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ALTERNATING QUOTIENTS OF FREE GROUPS

by Henry WILTON *)

ABSTRACT. We strengthen Marshall Hall’s theorem to show that free groups
are locally extended residually alternating. Let F be any free group of rank at
least two, let H be a finitely generated subgroup of infinite index in F and let
{7,.-.,} € F~ H be a finite subset. Then there is a surjection f from F to a
finite alternating group such that f(v;) ¢ f(H) for any i. The techniques of this paper
can also provide symmetric quotients.

DEFINITION 1. A group T is residually P (for some class of groups P)
if, for any v € I' . I, there is a surjection f: I' — P € P with f(v) # 1.

Many groups are known to be residually finite, and it is natural to
ask whether one can restrict attention to smaller classes of finite groups.
Katz and Magnus proved that free groups are residually alternating, hence
residually simple [6] (see also [8], [12] and [11] ef seq.); in the topological
context, L.ong and Reid showed that many hyperbolic 3-manifold groups are
residually PSL,(F,) [7].

One of the most obvious generalisations of Definition 1 replaces the trivial
subgroup with an arbitrary finitely generated subgroup H. (In many cases, it
is too much to expect infinitely generated subgroups to satisfy this property —
see Remark 3.) This consideration leads to the following definition.

DEFINITION 2. A group I is said to be locally extended residually finite
(LERF, also often called subgroup separable) if, for any finitely generated
subgroup H C T" and any v € I' \ H, there is a surjection f from I" onto a
finite group such that f(vy) ¢ f(H).

*) Partially supported by NSF grant number DMS-0906276 and by an EPSRC Career
Acceleration Fellowship.
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REMARK 3. Without the requirement that the subgroup H be finitely
generated, such a group T' is called extended residually finite or ERF. It is
well known that the (2,3)-Baumslag—Solitar group

BS(2,3) = {(a,b | b~ 'a"*ba’)

is not residually finite. By considering the kernel of the natural map
F, = (a,b) — BS(2,3), it follows easily that non-abelian free groups are
not ERF.

Marshall Hall Jr. proved that free groups are locally extended residually
finite [4]. His theorem has been reinterpreted topologically and generalised
to much larger classes of groups [9, 10, 13, 3]. However, to the best of
the author’s knowledge, no results have been proved that restrict the finite
quotients that arise to a more specific class. The aim of this note is to begin
to fill this gap by proving that free groups are what one might call locally
extended residually alternating.

THEOREM A. Let F be a free group of rank greater than one. Let H be
a finitely generated subgroup of infinite index in F and let {v1,...,v.} be
a finite subset of F ~ H. There is a surjection f from F onto some finite
alternating group Ay such that f(v;) ¢ f(H) for all i.

A small modification of the argument gives symmetric, rather than
alternating, quotients.

THEOREM B. Let F be a free group of rank greater than one. Let H be
a finitely generated subgroup of infinite index in F and let {v1,...,v.} be
a finite subset of F ~ H. There is a surjection f from F onto some finite
symmetric group Sy such that f(~;) ¢ f(H) for all i.

REMARK 4. In the case when P is the class of all finite groups, it is
equivalent to state the theorem for a single element v ¢ F ~\ H instead of for
a finite subset {vi,...,7,} € T \ H: to deduce the latter from the former,
simply take the product of the quotients across all ;. This works because a
product of finite groups is finite. As a product of alternating groups is not
alternating and a product of symmetric groups is not symmetric, we give the
stronger statements.
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REMARK 5. The hypothesis that H is of infinite index in F is necessary.
For instance, suppose that H is a normal subgroup of finite index in F. For
any surjection f: F — A, with n > 5, f(H) is a normal subgroup of A, and
is therefore either the whole of A, or trivial. In the latter case, it follows
that F/H maps onto A,. But F has many finite quotients that do not map
onto A,.

Stallings interpreted Hall’s original proof that free groups are LERF using
the topology of graphs, reducing it to the topological fact that any immersion
of finite graphs can be completed to a covering map [10]. Wiegold’s proof
that free groups are residually even alternating [12] uses a classical theorem
of Jordan, which asserts that if the minimal degree of a primitive permutation
group is small enough, then that group must be symmetric or alternating [5].
The proofs of Theorems A and B combine Jordan’s theorem with the covering
theory of graphs. The key technical result is Lemma 18. In the proof, we show
how to complete an immersion of a finite graph into the rose to a covering
map in such a way that the resulting permutation action of F on the vertices
is primitive and satisfies Jordan’s condition. This proves that free groups
are, so to speak, locally extended residually symmetric-or-alternating. A small
modification of this construction then forces the action to be alternating;
a slightly different modification forces the action to be symmetric.

In order to apply Jordan’s theorem, we must ensure that the action of F
on the vertices of the cover we construct is primitive. In this paper we do so
in the simplest possible way, by requiring the number of vertices of the cover
to be prime. Thus, we actually prove that free groups are locally extended
residually alternating-of-prime-degree. Alternatively, one could ensure that the
action is primitive by forcing it to be 2-transitive. This is possible, using a
more complicated construction, of which we do not give the details here. Via
this more complicated construction, one can obtain different restrictions on
the degrees of the alternating quotients.

After free groups, the fundamental groups of surfaces are the next examples
to consider.

CONJECTURE 6. Let 2 be a closed, orientable, hyperbolic surface and
let H be a finitely generated subgroup of infinite index in mZ. For
any v € mZ\ H there is a surjection f from T onto a finite alternating
group with f(v) ¢ f(H).
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In Section 1, we recall the very well known facts that subgroups of free
groups can be viewed in terms of either permutation representations or cover-
ings of graphs, and observe that it is easy to pass from one point of view to the
other. In Section 2 we revisit Stallings’s proof of Marshall Hall’s theorem. Fi-
nally, in Section 3 we bring in Jordan’s theorem and prove Theorems A and B.

1. PERMUTATIONS AND COVERINGS OF GRAPHS

Let F be a free group of rank r > 1, with generators {«y,...,a,}. It
is convenient to take r to be finite, although our results apply just as well
to the infinite-rank case. Let H be a subgroup of finite index. The action
of F by left multiplication on F/H can be thought of as a homomorphism
from F to the symmetric group Sym(F/H). Of course, F acts transitively,
and the subgroup H can be recovered as the stabiliser of the trivial coset. We
summarise this paragraph as follows.

REMARK 7. Subgroups of F of index d correspond canonically to
transitive actions of F on pointed sets of cardinality d.

We now switch to a topological point of view. Let X be a rose with r
petals, that is, a graph with precisely one vertex xo and r edges. (All our
results can be generalised to the situation in which X is an arbitrary finite
graph. However, the case in which X is a rose is sufficient for our purposes.)
We fix once and for all an isomorphism F = (X, xo) by orienting each edge
of X and labelling it with a generator of F.

By standard covering space theory, a subgroup H of F corresponds to a
connected, pointed covering space (Y,yo) — (X,xp) with the covering map
inducing an isomorphism (Y, yo) = H.

The orientation and labelling of the edges of X pulls back to an orientation
and labelling of the edges of Y. Conversely, any orientation and labelling of the
edges of Y determines a combinatorial map Y — X that sends vertices to ver-
tices and edges to edges. We will only consider such maps, and we will usually
think of them in terms of the corresponding labelled and oriented graph Y.

Covering maps to X are easily characterised in terms of the labelling and
orientation on Y.

DEFINITION 8. A labelling and orientation on a graph Y are said to satisfy
the covering condition if, for each vertex y of Y and each label «;, there is
exactly one incoming and one outgoing edge labelled «; at y.
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The proof of the following lemma is a simple exercise.

LEMMA 9. A combinatorial map of non-empty, connected graphs Y — X
is a covering map if and only if it is bijective on the links of vertices.
Equivalently, Y — X is a covering map if and only if the corresponding
labelling and orientation on the graph Y satisfy the covering condition.

When a covering map is restricted to a subgraph, we obtain an immersion.

DEFINITION 10. A combinatorial map Y — X is an immersion if it is
injective on links of vertices.

Again, this can be characterised in terms of the labelling and orientation
on Y.

DEFINITION 11. A labelling and orientation on a graph Y are said to
satisfy the immersion condition if, for each vertex y of Y and each label «;,
there is at most one incoming and one outgoing edge labelled «; at y.

Just as before, the proof of the following lemma is an easy exercise.
LEMMA 12. A combinatorial map of non-empty, connected graphs Y — X
is an immersion if and only if the corresponding labelling and orientation on

the graph Y satisfy the immersion condition.

The immersion condition and the covering condition are illustrated in
Figure 1.
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FIGURE 1

The graph on the left satisfies the covering condition.
The graph on the right does not satisfy the immersion condition.
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It follows from standard covering space theory that F acts on the vertex
set of Y by path lifting. To be precise, any element v € F can be thought
of as a loop in X, represented by a continuous map ~: [0,1] — X with
v(0) = (1) = xo . Covering space theory asserts that, for each vertex y € Y,
there is a unique lift 4: [0,1] — Y with 5(0) = y. The action of = on the
vertices of Y is defined by

vy =40 .
Furthermore, the map that sends v — 7 .yo induces an F-equivariant bijection
between F/H and the vertices of Y. We can summarise this discussion in
the following remark.

REMARK 13. Subgroups of F correspond to connected, based, labelled,
oriented graphs that satisfy the covering condition. The index of the subgroup
is equal to the number of vertices of the graph.

It is apparent from Remarks 7 and 13 that connected, based, labelled,
oriented graphs satisfying the covering condition are in bijection with transitive
permutation actions of F on based sets. Indeed, given such a graph Y, as
observed above the group F acts by path lifting on the vertices. The action of
the generator a; can be seen by restricting attention to the edges of Y labelled
by «;: by the covering condition, these edges form a union of topological
circles; each circle corresponds to a cycle under the action of «;; taken
together, these circles give the cycle type of «;.

Conversely, given an action of F by permutations on a set V, we can
build a covering graph Y. Take V to be the vertex set of Y. There is an
oriented edge labelled «; from u to v if a;.u = v. By construction, this
graph Y satisfies the covering condition.

2. MARSHALL HALL'S THEOREM

In this section, we recall Stallings’s proof of Marshall Hall’s Theorem [10].
The key observation is that one can complete any immersion to a covering
map without increasing the number of vertices.

LEMMA 14 (Stallings [10]). Let Z be a finite graph, let X be a rose and
let Z — X be an immersion. The immersion factors as Z — Y — X where Z
is a subgraph of Y, every vertex of Y is a vertex of Z, and Y — X is a
covering map.
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Proof. As above, we can think of Z as an oriented, labelled graph that
satisfies the immersion condition. For each i, let A1 (i) be the set of vertices
of Z that adjoin an outgoing edge labelled «;, and let A~ (i) be the set of
vertices of Z that adjoin an incoming edge labelled «;. Counting the edges
labelled «;, we see that

#AT (i) = #A™ (i)
whence
AT (@) = HA™ (@)
Choose any bijection between (AT (7)) and (A~ (i))°. We can use this additional
bijection to add new oriented edges labelled «; to Z. Let Y be the result
of carrying this out for each i. By construction, Y satisfies the covering
condition. [

The proof is illustrated in Figure 2.
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FIGURE 2

The union of the black edges, Z, satisfies the immersion condition.
After adding the grey edges, the resulting graph Y satisfies the covering condition.

THEOREM 15 (Marshall Hall Jr. [4]). Let F be a finitely generated free
group, let H C F be a finitely generated subgroup, and let v, ...,v, € FN\H.
There is a homomorphism [ from F to a finite group such that f(~y;) ¢ f(H)
for all i.

Proof. We identify F with m;(X,x0) for X a suitable rose. Let
X', x5) — (X,x0) be the covering map corresponding to H. Each ~; lifts
at x; to a path ~/: [0, 1] — X’ ; by assumption, /(1) # x,. We now consider
the topology of the graph X’. Let T C X’ be a maximal tree. Because H is
finitely generated, it follows from the Seifert-van Kampen Theorem that X'\ T
is a finite union of edges €, U...Ue.
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For each j, let y be an edge path from x; to the initial vertex of ¢ and
let v/ be an edge path from x; to the terminal vertex of ;. Let
n k
z={UrnvlUJwjugus).
i=1 j=1
That is, Z is a finite, connected subgraph of X’ that contains the paths ~/ and
that also carries the fundamental group of X’. The labelling of X’ restricted
to Z satisfies the immersion condition, so we may apply Lemma 14 to
construct a finite-sheeted covering space Y.
Consider the action of F on the vertices of Y. Every element of H is
represented by a loop in Z. Therefore, H is contained in the stabiliser of xj.
On the other hand, ~/(1) # x; for each i, and so ~y; does not stabilise x;. [

3. ALTERNATING QUOTIENTS

In this section, we show how to modify Stallings’s construction to force
the action of F on the vertices of Y to be alternating or symmetric.

Recall some basic terminology from the theory of symmetric group actions.
Consider a transitive action by a group I' on a finite set of order n, in other
words a homomorphism I' — S, with transitive image; the integer n is called
the degree of the action. The smallest degree of a non-trivial cyclic subgroup
of the image of I' is called the minimal degree of the action. The action is
primitive if it does not preserve any proper partition of the finite set.

REMARK 16. Because the action is transitive, the cardinality of any
partition preserved by I' divides n. Therefore, if n is prime then the action
is primitive.

We will use a classical theorem of Jordan, which gives a criterion
for an action to be symmetric or alternating (in other words, for the
homomorphism I' — S, to have image of index at most two) [5, 1]. See
Theorem 3.3D of [2] for a modern treatment.

THEOREM 17 (Jordan). There is a function J: N — N with the following
properties :
1. J(n) > o0 as n — o0 ;
2. if ' = S, is primitive with minimal degree at most J(n) then the image
of T is the symmetric group S, or the alternating group A, .
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We can now provide the alternating analogue of Lemma 14.

LEMMA 18. Assume that r > 2. Let Z be a finite graph and let X be a
rose with r petals. Any immersion Z — X that is not a covering map factors
as Z — Y — X where Y — X is a finite-sheeted covering map and the action
of F =2 m(X) on the vertex set of Y is alternating.

Proof. As before, we think of Z as a labelled, oriented graph. Because
the immersion Z — X is not a covering map, the labelling and orientation on
the graph Z do not satisfy the covering condition, so for some i there are (not
necessarily distinct) vertices a,b of Z such that a does not adjoin an outgoing
edge labelled a; and b does not adjoin an incoming edge labelled «;. Without
loss of generality, we may take i = 1. By adding edges to Z as in the proof
of Lemma 14, we may assume that @ and b are the only vertices that adjoin
fewer than 2r half-edges. Let d be the number of vertices of Z.

Before we proceed with the details of the proof, we will give an outline.
The labelled, oriented graph Y is constructed from Z by attaching a large
labelled, oriented graph W, on which «; acts trivially. We need to ensure
that Y has the following properties :

1. the labelling and orientation on Y satisfy the covering condition;

2. the number of vertices of Y is prime (which ensures that the action of F
on the vertices of Y is primitive);

3. the generator a, fixes a large number of the vertices of Y (this ensures
that the action of F on the vertices of Y has small minimal degree).

At this point it will follow from Theorem 17 that the action of F on the

vertices of Y is either alternating or symmetric. In order to force the action

to be alternating, we will also attach a carefully chosen labelled, oriented

graph V,. A schematic diagram of the construction of Y is given in Figure 5.

We will now give the details of the construction of W,. Take a graph
homeomorphic to an interval with n+ 1 vertices, denoted wy, ..., w, . Label
each edge «; and orient the edges consistently, so that the immersion condition
is satisfied. Attach an oriented edge labelled o; from wj; to itself for each i # 1
and for each j. The result is a labelled, oriented graph W, , with n vertices, that
satisfies the immersion condition. Only two vertices of W, adjoin fewer than 2r
half edges: one does not adjoin an incoming edge labelled «; and the other
does not adjoin an outgoing edge labelled «; . An example is shown in Figure 3.

Next, consider any sequence (s;)) € {£l1} (for 1 < i < r). We will
define a labelled, oriented graph Vi, with four vertices, denoted vy, va, v3, v4.
By changing the sequence (s;), we will be able to change the signs of the
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FIGURE 3

The graph Wy

permutations defined by the generators of F. The construction is as follows.
There is an oriented edge labelled a from v; to v, ; for each i > 2, there are
oriented loops of length one attached to v; and v, . For each i # 2, if s; = +1
then there are oriented loops of length one labelled «; attached to vz and vy ;
if s; = —1 then v3 and vy are the two vertices of an oriented loop of length
two labelled «;. If s = +1 then v; and vz are the two vertices of an oriented
loop of length two labelled «;, and likewise v, and w4 are the two vertices
of such a loop; if s, = —1 then v, vy, v3,v4 are the vertices of an oriented
loop of length four labelled a,. Two examples are shown in Figure 4.

FIGURE 4
The graph Vi, _; is shown on the left, and V_; 4, on the right.

We are nearly ready to construct Y from the pieces Z, W, and V.
However, we first construct a similar labelled, oriented graph Y’, in which
we will not try to control the parity of the action of F. Let p be the smallest
prime such that J(p) > d+4 andlet n =p—d—4.let t; =+1 for 1 <i<r.
Construct Y’ from V, U Y LW, by attaching four oriented edges labelled «;
in any way that makes the result connected and that satisfies the covering
condition. So F acts on the vertex set of Y’, and we can read off the cycle
types by looking at the edges. Because Y’ is connected, the action is transitive,
and because the number of vertices p is prime, it follows that the action is
primitive. By construction, ob.w; = w; for any j, and so we see that the
minimal degree of the action is at most d + 4. It follows from Jordan’s
theorem that the action is alternating or symmetric.



ALTERNATING QUOTIENTS OF FREE GROUPS 59
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FIGURE 5

The construction of Y from Z is illustrated. The original edges of Z are marked in black,
and the added edges in grey. The labels have been suppressed for clarity.

Finally, we will modify Y’ to force the action to be alternating. For each i,
consider the sign s; € {£1} of the action of «; on the vertex set of ¥’. Now
construct Y from Y’ by replacing V, by Vi. As before, we see that the action
of F on the vertex set of Y is symmetric or alternating, but the modification
ensures that each generator «; acts as an even permutation. Therefore, the
action of F on the vertex set of Y is alternating. [

The construction of Y is illustrated in Figure 5. Note that, in order to
ensure that the resulting action is symmetric rather than alternating, one can
simply change the sequence s in one place. We therefore also have a symmetric
version of the previous lemma.

LEMMA 19. Assume that r > 2. Let Z be a finite graph. Any immersion
Z — X that is not a covering map factors as Z — Y — X where Y — X is
a finite-sheeted covering map and the action of F = w(X) on the vertex set
of Y is symmetric.

Theorem A follows from Lemma 18 in exactly the same way that
Theorem 15 follows from Lemma 14. Likewise, Theorem B follows from
Lemma 19.
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