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ALTERNATING QUOTIENTS OF FREE GROUPS

by Henry WILTON *)

Abstract We strengthen Marshall Hall's theorem to show that free groups
are locally extended residually alternating Let F be any free group of rank at
least two, let H be a finitely generated subgroup of infinite index m F and let
{71, ,7n} C. F \ H be a finite subset Then there is a surjection / from F to a
finite alternating group such that /(7O for any 1 The techniques of this paper
can also provide symmetric quotients

Definition 1. A group T is residually 7 (for some class of groups 7)
if, for any 7 e T \ 1, there is a surjection f:T^Pe7 with /(7) / 1.

Many groups are known to be residually finite, and it is natural to
ask whether one can restrict attention to smaller classes of finite groups.
Katz and Magnus proved that free groups are residually alternating, hence

residually simple [6] (see also [8], [12] and [11] et seq.)\ in the topological
context, Long and Reid showed that many hyperbolic 3-manifold groups are

residually PSL^i^p) [7].
One of the most obvious generalisations of Definition 1 replaces the trivial

subgroup with an arbitrary finitely generated subgroup H. (In many cases, it
is too much to expect infinitely generated subgroups to satisfy this property —

see Remark 3.) This consideration leads to the following definition.

Definition 2. A group T is said to be locally extended residually finite
(LERF, also often called subgroup separable) if, for any finitely generated

subgroup HCT and any 7 E T \ H, there is a surjection / from T onto a

finite group such that /(7) ^ /(//).

*) Partially supported by NSF grant number DMS-0906276 and by an EPSRC Career
Acceleration Fellowship
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Remark 3. Without the requirement that the subgroup H be finitely
generated, such a group T is called extended residually finite or ERF. It is

well known that the (2, 3) -Baumslag-Solitar group

BS(2,3) (a,b \ b~1a~2ba3)

is not residually finite. By considering the kernel of the natural map
F2 (a, b) BS(2, 3), it follows easily that non-abelian free groups are

not ERF.

Marshall Hall Jr. proved that free groups are locally extended residually
finite [4]. His theorem has been reinterpreted topologically and generalised
to much larger classes of groups [9, 10, 13, 3]. However, to the best of
the author's knowledge, no results have been proved that restrict the finite
quotients that arise to a more specific class. The aim of this note is to begin
to fill this gap by proving that free groups are what one might call locally
extended residually alternating.

THEOREM A. Fet F be a free group of rank greater than one. Fet H be

a finitely generated subgroup of infinite index in F and let {71,... ,7«} be

a finite subset of F \ H. There is a surjection f from F onto some finite
alternating group such that f(yt) ^ f(H) for all i.

A small modification of the argument gives symmetric, rather than

alternating, quotients.

THEOREM B. Fet F be a free group of rank greater than one. Fet H be

a finitely generated subgroup of infinite index in F and let {71,... ,7«} be

a finite subset of F \ H. There is a surjection f from F onto some finite
symmetric group Sk such that f(%) £ f(H) for all i.

Remark 4. In the case when T is the class of all finite groups, it is

equivalent to state the theorem for a single element 7 ^ F \H instead of for
a finite subset {71,..., yn} C r \ H : to deduce the latter from the former,

simply take the product of the quotients across all This works because a

product of finite groups is finite. As a product of alternating groups is not

alternating and a product of symmetric groups is not symmetric, we give the

stronger statements.
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Remark 5. The hypothesis that H is of infinite index in F is necessary.
For instance, suppose that H is a normal subgroup of finite index in F. For

any surjection /: F An with n > 5, f(H) is a normal subgroup of An and

is therefore either the whole of An or trivial. In the latter case, it follows
that F/H maps onto An. But F has many finite quotients that do not map
onto An.

Stallings interpreted Hall's original proof that free groups are LERF using
the topology of graphs, reducing it to the topological fact that any immersion
of finite graphs can be completed to a covering map [10]. Wiegold's proof
that free groups are residually even alternating [12] uses a classical theorem

of Jordan, which asserts that if the minimal degree of a primitive permutation

group is small enough, then that group must be symmetric or alternating [5].
The proofs of Theorems A and B combine Jordan's theorem with the covering
theory of graphs. The key technical result is Lemma 18. In the proof, we show

how to complete an immersion of a finite graph into the rose to a covering

map in such a way that the resulting permutation action of F on the vertices
is primitive and satisfies Jordan's condition. This proves that free groups
are, so to speak, locally extended residually symmetric-or-alternating. A small

modification of this construction then forces the action to be alternating;
a slightly different modification forces the action to be symmetric.

In order to apply Jordan's theorem, we must ensure that the action of F
on the vertices of the cover we construct is primitive. In this paper we do so

in the simplest possible way, by requiring the number of vertices of the cover
to be prime. Thus, we actually prove that free groups are locally extended

residually alternating-of-prime-degree. Alternatively, one could ensure that the

action is primitive by forcing it to be 2-transitive. This is possible, using a

more complicated construction, of which we do not give the details here. Via
this more complicated construction, one can obtain different restrictions on
the degrees of the alternating quotients.

After free groups, the fundamental groups of surfaces are the next examples

to consider.

CONJECTURE 6. Let 2 be a closed, orientable, hyperbolic surface and
let H be a finitely generated subgroup of infinite index in it{L. For

any 7 G 717 2 \ H there is a surjection f from T onto a finite alternating

group with /(7) £ f(H).
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In Section 1, we recall the very well known facts that subgroups of free

groups can be viewed in terms of either permutation representations or coverings

of graphs, and observe that it is easy to pass from one point of view to the

other. In Section 2 we revisit S tailings's proof of Marshall Hall's theorem.

Finally, in Section 3 we bring in Jordan's theorem and prove Theorems A and B.

1. Permutations and coverings of graphs

Let F be a free group of rank r > 1, with generators {<ri,..., ar}. It
is convenient to take r to be finite, although our results apply just as well
to the infinite-rank case. Let H be a subgroup of finite index. The action
of F by left multiplication on F/H can be thought of as a homomorphism
from F to the symmetric group Sym(F/H). Of course, F acts transitively,
and the subgroup H can be recovered as the stabiliser of the trivial coset. We

summarise this paragraph as follows.

Remark 7. Subgroups of F of index d correspond canonically to
transitive actions of F on pointed sets of cardinality d.

We now switch to a topological point of view. Let X be a rose with r
petals, that is, a graph with precisely one vertex vo and r edges. (All our
results can be generalised to the situation in which X is an arbitrary finite
graph. However, the case in which X is a rose is sufficient for our purposes.)
We fix once and for all an isomorphism F tti(X,xo) by orienting each edge

of X and labelling it with a generator of F.
By standard covering space theory, a subgroup H of F corresponds to a

connected, pointed covering space (T,y0) (X,xo) with the covering map
inducing an isomorphism tti (T,y0) — H.

The orientation and labelling of the edges of X pulls back to an orientation
and labelling of the edges of Y. Conversely, any orientation and labelling of the

edges of Y determines a combinatorial map Y -A X that sends vertices to
vertices and edges to edges. We will only consider such maps, and we will usually
think of them in terms of the corresponding labelled and oriented graph Y.

Covering maps to X are easily characterised in terms of the labelling and

orientation on Y.

Definition 8. A labelling and orientation on a graph Y are said to satisfy
the covering condition if, for each vertex y of Y and each label at, there is

exactly one incoming and one outgoing edge labelled at at y.
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The proof of the following lemma is a simple exercise.

Lemma 9. A combinatorial map of non-empty, connected graphs Y -A X
is a covering map if and only if it is bijective on the links of vertices.

Equivalently, Y -A X is a covering map if and only if the corresponding
labelling and orientation on the graph Y satisfy the covering condition.

When a covering map is restricted to a subgraph, we obtain an immersion.

Definition 10. A combinatorial map Y -a X is an immersion if it is

injective on links of vertices.

Again, this can be characterised in terms of the labelling and orientation

on Y.

Definition 11. A labelling and orientation on a graph Y are said to

satisfy the immersion condition if, for each vertex y of Y and each label at,
there is at most one incoming and one outgoing edge labelled at at y.

Just as before, the proof of the following lemma is an easy exercise.

Lemma 12. A combinatorial map of non-empty, connected graphs Y -A X
is an immersion if and only if the corresponding labelling and orientation on
the graph Y satisfy the immersion condition.

The immersion condition and the covering condition are illustrated in
Figure 1.

OL\

Ot\

Mr-
OL2

Figure 1

The graph on the left satisfies the covering condition
The graph on the right does not satisfy the immersion condition
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It follows from standard covering space theory that F acts on the vertex
set of Y by path lifting. To be precise, any element 7 e F can be thought
of as a loop in X, represented by a continuous map 7: [0,1] X with
7(0) 7(1) xq. Covering space theory asserts that, for each vertex y e Y,
there is a unique lift 7: [0,1] -A Y with 7(0) y. The action of 7 on the

vertices of Y is defined by

7 ,y 7(1)

Furthermore, the map that sends 7 7 .yo induces an F-equivariant bijection
between F/H and the vertices of Y. We can summarise this discussion in
the following remark.

Remark 13. Subgroups of F correspond to connected, based, labelled,
oriented graphs that satisfy the covering condition. The index of the subgroup
is equal to the number of vertices of the graph.

It is apparent from Remarks 7 and 13 that connected, based, labelled,
oriented graphs satisfying the covering condition are in bijection with transitive

permutation actions of F on based sets. Indeed, given such a graph Y, as

observed above the group F acts by path lifting on the vertices. The action of
the generator at can be seen by restricting attention to the edges of Y labelled

by at : by the covering condition, these edges form a union of topological
circles; each circle corresponds to a cycle under the action of at; taken

together, these circles give the cycle type of at.
Conversely, given an action of F by permutations on a set V, we can

build a covering graph Y. Take V to be the vertex set of Y. There is an

oriented edge labelled at from u to v if at. u v. By construction, this

graph Y satisfies the covering condition.

2. Marshall Hall's theorem

In this section, we recall Stallings's proof of Marshall Hall's Theorem [10].
The key observation is that one can complete any immersion to a covering

map without increasing the number of vertices.

Lemma 14 (Stallings [10]). Let Z be a finite graph, let X be a rose and

let Z -A X be an immersion. The immersion factors as Z <-A Y -A X where Z
is a subgraph of Y, every vertex of Y is a vertex of Z, and Y -A X is a

covering map.
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Proof. As above, we can think of Z as an oriented, labelled graph that
satisfies the immersion condition. For each i, let A+(z) be the set of vertices

of Z that adjoin an outgoing edge labelled at, and let A~(i) be the set of
vertices of Z that adjoin an incoming edge labelled at. Counting the edges

labelled at, we see that
#A+{i) #A~(i)

whence

#(A+(i)f #{A~ (i))c

Choose any bijection between (A+(/))c and (.A~(j))c. We can use this additional

bijection to add new oriented edges labelled at to Z. Let Y be the result

of carrying this out for each i. By construction, Y satisfies the covering
condition.

The proof is illustrated in Figure 2.

OL2

OL2

Figure 2

The union of the black edges, Z, satisfies the immersion condition
After adding the grey edges, the resulting graph Y satisfies the covering condition

Theorem 15 (Marshall Hall Jr. [4]). Let F be a finitely generated free

group, let H C F be a finitely generated subgroup, and let 71,..., yn £ F\H.
There is a homomorphism f from F to a finite group such that f{yt) ^ f(H)
for all i.

Proof. We identify F with 7ri(X,vo) for X a suitable rose. Let
(Xf,xf0) —» (X,xo) be the covering map corresponding to FL. Each lifts
at Xq to a path 7': [0,1] X'; by assumption, y'fil) x'0. We now consider

the topology of the graph X/. Let T C X' be a maximal tree. Because H is

finitely generated, it follows from the Seifert-van Kampen Theorem that X'\T
is a finite union of edges e[ U U efk.
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For each j, let p'j be an edge path from x'0 to the initial vertex of ej and

let v' be an edge path from xf0 to the terminal vertex of e'j. Let

n k

z=U u U^'u e'ju Q •

1=1 J=1

That is, Z is a finite, connected subgraph of X' that contains the paths 7' and

that also carries the fundamental group of X'. The labelling of X' restricted

to Z satisfies the immersion condition, so we may apply Lemma 14 to

construct a finite-sheeted covering space Y.
Consider the action of F on the vertices of Y. Every element of H is

represented by a loop in Z. Therefore, H is contained in the stabiliser of x'0.

On the other hand, 7'Q) 7^ x'0 for each i, and so does not stabilise x'q

3. Alternating quotients

In this section, we show how to modify Stallings's construction to force
the action of F on the vertices of Y to be alternating or symmetric.

Recall some basic terminology from the theory of symmetric group actions.

Consider a transitive action by a group T on a finite set of order n, in other

words a homomorphism T Sn with transitive image; the integer n is called
the degree of the action. The smallest degree of a non-trivial cyclic subgroup
of the image of T is called the minimal degree of the action. The action is

primitive if it does not preserve any proper partition of the finite set.

Remark 16. Because the action is transitive, the cardinality of any
partition preserved by T divides n. Therefore, if n is prime then the action
is primitive.

We will use a classical theorem of Jordan, which gives a criterion
for an action to be symmetric or alternating (in other words, for the

homomorphism T Sn to have image of index at most two) [5, 1]. See

Theorem 3.3D of [2] for a modern treatment.

Theorem 17 (Jordan). There is a function J: N -a N with the following
properties:
1. J(n) -A 00 as n —) 00 ;

2. if T -A Sn is primitive with minimal degree at most J(n) then the image

of T is the symmetric group Sn or the alternating group An.
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We can now provide the alternating analogue of Lemma 14.

Lemma 18. Assume that r > 2. Let Z be a finite graph and let X be a

rose with r petals. Any immersion Z -A X that is not a covering map factors
as Z Y -A X where Y -A X is a finite-sheeted covering map and the action

of F tt\ (X) on the vertex set of Y is alternating.

Proof. As before, we think of Z as a labelled, oriented graph. Because

the immersion Z -A X is not a covering map, the labelling and orientation on
the graph Z do not satisfy the covering condition, so for some i there are (not
necessarily distinct) vertices a, b of Z such that a does not adjoin an outgoing
edge labelled at and b does not adjoin an incoming edge labelled al. Without
loss of generality, we may take i 1. By adding edges to Z as in the proof
of Lemma 14, we may assume that a and b are the only vertices that adjoin
fewer than 2r half-edges. Let d be the number of vertices of Z.

Before we proceed with the details of the proof, we will give an outline.
The labelled, oriented graph Y is constructed from Z by attaching a large
labelled, oriented graph Wn on which a2 acts trivially. We need to ensure
that Y has the following properties:

1. the labelling and orientation on Y satisfy the covering condition;
2. the number of vertices of Y is prime (which ensures that the action of F

on the vertices of Y is primitive);
3. the generator a2 fixes a large number of the vertices of Y (this ensures

that the action of F on the vertices of Y has small minimal degree).

At this point it will follow from Theorem 17 that the action of F on the

vertices of Y is either alternating or symmetric. In order to force the action

to be alternating, we will also attach a carefully chosen labelled, oriented

graph Vs. A schematic diagram of the construction of Y is given in Figure 5.

We will now give the details of the construction of Wn. Take a graph

homeomorphic to an interval with n+ 1 vertices, denoted w0,..., wn. Label
each edge ol\ and orient the edges consistently, so that the immersion condition
is satisfied. Attach an oriented edge labelled al from Wj to itself for each i 1

and for each j. The result is a labelled, oriented graph Wn with n vertices, that
satisfies the immersion condition. Only two vertices of Wn adjoin fewer than 2r
half edges: one does not adjoin an incoming edge labelled a\ and the other
does not adjoin an outgoing edge labelled a\. An example is shown in Figure 3.

Next, consider any sequence (st) £ {±1} (for 1 < i < r). We will
define a labelled, oriented graph Vs, with four vertices, denoted v\, v2, P3, V4.

By changing the sequence (st), we will be able to change the signs of the
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Figure 3

The graph W4

permutations defined by the generators of F. The construction is as follows.
There is an oriented edge labelled a\ from v\ to v2 ; for each i > 2, there are

oriented loops of length one attached to v\ and v2. For each i 7^ 2, if st +1
then there are oriented loops of length one labelled at attached to u3 and v4 ;

if st — 1 then u3 and v4 are the two vertices of an oriented loop of length
two labelled at. If s2 +1 then v\ and u3 are the two vertices of an oriented

loop of length two labelled a2, and likewise v2 and v4 are the two vertices

of such a loop; if s2 —1 then vi,V2,V3,v4 are the vertices of an oriented

loop of length four labelled a2. Two examples are shown in Figure 4.

We are nearly ready to construct Y from the pieces Z, Wn and Vs.

However, we first construct a similar labelled, oriented graph Y', in which

we will not try to control the parity of the action of F. Let p be the smallest

prime such that J(p) > d+4 and let n p — d — 4. Let tx +1 for 1 < i < r.
Construct Y' from VtUYUWn by attaching four oriented edges labelled ol\
in any way that makes the result connected and that satisfies the covering
condition. So F acts on the vertex set of Y', and we can read off the cycle

types by looking at the edges. Because Y' is connected, the action is transitive,
and because the number of vertices p is prime, it follows that the action is

primitive. By construction, a'2.Wj w3 for any j, and so we see that the

minimal degree of the action is at most d + 4. It follows from Jordan's

theorem that the action is alternating or symmetric.

a2
Figure 4

The graph V+i?_i is shown on the left, and V_ 1,+1 on the right.
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.0,0.0^-

V+1,+1

A A
Z A A

Figure 5

The construction of Y from Z is illustrated The original edges of Z are marked in black,
and the added edges in grey The labels have been suppressed for clarity

Finally, we will modify Y' to force the action to be alternating. For each i,
consider the sign st £ {=bl} of the action of at on the vertex set of Yf. Now
construct Y from Y' by replacing Vt by Vs. As before, we see that the action
of F on the vertex set of Y is symmetric or alternating, but the modification
ensures that each generator at acts as an even permutation. Therefore, the

action of F on the vertex set of Y is alternating.

The construction of Y is illustrated in Figure 5. Note that, in order to

ensure that the resulting action is symmetric rather than alternating, one can

simply change the sequence s in one place. We therefore also have a symmetric
version of the previous lemma.

LEMMA 19. Assume that r > 2. Let Z be a finite graph. Any immersion

Z —> X that is not a covering map factors as Z <—>- Y -A X where Y —> X is

a finite-sheeted covering map and the action of F tt\(X) on the vertex set

of Y is symmetric.

Theorem A follows from Lemma 18 in exactly the same way that

Theorem 15 follows from Lemma 14. Likewise, Theorem B follows from
Lemma 19.



60 H WILTON

REFERENCES

[1] DlEUDONNE, J CEuvres de Camille Jordan Tomes I, II Publiees sous la
direction de M Gaston Julia Gauthier-Villars & Cie, Pans, 1961

[2] Dixon, J D and B Mortimer Permutation Groups Graduate Texts m
Mathematics 163 Springer-Verlag, New York, 1996

[3] HäGLUND, F Finite index subgroups of graph products Geom Dedicata 135
(2008), 167-209

[4] Hall, M Jr Subgroups of finite index m free groups Canad J Math 1

(1949), 187-190

[5] JORDAN, C Theoremes sur les groupes primitifs J Math Pures Appl (2) 16
(1871), 383^108

[6] KATZ, R A and W MAGNUS Residual properties of free groups Comm Pure
Appl Math 22 (1968), 1-13

[7] LONG, D D and A W Reid Simple quotients of hyperbolic 3-manifold groups
Proc Amer Math Soc 126 (1998), 877-880

[8] Pride, S J Residual properties of free groups Pacific J Math 43 (1972),
725-733

[9] SCOTT, P Subgroups of surface groups are almost geometric J London Math
Soc (2) 17 (1978), 555-565

[10] STALLINGS, J R Topology of finite graphs Invent Math 71 (1983), 551-565
[11] WEIGEL, T S Residual properties of free groups J Algebra 160 (1993), 16^-1

[12] WlEGOLD, J Free groups are residually alternating of even degree Archiv der
Math 28 (1977), 337-339

[13] Wilton, H Hall's theorem for limit groups Geom Funct Anal 18 (2008),
271-303

(Regu le 6 mai 2010)

Henry Wilton

Department of Mathematics

University College London
Gower Street
London WC1E 6BT
United Kingdom
e-mail hwilton@math ucl ac uk


	Alternating quotients of free groups

