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GEOMETRIE ALGEBRIQUE PAR MORCEAUX,

K -EQUIVALENCE ET MOTIFS

par Florian IVORRA et Julien SEBAG

Resume Soit k un corps algebriquement clos de caracteristique zero Deux
&-varietes K-equivalentes sont-elles isomorphes par morceaux^ Ont-elles des motifs
de Chow ou des groupes de Chow isomorphes 7 Dans cet article, nous relions toutes ces

questions entre elles Nous justifions les liens en question, en nous fondant sur certames
conjectures et certams resultats classiques de theorie des motifs, mais egalement en
prouvant quelques enonces non conjecturaux Tous ces elements fournissent les premiers
indices de 1'existence de telles relations

Introduction

Dans cet article, k est un corps. Une k-variete est un schema de type
fini, separe. Une k-courbe est une &-variete purement de dimension 1; une

k-surface est une &-variete purement de dimension 2.

0.1. On appelle variete de Calabi-Yau sur k toute &-variete connexe,

propre et lisse sur k, de diviseur canonique Kx trivial. Cette classe de

varietes algebriques se trouve profondement liee ä des problemes physiques
et mathematiques. Dans [3] Batyrev a montre rinvariance birationnelle des

nombres de Betti des varietes de Calabi-Yau complexes:

Theoreme ([3, Theorem 1.1]). Soient X et Y deux varietes complexes
de Calabi-Yau, de dimension n. Si les varietes X, Y sont birationnellement

equivalentes, alors elles ont memes nombres de Betti, i.e.

dime H\X, C) dime H\Y, C),

pour tout i,
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Ce resultat conduit ä s'interroger sur la nature des proprietes geometriques

que partagent deux varietes de Calabi-Yau birationnellement äquivalentes, ou

plus generalement deux &-varietes K-äquivalentes.

0.2. Rappeions que deux &-varietes X et Y connexes, propres et lisses

sur k, sont dites K-äquivalentes s'il existe une &-variete Z connexe, propre

et lisse sur k, et des morphismes birationnels de &-Schemas X Z A Y tels

que les diviseurs canoniques relatifs Kz/x et Kz/Y soient egaux. Les couples
de varietes de Calabi-Yau birationnellement äquivalentes fournissent de tels

exemples, et la K-equivalence a suscite de nombreux developpements recents

en geometrie birationnelle, notamment autour des motifs ou des categories
derivees.

Le theoreme de Batyrev peut-il se generaliser aux couples de &-varietes

TT-äquivalentes Une reponse positive ä cette question peut se trouver dans

[3, Theorem 4.2], et dans la generalisation suivante1), due ä Kontsevich.

Theoreme ([19]). Soient X et Y deux varietes complexes connexes,

propres et lisses sur C, K-äquivalentes, de dimension n. Alors les varietes

X et Y ont memes nombres de Hodge, i.e.

dime H«(X, ß£|c) dime H«(Y, Q^|c),

pour tout p,q, 0 ^ /?, q ^ n.

0.3. Les nombres de Betti ou de Hodge d'une &-variete, projective et lisse

sur k, n'etant que des avatars numeriques de son motif, il apparait raisonnable
de se demander si l'invariance des nombres de Hodge au sein d'une meme
classe de K-equivalence ne serait pas simplement le reflet d'un resultat de

nature motivique.

Question. Deux k-varietes connexes, projectives et lisses sur k, K-equi-
valentes, ont-elles des motifs de Chow isomorphes, ou, au moins, des groupes
de Chow isomorphes

Une reponse positive ä cette question difficile a ete donnee dans un certain
nombre de cas tres specifiques de K-equivalence, comme le flop ordinaire

Q Ce theoreme joue histonquement un role important, car il est a Tongine du developpement
de la theone geometnque de 1'integration motivique Introduite par Kontsevich dans [19],
1'integration motivique a permis de fournir une premiere preuve de cette generalisation du
theoreme de Batyrev
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(cf. [22, Theorem 0.1], ou [28, Theorem 1] pour une preuve radicalement

differente).

0.4. Dans le present travail, nous nous interessons ä la question ci-dessus,

et particulierement aux liens qu'elle entretient avec ce que l'on appellera la

geometrie algebrique par morceaux, point de vue «introduit» par Grothendieck
dans EGA (voir [11, 7.2.14]), ou dans une lettre ä J.-P. Serre ecrite2) en 1964.

Dans ce travail, nos motivations sont doubles. Premierement, nous
souhaitons justifier et clarifier ce lien avec la geometrie par morceaux. Pour cela

nous relions entre elles differentes questions ouvertes, qui soit n'apparaissent

pas dans la litterature, soit s'y trouvent dispersees dans differents domaines.

Dans ce tableau, il nous semble, de maniere peut-etre surprenante, que l'anneau
de Grothendieck des varietes (voir section 1) et la geometrie par morceaux
(voir section 2) pourraient jouer un role important dans la comprehension de

ces differents problemes liant /^-equivalence et motifs (voir section 3). Ainsi,
dans le cas de la question enoncee au paragraphe 0.3, la geometrie algebrique

par morceaux suggere le «devissage» suivant:

Etape 1. Deux k-varietes connexes, projectives et lisses sur k, K-äquivalentes

sont-elles isomorphes par morceaux, ou ont-elles meme classe dans

l'anneau de Grothendieck des varietes

Etape 2. Deux k-varietes connexes, projectives et lisses sur k, qui ont la

meme classe dans l'anneau de Grothendieck des varietes, ont-elles des motifs
de Chow isomorphes, ou des groupes de Chow isomorphes

Au paragraphe 4.1, nous expliquons comment la deuxieme etape est une

consequence directe de la conjecture de dimension finie de Kimura [17] et

O'Sullivan, via le theoreme de nilpotence de Kimura3) et du theoreme de semi-

simplicite de Jannsen. Les etapes 1 et 2 soulignent la nature «par morceaux»,
a priori non apparente, de la question enoncee au paragraphe 0.3, et fournissent

par ce biais un point de vue original susceptible d'aider ä la comprehension
du probleme.

2) Dans cette meme lettre du 16 aoüt 1964, Grothendieck introduisait la notion de motifs de
Chow

3) Ce theoreme est demontre pour les k-varietes, projectives et lisses sur le corps k, dont le
motif de Chow associe est de dimension hme au sens de [17]
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0.5. Deuxiemement, nous donnons quelques resultats positifs et non

conjecturaux aux questions enoncees ä la section 3. Ces enonces simples,
traitant essentiellement des cas de petites dimensions, constituent toutefois des

indices non triviaux laissant esperer que ces questions puissent admettre une

reponse positive en general. Nous montrons en particulier que la question de

l'etape 2 admet une reponse positive pour les surfaces projectives et lisses

sur k (voir proposition 4.6). La proposition 5.5 fournit de nouveaux cas pour
lesquels la question de l'etape 1 possede une reponse positive.

0.6. Enfin, la notion d'isomorphisme par morceaux est cruciale dans les

differents developpements de ce travail. Nous l'etudions succinctement au

paragraphe 2.

1. Preliminaires

1.1. Soit Z[Var^] le groupe abelien libre engendre par les classes

d'isomorphisme des &-varietes. On note {X} la classe de la &-variete X
dans Z[VarJ. L'anneau de Grothendieck des varietes est le groupe abelien

obtenu comme le quotient de Z[VarJ par le sous-groupe engendre par les

elements de Z[VarJ de la forme {X} — {Z} — {X\Z}, oü X est une &-variete

et Z un sous-schema ferme de X. On le note TTo(Var^); les relations ci-dessus

sont appelees relations de decoupage. Dans l'anneau 7To(Var^), on notera [X]
la classe de la variete X. Le produit fibre au-dessus de k induit une structure
d'anneau sur le groupe TTo(Var^) en posant [X] • [Y] := [X Y] pour toutes

&-varietes X et Y. II est clair que 1'element neutre de cette structure est
1 [Spec(&)]. On note L := [A^] la classe de la droite affine Alk dans

l'anneau TTo(Var^) et la localisation de l'anneau TTo(Var^) par L, i.e.

:= A"o(Vaijfc)[L_1].

1.2. La theorie de 1'integration motivique, introduite dans sa version

geometrique par Kontsevich, definit des integrales qui prennent leurs valeurs

dans une completion de l'anneau construite ä partir d'une filtration
naturellement associee ä la dimension (voir [30, §4.1] pour une definition
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precise de cette filtration). Grace ä cette theorie4), Kontsevich a etabli le

theoreme suivant (dont l'enonce generalise la version de 1'introduction).

Theoreme 1.1 (Kontsevich). Soit k un corps de caracteristique zero.
Soient X et Y deux k-varietes connexes, propres et lisses sur k, et

K-äquivalentes5). Alors [X] [Y] dans

1.3. Soit k un corps de caracteristique zero. Soit X une k-variete connexe,

propre et lisse sur k. L'on definit son polynöme de Poincare par

Px(u) J2bnX)un eZ[u],

avec bn(X) := dimkH^AX). Si k est un sous-corps de C, l'on definit son

polynöme de Hodge par

Hx(u,v) := G Z[u,v],

oü hp,q(X) := dimkHq(X,£fx). Notons que le theoreme de decomposition de

Hodge fournit, dans ce cas, la formule Hx(u, ü) Px(ü). En outre, les relations
de decoupage dans l'anneau Ko(Var^) permettent d'etendre ces definitions en

la donnee de morphismes d'anneaux

P: Z[w, u~l] et H: ^ Z[w, v, (uv)~l].

En evaluant P en —1, l'on obtient la caracteristique d'Euler x: ^k Z.

Remarque 1.2. Soit k un corps de caracteristique zero. Soient W une
&-variete de dimension d, et Ci,...,Cn ses composantes irreductibles de

dimension d. Par le theoreme de Hironaka sur la resolution des singularites,
le lemme de Chow, et la relation [X] [Xred] dans Ko(Var^), il existe, pour
toute k-variete X, des k-varietes connexes, projectives et lisses

sur k, birationnellement äquivalentes ä (Ci)red, • • •, (Cn)red respectivement, et

des k-varietes connexes, projectives et lisses sur k, de dimension

au plus d — 1, telles que

n m

(1.1) [W] Y,[d1] + J2£AejC
1=1 J=1

dans l'anneau Ko(Var^), avec Sj ±1.

4) Grace a 1'existence des factorisations faibles des applications birationnelles, le theoreme
suivant peut s'obtenir aujourd'hui sans utiliser l'mtegration motivique, et sans passer a la
completion de Xo(VaryQ, cf [33, 7 10] ou [5, Remark 1 2]

5) Pour la definition, voir 0 2
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Comme le polynome de Poincare d'une &-variete X connexe, propre et

lisse sur k, possede un degre egal ä 2dim(2Q, et a un coefficient dominant

egal au nombre de composantes irreductibles geometriques (i.e. de Xi avec k

une cloture algebrique de k) de dimension maximale, Ton voit facilement,

par la relation (1.1), que deux &-varietes X et Y telles que F([2f|) F([T])
ont la meme dimension et le meme nombre de composantes irreductibles

geometriques de dimension maximale.

Notons que les morphismes d'anneaux H et P se factorisent par l'image
de Mk dans (cf. [5, Preuve du theoreme 6.1.1]). Le theoreme 1.1

assure done en particulier que deux &-varietes connexes, propres et lisses

sur k, K-equivalentes ont le meme polynome de Poincare. L'on deduit de la

remarque precedente 1'important corollaire suivant.

COROLLAIRE 1.3. Soit k un corps algebriquement clos de caracteristique
zero. Soient X et Y deux k-varietes connexes, propres et lisses sur k,

K-equivalentes de dimension d. Soient Fx et Fy deux k-varietes reduites
telles que [X] — [Fx] [Y] — [Fy] dans Vanneau ^o(Var^). Alors les k-varietes

Fx et Fy ont la meme dimension et le meme nombre de composantes
irreductibles de dimension maximale.

Demonstration. Par hypothese, [X] — [Fx] [Y] — [Fy] dans l'anneau

Fo(Var^) et done [X] [Y] dans sa completion En vertu du theoreme 1.1,

l'on conclut [Fx] [Fy] dans l'anneau Par consequent, les &-varietes

Fx et Fy ont le meme polynome de Poincare. Le resulat decoule alors de la

remarque 1.2.

1.4. Rappelons que deux &-varietes reduites X et Y sont dites stablement

birationnelles s'il existe deux entiers wi,!gN tels que X et Y x^
soient birationnellement equivalentes.

Designons par Z[SB] le groupe abelien fibre engendre par les classes

d'equivalence des &-varietes connexes, propres et lisses sur k, pour la relation
«d'etre stablement birationnel» (appelee relation d'equivalence stable). Larsen

et Lunts ont prouve le resultat suivant.

Theoreme 1.4 ([21], voir egalement [4]). Soit k un corps algebriquement
clos de caracteristique zero. II existe un unique morphisme d'anneaux

SB: Fo(Var^) Z[SB]
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qui envoie la classe d'une k-variete connexe, propre et lisse sur k, sur sa

classe d'equivalence par la relation d'equivalence stable. Ce morphisme est

surjectif et son noyau est Videal de ^o(Var^) engendre par L.

2. LES ISOMORPHISMES PAR MORCEAUX

2.1. Rappelons6) que deux Schemas de type fini X et Y sont dits

isomorphes par morceaux s'il existe une partition (Xt)o(resp. (YJo^^n)
de X (resp. de Y) en sous-schemas localement fermes, telles que, pour tout z,

0 < i < n, les &-Schemas (2Qred et (Yt)red soient isomorphes. Par definition, la

donnee de deux &-varietes isomorphes par morceaux induit done celle d'une
collection d'isomorphismes de &-Schemas (/o,... Jn) tels que fl identifie

Ä)red et (Yt)red, pour tout /, La donnee d'une telle famille

(/o,... Jn) sera appelee isomorphisme par morceaux. Notons enfin que la

donnee d'un isomorphisme par morceaux differe grandement de celle d'un
isomorphisme de &-Schemas. Pour illustrer ce point, notons que les &-varietes

suivantes sont deux ä deux isomorphes par morceaux (et non isomorphes en

tant que ^-Schemas): A^, Spec(k[x,y]/(x3 — y2)) et Gm^USpec(^).

2.2. Les isomorphismes par morceaux abondent en geometrie algebrique.
Nous en donnons ici quelques exemples.

Exemple 2.1. a) La geometrie birationnelle, et particulierement le

programme de Mori, fournit de nombreux exemples d'isomorphismes par
morceaux. Par exemple, les flops ordinaires, les flops de Mukai, les flops de

Mukai stratifies (et leurs composes) sont des isomorphismes par morceaux
(cf. [7] pour les definitions).

b) Soit k un corps de caracteristique zero, de cloture algebrique k. Soient

X et Y deux &-varietes, et /: X —^ Y un morphisme de &-Schemas. Si

1'application d' ensembles f(k): X(k) —^ Y(k), induite par le morphisme /, est

bijective, alors le morphisme / fournit un isomorphisme par morceaux. C'est

une consequence du theoreme principal de Zariski.

6) En suivant [23], un point de vue equivalent, mais plus mtrinseque, peut etre adopte Ce

point de vue a ete introduit par Grothendieck dans [11, 7 2 14], puis sommairement developpe
dans [26, 27]
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2.3. Les relations de decoupage dans l'anneau Ao(VarQ assurent que
deux &-varietes, isomorphes par morceaux, ont la meme image dans l'anneau

Ko(VarQ. Dans [21], Larsen et Lunts s'interrogent sur la validite de la

reciproque. Ce probleme, difficile, nous apparait comme la pierre angulaire
de la comprehension geometrique de l'anneau de Grothendieck des varietes.

Formulons cette question.

Question LL. Soient X et Y deux k-varietes telles que [X] [Y]
dans l'anneau Ao(VarQ. Les k-varietes X et Y sont-elles isomorphes par
morceaux

A l'heure actuelle, cette question est essentiellement ouverte. Si k est un

corps algebriquement clos de caracteristique zero, des elements de reponse
peuvent etre trouves dans [23, 31]. La question suivante nous apparait comme
une etape importante dans toute tentative de reponse ä la question LL.

QUESTION RAT. Soit k un corps algebriquement clos de caracteristique
zero. Soit X une k-variete, projective et lisse sur k, de dimension d ^ 3,

stablement rationnelle et non rationnelle. La k-variete X peut-elle avoir la
classe d'une variete rationnelle dans l'anneau Ao(VarQ

A l'aide de la question LL, nous pouvons reformuler et preciser comme
suit une question posee par Gromov dans [10, 3.G//X, p. 121].

QUESTION G. Soit k un corps algebriquement clos de caracteristique zero.

Soient X une k-variete et f: X ---> X une application birationnelle, induisant

un isomorphisme de k-Schemas entre deux sous-varietes £/, V ouvertes et
denses de X. Notons Zu et Zy les uniques sous-varietes fermees de X,
reduites, de supports respectifs X\U et X\V. Les k-varietes Zu et Zy sont-
elles isomorphes par morceaux

II est clair que, si la question LL possede une reponse positive, il en va de

meme de la question G. Les resultats de [31] permettent done d'y repondre

positivement dans le cas des courbes, des surfaces projectives et lisses sur k,
et des k-varietes de dimension d > 2 n'ayant qu'un nombre fini de courbes

rationnelles. Plus recemment, dans [20], Lamy et le second auteur ont repondu

positivement ä la question G, dans le cas d'une variete complexe A, projective
et lisse, de dimension 3 telle que //°(A, Q^c) //°(A, Q^c) 0.
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2.4. Nous prouvons maintenant un critere original et simple pour
determiner si deux &-varietes de petite dimension sont isomorphes par
morceaux. Soient k un corps de caracteristique zero, X et Y deux &-varietes

de dimension d > 1.

Supposons que X et Y soient deux &-varietes isomorphes par morceaux.
Alors il decoule de la definition que 1'ensemble Tx des composantes
irreductibles de dimension d de Xred est en bijection avec 1'ensemble TY

des composantes irreductibles de dimension d de 7red- De plus, il existe

une bijection a: Tx —^ TY telle que les &-varietes C et cr(C) soient

birationnellement equivalentes, pour tout C E Tx. Enfin, P([X]) P([T])
et x(ffl) — X([^])» puisque [X] [Y] dans l'anneau 7To(Var^).

Lorsque d E {0,1,2} la condition necessaire ci-dessus devient un critere
necessaire et süffisant ä 1'existence d'un isomorphisme par morceaux.

PROPOSITION 2.2. Soit k un corps algebriquement clos de caracteristique
zero. Supposons que la dimension de X soit au plus 1. Les k-varietes X et Y

sont isomorphes par morceaux si et seulement si les deux assertions suivantes

sont verifiees.

(1) II existe une bijection a: Tx —^ TY telle que les k-varietes C et cr(C)
soient birationnellement equivalentes, pour tout C E Tx ;

(2) X(m) x(m).

Demonstration. Supposons verifiees les conditions (1) et (2). Ou bien la

dimension de X est egale ä 0 et dans ce cas le point (2) conclut directement;

ou bien les &-varietes sont de dimension 1. Dans ce dernier cas, il existe,

en vertu du point (1), un sous-schema ouvert U de Xred et un sous-schema

ouvert V de 7red tels que U et V soient &-isomorphes, et tels que les

sous-varietes fermees (X \ U)r&d et (Y \ V)red soient de dimension 0, i.e.
des sommes disjointes de points rationnels. Posons (X\ f/)red Uj"=1Spec(^)
et (Y\ V)red U^=1Spec(&). Par les relations de decoupage, l'on obtient

[X] - r [U] [V] [Y]-s
dans l'anneau Xo(Var^). D'oü

X([X]) - r x([E]) - j et r s

Le &-isomorphisme fo: U V se complete alors facilement en un isomorphisme

par morceaux, via tout isomorphisme de &-Schemas f\: Url=l Spec(&) —^

U^=1Spec(^).



384 F. IVORRA ET J. SEBAG

PROPOSITION 2.3. Soit k un corps algebriquement clos de caracteristique
zero. Supposons que les k-varietes X et Y soient de dimension au plus 2,

propres et lisses sur k. Alors les k-varietes X et Y sont isomorphes par
morceaux si et seulement si les deux assertions suivantes sont verifiees.

(1) II existe une bijection a\ I~x Ty telle que les k-varietes C et <r(C)

soient birationnellement äquivalentes, pour tout C E Tx ;

(2) P([X]) P([Y]).

Demonstration. Supposons verifiees les conditions (1) et (2). Si la
dimension de X est au plus 1, l'on conclut par exemple en invoquant la

proposition 2.2. Supposons desormais que les &-varietes X et Y sont de

dimension 2. En vertu du point (1), il existe des sous-varietes fermees et

reduites Cx et Cy de X et Y de dimension au plus 1, et un isomorphisme
de &-Schemas /o: X \ Cx —^ Y\ Cy. Par les relations de decoupage, on a:

[X] - [Cx] [Y] - [Cr]

dans l'anneau K0(Var*). En particulier, P([X\) - P([CX]) P([Y]) - P([CF])
dans l'anneau de polynömes Z[u]. II en decoule du point (2) que:

P([CX]) P([CY])

dans Z[u]. En vertu de la remarque 1.2, l'on deduit que les &-varietes Cx et Cy

ont done la meme dimension et le meme nombre de composantes irreductibles
de dimension maximale. Si cette dimension etait 0, nous deduirions automa-

tiquement que les &-varietes Cx et Cy sont isomorphes, et done que les

&-varietes X et Y sont isomorphes par morceaux. Supposons que la dimension

de Cx est egale ä 1. Soient DXyijDyyl, pour 1 ^ i ^ m, les modeles

projectifs et lisses sur k des composantes irreductibles de dimension 1 de Cx

et Cy respectivement. Grace aux relations de decoupage, il existe un entier

n E Z tel que
m m

[X] - [Y] 5}DX>I] " Y,[Dy"1 + n

1= 1 1= 1

dans l'anneau TTo(Var^). On peut alors appliquer le morphisme SB ä cette

relation (cf. theoreme 1.4), ce qui donne

m m

£SB([DXll]) - ([Dy,.]) -n
1= 1 1= 1

dans le groupe abelien libre Z[SB]. On en conclut que n 0, et que, quitte ä

renumeroter, DXyt est &-isomorphe ä DY l, pour tout /, 1 ^ i ^ m. Autrement
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dit, les composantes irreductibles des &-varietes Cx et Cy correspondantes sont

birationnellement äquivalentes. Les &-varietes Cx et Cy ont en outre la meme

caracteristique d'Euler. Done, par la proposition 2.2, elles sont isomorphes par
morceaux. Soit (/i J2) un isomorphisme par moreeaux entre Cx et Cy. Alors
(/o 5/0/2) est un isomorphisme par morceaux entre A et Y.

3. Panorama de problemes de Geometrie algebrique par morceaux

3.1 UNE LISTE DE QUESTIONS EN GEOMETRIE ALGEBRIQUE PAR MORCEAUX

Dans cette section, nous explicitons les questions qui forment le coeur

du present article. Les problemes sous-jacents restent essentiellement ouverts
ä l'heure actuelle. Nous renvoyons egalement au paragraphe 3.2 pour une

synthese des relations qui existent entre ces differents problemes. Nous

supposons dans cette section que la caracteristique du corps k est zero.

3.1.1. Comme nous l'avons souligne dans 1'introduction, les theoremes

de Batyrev et Kontsevich sur la A-equivalence incitent ä poser la question
plus generale suivante, reliant A-equivalence et motifs.

Question KM. Deux k-varietes X et Y connexes, projectives et lisses

sur k, et K-äquivalentes ont-elles des motifs de Chow hxat(A) et hrat(Y)

isomorphes dans Mrat(&;Q)

Cette question peut se trouver dans la litterature (voir, par exemple, [34]

pour un enonce legerement affine) et possede la version plus faible suivante.

Question KC. Deux k-varietes X et Y connexes, projectives et lisses

sur k et K-äquivalentes ont-elles des groupes de Chow CLL(A)q et CRn(Y)Q

isomorphes

Dans le reste de cette section, nous proposons un «devissage» en deux

etapes de la question KM (resp. KC), en les reliant aux questions KP et PM

(resp. KP et PC), qui semblent exhiber la nature «par morceaux», a priori
non apparente, de la question KM (resp. KC).

3.1.2. La premiere question relie la relation de A-equivalence ä la

geometrie algebrique par morceaux. Elle s'enonce comme suit:
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Questions KP. Soient X et Y deux k-varietes connexes, projectives et

lisses, K-äquivalentes.
KP : Les k-varietes X et Y sont-elles isomorphes par morceaux?

Cette question admet la formulation a priori plus faible suivante.

KPw : Les k-varietes X et Y ont-elles la meme classe dans l'anneau Ko(VarQ

La question KPw a ete initialement posee par Yasuda. Notons egalement

qu'une reponse positive ä la question KP fournirait un resultat a priori plus
fin que le theoreme de Kontsevich (cf. theoreme 1.1). En effet, d'une part, le
theoreme 1.1 n'affirme que l'egalite des classes dans l'anneau (ou dans

une localisation de l'anneau Ko(VarQ, comme le souligne notre premiere note
de bas de page), et, d'autre part, l'egalite de classes dans l'anneau Ko(VarQ
ne garantit pas, ä l'heure actuelle en tout cas, 1'existence d'un isomorphisme

par morceaux entre les varietes considerees. L'obstruction pour repondre ä la

question KPw directement ä partir du theoreme de Kontsevich reside dans les

deux questions suivantes, qui sont, quant ä elles, totalement ouvertes ä l'heure

d'aujourd'hui.
• Le morphisme de completion est-il injectif
• Le morphisme de localisation Ko(VarQ -A est-il injectif

Remarque 3.1. a) Dans [31], le second auteur a relie la question de

l'injectivite du morphisme Ko(VarQ -A ä la question LL.

b) Differents problemes de simplification « ä la Zariski» constituent a priori

des obstructions ä la bonne comprehension de la question KPw (voir
1'assertion a) ou le theoreme 5.4). Ce type de problemes semble pouvoir
etre formellement contourne en remplagant 1'existence d'un isomorphisme par
morceaux (resp. l'egalite des classes dans l'anneau Ko(VarQ) dans la formulation

de la question KP (resp. KPw) par l'egalite des classes dans l'anneau
JYk K0(y,arjfcXL-1].

En general, l'affaiblissement de la formulation consistant ä passer ä la
localisation n'est pas triviale. Nous renvoyons le lecteur ä [15], oü est illustre
ce phenomene dans 1'etude de la fonction zeta de Kapranov.

3.1.3. La seconde question relie 1'existence d'isomorphismes par morceaux
aux motifs et groupes de Chow, de la maniere precise suivante.

Questions PM. Soient X et Y deux k-varietes projectives et lisses sur k.

PM : Deux k-varietes X et Y sont isomorphes par morceaux ont-elles des

motifs de Chow ^rat00 d ^rat(E) isomorphes dans Mrat(k;Q)
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Cette question possede la formulation a priori plus forte suivante.

PMs : Deux k-varietes X et Y qui ont la meme classe dans Vanneau

Ko(VarQ ont-elles des motifs de Chow ^ rat00 et ^rat(^) isomorphes
dans Mrat(&;Q)

Comme, pour une &-variete X projective et lisse sur k, CTP(A)q
HomMrat(CQ)(Ln, /*rat0O), les questions PM et PMs peuvent se formuler au

niveau des groupes de Chow de la maniere suivante.

Questions PC. Soient X et Y deux k-varietesprojectives et lisses sur k.

Soit n un entier naturel.

PCn : Deux k-varietes X et Y sont isomorphes par morceaux ont-elles des

groupes de Chow CHw0Qq et CTP(T)q isomorphes

Cette question possede la formulation a priori plus forte suivante.

PCsn : Deux k-varietes X et Y qui ont la meme classe dans Vanneau Ao(VarQ
ont-elles des groupes de Chow CPP(A)q et CHn(T)Q isomorphes

Remarque 3.2. Ces questions PC admettent des reponses negatives si

les &-varietes X et Y ne sont pas supposees, au minimum, propres sur k.
Soient X une &-variete reduite et U une sous-variete ouverte (non vide). Si Z
est l'unique sous-variete fermee de X, reduite, de support egal ä X\Z. Alors
les ^-varietes X et UUZ sont isomorphes par morceaux, mais CHn(X)Q n'est

pas isomorphe ä CHn(U U Z)q.

Exemple 3.3. Si A et A+ sont deux varietes complexes, projectives et

lisses sur k, liees par un flop ordinaire, alors X et A+ sont isomorphes

par morceaux (cf. exemple 2.1). Par ailleurs, dans [22, Theorem 01] (voir
egalement [28, Theorem 1] pour une preuve totalement differente), il est

prouve que les motifs de Chow de X et A+ sont isomorphes.

3.2 Une Synthese des differentes questions

Le diagramme ci-dessous positionne les differentes proprietes autour
desquelles s'articule notre discussion. Les feches en pointilles correspondent

aux questions que nous avons evoquees au paragraphe precedent (le symbole
LL correpond ä la question LL de la section 2, le symbole KS designe la

conjecture de Kimura et O'Sullivan, evoquee au paragraphe 4.1). Les doubles

fleches represented des implications inconditionnelles. Dans le diagramme
X et Y sont deux &-varietes connexes, projectives et lisses sur k; on
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note ^o(Mrat) l'anneau Ko(Mrat(k; Q)) et on appelle motif de X l'element

hr3t(X)e Mrat(*;Q).

KC

A
Les groupes

de Chow
de X et Y sont

isomorphes (0Q)

PCs

Les varietes
X et Y ont

meme classe

[X] [Y]

dans /Co(VarG

Les motifs
de X et Y ont
meme classe

[ÄratQQ] [hrat(Y)]

dans 7C0(Mrat)

Les motifs
de X et Y sont

de dimension finie.
ont meme classe

dans 7C0(Mrat)

Les motifs
de X et Y sont

isomorphes dans
Mrat (*;Q)

Les varietes
X et Y sont
isomorphes

par morceaux

Les varietes
X et Y sont

/C-equivalentes

4. Geometrie algebrique par morceaux et motifs

4.1 LA MOTIVATION DERRIERE PM

4.1.1. Nous commencerons par rappeler la construction de la categorie
des motifs purs pour une relation d'equivalence adequate ^ sur les cycles

algebriques. Nous renvoyons ä l'ouvrage [1] pour de plus amples details.

Soient R un anneau et X une &-variete projective et lisse sur k. Nous

notons Ar^(X;R) le groupe 7?-lineaire des cycles algebriques de codimension r
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dans X modulo la relation ^. La categorie M^(&; R) des motifs purs est definie

comme suit. Si Y est une &-variete projective et lisse sur k, si les &-varietes

X\,...,XV designent les composantes irreductibles de X, l'on note

V

Corr'jX, Y-R) 0ALdim(X'A, xk Y\ R)

1= 1

le R -module des correspondances de degre r modulo Ces groupes sont

munis d'une loi de composition associative:

Corrr^(Y,Z;R) ®R Con1(X, Y;R) Corrr+s(X,Z;R)

(ß,a)^ßoa= PYliPÄZ*ß ~

L'on construit alors la categorie M^(k;R) comme la categorie dont les objets
sont les triplets (X,p,a), oü X est une &-variete projective et lisse sur k,

p G Corr°(X,X;7?) est un idempotent et a G Z, et dont les morphismes sont
decrits par la formule suivante:

HomM„(^)((X,p, a), (Y, q, b)) qCoxT~a(X, Y;R)p.

L'on dispose d'un foncteur monoidal

h~: SmProj^p M„(k;R)

qui envoie la &-variete X, projective et lisse sur k, sur le triplet (X, ldx,0),
et le morphisme /: X -A Y entre deux &-varietes projectives et lisses sur k

sur la correspondance '[I/], oü Tf designe le graphe de /.
Le n-ieme twist ä la Tate M(n) du motif pur M (X,p,a) se definit

comme le motif M(n) := (X,p,a + /i). II est important de noter que, pour
tout motif pur M, il existe un entier n et une &-variete X, projective et lisse

sur k, tels que M soit un facteur direct de h^(X)(n). L'on note 1 le motif
ü^(Spec(T)), et L 1(—1) le motif de Lefschetz.

La categorie M^(k;R) est une categorie tensorielle rigide, pseudo-
abelienne, et l'on a End(l) R.

4.1.2. Kimura dans [17] et O'Sullivan ont avance l'idee que le fait que les

groupes de cohomologie 7/*(X), d'une &-variete X projective et lisse sur k,
soient des TT-espaces vectoriels de dimension finie, pour toute cohomologie
de Weil H* (a coefficients dans un corps K), pourrait se traduire sur son

motif de Chow. C'est cette notion correspondant, dans la categorie des motifs,
ä la «dimension finie» que nous rappelons maintenant.



390 F IVORRA ET J SEBAG

Definition 4.1. Un motif de Chow M E Mrat(k;Q) est dit pair (resp.

impair) s'il existe un entier n E N* tel que AnM 0 (resp. SnM 0). Un
motif M E Mrat(k;Q) est dit de dimension finie s'il admet une decomposition
en somme directe

M ~ M+ ® M~

avec M+ un motif pair et M~ un motif impair.

En general, il n'y a pas de decomposition canonique en parties paire et

impaire des motifs de dimension finie. La sous-categorie pleine Mfdt(k; Q) de

Mrat(£;Q) formee des motifs de dimension finie est une categorie tensorielle

rigide, pseudo-abelienne, qui contient les motifs d'Artin et les motifs des

varietes abeliennes. Comme cette sous-categorie contient egalement les motifs
des k-courbes projectives et lisses sur k, la formule du blow-up et le theoreme
de factorisation faible des applications birationnelles assurent que la dimension
finie est un invariant birationnel pour les &-varietes, projectives et lisses sur k,
de dimension inferieure ou egale ä 3.

La conjecture de Kimura et O'Sullivan peut maintenant etre formulee

comme suit. (Nous renvoyons le lecteur ä [2, 17, 15] pour de plus amples

details.)

Conjecture KS. Tout motif de Chow M E Mrat(&;Q) est de dimension

finie.

Soit Mndum(^;Q) l'image essentielle de Mjdt(^;Q) dans Mnum(&;Q). Le
theoreme de nilpotence, prouve par Kimura dans [17], implique en particulier
que le foncteur

M£t(*;Q)-> Mfdum(£;Q)

est conservatif, i.e. jouit de la propriete suivante: un morphisme de la categorie

MQ) est un isomorphisme si et seulement si son image dans Mj,dum(^; Q)
est un isomorphisme.

4.1.3. Dans sa lettre ä J.-P. Serre du 16 aoüt 1964, Grothendieck evoque
1'existence d'un morphisme d'anneaux

(4.1) K0(Var,)^Ko(Mrat(k;Q))
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defini par X i-a [hrBt(X)], et que nous appellerons caracteristique d'Euler
motivique. Ce morphisme fut initialement7) construit de maniere explicite
dans [8], voir egalement [12, 4].

Remarque 4.2. Soit k un corps de caracteristique zero. Dans sa lettre
ä J.-R Serre, Grothendieck pose la question de savoir si la caracteristique
d'Euler motivique est injective. La reponse ä cette question est negative.

Historiquement, et bien que la reponse n'y figure pas, des contre-exemples

peuvent se deduire des travaux de Poonen [29], en considerant un couple de

varietes abeliennes isogenes non isomorphes (voir §4.2). Dans [23, Remark 14],
d'autres contre-exemples sont obtenus. Plus recemment, Mazza et Weibel ont
donne dans [24] une preuve alternative de cette non injectivite.

Nous donnons ici un nouveau type d'exemples d' elements non triviaux

appartenant au noyau de la caracteristique d'Euler motivique. Dans [13],
Pedrini et Guletskii ont montre que la classe du motif de la surface

de Godeaux complexe X, qui est projective et lisse sur C, et de type
general, possedait dans l'anneau 7To(Mrat(C; Q)) une decomposition de la

forme [hrat(X)] [L]2 ® 9[L] ® [1]. II decoule d'un calcul facile que cette

decomposition est aussi celle de la surface rationnelle Y obtenue par eclatement
de 8 points dans P^. Enfin, en vertu de [23, Corollary 1], l'on ne peut avoir

[X] [Y] dans l'anneau TTo(Varc). De tels exemples peuvent egalement etre

construits ä partir des surfaces d'Enriques.

4.1.4. Le groupe de Grothendieck Kq(&/) d'une categorie srf abelienne et

semi-simple est le groupe abelien fibre engendre par les classes d'isomorphisme
des objets simples de srf. En particulier, deux objets A et B de la categorie srf

sont isomorphes si et seulement si [A] [B] dans le groupe Ko(xY).
Cette simple remarque permet de lier, via le foncteur naturel

Mrat(k; Q) Mnum(£; Q)

la question PMs ä la question KS. Precisement, on a l'enonce suivant.

Proposition 4.3. Soient X et Y deux k-varietes projectives et lisses

sur k, telles que les motifs de Chow hrat(X) et hrat(Y) soient de dimension

finie.

(1) Si les k-varietes X et Y sont isomorphes par morceaux, alors les motifs
de Chow ^rat PO et hrat(Y) sont isomorphes dans l'anneau Mrat(k;Q).

7) A l'heure actuelle, les travaux de Bittner [4] (voir §4 2) ou de Bondarko [6] fournissent
deux autres preuves de 1'existence de la caracteristique d'Euler motivique
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(2) Si [X] [Y] dans Vanneau ^o(Var^), alors les motifs de Chow hxat(2f)

et hrat(Y) sont isomorphes dans Vanneau Mrat(&;Q).

(3) En particulier, si la question KS possede une reponse positive, alors il
en va de meme pour les questions PMs, PCs, PM et PC.

Cet enonce decoule directement de la proposition suivante.

Proposition 4.4. Soient M et N deux motifs de Chow de dimension finie
dans Mrat(&;Q). Soient M et N leurs images dans Mnum(&;Q). Supposons

que [M] [N] dans Vanneau Ko(Mnum(&; Q)). Alors M et N sont isomorphes
dans Mrat(&;Q).

Demonstration. En vertu du theoreme de Jannsen [16], la categorie
Mnum(£; Q) est semi-simple et abelienne. L'egalite des classes [M] [N]
dans l'anneau Ko(Mnum(&; Q)) implique, par la remarque du debut du para-
graphe 4.1, que les motifs M et iV sont isomorphes dans Mnum(&;Q). Par le

theoreme de nilpotence de Kimura [17], le foncteur

M£t(*;Q)->

est conservatif. Done les motifs M et N sont dejä isomorphes dans

Mrat(£;Q).

Remarque 4.5. Un tel enonce peut se deduire egalement des conjectures
de Murre-Bloch-Beilinson (voir [9, §2]). La version complete des conjectures

de Murre et la conjecture8) standard D impliquent, ä elles deux, la

conjecture de Kimura-O'Sullivan (voir [1, 11.5.3.1]). Reciproquement, la
dimension finie du motif de Chow hrat(X) et la conjecture9) standard C(X)

impliquent que hrat(X) possede une decomposition de Kunneth, pour toute
&-variete X projective et lisse sur k (ce qui forme une partie des conjectures
de Murre, telles qu'enoncees dans [25]).

4.2 La question PM en petites dimensions

Soit k un corps algebriquement clos de caracteristique zero. Comme les

motifs de Chow des &-courbes, projectives et lisses sur k, sont de dimension

8) La conjecture standard D predit que (a torsion pres) la relation d'equivalence homologique
coincide avec la relation d'equivalence numenque

9) La conjecture standard C(X) predit Talgebncite des projecteurs de Kunneth de la
/c-variete X Pour plus de details sur les conjectures standard (de Grothendieck), voir par exemple
le texte de Kleiman [18]
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finie dans Mrat(&;Q), il decoule de la proposition 4.3 que les questions
PMs, PM (et done PCs et PC) admettent des reponses positives pour les

&-courbes projectives et lisses sur k. Nous montrons que les reponses sont

encore positives pour les &-surfaces, projectives et lisses sur k.

PROPOSITION 4.6. Soit k un corps algebriquement clos de caracteristique
zero. Soient X et Y deux k -surfaces projectives et lisses sur k. Supposons

que [X] [Y] dans Vanneau ^fo(Var^). Alors il existe un isomorphisme de

motifs hrat{X) ~ hrat(Y) dans Mrat(&;Q).

Demonstration. En vertu de [23, Lemma 9], on sait que les &-surfaces X
et Y sont birationnellement äquivalentes. Comme la dimension finie des motifs
est un invariant birationnel des surfaces projectives et lisses, l'on conclut que
les motifs de Chow ÄratW et ^rat(^) sont de dimension finie si et seulement
si hrat{X) ou hrat(Y) est de dimension finie. Nous allons traiter les trois cas

suivants decoulant de la classification des surfaces.

Si l'une des &-surfaces X ou Y est rationnelle, hrat(X) et hrat(Y) sont de

dimension finie, et done isomorphes par la proposition 4.3.

S'il existe une &-courbe C, connexe, projective et lisse sur k, telle que
l'une des /^-surfaces X ou Y est birationnellement equivalente ä Pj[ C,
alors il en est de meme pour 1'autre. Comme le motif de Chow Ärat(C) est
de dimension finie, l'on conclut encore que les motifs de Chow AratPO et

hrat(Y) sont de dimension finie, et done isomorphes par la proposition 4.3.

Supposons enfin que ni la &-surface X, ni la &-surface Y ne soient reglees.
Dans ce cas, il existe une &-surface V, connexe, projective et lisse sur k, et

deux suites finies

X A V A Y

d'eclatements de points rationnels (i.e. V est le modele minimal de la classe

d'equivalence birationnelle de X). Dans l'anneau /^(VafiO, la formule de

l'eclatement implique qu'il existe deux entiers naturels m et n, correspondants

aux nombres d'eclatements dans / et g respectivement, tels que:

[X] — m • L [V] [Y] - n • L.
L'hypothese entrame alors que m n (specialiser l'egalite par exemple via la

caracteristique d'Euler). La formule de l'eclatement pour les motifs de Chow

implique le resultat voulu. En effet, l'on deduit l'isomorphisme de motifs de

Chow:

n termes m termes
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4.2.1. En utilisant le theoreme de factorisation faible des applications
birationnelles et la resolution des singularites, Bittner a donne dans [4] la

description plus simple suivante de l'anneau de Grothendieck des varietes,

en termes de generateurs-relations. Soit k un corps algebriquement clos de

caracteristique zero. Posons ^(Var^) le groupe abelien obtenu comme le

quotient du groupe abelien libre, engendre par les classes d'isomorphismes
des k-varietes projectives et lisses sur k, modulo les relations d'eclatement

[7] - \E] [X] - [Z],

oü X est une k-variete projective et lisse sur k, Z une sous-variete fermee
de X, lisse sur k, 7 l'eclatement de X de centre Z et E le diviseur

exceptionnel. Alors le morphisme d'anneaux10) canonique

£0bl(Var,) -> War,)
est un isomorphisme.

4.2.2. Soit AV 1'ensemble des classes d'isomorphisme de varietes

abeliennes sur le corps k suppose algebriquement clos de caracteristique
zero (qui est un monoide pour le produit fibre au-dessus de k). L'on peut
alors definir un morphisme d'anneaux

War*) -a Z[AV]

par additivite en imposant que la classe d'une k-variete X, projective et lisse

sur k, soit envoyee sur sa variete d'Albanese Alb(A) (cf. [29] ou [23]). En

particulier, l'on deduit de 1'existence de ce morphisme que deux k-varietes,

projectives et lisses sur k, telles que [X] [Y] dans l'anneau TTo(Var^) ont
des varietes d'Albanese isomorphes (et, par dualite, des varietes de Picard

isomorphes). En outre, en tant que groupes abstraits, Pic°(A) et Pic°(7) sont

isomorphes.

4.2.3. La presentation de l'anneau TTo(Var^), via les relations d'eclatement,
et les theoremes de finitude classiques permettent d'enoncer les resultats

suivants.

Proposition 4.7. Soit k un corps de caracteristique zero. Soient X et Y

deux k-varietes connexes, projectives et lisses sur k, telles que [X] [7]
dans l'anneau ^o(Var^).

10) Le produit est ici encore induit par le produit fibre au-dessus de k
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(1) Les groupes de Neron-Severi NS(X) et NS(T) sont isomorphes.

(2) Si le corps k est une extension de type fini de Q, alors les groupes de

Picard Pic(X) et Pic(T) sont isomorphes.

Demonstration. Soit srf la categorie des groupes abeliens de type fini.
C'est une categorie additive. Nous considerons son groupe de Grothendieck

Kq(^). L'on montre d'abord le second point.
(2) Par hypothese, il decoule de [14, Proposition 6.1] que le groupe de

Picard d'une k-variete, projective et lisse sur k, est de type fini. II definit
done un objet de srf. Ainsi l'on construit un morphisme de groupes abeliens

Pic: Z[SmPr*] -A Z[^]
qui ä la classe d'isomorphisme d'une k-variete V, projective et lisse sur k,
associe la classe d'isomorphisme de son groupe de Picard (Pic(V)}. Comme,

pour toute k-variete V, projective et lisse sur k, l'on a:

Pic(V) CH'(V) HomMrat(*,Z)(L, Arat(V)),

la formule de l'eclatement pour les motifs de Chow assure, via [4], que le

morphisme Pic induit un morphisme de groupes

Pic: ^o(Var^) -A Kq(s^)

II decoule du theoreme de structure des groupes abeliens de type fini que
deux objets A et B de srf sont isomorphes si et seulement si [A] [B] dans

l'anneau Kq(^). Le resultat se deduit alors facilement.

(1) La preuve est similaire, en utilisant cette fois les groupes de Neron-
Severi. Si V est une k-variete, projective et lisse sur k, son groupe de

Neron-Severi, qui est un groupe abelien de type fini, est donne par la formule:

NS(V) HomMa|g(cz)(L, K\g(V)).

Comme precedemment, la formule de l'eclatement pour les motifs de Chow

permet de construire, via [4], un morphisme de groupes

NS: ÄoCVarjfc)Äo(^)

qui associe, ä la classe d'une k-variete, projective et lisse sur k, la classe de

son groupe de Neron-Severi.

Remarque 4.8. Soit k un corps algebriquement clos de caracteristique
zero. Si Z est une k-variete, projective et lisse sur k, son groupe de Neron-
Severi est donne par la formule:

NS(Z) Pic(Z)/Pic°(Z).
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En vertu de la proposition 4.7, l'on deduit que si deux k-varietes X et 7,
projectives et lisses sur k, ont meme classe dans l'anneau de Grothendieck des

varietes, alors les groupes Pic(X)Q and Pic(F)Q sont isomorphes. L'on conclut
done que la question PCs1 possede une reponse positive. Si n dim(X), les

questions PCn et PCsn ont egalement une reponse positive, car les groupes
de Chow de codimension n sont des invariants birationnels (cf. par exemple
[23, Corollary 6]).

5. Geometrie algebrique par morceaux et question KP

Dans cette section, nous nous interessons ä la question KP. Le theoreme 5.4,
la proposition 5.5 ainsi que la remarque 5.7 fournissent des elements de

reponse originaux, en direction d'une reponse positive ä cette question. Nos

enonces completent ceux donnes anterieurement dans [32], mais demeurent

partiels.

5.1. Soit k un corps algebriquement clos de caracteristique zero. Soient

X et Y deux k -varietes connexes, propres et lisses sur k, et /Gequivalentes.
II sera commode de disposer de la notion de lieu K-exceptionnel que nous
introduisons maintenant.

Par definition, il existe une k-variete Z, connexe, propre et lisse sur k,

et deux morphismes birationnels de k-Schemas X 4- Z Y tels que

Kz/x — Kz/y- II existe done trois ouverts £/, V et W de I, Y et Z
respectivement tels que les morphismes / et g induisent par restriction des

isomorphismes de k-Schemas U W A V. Le morphisme de k-Schemas

h := 9\w ° produit done un isomorphisme de k-Schemas U —^ V.
Designons par Cx et Cy les uniques sous-varietes fermees et reduites de

X et Y respectivement, dont les supports sont egaux aux ensembles X\U
et Y \ V. La donnee d'un tel couple (Cx,Cy) constitue ce que nous ap-
pellerons un lieu K-exceptionnel de X et Y dans la suite. Une telle donnee

ne peut etre unique. Remarquons cependant que, si (Cx, Cy) est un lieu

K-exceptionnel d'une paire de k-varietes X, Y supposees TT-equivalentes,

alors, en vertu du corollaire 1.3, la dimension de Cx est egale ä celle
de CY.
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5.2. Ci-apres, nous etablissons un lemme que nous utiliserons par la suite.

Lemme 5.1. Soit k un corps algebriquement clos de caracteristique zero.
Soient V et W deux k-varietes reduites de meme dimension d. Si d ^ 1,

si SB(V) SB(H/) et si les k-varietes V et W ont le meme nombre de

composantes irreductibles de dimension d, alors les k-varietes V et W sont

isomorphes par morceaux.

Demonstration. L' unique difficulte reside en dimension 1. Par hypothese,

il existe un element a E ^o(Var^) tel que [V] — [W] a • L dans l'anneau
TTo(Var^). Soit n le nombre de composantes irreductibles de V de dimension 1.

Pour tout z, 1 nous designons par Vt et Wt respectivement les

modeles projectifs et lisses sur k de chacune des composantes irreductibles
de dimension 1 de V et W. II existe alors un entier m E Z tel que

n n

a • L + m,
1=1 J= 1

dans l'anneau TTo(Var^). Si l'on applique le morphisme SB ä cette relation, on

peut conclure que m 0, puis, quitte ä renumeroter, que SB(VJ SB(W^),

pour tout /, 1 ^ i ^ n. Autrement dit, pour tout /, 1 ^ i ^ n, les ^-courbes Vt

et Wt sont isomorphes. L'on conclut done que les composantes irreductibles de

dimension 1 de V et W correspondantes sont birationnellement äquivalentes.
II existe done des sous-varietes fermees et reduites Cy et Cw de V et W

respectivement, de dimension 0, telles que

[Cy] — [Cw] OL - L.
dans l'anneau TTo(Var^). Par consequent, SB(Cy) SB(C^). Comme Cy
et Cw sont des sommes disjointes de points rationnels, cette derniere relation

implique que leurs ensembles sous-jacents ont le meme cardinal, ou que
Cy et Cw sont isomorphes. Par consequent, les &-varietes V et W sont

isomorphes par morceaux.

5.3. Soit /: X ---> Y une application birationnelle entre deux &-varietes

connexes, propres et lisses sur k, de dimension d. Notons Cx le lieu excep-
tionnel de f (i.e. 1'ensemble des points de A oü / n'est pas un isomorphisme
local). Notons Ux l'ouvert de X defini par X\Cx- Comme / est supposee
birationnelle, il decoule du theoreme principal de Zariski 1'existence d'un ouvert
Vy de Y tel que / induise un isomorphisme de k-Schemas Ux —^ Vy. Nous

notons Cy 1'unique sous-variete fermee et reduite de Y dont le support est

egal ä 1'ensemble Y\Vy. L'enonce suivant est une consequence du lemme 5.1.
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Lemme 5.2. Soit k un corps algebriquement clos de caracteristique
zero. Soit f'.X ---> Y une application birationnelle entre deux k-varietes

connexes, propres et lisses sur k, de dimension d ^ 3. Notons Cx le lieu

exceptionnel de f. Supposons que 1 ^ dim(Cx) ^ dim(Cy), et que les nombres

de Betti b2(X) et b2(Y) sont egaux. Alors les k-varietes sont isomorphes par
morceaux.

Demonstration. Par hypothese, l'on a dans l'anneau TTo(Var^) la relation
suivante

(5.1) [Xi-[Cx] [Y]-[CY].
Si l'on applique le morphisme SB ä cette relation (5.1), l'on deduit que
SB(Cx) SB(Cy), puisque les ^-varietes X et Y sont supposees propres et
lisses sur k, et birationnellement äquivalentes. Si l'on applique le morphisme
P ä la relation (5.1), l'on obtient une relation de la forme suivante dans

l'anneau Z[w], avec ana[ E Z, pour tout /, 0 < i < 2 :

2d 2d

(5.2) bt(X)ul — (a2U2 + a\u + ao) bt(Y)ul — (a'2u2 + a[u + a^).
i=0 i=0

Comme b2(X) b2(Y), l'on conclut que a2 a'2. II decoule alors de

1'hypothese et de la remarque precedente que la dimension de Cx est egale
ä celle de Cy. Si dim(Cx) 1, les &-varietes Cx et Cy ont en outre le

meme nombre de composantes irreductibles de dimension 1. Le lemme 5.1

permet alors de conclure. Si dim(Cx) 0, l'on conclut directement grace ä

la relation SB(Cx) SB(Cy).

Remarque 5.3. Les arguments utilises dans la preuve du lemme 5.2

permettent d'obtenir certains cas particuliers quand dim(Cx) > 2. En voici une
illustration. Soient X et Y deux ^-varietes K-äquivalentes. Fixons (Cx, Cy)

un lieu K -exceptionnel. Supposons que les &-varietes Cx et Cy soient des

^-surfaces, projectives et lisses sur k. Alors les ^-varietes X et Y sont

isomorphes par morceaux.

Le lemme 5.2 et la remarque 5.3 precedents soulignent le fait que la

reponse ä la question KP s'obtient facilement en dimension d < 3, mais que
la question sous-jacente reste toutefois pertinente en dimension superieure.

5.4. Rappelons le resultat suivant, que l'on peut deduire de [32, Proposition

3.2, Lemme 3.4].



GEOMETRIE ALGEBRIQUE PAR MORCEAUX, X-EQUIVALENCE ET MOTIFS 399

Theoreme 5.4. Soit k un corps algebriquement clos de caracteristique
zero. Soient X et Y deux k-varietes K-äquivalentes. Fixons un lieu

K-exceptionnel (Cx,Cy). Notons Cax Vensemble des points de C* de

dimension maximale. Alors il existe une bijection

^. y^max y^maxa. Cx -> CY

telle que, pour tout x E Cax, il existe un entier s E N et un isomorphisme
de k-algebres a(a)(Ti, TÄ) —) n(a(x))(Ti,..., TÄ).

La preuve de cet enonce utilise, de maniere cruciale le theoreme de

Kontsevich, sous la forme du corollaire 1.3, et des resultats techniques

provenant de la theorie geometrique de 1'integration motivique.

5.5. Le theoreme 5.4 souligne 1'importance du probleme de simplification
«ä la Zariski» dans les questions au centre de ce travail. Dans certains cas

particuliers, le theoreme 5.4 permet malgre tout de repondre ä la question KP.
Par exemple, nous pouvons deduire 1'enonce suivant.

PROPOSITION 5.5. Soit k un corps algebriquement clos de caracteristique
zero. Soient X et Y deux k-varietes connexes, projectives et lisses sur k,

K-äquivalentes, de dimension d. Fixons (Cx,Cy) un lieu K-exceptionnel.
Supposons

a) ou bien dim(Cx) ^ 2 ;
b) ou bien que les k-varietes Cx et Cy sont isomorphes ä des sommes

disjointes de k-varietes de la forme Sxk P[~2 (r > 3), oü S est une

k-surface integre projective.

Alors les k-varietes X et Y sont isomorphes par morceaux.

Demonstration. Par hypothese, on a la relation

(5.3) [Y] - [CY] [Xi - [Cx]

dans l'anneau TTo(Var^). En vertu du corollaire 1.3, l'on peut conclure que
les k -varietes Cx et Cy ont la meme dimension, et le meme nombre de

composantes irreductibles de dimension maximale. Notons r cette dimension,
et fo: X\Cx —^ Y\Cy l'isomorphisme de k-schemas.

Supposons que 1'hypothese faite au point a) soit valide. Ce cas a ete

traite dans [32, Theoreme 3.5]. Nous en redonnons ici la preuve. Grace au

theoreme 5.4, l'on construit deux sous-varietes fermees et reduites Dx et Dy
de Cx et Cy respectivement, de dimension au plus 1, et un isomorphisme de
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&-Schemas f\: Cx\Dx —x CY\DY. En particulier, cet isomorphisme permet de

reecrire la relation (5.3) sous la forme

[X] - [Dx] [7] - \Dy]

dans l'anneau Fo(VarQ. Si l'on applique le morphisme SB ä cette relation,
l'on conclut que SB(Dx) SB(DY) dans l'anneau Z[SB]. Par ailleurs, le

corollaire 1.3 permet encore d'affirmer que les &-varietes Dx et DY ont
la meme dimension et le meme nombre de composantes irreductibles de

dimension maximale. L'on deduit alors du lemme 5.1 que les &-varietes Dx
et Dy sont isomorphes par morceaux via C/2,/3). La donnee de (/o,/i,/2,/3)
definit un isomorphisme par morceaux entre X et Y.

Supposons que l'hypothese faite au point b) soit valide. Soit C une com-

posante irreductible de dimension maximale de Cx. Posons alors C' := cr(C),
oü a est la bijection construite dans le theoreme 5.4. Par hypothese, il existe

des &-surfaces integres Sx, et SY, telles que la &-variete C (resp. C') est

isomorphe ä (resp. SY x^P^), avec s r — 2. L'on peut deduire du

theoreme 5.4 que S et S' sont stablement birationnelles, done birationnelle-
ment äquivalentes en vertu du theoreme de Castelnuovo. II existe done des

sous-varietes fermees et reduites Fx et FY de Sx et SY respectivement, de

dimension au plus 1, telles que SX\FX SY\FY.

Supposons que la &-variete Cx (resp. CY) possede n composantes
irreductibles de dimension maximale. Soient ..,S£ (resP- SYj-'-jSy)
des ^-surfaces integres telles que les composantes irreductibles Ci,...,Cn
(resp. CJ,..., C'n) de dimension maximale de Cx (resp. CY) soient biration-
nellement äquivalentes ä Sx x^P^,..., Sx xk^sk (resp. x^P|,..., x^P|).
Quitte ä renumeroter, et en vertu de la remarque precedente, nous construisons
des sous-varietes fermees et reduites Fx,... ^F\ (resp. Fy, ...,Fy)
respectivement de SXj Sx (resp. SY), de dimension au plus 1, telles que,

pour tout /, l^/^/i, Slx\Flx SlY\FlY. Les relations de decoupage dans

l'anneau F0(VarQ permettent done d'ecrire

(5.4) [X] - [FkWx] [L] - mWr],
avec Fx := Unl=lFlx et FY U"=1Fy. Notons que nous avons construit un

isomorphisme de ^-Schemas f\: CX\(FX x^P|) —x CY\(FY x^Psk).

Comme [P£] est un element inversible de l'anneau JVlk, l'on conclut par
le corollaire 1.3 que les &-varietes Fx et FY ont la meme dimension et
le meme nombre de composantes irreductibles de dimension maximale. En

outre, en appliquant le morphisme SB ä la relation (5.4), l'on obtient que
SB(Fx) SB(Fy). L'on deduit du lemme 5.11'existence d'un isomorphisme
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par morceaux entre Fx et Fy, ce qui mduit naturellement 1'existence d'un
isomorphisme par morceaux C/2,/3) entre FxXk et FY La donnee de

(/oJiJiJi) definit alors un isomorphisme par morceaux entre X et Y

COROLLAIRE 5 6 Soit k un corps algebriquement clos de caractäristique
zero

(1) La reponse a la question KP est positive pour tout couple de k-vanätäs
de Calabi-Yau (X, Y), de dimension au plus 4, birationnellement
äquivalentes En particulier, deux k-vanätäs de Calabi-Yau X et Y, de

dimension au plus 4, sont isomorphes par morceaux si et seulement si
elles sont birationnellement äquivalentes

(2) Si la conjecture KS est valide pour les k-vanätäs de Calabi-Yau
de dimension au plus 4 Alors les räponses aux questions KM, KC

sont positives pour tout couple de k-vanätäs de Calabi-Yau (X, Y),
birationnellement äquivalentes, de dimension au plus 4

Dämonstration La premiere assertion provient du fait que l'on peut choisir

un lieu TT-exceptionnel (CX,CY) tel que les &-varietes Cx et Cy soient de

codimension au moms 2 (cf [3, Proposition 3 1]), et de la proposition 5 5

La seconde assertion est claire

Remarque 5 7 Soit k un corps algebriquement clos de caracteristique
zero Soient X et Y deux &-varietes de Calabi-Yau, de meme dimension d,
telles que [X] [7] dans l'anneau TTo(Var^) En vertu de [23, Theorem 2],
l'on conclut que les &-varietes X et Y sont birationnellement äquivalentes Si

d ^ 4, le corollaire 5 6 assure qu'elles sont en fait isomorphes par morceaux
La question LL admet done une reponse positive pour tout couple de &-varietes
de Calabi-Yau, de dimension au plus 4
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