.1), we need some
notation. For an Op g-scheme Xg and a place v of F not in § (ie., v is a
maximal ideal of Ofs), we will write Xg, to denote the base change of Xy
over the completion O, at v. For any v, we write X, to denote the base
change of Xg (or Xg,) over the fraction field F, of O,.

THEOREM 3.6. Let Xg be a finite type Of s-scheme. Using the projections
from Apgs to F, for ve S and to O, for v ¢ S, the natural map of sets

32) Xs(Ars) = [ [ XoFo) x ] Xs.0(0.)

vES vgS

is a bijection. When X is affine and we give both sides their natural topologies,
using the product topology on the right side, this is a homeomorphism.

In general, if we use the bijection (3.2) to define a topology on Xs(Ars),
then for any finite sets of places S' C S” containing S and the corresponding
base changes Xg and Xg of Xg over Op s and Op g respectively, the natural
map X (Ap ) — Xg(Ap ) is an open continuous map of topological spaces
and it is injective when Xg is separated over Ofs.

In this theorem, we are using Remark 3.2 to give the X,(F,)’s
and Xs,,(0,)’s their natural topologies.

Proof. The bijectivity aspect amounts to the claim that a morphism of
Op s-schemes SpecAps — Xs is uniquely determined by its restriction to
the open subschemes SpecF, (v € S) and SpecO, (v ¢ §), and that it
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may be constructed from such arbitrary given data. Note that the quasi-
compact Spec Ay g is not the disjoint union of these infinitely many pairwise
disjoint non-empty affine open subschemes.

The bijectivity assertion has nothing to do with adele rings, and is a special
case of the following more general fact. Let {R;} be a collection of C-algebras
for a ring C,and let R =[] R; denote the product. Note that {Spec(R;)} is a
collection of disjoint open subschemes of the quasi-compact scheme Spec(R)
(so this is not a cover of Spec(R) if infinitely many of the R; are nonzero).
Let X be an arbitrary C-scheme, and consider the natural map of sets

(3.3) X(R) — [[X®R),

where X(R) denotes the set of R-valued points of X over C, and similarly
for each X(R;). We claim that this map is injective when X is quasi-separated
(i.e., quasi-compact opens in X have quasi-compact overlap, such as locally
noetherian or separated X) and is surjective when X is quasi-compact and
the R;’s are all local. (This is [Oes, Ch. I, Lemme 3.2], except that the
quasi-separatedness hypothesis is missing from the statement but is used in
the proof.) By taking C = Or s, {Ri} to be {F,},esU{Oy}ygs.and X to be
a scheme of finite type over Op s, we would then get the asserted bijectivity
of (3.2).

To prove the injectivity of (3.3) when X is quasi-separated, consider f, g €
X(R) that induce the same R;-points for all i. To prove that f = g, it is
necessary and sufficient that the product map

(f,9): SpecR — X x¢c X
factors through the diagonal morphism Ay ,c. Consider the cartesian diagram

V —— Spec(R)

T

X —— X Xc X
Ax/c
whose bottom side is an immersion (as for any diagonal morphism of schemes).
We shall prove that the top side is an isomorphism, which will provide the
desired factorization. The immersion Ay/c: X < X X¢ X is a quasi-compact
since X is quasi-separated, so V is a quasi-compact subscheme of Spec(R).
Letting U C Spec(R) denote the open subscheme that is the union of the
disjoint open subschemes Spec(R;) C Spec(R), by hypothesis (f,¢)|y factors
through Ax,c and so U C V as subschemes of Spec(R). Thus, it suffices to
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prove that the only quasi-compact (locally closed) subscheme V C Spec(R)
which contains U is Spec(R). (This is an assertion entirely about R ; we have
eliminated X. Note also that when there are infinitely many nonzero R;’s
it is essential to assume that V is quasi-compact, as otherwise we could
take V = U to get a counterexample.)

By quasi-compactness of the locally closed V in the affine scheme Spec(R),
there is a quasi-compact open subscheme W C Spec(R) in which V lies as
a closed subscheme. Since U C V C W, if we first treat the case of quasi-
compact open subschemes containing U then we will have W = Spec(R),
which is to say that V is closed in Spec(R). Hence, it suffices to treat two
cases: V is open and V is closed. First suppose V is open. In this case,
by quasi-compactness of V the closed complement Spec(R) — V is the zero
locus of a finitely generated ideal I C R. The containment U C V of open
subschemes of Spec(R) is the set-theoretic property that U = ][ Spec(R;)
is disjoint from the zero locus of I, or in other words the image of I
under each projection R — R; is the unit ideal. We are therefore reduced to
proving that a finitely generated ideal / in R is the unit ideal if it induces
the unit ideal in each R;. (The finiteness hypothesis on [ is crucial; it is
easy to construct ideals in Ay that are not finitely generated but generate
the unit ideal in each standard factor ring: consider the ideal generated by
elements that have a uniformizer component in all but finitely many places.)

Let aj,...,a, € R = [[R; be generators of /. By hypothesis, for each i
the elements ay ;,...,a,; € R; generate 1, say erj,,‘ aj; =1 with rj; € R;.
Hence, for r; = (rj;) € R we have ) rjgj=1 in R, so I =(1).

This settles the case when V is open in Spec(R), and now consider the
case when V is closed. In this case we run through a similar argument with
the (perhaps not finitely generated) ideal of R whose zero locus is V : the
algebraic problem is to show that if 7 is an ideal in R that projects to O in
each R; then I = 0. But this is trivial, and so completes the proof that (3.3)
is injective when X is quasi-separated.

(Our trivial argument in the closed case shows that U is scheme-
theoretically dense in Spec(R), but beware that it need not be topologically
dense and so it is essential that the containment U C V is taken in the
scheme-theoretic sense rather than in the weaker topological sense. This is
illustrated by the following example which was brought to my attention by
Moret-Bailly. Take C =k to be a field and R, = k[t]/(t"“) for n > 0, and
consider the closed subscheme V = Spec (R/ (r)) of Spec(R) defined by killing
the “diagonal” element r = (¢,¢,...). This V does contain U topologically
since it clearly contains every point of U, but it does not contain U scheme-
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theoretically since Spec(R,) is not contained in V for any n > 1. Moreover,
the underlying space of V is not all of Spec(R) since r is not nilpotent
in R.)

Now we prove that (3.3) is surjective when X is quasi-compact and
each R; is local. Assume we are given C-maps x;: SpecR; — X for
all i. We claim that there exists x € X(R) inducing the given local data.
Let {Uj,...,U,} be a finite affine open covering of X. Since each R;
is a local ring, the image of x; lands in some U; (chase the closed
point). Pick one such j(i) for each i, and let V; be the set of i’s
for which j(i) = j (i.e., those i for which we have selected U; as an
open affine through which x; factors). We have a natural finite product
decomposition R = Hij,, where Ry, is the subproduct of the product
ring R corresponding to local factors for indices i € V;. Since the Spec
functor carries finite products into disjoint unions, we may focus on each Ry,
separately. In other words, we may replace X with U; so as to reduce to
the case that X is affine. Now the claim is that if ¢;: SpecR; — SpecB are
maps of affine schemes over some affine base SpecC, then there exists a
map of C-schemes ¢: Spec(J][ R;) — Spec B inducing each ¢;. By restating
in terms of ring maps, this is obvious.

Now that (3.2) is proved to be a bijection, we may use the product
topology on its target to endow Xs(Ar ) with a topology. For affine Xg, this
recovers the topology constructed earlier: by using a finite presentation of the
coordinate ring of Xg as an Of g-algebra, and recalling how the topology on
points of affine schemes (of finite type) was defined by means of embeddings
into affine spaces, the problem comes down to the trivial claim that the product
topology on Af ¢ agrees with the product topology on

11F = IJo:.
vES vgS
Finally, we have to check that if " C S” is an inclusion of finite sets of
places of F containing S, then the map Xy (Ars) — Xg/(Ap gv) is an open
continuous map of topological spaces, and is injective when Xy is separated.
Via (3.2), this map is (topologically) the product of three maps: the identity
maps on [], . X,(F,) and on vas,, Xs,,(0,), and the base change map

I Xs.000 = [ x@&.
ves’ -8’ veS’ -8’

Thus, we are reduced to show that for v ¢ S, the natural map Xs ,(0,) — X, (F,)
is continuous and open, and injective when Xg is separated. The injectivity
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for separated Xs follows from the valuative criterion for separatedness, so we
just have to check continuity and openness.

In general, for a finite type scheme X over a complete discrete val-
uation ring O with fraction field K given its natural topology, we claim
that X(O) — Xg(K) is a continuous open map. If U is an open subscheme
of X, then by Proposition 3.1, U(O) is open in X(O). Since X(O) is the
union of the U;(0)’s for {U;} an open covering of X, our problem is of
local nature on X. Hence, we may assume X is affine. By picking a closed
immersion of X into an affine space over O, the fact that O" is open in K"
then provides what we need. [

Using Theorem 3.6 to topologize Xs(Ar s) for finite type Of g-schemes X,
it is immediate from the construction that this topology is functorial in Xy, has
a countable base of opens, carries fiber products into fiber products, and carries
closed immersions into closed embeddings (use Proposition 3.1 and the fact
that an arbitrary product of closed embeddings is a closed embedding). For
open immersions Ug — Xy it is not true in general that Us(Ars) — Xs(Ars)
is an open embedding, though it is a topological embedding. Indeed, an
arbitrary product of open embeddings is a topological embedding but usually
does not have open image. This is the reason that the construction of the
topology on Xs(Ars) in the non-affine case has to be done globally via the
product decomposition in (3.2), without trying to glue topologies coming from
open affines in Xg.

COROLLARY 3.7. Let Xs be a finite type Op s-scheme. The topological
space Xs(Aps) is locally compact, and is Hausdorff when X is separated.

Proof. Since our topology construction commutes with products and
carries closed immersions to closed embeddings, it is clear that if Xjg
is separated then Xg(Apg) is Hausdorff. As for local compactness, we
want the infinite product space Xg(Aps) to be locally compact. Since
the factor spaces X,(F,) are locally compact for v € S, we just have
to check that Xs,(0,) is compact for v ¢ S. More generally, for any
compact discrete valuation ring R and any finite type R-scheme X, we
claim X(R) is compact. Proposition 3.1 shows that for a finite open affine
covering {U;} of X the spaces {U;(R)} form a finite open covering
of X(R), so the problem comes down to the affine case, which in turn
is reduced to the trivial case of affine space (R" is compact since R is
compact). [
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4. TOPOLOGICAL PROPERTIES

Let X be a finite type F-scheme. We use Theorems 3.4 and 3.6 along
with the bijection (3.1) to give X(Ar) a topological structure that is functorial
in X and coincides with the topology in Proposition 2.1 when X is affine. To
make sense of this, we need to briefly recall how one topologizes direct limits.
If {T,} is a directed system of topological spaces, with direct limit set T
as sets, we declare U C T to be open if and only if the preimage of U in
each T, is open. This is readily checked to be a direct limit in the topological
category. In general such abstract topologies are hard to handle. However, the
case when transition maps are open involves no subtlety: if T, — T,/ is an
open continuous map for all o’ > «, then T is the directed union of the
images U, of the T, , and by giving each U, the quotient topology from T,
it is clear that the topology on T is characterized by declaring the topological
spaces U, to be open subspaces.

The functor X ~» X(Ar) does not generally carry open immersions over
to topological embeddings, but closed immersions do go over to closed
embeddings of topological spaces (due to openness of the transition maps in
the above topological direct limits). Since the behavior of quotient topologies
with respect to fiber products (or even absolute products) is subtle in general,
the topology on X(Apr) is probably rather hard to work with unless we impose
a hypothesis on X to ensure injectivity and openness of the transition maps
in the limit of Xg(Apgs)’s. We see from the final part of Theorem 3.6,
as well as Theorem 3.4(1), that assuming X is separated over F ensures
the injectivity. Thus, if X is F-separated then (3.1) expresses X(Ar) as a
direct limit of locally compact Hausdorff spaces with transition maps that
are open embeddings. In this way, we see that X(Ap) is locally compact
and Hausdorff (with a countable base of opens) when X is F-separated,
and moreover that this topology is compatible with fiber products for
general X.

The preceding defines, for finite type separated F-schemes X, a functorial
locally compact Hausdorff topology on X(Ar) with a countable base of
opens, and this topology is compatible with fiber products and carries closed
immersions between such F-schemes into closed embeddings of topological
spaces. Moreover, if X is the generic fiber of a separated finite type
Or,s-scheme Xy, then Xg(Ars) is naturally an open subset of X(Ar). As a
special case, when X is a group scheme of finite type over F' (automatically
separated), the set X(Ar) is naturally a locally compact Hausdorff topological

group.
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EXAMPLE 4.1. It is a common mistake to expect that if {U;} is an open
affine cover of X then {U;(Ar)} covers X(Ar) set-theoretically. This is false
even if X is affine, because the image of a morphism Spec A — X need not
be contained in any of the U;’s. Moreover, the set UU;(Ar) inside ]_[U X(Fy)
is not independent of {U;} in general, and in particular it is not intrinsic
to X.

EXAMPLE 4.2. Let F — F’ be a finite extension of global fields, and X’
a quasi-projective F’-scheme. Let X denote the Weil restriction Resp /p(X'),
which exists and is separated and finite type over F [BLR, pp.194-196].
(The same reference applies with F — F’ replaced by any finite locally free
ring map, such as a finite extension of Dedekind domains. In the generality
of finite locally free ring maps, the Weil restriction operation preserves
quasi-projectivity, although this is not obvious from the construction; see
[CGP, Prop. A.5.8].) Since naturally X(Ar) = X'(Ap/) as sets, we are led
to ask if this is an equality as topological spaces. Here is an affirmative
proof.

In the affine case the equality of topologies follows from Example 2.4
(applied to the base changes of X’ and X over R = Ap and R = Ap
respectively). In the general case, fix a finite set So of places of F such
that X’ extends to a quasi-projective Op g -scheme X/()’ where S is the
preimage of Sy in F’. Thus, Res@F,yS(,’/o,,)SU(Xgé) exists as a finite type
and separated Of g, -scheme Xy, and Xo(Ars) = Xg(,‘(Ap/,s/) as sets for
any finite set S of places of F containing Sy and for its preimage S’
in F’. By the definition of the topology on the adelic points (as a di-
rect limit with open transition maps), the problem of topological equality is
reduced to checking that the equality of sets Xo(Ars,) = Xk/g[/)(Apystl)) (for
general Sp) is a homeomorphism. These topologies are defined as prod-
uct topologies, and so the problem reduces to checking that for each place
v € Sy the equality of sets quUX/(FL/) = Resp/p(X')(F,) is a home-
omorphism and that for each place v of F not in So the equality of
sets

[ %508 .0) = Reso,,  j0,.4, X5)(OF.0)

v’|v

is a homeomorphism. This second homeomorphism claim is a formal conse-
quence of the first one (applied with Sy increased to contain v), so we can
focus on the case of field-valued points with any place v.
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Defining F, = F' ®p F, =[], F,, and
X, =F,on X =[x,

v’ |v

we have

Resp/r(X)r, = Respy /p, (X)) = [ | Respr /., (X)) .

'Ull’U

Thus, the problem reduces to one over local fields: if k'/k is a finite
extension of fields complete with respect to compatible nontrivial absolute
values and if Y’ is a quasi-projective k’-scheme of finite type, then we claim
that the identification of sets Resy /i (Y')(k) = Y'(k') is a homeomorphism.
Since any finite subset of Y’ lies in an open affine, the construction of these
Weil restrictions in terms of affine opens reduces us to the case when Y’
is affine. We can then apply Example 2.4 with the ring extension k'/k.
This concludes the proof that Weil restriction for quasi-projective schemes is
compatible with the topology on adelic points.

Though Example 2.2 shows that X(F) is a discrete closed set in X(Ay) for
finite type affine F-schemes X (as F is discrete and closed in Ar), globalizing
to the non-affine case usually destroys such properties. The following example
shows that for separated X, it can happen that the Hausdorff space X(Ar) is
compact with X(F) a dense proper subset that is neither closed nor discrete
in X(Ar). In general, a dense proper subset of a compact Hausdorff space
can have the discrete topology as its subspace topology, such as {1/n},>
inside {0} U {1/n},>1.)

EXAMPLE 4.3. Choose n > 0. Since P"(0,) = P"(F,) for all v{ oo, the
bijection in Theorem 3.6 yields a bijection

P'(Ap) = P"(Foo) x [ P"(00) = P'(Fo) x [ P'(F) = [ [ P"(F)

vtoo vtoo v

with the infinite product defining the topology (so it is compact Hausdorff).
In the special case n = 1, when Ap is identified with the set of Ap-points
of the standard affine line in P} its resulting subspace topology is induced
by the product topology on [] F, (so it is not locally compact).

For any finite non-empty set S of places of F, let Fs = [[,csFv. By
weak approximation in the affine space of matrices Mat,+; over F, GL,4(F)
is dense in GL,+(Fs). Thus, PGL,+;(F) is dense in PGL,4(Fs), so any
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point in P"(Fs) can be moved by a suitable projective change of coordinates
over F so that its projection into each P*(F,) (v € §) is not in the standard
hyperplane at infinity. It then follows from weak approximation in affine
n-space that P"(F) is dense in P"(F). Varying S, P"(F) is dense in P"(Ar).
The subspace topology on P"(F) is not the discrete topology, as we can see
by computing away from the standard hyperplane at infinity.

PROPOSITION 44. Let X — Y be a proper map between separated
F -schemes of finite type. The induced map X(Ap) — Y(Ar) between locally
compact Hausdorff spaces is topologically proper.

In particular, if X is proper over F then X(Ap) is compact, and
if moreover Xs is a finite type Op s-scheme with generic fiber X then
X(Ar) = Xs/(Ar,s) for every sufficiently large finite set of places S’ of F
that contains S.

Proof. By increasing S if necessary, by Theorem 3.4(2) we can assume
that X — Y arises from a proper map Xs — Ys between separated finite type
Op s-schemes. Since X(Ar) has an open covering given by the Xs(Arg)
for §' containing S, the assertions for F-proper X are immediate from the
general properness assertion for X(Ar) — Y(Ar). Thus, we focus on this
latter assertion.

For any v ¢ S, the valuative criterion for properness ensures that under the
map X,(F,)— Y,(F,) the preimage of Y5 ,(0,) is Xs,(0,). Hence, for any §’
containing §, the preimage of Ys(Ar ) under X(Ap)— Y(Arp) is Xs(Ap ).
Upon renaming S’ as S, it suffices to prove that Xs(Ap s)— Ys(Aps) is proper.
Since Ys(Ars) is a topological product of the spaces Y,(F,) for v € S and
the compact spaces Ys,(0,) ~ Y,(F,) for v ¢ S, and similarly for Xg,
we are reduced to proving that if f: X — Y is a proper map between
separated schemes of finite type over a locally compact field K, then the
map X(K) — Y(K) between locally compact Hausdorff spaces is proper.

We will say that a proper map of schemes is projective if it factors,
Zariski-locally over the base, as a closed immersion into a projective space
over the base. The properness assertion on K-points is clear when f: X — Y
is projective in this sense. In general, we shall argue by induction on
dimX (allowing any Y), the case of dimension 0 being clear (for all Y).
We may assume that X is reduced and irreducible, so by Chow’s Lemma
there is a surjective projective birational K-map f: X’ — X with X' a
reduced and irreducible scheme such that X’ is also projective over Y.
Choose a proper closed subset Z C X such that f is an isomorphism
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over X — Z. Clearly X(K) = Z(K) U f(X'(K)), and Z(K) is Y(K)-proper
since dimZ < dimX. Also, X'(K) is Y(K)-proper and X(K)-proper since X’
is projective over Y and X, so the maps Z(K)[[X'(K) — Y(K) and
Z(K)[[ X'(K) — X(K) are proper. Hence, the map X(K) — Y(K) between
Hausdorff spaces is proper. [

The final topic we address in this section is openness properties for the
map on adelic points induced by a smooth (e.g., étale) map of schemes. This
is inspired by the fact that if X’ — X is a smooth K-morphism between
arbitrary algebraic K-schemes for a field K complete with respect to a
nontrivial absolute value then the induced map X'(K) — X(K) is open. Let
us first briefly review the reason for such openness on K-points.

By working Zariski-locally, any smooth map factors as an étale map to
an affine space [EGA, IV 4, 17.11.4]. This reduces us to the case of an étale
map, and by the local structure theorem for such maps [EGA, IV 4, 18.4.6(ii)]
we may work Zariski-locally to get to the case when X = SpecB and X’
is Zariski-open in Spec((Blul/(h)y) for a monic h € Blu] with positive
degree. It therefore suffices to consider the case X' = Spec((B[u] / (h))h/) . By
expressing B as a quotient of a polynomial ring over K and lifting 4 to a
monic polynomial over such a polynomial ring, we may suppose that X is an
affine space over K.

The setup is now a consequence of “continuity of (simple) roots” over K.
That is, if g =Y cju/ € K[z] is a monic polynomial of degree n > 0 and
if up € K is a simple root of g then we claim that for any ¢ > 0 there
exists § > 0 such that every degree-n monic polynomial G = 3 Cju’ € K[u]
satisfying |C; — ¢;| < ¢ for all j < n has a unique root uy € K satisfying
|ug — uo| < € and it is a simple root. This is very classical in the archimedean
case, and in the non-archimedean case it is a key ingredient in the proof of
Krasner’s Lemma; see [BGR, 3.4, p.146] (with r =1 there) for a proof.

The analogous openness result for adelic points requires additional
hypotheses. For example, the Zariski-open immersion of the multiplicative
group into the affine line over F induces the natural inclusion Ay — Ap
which is not even a topological embedding and does not have open image.
Even if we restrict ourselves to surjective €tale maps there are counterexam-
ples: the nth-power map G,, = G,, for n > 1 not divisible by char(F) is a
finite étale map that induces the nth-power map A; — Ay whose image is
not open. The defect of these examples is that they have fibers which are either
empty or geometrically disconnected. This is bypassed by the hypotheses in
the next result.
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THEOREM 4.5. Let f: X' — X be a smooth surjective F-map between
separated F-schemes of finite type. If the fibers are geometrically connected
then the induced map X'(Ar) — X(Ar) is open.

This result is stated and proved in [Oes, Ch. I, 3.6] in the affine case (and
our proof is simply a more general version of the argument to avoid affineness
hypotheses).

Proof. By Theorem 3.4(2) we may and do choose a finite set S of places
of F so that f is the map on generic fibers induced by a smooth surjective
Ops-map fs: Xg — Xg with geometrically connected fibers, where Xj
and Xg are separated Opg-schemes of finite type. By varying through
finite 7 O S (promptly renamed as §), it suffices to prove that the induced
map Xs(Ar,s) — Xs(Ars) is open. This is a map of product spaces, and more
specifically is the product of the induced maps X (F,) — X,(F,) for v € §
and X5 ,(0,) — Xs,,(0,) for v ¢ S. These latter maps on O, -points are
induced by the corresponding maps on F,-points, so (by definition of the
topology on a product space) we are reduced to checking two facts:

(i) the smooth F,-map f,: X — X, induces an open map on F,-points for

all v,

(i) for all but finitely many v ¢ S, the map X ,(0,) — X5,,(0O,) is surjective.

The openness of the map on F,-points for all v is a special case of
the more general fact, explained in the discussion immediately preceding
Theorem 4.5, that if K is any field complete with respect to a nontrivial
absolute value and f: X’ — X is a smooth map between K -schemes locally
of finite type then the induced map X'(K) — X(K) is open.

Returning to our setup over Opg, it remains to show that fs induces
a surjective map on O, -points for all but finitely many v ¢ S. Letting &,
denote the finite residue field at v, it suffices to prove surjectivity of the
map on k,-points for all but finitely many such v. Indeed, granting such
surjectivity for a particular v ¢ S, if x: Spec O, — Xs,, is a section then the
pullback of the smooth O,-map fs, along x is a smooth O,-scheme that (by
hypothesis) has a rational point in its special fiber. Since O, is henselian, such
a rational point in the special fiber lifts to an O, -point [EGA, IV4, 18.5.17],
and this lies in xg,“(ov) over x as desired. The surjectivity on k, -points for
all but finitely many v ¢ S is an assertion in algebraic geometry for separated
schemes of finite type over Op s and has nothing to do with adelic points.
To prove it we may pass to connected components of X and increase S by a
finite amount so that the smooth and geometrically connected (and non-empty)
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fibers of fs have a common dimension d.

We now appeal to the following relative version of the Lang-Weil estimate
for smooth geometrically connected varieties over a finite field, allowing for
families over finite fields with varying characteristics:

LEMMA 4.6. Let f: Y — B be a smooth separated surjective map between
finite type Z-schemes such that the fibers are geometrically connected of

dimension d. There is a constant C > 0 such that for all closed points b € B,

@1 1Y, (kb)) — i < Cqj /7,

where qp = #k(D).

Proof. This is [Dell, Cor. 3.3.3] applied to the constant sheaf Q, on Y
(which is pure of weight 0), but for the convenience of the reader we say
a bit about what underlies the proof. By stratifying B, we can assume it is
a Z[1/¢]-scheme for a prime ¢. Consider each ¢-adic sheaf Rfi(Qy) on B.
It is constructible, vanishes for i > 2d, and has fiber at a geometric point b
over a point » € B naturally identified with Hf,(Yg, Q). Also, for i = 2d this
sheaf is Qu(—d) since f is smooth with geometrically connected non-empty
fibers of dimension d.

The Grothendieck-Lefschetz trace formula implies

2d

#Yyp(k(b)) = > (= 1)'Tr(p|HL(Y5, Q)

i=0
for each closed point b € B, where ¢, is the geometric Frobenius element
in Gal(k(b)/k(b)). The contribution for i = 2d is qﬁ, and by Deligne’s
generalization of the Riemann Hypothesis [Dell, Thm. 3.3.1], the eigenvalues
of ¢p on HQ(Y;, Q) are g,-Weil numbers of weight at most i (i.e., algebraic
numbers whose complex embeddings all have a common absolute value q;f/ 2
for some w < i). In particular, the ith trace term in the above formula is an
algebraic number all of whose complex embeddings have absolute value at
most niqz/ % where n; is an upper bound on the fibral ranks of the constructible
sheaf Rif,(Qy). Allowing i to vary from 0 to 2d — 1, we obtain (4.1). O

We apply the lemma to fs to conclude that for any closed point
x € Xg with associated residue field k(x) of size ¢, there is an estimate
|#f§1(x)(k(x)) - ¢4 < quf_l/ 2 for a constant C > 0 that is independent
of x. Hence, if ¢, is sufficiently large then the fiber fs_l(x) must have a
k(x)-rational point. This applies in particular to any k, -point of Xy when #k,
is sufficiently large, and so applies to all but finitely many v ¢ S. [
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5. ALGEBRAIC SPACES

We now show how Weil’s topological method works for adelic points
of separated algebraic spaces of finite type over a global field F (and we
also consider the non-separated case over local fields). In this section, we
assume the reader is familiar with the basic properties of algebraic spaces,
as developed in [Kn]. We will work with quasi-separated algebraic spaces (as
is the case throughout [Kn]), which is weaker than the separatedness that we
shall need to obtain the main topological results in the adelic setting.

The first step is to verify that Theorem 3.4 is valid with finitely presented
algebraic spaces in place of finitely presented schemes. This is proved by an
étale descent argument to upgrade from schemes to algebraic spaces, and is
explained in (the proof of) [Ols, Prop. 2.2] apart from the property of having
fibers non-empty and geometrically connected of pure dimension d. So now
we address this latter fibral property.

By using étale scheme covers, the condition that fibers are non-empty of
pure dimension d can be reduced to the settled scheme case. For the property
of geometric connectedness of fibers, we need to do more work. Exactly as
in approximation arguments for schemes, it suffices to prove:

LEMMA 5.1. If Xo — Spec(By) is a finitely presented algebraic space
over a ring By and n € Z is an integer then the locus in Spec(By) where
the geometric fiber has n connected components is constructible.

Proof. By applying the descent of finitely presented algebraic spaces
through the limit process (using an expression for By as a direct limit of
noetherian subrings), it suffices to treat the case when By is noetherian.
Noetherian induction reduces the problem to showing that if By is a domain
then the number of connected components of the geometric generic fiber
coincides with the number of connected components on the geometric fibers
over some dense open in the base.

Since we have “spreading out™ for algebraic spaces as well as the other
properties in Theorem 3.4(2) (especially the properties of being a closed
immersion or open immersion), we can conclude by arguing exactly as
in the case of schemes [EGA, IV3, 9.7.7] (using dense open schemes in
quasi-compact quasi-separated algebraic spaces, and reducing certain steps in
the argument back to the scheme case by using étale scheme covers; e.g.,
reducedness can be verified using an étale scheme cover, and to carry over
|[EGA, IV3, 9.5.3] to algebraic spaces we use that an open subset of a scheme
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of finite type over a field is dense if and only if the same holds after pullback
to an étale cover). [J

We also require the analogue of Theorem 3.6 for algebraic spaces, but we
first focus on the set-theoretic aspect:

PROPOSITION 5.2. Let Xs be a separated algebraic space of finite type
over Ops. The map (3.2) is bijective.

Proof. The proof of injectivity goes exactly as in the scheme case, due
to the separatedness hypothesis (to circumvent the fact that the diagonal of a
general algebraic space does not factor as a closed immersion followed by an
open immersion). For surjectivity, we can focus on the factor ring st O,
of Ars away from S.

Choose a collection of points x, € Xs(O,) for all v ¢ S. We seek to
construct x € XS(HU¢S 0,) recovering x, for all v ¢ §; there is at most one
such x, and to prove that such an x exists we will use the settled scheme
case and étale descent.

Let m: Us — Xg be an étale cover by an affine scheme, so this map
is separated (as Uy is separated). Its pullback along x, is an étale cover
of SpecO,, and the special fibers of these maps have degree bounded
independently of v since the fibers of 7 have bounded degree (as for any
quasi-compact étale map to a quasi-separated quasi-compact algebraic space).
Let N be a uniform upper bound on such fiber degrees, and for each v ¢ S
let O, — O be an unramified extension of degree d = N!. Thus, the
restriction x!, € X5(0)) of x, lifts to some u!, € Us(O’). Since Uy is affine,
there is a unique u’ € Us([[ O)) recovering u) for every v ¢ S.

Let R =]],¢500 and R =[,450;, s0 R — R’ is a finite étale cover
of degree d (express each O) in the form O,[7]/(f,) for a monic polyno-
mial f, € O,[¢] with degree d and irreducible reduction, so R’ = R[t]/(f) for
/= (fy) €RIt] CJ]0O,lr]). Moreover, this is a Z/(d)-torsor by choosing an
identification of Z/(d) with the cyclic Galois groups for the factors rings. We
have constructed a point x' := wou’ € Xg(R') which recovers the O -point x/,
for each v ¢ S, and it suffices to descend x’ to an R-point of Xg (since
such a descent necessarily recovers x, for each v ¢ S, due to the injectivity
of Xs(0,) — Xs5(0))). Since the functor X is an étale sheaf, it suffices to
show that x" is Z/(d)-invariant. By the settled injectivity, it suffices to check
such invariance on the separate factors. Since x/, descends to x,, for all v ¢ S
by construction, we are done. U
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To bring in topologies, we need to address the local case. The role of
completeness will be clarified by working with henselian valued fields: a
valued field is a field k equipped with a nontrivial absolute value, and it is
henselian if this absolute value uniquely extends to every algebraic extension.
A characterization of the henselian property is that k is separably algebraically
closed in k. (The complete case is all we will actually need, so the reader
may skip ahead to Proposition 5.4 and restrict attention to complete ground
fields.) By [Ber, 2.4.3], in the non-archimedean case k is henselian if and
only if its valuation ring is henselian in the sense of commutative algebra.

In general if k’/k is a finite separable extension field of a valued field &
then the nonzero finite reduced %-algebra K ®k? is the direct product of the
completions of k' at the finitely many valuations extending the one on k.
Thus, if k is henselian then &’ ®kE is a field of degree [k’ : k] over %,
so the archimedean henselian fields are precisely the algebraically closed
subfields of C and the real closed subfields of R (equipped with the induced
valuation). If k is henselian then the functor k' ~ k’ @i k is an equivalence
between the category of finite étale k-algebras and the category of finite étale
/k\-a]gebras: this is obvious in the archimedean case, and is [Ber, 2.4.1] in the
non-archimedean case.

LEMMA 5.3. Let k be a henselian valued field. For any étale map Y — Y
between locally finite type k-schemes, the natural map Y'(k) — Y (k) is a local
homeomorphism.

Proof. We may work Zariski-locally on both ¥ and Y’. By the Zariski-
local structure theorem for étale morphisms [EGA, V4, 18.4.6(ii)], we may
assume Y = Spec B is affine and Y’ = Spec((B[x]/(h)),,/) for a monic h € B|x|
with positive degree, say degree n. Compatibility with base change allows
us to reduce to the universal case when Y is affine n-space over k and h
is the universal monic polynomial of degree n. The assertion now takes on
a concrete form: it is exactly “continuity of simple roots” as discussed just
after the proof of Proposition 4.4, except that we are relaxing completeness
to the henselian condition.

Since Y’ (k) — Y(k) is a local homeomorphlsm (by the known complete
case) and the inclusions Y'(k) — Y'(k) and Y(k) — Y(k) are topologlcal
embeddings, it suffices to prove that under the map Y’ (k) — Y(k) the fiber
over any y € Y(k) consists entirely of k-rational points. This problem concerns
the k-scheme Y] = Spec((klx]/(h))y) for monic h € k|x] with degree n > 0 :
we claim that all simple zeros of & in k lie in k. Equivalently, we claim
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that all ?-points of a finite étale k-algebra E are k-points. This says that the
natural map

Homy(E, k) — Homy(E, k) = Hom (k @ E, k)

is bijective, which is a special case of the functorial equivalence between finite
étale k-algebras and finite étale k-algebras for henselian valued fields k. [

PROPOSITION 54. Let k be a henselian valued field, and X a (quasi-
separated) algebraic space locally of finite type over k. There is a unique
way to topologize X(k) so that the following properties hold : it is functorial,
compatible with fiber products and the case of schemes, open (resp. closed)
immersions in X are carried to open (resp. closed) embeddings in X(k), and
étale maps are carried to local homeomorphisms.

If X is separated then the topology on X(k) is Hausdorff, and it is
totally disconnected (resp. locally compact) when k is non-archimedean (resp.
locally compact) .

If k is complete and X is smooth then X(k) admits a unique functorial
k-analytic manifold structure which agrees with the scheme case and carries
étale maps to k-analytic local isomorphisms.

I am grateful to A.J. deJong and L. Moret-Bailly for independently
suggesting the method of proof below; it is much simpler than my original
method (which required completeness and separatedness throughout, and more
importantly rested on the main theorem from [CT], entailing a long detour
through Berkovich spaces).

Proof. The uniqueness holds due to the requirement on étale maps and the
fact that for every x € X(k) there exists an étale map U — X from a scheme U
admitting a point u € U(k) such that u — x [Kn, II, Thm. 6.4]. (This ensures,
using a large disjoint union, that there is an étale scheme cover U — X such
that U(k) — X(k) is surjective.) For separated X the Hausdorff property of X(k)
is a formal consequence of the desired compatibility with closed immersions
and fiber products, and the assertions concerning local compactness and total
disconnectedness are also easy to verify via the scheme case when X is
separated (using that X(k) is Hausdorff to establish the totally disconnected
property).

To prove existence with the asserted properties, consider the étale
maps f: U — X from finite type k-schemes U. As we vary through such
maps, the images f(U(k)) C X(k) cover X(k). We claim that the strongest
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topology on X(k) making the maps U(k) — X(k) continuous (i.e., a subset
of X(k) is open when its preimage in each such U(k) is open) does the
job.

If f:U — X and f": U — X are two such étale maps, consider
the induced maps ¢: U(k) — X(k) and ¢': U'(k) — X(k). For an open
set V! C U'(k), 6~"(¢'(V)) = pi(py (V")) where p; is the ith projection
on (U xx U')(k) = U(k) xxu U'(k). Equip (U xx U')(k) with its natural
topology using that U xy U’ is a scheme. Then the p; are local homeo-
morphisms, due to Lemma 5.3 and the projections U xx U' = U, U’ being
étale maps of schemes, so ¢~ !(¢'(V')) is open in U(k). Thus, if a subset
of X(k) is the image of an open set in some U’(k) (such as being contained
in ¢'(U’'(k)) with open preimage in U’(k)) then it has open preimage in any
other U(k). In particular, any open set in U(k) has image in X(k) whose
preimage in U(k) is open (by taking U’ = U).

It follows that if we declare a subset of X(k) to be open when it has open
preimage in every U(k) (i.e., we consider the strongest topology making all
maps U(k) — X(k) continuous) then in fact all maps U(k) — X (k) arising from
schemes U étale over X are continuous and open. In particular, since there
is always an étale map U — X from a scheme U such that the continuous
open map U(k) — X(k) is surjective, it follows that the topology on X(k) is
functorial in X.

To prove that the topology is compatible with fiber products, consider a
pair of k-maps X’,X” = X and compatible k-maps U’,U” = U among
schemes étale over these algebraic spaces. Then U’ xy U” — X' xx X" is an
étale map from a scheme, and the composite map

(U xy U")(k) = U'(k) Xy U" (k) L X' (k) Xxa X" (k) = (X xx X" ) (k)

as well as the middle map % are continuous and open. Thus, since the
left map is a homeomorphism, it follows that the right equality is continu-
ous and open on the image of & when we use the fiber product topology
on X'(k) Xxx X" (k). Varying these étale schemes, it follows that the identifi-
cation X'(k) Xxx X" (k) = (X" xx X'")(k) is a continuous open bijection, hence
a homeomorphism.

To complete the proof of existence, it remains to verify that if f: X’ — X is
an open immersion (resp. closed immersion, resp. étale) then X'(k) — X(k) is
an open embedding (resp. closed embedding, resp. local homeomorphism). As-
sume f is an open (resp. closed) immersion, and let U — X be an étale scheme
cover such that U(k) — X(k) is surjective. The pullback U’ := U xx X’ is an
open (resp. closed) subscheme in U and U’(k) = U(k) X x4 X' (k) topologically



88 B. CONRAD

due to the established compatibility with fiber products. Since U’ — U is
an open (resp. closed) immersion, U'(k) — U(k) is an open embedding
(resp. closed embedding). Thus, for any subset 7 C X'(k) that is open (resp.
closed), its image in X(k) has pullback in U(k) that is equal to the image
under U’(k) < U(k) of the preimage of T in U’(k). This implies that f(T)
is open (resp. closed) in X(k) since U(k) — X(k) is topologically a quotient
mapping.

Now consider the local homeomorphism property for X'(k) — X(k)
when f: X’ — X is étale. Choose a separated étale scheme cover U — X
such that U(k) — X(k) is surjective, and a separated étale scheme
cover U — X' xx U such that U'(k) — (X’ xx U)(k) is surjective. Using such
covers, by Lemma 5.3 the local homeomorphism property for X'(k) — X(k)
is reduced to the special case of U(k) — X(k) for an étale map U — X
from a separated scheme. Since the diagonal U — U Xx U is an open and
closed immersion of schemes (as U is separated and U — X is étale),
likewise the natural map U(k) — (U xx U)(k) = U(k) xxu U(k) is an open
and closed embedding (when using the fiber product topology on the tar-
get). Thus, for every u € U(k) there is an open neighborhood in U(k) on
which U(k) — X(k) is injective, so the continuous open map U(k) — X(k) is
a local homeomorphism.

Finally, we address the k-analytic manifold structure when X is smooth
and k is complete. We wish to use the structure on each U(k) transported
via the local homeomorphism U(k) — X(k) for étale maps U — X from
schemes U. To verify that this defines a k-analytic structure, we have
to check the k-analyticity of the transition maps, which amounts to the
observation that for any two étale maps U, U’ = X from schemes, the maps
p1,p2: (U xx U')(k) = Uk) xxx U'(k) = Uk),U'(k) are local k-analytic
isomorphisms (by the known scheme case, ultimately resting on the k-analytic
inverse function theorem and the Zariski-local description of étale maps). This
k-analytic structure is easily proved to be functorial and to carry étale maps
of algebraic spaces over to local k-analytic isomorphisms. [

EXAMPLE 5.5. Let G be a unipotent algebraic group over a henselian
valued field k of characteristic O (such as a p-adic field; i.e., a finite extension
of Q,) and V a reduced k-scheme of finite type equipped with a G-action
(e.g., the coadjoint representation Lie(G)*, as in the orbit method). For d > 0
let V4 C V denote the reduced locally closed subscheme of points whose
G-orbit has dimension d. (This is locally closed due to applying semicontinuity
of fiber dimension to the action map G x V — V)
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The universal action map G x V; — V; x V; defined by (g,v) — (g.v,v)
is flat over the diagonal (since the closed subscheme of the V-group G x V
defined by the condition g.v = v is the V-scheme exp,y) y(kerB) for
the differentiated vector bundle map B: g x V — Tany, over V, and kerB
is a subbundle over V; due to B having constant rank over V). Thus,
by [Del2, Prop. 3.11] there is a finitely presented algebraic space X over
k and a faithfully flat map V, — X that identifies X with the fppf sheaf
quotient of V; by its G-action, so we denote X as V;/G. Generally V,/G
is highly non-separated. The topological space (V,;/G)(k) is locally Hausdorff
and locally compact (and locally totally disconnected). For p-adic & and the
coadjoint representation V = Lie(G)* there is interest in using sheaf theory
on (V4/G)(k) to study the smooth representation theory of G(k) over C.

COROLLARY 5.6. Let f: X — Y be a proper map between (quasi-
separated) algebraic spaces locally of finite type over a local field k (possibly
archimedean) . The map X(k) — Y(k) is topologically proper.

Proof. We can choose an étale scheme cover Y’ — Y such that the local
homeomorphism Y’(k) — Y(k) is surjective. It suffices to prove properness of
X(k) Xyq Y'(k) — Y'(k), so we can applying base change along Y’ — Y to
reduce to the case that Y is a scheme. By using Chow’s Lemma for algebraic
spaces [Kn, IV, 3.1], the method of proof of Proposition 4.4 reduces the
problem to the easy case when X is a projective space over Y. [

COROLLARY 5.7. Let X be a (quasi-separated) algebraic space locally of
finite type over the valuation ring R of a field k equipped with a nontrivial non-
archimedean absolute value, and assume that R is henselian. The subset X(R)
in X(k) is open and closed, and if k is locally compact and X is of finite
type over R then X(R) is quasi-compact.

Proof. By construction, the topology on X(k) is obtained from that on the
spaces U(k) for schemes U étale over X;. In particular, for any scheme U
étale over X the open set U(R) in Ui(k) has open image in X(k). Since R
is henselian, any R-point of X is in the image of U(R) for some étale
map U — X (by taking U such that there is a rational point in the fiber
of U — X over the closed point of the chosen R-point of X, and using that R
is henselian). This proves that X(R) is open in X(k). Using a huge disjoint
union, we can construct an étale scheme cover U — X such that U(R) — X(R)
and U(k) — X(k) are surjective. The full preimage of X(k) — X(R) in U(k)
is U(k)— U(R), which is open in U(k), so since U(k) — X(k) is a continuous
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surjective open map it follows that X(k) — X(R) is open in X(k). Thus, X(R)
is also closed in X(k).

Now assume that & is locally compact and X is of finite type over R.
To build the étale scheme U — X such that U(R) — X(R) is surjective, we
just have to lift the rational points in the special fiber of X — SpecR. But
the residue field is a finite field and X is of finite type, so by using a finite
stratification of X by schemes we see that there are only finitely many rational
points in the special fiber. Thus, U can be constructed as finite type over R,
so U(R) is quasi-compact and therefore X(R) is quasi-compact.  []

As an application of Corollary 5.7, we can carry over verbatim the proof
of Theorem 3.6 to show that for a separated algebraic space Xg of finite
type over Op g, the product topology on Xs(Ars) via Proposition 5.2 and
Proposition 5.4 is locally compact Hausdorff and induces an open embedding

Xs/(Aps) — Xg(Ap.s),

where X¢ and Xy~ are as in Theorem 3.6.
Since Theorem 3.4 is valid for algebraic spaces, the natural map

lim Xs(Ar.s') = Xs(Ar)

is bijective for any separated algebraic space Xg of finite type over Opg
(where §' varies through the finite sets of places containing §). Thus, exactly
as in the scheme case, we can functorially topologize X(Ar) for any separated
algebraic space X of finite type over F (recovering our earlier topological
constructions when X is a separated F-scheme of finite type). Exactly as in the
scheme case, this is locally compact, Hausdorff, has a countable base of opens,
and is compatible with fiber products and closed immersions. Proposition 4.4
carries over with the same proofs (using Corollary 5.6). For general interest,
we record the latter:

PROPOSITION 5.8. Let f: X — Y be a proper map between sepa-
rated algebraic spaces locally of finite type over a global field F. The
map X(Ar) — Y(Ar) is topologically proper.

The openness result for a smooth surjective F-morphism (as in Theo-
rem 4.5) lies somewhat deeper:
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THEOREM 59. Let f: X' — X be a smooth surjective map between
separated algebraic spaces of finite type over a global field F. Assume that
the fibers of f are geometrically connected. Then the map X'(Ar) — X(Ar)
is open.

Proof. The argument for the scheme case carries over except for the step
of checking surjectivity at the level of rational points over the finite residue
fields at all but finitely many places. For this we just need Lemma 4.6 to be
valid for algebraic spaces of finite presentation over Z. The basic formalism
of étale cohomology works for noetherian algebraic spaces with essentially
the same proofs because of : the finite stratification in locally closed schemes
for noetherian algebraic spaces, formal GAGA for noetherian algebraic spaces
[Kn, V, §6], Nagata’s compactification theorem for algebraic spaces (recently
proved, e.g. in [CLOJ), and the fact that separated algebraic space curves over
a field are schemes |Kn, V, 4.9ff].

The Grothendieck-Lefschetz trace formula also carries over, since excision
for cohomology with proper supports allows us to use a stratification in schemes
to reduce to the known case of schemes. Thus, we just need that Deligne’s
Riemann Hypothesis [Dell, Thm. 3.3.1] holds for separated algebraic spaces
of finite type over a finite field. Once again we can use the excision sequence
and a stratification in schemes to reduce to the known scheme case. |

Finally, we address how the topology on X(k) for an algebraic space X
over a field k as in Proposition 5.4 interacts with Weil restriction through
finite extensions k’/k, and then deduce a corresponding global result for adelic
points. We first record how Weil restriction behaves for algebraic spaces:

LEMMA 5.10. Let R — R' be a finite locally free ring extension,
and X' a (quasi-separated) algebraic space of finite type over R'. The
Weil restriction X := Resg: /R(X’ ) as a functor on R-schemes is a (quasi-
separated) algebraic space of finite type over R.If X' is separated (resp. of
finite presentation) over R' then the same holds for X over R.

See [Ols, Thm. 1.5] for more general results on Weil restriction for algebraic
spaces.

Proof. Let U' — X' be an étale cover by an affine scheme, so Resg: /z(U")
is an affine scheme of finite type over R (and of finite presentation when X’
is of finite presentation over R’). Since any finite algebra over a strictly
henselian local ring is a finite product of such rings [EGA, V4, 18.8.10],
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the induced étale map Resg /r(U’) — Resg//r(X’) of étale sheaves on the
category of R-schemes is surjective. Moreover, the fiber square of this map
is the functor Resg gr(U’ xx U’). The fiber product U’ xx U’ is quasi-
compact, separated, and étale over U’ under either projection because the
same holds for the étale map U’ — X' (since U’ is separated and X’
is quasi-separated). But any quasi-compact étale map is quasi-finite, so by
Zariski’s Main Theorem [EGA, IV3, 8.12.6] such maps U’ xy U = U’
are quasi-affine when separated. (See [EGA, II, 5.1.9] for the equivalence
of the two natural meanings of “quasi-affine” for finite type schemes over a
ring.) Hence, the finite type R’-scheme U’ xx U’ is quasi-affine, so it is also
quasi-projective over R’. It follows that Resg (U’ xx/ U’) is represented by
an R-scheme of finite type (even quasi-projective, by [CGP, A.5.8]).

The projections Resg:/z(U" xx U') = Resp/p(U’) are étale since the
maps U’ xx» U’ = U’ are étale, and the diagonal

0: RCSR//R(U/X)(/ Ul) — ReSR’/R(U/)XSpec(R)ReSR’/R(U’) = RCSR//R(U/X Spec(R’)U/)

is the Weil restriction of U’ xx U — U’ Xspeerry U', 80 0 is a closed
immersion when X’ is separated.

We conclude that Resg /r(X’) is an étale sheaf quotient of an affine scheme
equipped with a representable étale equivalence relation having a quasi-compact
diagonal § that is a closed immersion when X’ is separated. The category of
(quasi-separated) algebraic spaces is stable under the formation of quotients by
étale equivalence relations having quasi-compact diagonal [LMB, Prop. 1.3],
s0 Resg//r(X’) is an algebraic space and it is separated when X’ is separated.
It is finitely presented over R when X’ is finitely presented over R’ since in
such cases by construction Resgs/g(X’) admits a finitely presented étale cover
by an affine scheme of finite presentation over R. [

PROPOSITION 5.11. Letr k'/k be an extension of henselian valued fields,

and X a (quasi-separated) algebraic space locally of finite type over k.

(1) If [K' : k] is finite then for any (quasi-separated) algebraic space Y' of
finite type over k', the identification of sets Resy ; (Y')(k) = Y'(K') is a
homeomorphism.

(2) The natural map X(k) — X(E) = X?(ic\) is a topological embedding.

(3) Assume X is covered by separated Zariski-open subsets. The natural
map X(k) — X(K') = X (k') is a topological embedding, and it is a
closed embedding when k is closed in k'.

We will not use (3) (whose proof rests on [CT] when [k’ : k] is infinite).
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Proof. First consider (1). For y' € Y'(k"), choose an étale map U’ — Y’
from an affine scheme U’ such that there exists u’ € U’'(k’) over y'.
Then U := Resy ;(U') is an affine scheme of finite type over k and the
induced map U — Y is étale (by the functorial criterion, or the construction
of Y). Moreover, this latter map carries the point u € Uk) = U'(K)
corresponding to #’ over to the point y € Y(k) = Y'(k") corresponding to y'.
In the commutative square

Uty =—=U"(K)
Y(ky =—=Y'(K')

the vertical maps are local homeomorphisms onto their images, and the top
horizontal map is a homeomorphism due to the known case of affine schemes
of finite type. Thus, the bijective bottom horizontal map is a homeomorphism
between open neighborhoods of y and y’. Since y’ was arbitrary, we are done
with (1).

For (2), let f: U — X be an étale cover by a separated scheme such
that U(k) — X(k) is surjective. In the commutative diagram

Uk) — U(k)

1

X(k) — x(k)

the vertical maps are local homeomorphisms (with the left side a quotient
map), the top map is a topological embedding (since U is a scheme), and
the bottom map is injective. It follows that the bottom map is continuous.
To prove that it is a topological embedding, let V C U(k) be an open
set which is the preimage of its image in X(k). We can choose an open
set V' C U(k) which meets U(k) in exactly V. The image f(V') C X(k) is
an open set, and obviously f(V) C X(k) Nf(V'). But the reverse inclusion
also holds. Indeed, if x € X(k) has the form f(v') for some v’ € V' C U(E)
then necessarily v’ € U(k) since the étale k-scheme U, has all E—points
necessarily k-rational (as k is henselian). This forces v € V' NUKk) =V,
so x € f(V) as required and (2) is proved.

It follows from (2) that in general the property of X(k) — X(k')
being a topological embedding is reduced to the analogous assertion using
the completions of k and k’. If k is closed in k' then the resulting
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equality K Nk =k in & forces X(k) = X(k') N X(k) inside X(k'), so in such
cases X(k) is closed in X (k") when X@) is closed in X(l?’). Thus, to prove (3)
we may and do now work with complete ground fields. (If [k : k] < oo
then II?’ :EI < [k : k] < c0.) We also may and do assume X is separated,
since the problem is Zariski-local on X.

First we consider the finite-degree case of (3) (with complete fields), as
this admits a simpler proof than the general case. By working Zariski-locally
on X we may assume it is of finite type over k, so Resy /x(X/) is an algebraic
space over k. Consider the diagram

Xk) = X(K) ~ Xp (k') ~ Resy /x (X ) (k)

in which the first bijection defines the topology on X(k') and the second
bijection is a homeomorphism (by (1)). The composite map is induced on k-
points by the canonical map of k-schemes j: X — Resy /1 (Xir), so to settle the
case when [k’ : k] is finite it suffices to prove that j is a closed immersion. It
is equivalent to say that the base change ji: Xpr — Resp 1 (Xp )y is a closed
immersion. This is a section to an instance of the canonical k’-map

e ReSk//k(Y/)kl — Y,

defined by Y'(k' @ A’) — Y'(A’) for k'-algebras A’ and (quasi-separated)
algebraic spaces Y’ of finite type over k', so it suffices to note that 7 is
separated when Y’ is separated. (If Ay, /s is a quasi-compact immersion, so the
same holds for Age, SOk = Resy /i (Ay /i) , then any section to 7 is quasi-
compact. Hence, even without completeness, X(k) — X(k) is a topological
embedding whenever [k’ : k] is finite and Ay /k 1s a quasi-compact immersion.)

To handle the cases when [k’ : k| is not assumed to be finite (so we may
and do assume k is non-archimedean, as otherwise we are in the settled finite-
degree case), we will appeal to a more difficult (but ultimately equivalent)
construction of the topology in the non-archimedean complete case, resting
on the main theorem in [CT]. That theorem provides a functorial theory
of analytification X*" (in the sense of rigid-analytic spaces) for separated
algebraic spaces X locally of finite type over k, compatible with fiber products,
open and closed immersions, étale maps, the scheme case, and extension of the
ground field. Moreover, by [CT, Ex.2.3.2] it satisfies the expected functorial
property X(k) = X*"(k) as sets. Thus, by using an admissible affinoid open
covering of X®", this provides another way to topologize X (k) compatibly with
all of the properties required for the uniqueness in Proposition 5.4 (since rigid-
analytic étale maps are local isomorphisms near rational points). Hence, we
recover the topology in Proposition 5.4. Since the formation of X*" respects
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extension of the ground field, the injection X(k) — X(k') is topologically
identified with the natural injection X*(k) — (X*")-(k") that is seen to be a
closed embedding by working with the constituents of an admissible affinoid
open covering of X*'. [

COROLLARY 5.12. Let f: X — Y be a finite map between separated
algebraic spaces locally of finite type over a henselian valued field k. If k is
algebraically closed in k then X(k) — Y(k) is topologically proper.

The hypothesis that the henselian k& is algebraically closed in % holds
if char(k) = 0 or k is non-archimedean with an excellent valuation ring.

Proof. Consider the commutative diagram

X(k) — x(k)

|

Y(k) — y(k)

in which the horizontal maps are topological embeddings (Proposition 5.11(2)).
It follows that the diagram is topologically cartesian since it is set-theoretically
cartesian (due to the hypothesis that k is algebraically closed in ?). Hence,
it suffices to consider the case when k is complete. We may also work
locally on Y(k), and for any y € Y(k) there is an étale map U — Y from a
scheme U containing u € U(k) mapping to y. Then U(k) — Y(k) is a local
homeomorphism near u, so we may pass to X xy U — U in place of X — Y
to reduce to the case when Y is a scheme.

By working Zariski-locally on Y we can then assume that ¥ = Spec(A) is
affine and the Y -finite X is a closed subscheme of Spec (A[tl,. ot/ ,h,,))
for some monic h; € Alt] with positive degree. This reduces the problem
to the special case X = Spec(A[7]/(h)) for a monic h € Alz] with positive
degree. Since a topologically closed map between Hausdorff spaces is proper
when its fibers are finite, it suffices to prove closedness of the map on k-points.
Such closedness follows from the version of “continuity of roots” over k = k
(without simplicity requirements) given in [BGR, 3.4.1/2]. O

EXAMPLE 5.13. We now show if the hypothesis on X in Proposi-
tion 5.11(3) (which is always satisfied in the scheme case) is weakened
to the condition that the quasi-compact Ay is an immersion, then the closed
embedding property for X(k) — X(k’) can fail even when k is complete with
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respect to a nontrivial discrete valuation and k’/k is finite separable. As the
proof of Proposition 5.11 suggests, the place to look for such X is among those
algebraic spaces which fail to admit an analytification in the sense of [CT].

Let k' /k be a separable quadratic extension of fields, and assume & is com-
plete with respect to a nontrivial non-archimedean absolute value. Let X be the
algebraic space obtained from the affine line L over k by “replacing” the origin
with Spec(k’). In concrete terms, this is the quotient of the affine k’-line L’
by the free action of the affine étale L-group G obtained from (Z/2Z); by
deleting the non-identity point over the origin of L. The smooth irreducible
algebraic space X = L’/G is a lower-dimensional version of the 2-dimensional
non-analytifiable example in [CT, Ex.3.1.1], and as in that example the diag-
onal Ay, is easily checked to be a quasi-compact immersion (even affine).

By construction there is a natural étale map X — L that is an isomorphism
over L — {0} and has fiber Speck’ over 0. Thus, X(k) — L(k) = k misses 0
and hence is a homeomorphism onto k£* . The construction of X makes sense
using any quadratic étale algebra (i.e., we allow k x k, and uniquely identify its
k-automorphism group with Z/2Z). In that sense, the formation of X commutes
with any extension of the ground field. Thus, X, is the affine k’-line with a
doubled origin, so X(k') = Xi-(k’) is the non-Hausdorff space built from &’
by doubling the origin. The map X(k) — X(k’) is identified with the inclusion
of k* into the k’-line with doubled origin. This has non-closed image.

Here is the analogue of Example 4.2 for algebraic spaces:

PROPOSITION 5.14. Let F'/F be a finite extension of global fields,
and X' a separated algebraic space of finite type over F'. For the separated
algebraic space X = Resp/p(X') of finite type over F, the bijection of
sets X(Ar) = X'(Ap) is a homeomorphism.

Proof. By carrying over the same argument as in the scheme case,
we reduce the problem to the case of local fields. This case is settled by
Proposition 5.11(1). [
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