Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique
Band: 58 (2012)

Artikel: Géométrie algébrique par morceaux, K-équivalence et motifs
Autor: Ivorra, Florian / Sebag, Julien
DOl: https://doi.org/10.5169/seals-515825

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-515825
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 58 (2012), 375-403

GEOMETRIE ALGEBRIQUE PAR MORCEAUX,
K -EQUIVALENCE ET MOTIFS

par Florian IVORRA et Julien SEBAG

RESUME. Soit k un corps algébriquement clos de caractéristique zéro. Deux
k-variétés K-équivalentes sont-elles isomorphes par morceaux ? Ont-elles des motifs
de Chow ou des groupes de Chow isomorphes ? Dans cet article, nous relions toutes ces
questions entre elles. Nous justifions les liens en question, en nous fondant sur certaines
conjectures et certains résultats classiques de théorie des motifs, mais également en
prouvant quelques énoncés non conjecturaux. Tous ces éléments fournissent les premiers
indices de I’existence de telles relations.

INTRODUCTION

Dans cet article, k est un corps. Une k-variété est un k-schéma de type
fini, séparé. Une k-courbe est une k-variété purement de dimension 1; une
k-surface est une k-variété purement de dimension 2.

0.1. On appelle variété de Calabi-Yau sur k toute k-variété connexe,
propre et lisse sur k, de diviseur canonique Ky trivial. Cette classe de
variétés algébriques se trouve profondément liée a des problemes physiques
et mathématiques. Dans [3] Batyrev a montré I’invariance birationnelle des
nombres de Betti des variétés de Calabi-Yau complexes:

THEOREME ([3, Theorem 1.1]). Soient X et Y deux variétés complexes
de Calabi-Yau, de dimension n. Si les variétés X,Y sont birationnellement
équivalentes, alors elles ont mémes nombres de Betti, i.e.

dim¢ H'(X, C) = dim¢ H'(Y, C),

pour tout i, 0 <i< 2n.
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Ce résultat conduit a s’interroger sur la nature des propriétés géométriques
que partagent deux variétés de Calabi-Yau birationnellement équivalentes, ou
plus généralement deux k-variétés K-équivalentes.

0.2. Rappelons que deux k-variétés X et Y connexes, propres et lisses
sur k, sont dites K -équivalentes s’il existe une k-variété Z connexe, propre

et lisse sur k, et des morphismes birationnels de k-schémas X <L Z %Y tels
que les diviseurs canoniques relatifs K x et K,y soient égaux. Les couples
de variétés de Calabi-Yau birationnellement équivalentes fournissent de tels
exemples, et la K-équivalence a suscité de nombreux développements récents
en géométrie birationnelle, notamment autour des motifs ou des catégories
dérivées.

Le théoreme de Batyrev peut-il se généraliser aux couples de k-variétés
K -équivalentes ? Une réponse positive a cette question peut se trouver dans
[3, Theorem 4.2], et dans la généralisation suivante'), due a Kontsevich.

THEOREME ([19]). Soient X et Y deux variétés complexes connexes,
propres et lisses sur C, K-équivalentes, de dimension n. Alors les variétés
X et Y ont mémes nombres de Hodge, i.e.

dim HY(X, Q% ) = dime HI(Y, ) ),

pour tout p,q, 0 < p,q < n.

0.3. Les nombres de Betti ou de Hodge d’une k-variété, projective et lisse
sur k, n’étant que des avatars numériques de son motif, il apparait raisonnable
de se demander si I'invariance des nombres de Hodge au sein d’une méme
classe de K-équivalence ne serait pas simplement le reflet d’un résultat de
nature motivique.

QUESTION. Deux k-variétés connexes, projectives et lisses sur k, K-equi-
valentes, ont-elles des motifs de Chow isomorphes, ou, au moins, des groupes
de Chow isomorphes ?

Une réponse positive a cette question difficile a ét€é donnée dans un certain
nombre de cas tres spécifiques de K-équivalence, comme le flop ordinaire

1) Ce théoréme joue historiquement un rdle important, car il est a ’origine du développement
de la théorie géométrique de I’intégration motivique. Introduite par Kontsevich dans [19],
I'intégration motivique a permis de fournir une premiére preuve de cette généralisation du
théoréme de Batyrev.
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(cf. [22, Theorem 0.1], ou [28, Theorem 1] pour une preuve radicalement
différente).

0.4. Dans le présent travail, nous nous intéressons a la question ci-dessus,
et particulicrement aux liens qu’elle entretient avec ce que 1’on appellera la
géométrie algébrique par morceaux, point de vue «introduit» par Grothendieck
dans EGA (voir [11, 7.2.14]), ou dans une lettre a J.-P. Serre écrite?) en 1964.

Dans ce travail, nos motivations sont doubles. Premicrement, nous
souhaitons justifier et clarifier ce lien avec la géométrie par morceaux. Pour cela
nous relions entre elles différentes questions ouvertes, qui soit n’apparaissent
pas dans la littérature, soit s’y trouvent dispersées dans différents domaines.
Dans ce tableau, il nous semble, de maniere peut-€tre surprenante, que I’anneau
de Grothendieck des variétés (voir section 1) et la géométrie par morceaux
(voir section 2) pourraient jouer un rdle important dans la compréhension de
ces différents problemes liant K-équivalence et motifs (voir section 3). Ainsi,
dans le cas de la question énoncée au paragraphe 0.3, la géométrie algébrique
par morceaux suggere le «dévissage» suivant:

ETAPE 1. Deux k-variétés connexes, projectives et lisses sur k, K-équival-
entes sont-elles isomorphes par morceaux, ou ont-elles méme classe dans
U’anneau de Grothendieck des variétés ?

ETAPE 2. Deux k-variétés connexes, projectives et lisses sur k, qui ont la
méme classe dans I’anneau de Grothendieck des variétés, ont-elles des motifs
de Chow isomorphes, ou des groupes de Chow isomorphes ?

Au paragraphe 4.1, nous expliquons comment la deuxieme étape est une
conséquence directe de la conjecture de dimension finie de Kimura [17] et
O’Sullivan, via le théoréme de nilpotence de Kimura?) et du théoréme de semi-
simplicité de Jannsen. Les étapes 1 et 2 soulignent la nature « par morceaux »,
a priori non apparente, de la question énoncée au paragraphe 0.3, et fournissent
par ce biais un point de vue original susceptible d’aider a la compréhension
du probléeme.

2) Dans cette méme lettre du 16 aoiit 1964, Grothendieck introduisait la notion de motifs de
Chow.

3) Ce théoreme est démontré pour les k-variétés, projectives et lisses sur le corps k, dont le
motif de Chow associé€ est de dimension finie au sens de [17].



378 F. IVORRA ET J. SEBAG

0.5. Deuxiemement, nous donnons quelques résultats positifs et non
conjecturaux aux questions énoncées a la section 3. Ces énoncés simples,
traitant essentiellement des cas de petites dimensions, constituent toutefois des
indices non triviaux laissant espérer que ces questions puissent admettre une
réponse positive en général. Nous montrons en particulier que la question de
I’étape 2 admet une réponse positive pour les surfaces projectives et lisses
sur k (voir proposition 4.6). La proposition 5.5 fournit de nouveaux cas pour
lesquels la question de I’étape 1 possede une réponse positive.

0.6. Enfin, la notion d’isomorphisme par morceaux est cruciale dans les
différents développements de ce travail. Nous 1’étudions succinctement au
paragraphe 2.

1. PRELIMINAIRES

1.1. Soit Z[Vary] le groupe abélien libre engendré par les classes
d’isomorphisme des k-variétés. On note {X} la classe de la k-variété X
dans Z[Vary]. L’anneau de Grothendieck des variétés est le groupe abélien
obtenu comme le quotient de Z[Vari] par le sous-groupe engendré par les
éléments de Z[Vary] de la forme {X} —{Z} —{X\Z}, ob X est une k-variété
et Z un sous-schéma fermé de X. On le note Ky(Vary) ; les relations ci-dessus
sont appelées relations de découpage. Dans I’anneau Ky(Vary), on notera [X]
la classe de la variété X. Le produit fibré au-dessus de k induit une structure
d’anneau sur le groupe Kp(Vary) en posant [X]-[Y]:= [X X Y] pour toutes
k-variétés X et Y. Il est clair que I’élément neutre de cette structure est
1 = [Spec(k)]. On note L := [A}{] la classe de la droite affine A} dans
I’anneau Ky(Vary) et . la localisation de 1’anneau Ky(Vary) par L, i.e.

My = Ko(Varp)[L™'].

1.2. La théorie de I'intégration motivique, introduite dans sa version
géométrique par Kontsevich, définit des intégrales qui prennent leurs valeurs
dans une complétion ////;: de ’anneau .}, construite a partir d’une filtration
naturellement associée a la dimension (voir [30, §4.1] pour une définition
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précise de cette filtration). Grace a cette théorie*), Kontsevich a établi le
théoreme suivant (dont I’énoncé généralise la version de 1’introduction).

THEOREME 1.1 (Kontsevich). Soit k un corps de caractéristique zéro.
Soient X et Y deux k-variétés connexes, propres et lisses sur k, et
K -équivalentes®). Alors [X] = [Y] dans .

1.3. Soit k un corps de caractéristique z€ro. Soit X une k-variété connexe,
propre et lisse sur k. L’on définit son polynéme de Poincaré par

Px(u) =Y by(X)u" € Zlu],

avec by(X) := dimy Hj(X). Si k est un sous-corps de C, I’on définit son
polynéme de Hodge par

Hy(u,v) := Y WI(Xuv? € Zu,v],

ol hP4(X) := dimy HY(X, Q%). Notons que le théoréme de décomposition de
Hodge fournit, dans ce cas, la formule Hx(u,u) = Px(u). En outre, les relations
de découpage dans I’anneau Kp(Vary) permettent d’étendre ces définitions en
la donnée de morphismes d’anneaux

P: My — Zu,u="1 et H: M — Zlu,v, (wv)""].

En évaluant P en —1, I’on obtient la caractéristique d’Euler x: My — Z.

REMARQUE 1.2. Soit k un corps de caractéristique zéro. Soient W une
k-variété de dimension d, et Ci,...,C, ses composantes irréductibles de
dimension d. Par le théoréme de Hironaka sur la résolution des singularités,
le lemme de Chow, et la relation [X] = [Xq] dans Ko(Vary), il existe, pour
toute k-variété X, des k-variétés Dy,...,D,, connexes, projectives et lisses
sur k, birationnellement équivalentes & (Cj)red, - - - , (Cu)red respectivement, et
des k-variétés Ei, ..., E, connexes, projectives et lisses sur k, de dimension
au plus d — 1, telles que

(1.1) [(W]=>[D1+ Y glE],
j=1

i=1

dans I’anneau Ky(Vary), avec ¢; = %1.

4) Grace a I'existence des factorisations faibles des applications birationnelles, le théoréme
suivant peut s’obtenir aujourd’hui sans utiliser l’intégration motivique, et sans passer a la
complétion de Ky(Vary), cf. [33, 7.10] ou [5, Remark 1.2].

3) Pour la définition, voir 0.2.
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Comme le polynome de Poincaré d’une k-variété X connexe, propre et
lisse sur k, possede un degré égal a 2dim(X), et a un coefficient dominant
égal au nombre de composantes irréductibles géométriques (i.e. de X; avec k
une cldture algébrique de k) de dimension maximale, 1’on voit facilement,
par la relation (1.1), que deux k-variétés X et Y telles que P([X]) = P([Y])
ont la méme dimension et le méme nombre de composantes irréductibles
géométriques de dimension maximale.

Notons que les morphismes d’anneaux H et P se factorisent par I’image
de ., dans ////; (cf. [5, Preuve du théoréeme 6.1.1]). Le théoréme 1.1
assure donc en particulier que deux k-variétés connexes, propres et lisses
sur k, K-équivalentes ont le méme polynome de Poincaré. L’on déduit de la
remarque précédente 1I’important corollaire suivant.

COROLLAIRE 1.3. Soit k un corps algébriquement clos de caractéristique
zéro. Soient X et Y deux k-variétés connexes, propres et lisses sur k,
K -équivalentes de dimension d. Soient Fx et Fy deux k-variétés réduites
telles que [X]1—[Fx] = [Y]—[Fy] dans I’anneau Ky(Vary). Alors les k-variétés
Fx et Fy ont la méme dimension et le méme nombre de composantes
irréductibles de dimension maximale.

Démonstration. Par hypothese, [X] — [Fx] = [Y] — [Fy] dans ’anneau
Ky(Vary) et donc [X] = [Y] dans sa compléti/(ln ///lz . En vertu du théoréme 1.1,
I’on conclut [Fx] = [Fy] dans ’anneau .#;. Par conséquent, les k-variétés
Fx et Fy ont le méme polyndome de Poincaré. Le résulat découle alors de la
remarque 1.2. []

1.4. Rappelons que deux k-variétés réduites X et Y sont dites stablement
birationnelles il existe deux entiers m, ¢ € N tels que X x; P! et ¥ x; P{
soient birationnellement équivalentes.

Désignons par Z[SB] le groupe abélien libre engendré par les classes
d’équivalence des k-variétés connexes, propres et lisses sur k, pour la relation
«d’étre stablement birationnel » (appelée relation d’équivalence stable). Larsen
et Lunts ont prouvé le résultat suivant.

THEOREME 1.4 ([21], voir également [4]). Soit k un corps algébriquement
clos de caractéristique zéro. Il existe un unique morphisme d’anneaux

SB: Ko(Vary) — Z[SB]
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qui envoie la classe d’une k-variété connexe, propre et lisse sur k, sur sa
classe d’équivalence par la relation d’équivalence stable. Ce morphisme est
surjectif et son noyau est l’idéal de Ko(Vary) engendré par L.

2. LES ISOMORPHISMES PAR MORCEAUX

2.1. Rappelons®) que deux k-schémas de type fini X et Y sont dits
isomorphes par morceaux s’il existe une partition (X;)o<i<n (resp. (Yio<i<n)
de X (resp. de Y) en sous-schémas localement fermés, telles que, pour tout i,
0 <i<n,les k-schémas (X;)req €t (Yi)ea soient isomorphes. Par définition, la
donnée de deux k-variétés isomorphes par morceaux induit donc celle d’une
collection d’isomorphismes de k-schémas (fo,...,f,) tels que f; identifie
(Xired €t (Yi)rea, pour tout i, 0 < i < n. La donnée d’une telle famille
(fo,---,fn) sera appelée isomorphisme par morceaux. Notons enfin que la
donnée d’un isomorphisme par morceaux différe grandement de celle d’un
isomorphisme de k-schémas. Pour illustrer ce point, notons que les k-variétés
suivantes sont deux a deux isomorphes par morceaux (et non isomorphes en
tant que k-schémas): A}, Spec(k[x,y]/(x> —y?)) et Gy x LI Spec(k).

2.2. Les isomorphismes par morceaux abondent en géométrie algébrique.
Nous en donnons ici quelques exemples.

EXEMPLE 2.1. a) La géométrie birationnelle, et particulicrement le
programme de Mori, fournit de nombreux exemples d’isomorphismes par
morceaux. Par exemple, les flops ordinaires, les flops de Mukai, les flops de
Mukai stratifiés (et leurs composés) sont des isomorphismes par morceaux
(cf. [7] pour les définitions).

b) Soit k un corps de caractéristique zéro, de cldture algébrique k. Soient
X et Y deux k-variétés, et f: X — Y un morphisme de k-schémas. Si
I’application d’ensembles f(k): X(k) — Y(k), induite par le morphisme f, est
bijective, alors le morphisme f fournit un isomorphisme par morceaux. C’est
une conséquence du théoreme principal de Zariski.

) En suivant [23], un point de vue équivalent, mais plus intrinseque, peut étre adopté. Ce
point de vue a été introduit par Grothendieck dans [11, 7.2.14], puis sommairement développé
dans [26, 27].
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2.3. Les relations de découpage dans I’anneau Ky(Vary) assurent que
deux k-variétés, isomorphes par morceaux, ont la méme image dans I’anneau
Ko(Vary). Dans [21], Larsen et Lunts s’interrogent sur la validité de la
réciproque. Ce probléme, difficile, nous apparait comme la pierre angulaire
de la compréhension géométrique de I’anneau de Grothendieck des variétés.
Formulons cette question.

QUESTION LL. Soient X et Y deux k-variétés telles que [X] = [Y]
dans 'anneau Ky(Vary). Les k-variétés X et Y sont-elles isomorphes par
morceaux ?

A T’heure actuelle, cette question est essentiellement ouverte. Si k est un
corps algébriquement clos de caractéristique zéro, des éléments de réponse
peuvent étre trouvés dans [23, 31]. La question suivante nous apparait comme
une étape importante dans toute tentative de réponse a la question LL.

QUESTION RAT. Soit k un corps algébriquement clos de caractéristique
zéro. Soit X une k-variété, projective et lisse sur k, de dimension d > 3,
stablement rationnelle et non rationnelle. La k-variété X peut-elle avoir la
classe d’une variété rationnelle dans I’anneau Ko(Vary) ?

A T’aide de la question LL, nous pouvons reformuler et préciser comme
suit une question posée par Gromov dans [10, 3.G”, p. 121].

QUESTION G. Soit k un corps algébriquement clos de caractéristique zéro.
Soient X une k-variété et f: X --+ X une application birationnelle, induisant
un isomorphisme de k-schémas entre deux sous-variétés U,V ouvertes et
denses de X. Notons Zy et Zy les uniques sous-variétés fermées de X,
réduites, de supports respectifs X\U et X\V. Les k-variétés Zy et Zy sont-
elles isomorphes par morceaux ?

Il est clair que, si la question LL posseéde une réponse positive, il en va de
méme de la question G. Les résultats de [31] permettent donc d’y répondre
positivement dans le cas des courbes, des surfaces projectives et lisses sur k,
et des k-variétés de dimension d > 2 n’ayant qu'un nombre fini de courbes
rationnelles. Plus récemment, dans [20], Lamy et le second auteur ont répondu
positivement a la question G, dans le cas d’une variété complexe X, projective
et lisse, de dimension 3 telle que HO(X, quc) = H%(X, Q)lqc) =0.
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2.4. Nous prouvons maintenant un critere original et simple pour
déterminer si deux k-variétés de petite dimension sont isomorphes par
morceaux. Soient k un corps de caractéristique zéro, X et Y deux k-variétés
de dimension d > 1.

Supposons que X et Y soient deux k-variétés isomorphes par morceaux.
Alors il découle de la définition que I’ensemble T'y des composantes
irréductibles de dimension d de X4 est en bijection avec I’ensemble T'y
des composantes irréductibles de dimension d de Yq. De plus, il existe
une bijection o: I'y — Ty telle que les k-variétés C et o(C) soient
birationnellement équivalentes, pour tout C € T'y. Enfin, P([X]) = P([Y])
et x([X]) = x([Y]), puisque [X] = [Y] dans I’anneau Ky(Vary).

Lorsque d € {0,1,2} la condition nécessaire ci-dessus devient un critére
nécessaire et suffisant a 1’existence d’un isomorphisme par morceaux.

PROPOSITION 2.2.  Soit k un corps algébriquement clos de caractéristique
zéro. Supposons que la dimension de X soit au plus 1. Les k-variétés X et Y
sont isomorphes par morceaux si et seulement si les deux assertions suivantes
sont vérifiées.

(1) I existe une bijection o: I'y — T’y telle que les k-variétés C et o(C)
soient birationnellement équivalentes, pour tout C € T'y;

(2) x(IXD = x([¥YD.

Démonstration. Supposons vérifiées les conditions (1) et (2). Ou bien la
dimension de X est égale a O et dans ce cas le point (2) conclut directement;
ou bien les k-variétés sont de dimension 1. Dans ce dernier cas, il existe,
en vertu du point (1), un sous-schéma ouvert U de Xiq et un sous-schéma
ouvert V de Yiq tels que U et V soient k-isomorphes, et tels que les
sous-variétés fermées (X \ U)rea et (Y \ V)ea soient de dimension 0, i.e.
des sommes disjointes de points rationnels. Posons (X \ U)weqa = LJ[_, Spec(k)

et (Y'\ V)rea = LI_,Spec(k). Par les relations de découpage, 1’on obtient
X]—r=[Ul=[V]l=1[Y]-s
dans I’anneau Ky(Vary). D’ou
XIXD —r=x([Y)—s et r=s.

Le k-isomorphisme fy: U — V se complete alors facilement en un isomor-
phisme par morceaux, via tout isomorphisme de k-schémas f;: LI_, Spec(k) —
LE_, Spec(k). [
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PROPOSITION 2.3.  Soit k un corps algébriquement clos de caractéristique
zéro. Supposons que les k-variétés X et Y soient de dimension au plus 2,
propres et lisses sur k. Alors les k-variétés X et Y sont isomorphes par
morceaux si et seulement si les deux assertions suivantes sont vérifiées.

(1) Il existe une bijection o: I'y — T’y telle que les k-variétés C et o(C)
soient birationnellement équivalentes, pour tout C € 'y ;

(2) P(XD = P(YD.

Démonstration. Supposons vérifiées les conditions (1) et (2). Si la
dimension de X est au plus 1, ’on conclut par exemple en invoquant la
proposition 2.2. Supposons désormais que les k-variétés X et Y sont de
dimension 2. En vertu du point (1), il existe des sous-variétés fermées et
réduites Cy et Cy de X et Y de dimension au plus 1, et un isomorphisme
de k-schémas fy: X\ Cx — Y\ Cy. Par les relations de découpage, on a:

[X] - [Cx] = [Y] = [Cy]

dans I’anneau Ky(Varg). En particulier, P([X]) — P([Cx]) = P([Y]) — P([Cy])
dans I’anneau de polyndmes Z[u]. Il en découle du point (2) que:

P([Cx]) = P([CyD

dans Z[u]. En vertu de la remarque 1.2, I’on déduit que les k-variétés Cx et Cy
ont donc la méme dimension et le méme nombre de composantes irréductibles
de dimension maximale. Si cette dimension était 0, nous déduirions automa-
tiquement que les k-variétés Cx et Cy sont isomorphes, et donc que les
k-variétés X et Y sont isomorphes par morceaux. Supposons que la dimen-
sion de Cx est égale a 1. Soient Dy ;, Dy;, pour 1 < i < m, les modeles
projectifs et lisses sur k& des composantes irréductibles de dimension 1 de Cyx
et Cy respectivement. Grace aux relations de découpage, il existe un entier
n € Z tel que

m m

[X]—[¥] =) [Dxil =Y [Dyil+n

i=1 i=1
dans I’anneau Ky(Vary). On peut alors appliquer le morphisme SB a cette
relation (cf. théoreme 1.4), ce qui donne

> SB(IDx,1) = Y SB(Dy,]) = —n

i=1 i=1

dans le groupe abélien libre Z[SB]. On en conclut que n = 0, et que, quitte a
renuméroter, Dy ; est k-isomorphe a Dy ;, pour tout i, 1 <i < m. Autrement



GEOMETRIE ALGEBRIQUE PAR MORCEAUX, K-EQUIVALENCE ET MOTIFS 385

dit, les composantes irréductibles des k-variétés Cy et Cy correspondantes sont
birationnellement équivalentes. Les k-variétés Cx et Cy ont en outre la méme
caractéristique d’Euler. Donc, par la proposition 2.2, elles sont isomorphes par
morceaux. Soit (f,f>) un isomorphisme par morceaux entre Cx et Cy. Alors
(fo,f1,/>) est un isomorphisme par morceaux entre X et Y. [

3. PANORAMA DE PROBLEMES DE GEOMETRIE ALGEBRIQUE PAR MORCEAUX

3.1 UNE LISTE DE QUESTIONS EN GEOMETRIE ALGEBRIQUE PAR MORCEAUX

Dans cette section, nous explicitons les questions qui forment le cceur
du présent article. Les problémes sous-jacents restent essentiellement ouverts
a I’heure actuelle. Nous renvoyons également au paragraphe 3.2 pour une
synthése des relations qui existent entre ces différents probleémes. Nous
supposons dans cette section que la caractéristique du corps k est zéro.

3.1.1. Comme nous I’avons souligné dans I’introduction, les théorémes
de Batyrev et Kontsevich sur la K-équivalence incitent a poser la question
plus générale suivante, reliant K-équivalence et motifs.

QUESTION KM. Deux k-variétés X et Y connexes, projectives et lisses
sur k, et K-équivalentes ont-elles des motifs de Chow he(X) et heat(Y)
isomorphes dans M (k; Q) ?

Cette question peut se trouver dans la littérature (voir, par exemple, [34]
pour un énoncé légerement affin€) et possede la version plus faible suivante.

QUESTION KC. Deux k-variétés X et Y connexes, projectives et lisses
sur k et K-équivalentes ont-elles des groupes de Chow CH"(X)q et CH"(Y)q
isomorphes ?

Dans le reste de cette section, nous proposons un «dévissage» en deux
étapes de la question KM (resp. KC), en les reliant aux questions KP et PM
(resp. KP et PC), qui semblent exhiber la nature «par morceaux », a priori
non apparente, de la question KM (resp. KC).

3.1.2. La premiere question relie la relation de K-équivalence a la
géométrie algébrique par morceaux. Elle s’énonce comme suit:
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QUESTIONS KP. Soient X et Y deux k-variétés connexes, projectives et
lisses, K-équivalentes.
KP: Les k-variétés X et Y sont-elles isomorphes par morceaux ?
Cette question admet la formulation a priori plus faible suivante.

KPw :  Les k-variétés X et Y ont-elles la méme classe dans I’anneau Ky(Vary) ?

La question KPw a été initialement posée par Yasuda. Notons également
qu’une réponse positive a la question KP fournirait un résultat a priori plus
fin que le théoreme de Kontsevich (cf. théoreme 1.1). En effet, d’/u\ne part, le
théoreme 1.1 n’affirme que 1’égalité des classes dans I’anneau .#; (ou dans
une localisation de I’anneau Ky(Varx), comme le souligne notre premiere note
de bas de page), et, d’autre part, I’égalité de classes dans 1’anneau Ky(Vary)
ne garantit pas, a I’heure actuelle en tout cas, I’existence d’un isomorphisme
par morceaux entre les variétés considérées. L’ obstruction pour répondre a la
question KPw directement a partir du théoréme de Kontsevich réside dans les
deux questions suivantes, qui sont, quant a elles, totalement ouvertes a 1’heure
d’aujourd’hui.

o Le morphisme de complétion My — /Z/; est-il injectif ?
o Le morphisme de localisation Ko(Vary) — ). est-il injectif ?

REMARQUE 3.1. a) Dans [31], le second auteur a relié la question de
I’injectivité du morphisme Ko(Vary) — .#; a la question LL.

b) Différents problémes de simplification «a la Zariski» constituent a pri-
ori des obstructions a la bonne compréhension de la question KPw (voir
I’assertion a) ou le théoreme 5.4). Ce type de problémes semble pouvoir
étre formellement contourné en remplagant I’existence d’un isomorphisme par
morceaux (resp. I’égalité des classes dans ’anneau Ky(Varz)) dans la formu-
lation de la question KP (resp. KPw) par I’égalité des classes dans 1’anneau
My = Ko(Varp)[L™!].

En général, I’affaiblissement de la formulation consistant a passer a la
localisation n’est pas triviale. Nous renvoyons le lecteur a [15], ou est illustré
ce phénomene dans I’étude de la fonction zéta de Kapranov.

3.1.3. La seconde question relie I’existence d’isomorphismes par morceaux
aux motifs et groupes de Chow, de la maniere précise suivante.

QUESTIONS PM. Soient X et Y deux k-variétés projectives et lisses sur k.

PM : Deux k-variétés X et Y sont isomorphes par morceaux ont-elles des
motifs de Chow hy,t(X) et hpa(Y) isomorphes dans Ma(k; Q) ?
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Cette question posséde la formulation a priori plus forte suivante.

PMs: Deux k-variétés X et Y qui ont la méme classe dans 1’anneau
Ko(Vary) ont-elles des motifs de Chow h(X) et hpa(Y) isomorphes
dans M,(k; Q) ?

Comme, pour une k-variété X projective et lisse sur k, CH'(X)q =
Homwm,,,x;Q)(L", hrat(X)), les questions PM et PMs peuvent se formuler au
niveau des groupes de Chow de la maniére suivante.

QUESTIONS PC. Soient X et Y deux k-variétés projectives et lisses sur k.
Soit n un entier naturel.
PC": Deux k-variétés X et Y sont isomorphes par morceaux ont-elles des
groupes de Chow CH"(X)q et CH"(Y)q isomorphes ?
Cette question possede la formulation a priori plus forte suivante.
PCs" : Deux k-variétés X et Y qui ont la méme classe dans I’anneau Ko(Vary)
ont-elles des groupes de Chow CH"(X)q et CH"(Y)q isomorphes ?

REMARQUE 3.2. Ces questions PC admettent des réponses négatives si
les k-variétés X et Y ne sont pas supposées, au minimum, propres sur k.
Soient X une k-variété réduite et U une sous-variété ouverte (non vide). Si Z
est I'unique sous-variété fermée de X, réduite, de support égal a X\Z. Alors
les k-variétés X et ULZ sont isomorphes par morceaux, mais CH"(X)q n’est
pas isomorphe a CH"(U L Z)q.

EXEMPLE 3.3. Si X et X* sont deux variétés complexes, projectives et
lisses sur k, liées par un flop ordinaire, alors X et Xt sont isomorphes
par morceaux (cf. exemple 2.1). Par ailleurs, dans [22, Theorem 01] (voir
également [28, Theorem 1] pour une preuve totalement différente), il est
prouvé que les motifs de Chow de X et X+ sont isomorphes.

3.2 UNE SYNTHESE DES DIFFERENTES QUESTIONS

Le diagramme ci-dessous positionne les différentes propriétés autour
desquelles s’articule notre discussion. Les feches en pointillés correspondent
aux questions que nous avons €évoquées au paragraphe précédent (le symbole
LL correpond a la question LL de la section 2, le symbole KS désigne la
conjecture de Kimura et O’Sullivan, évoquée au paragraphe 4.1). Les doubles
fleches représentent des implications inconditionnelles. Dans le diagramme
X et Y sont deux k-variétés connexes, projectives et lisses sur k; on
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note Ko(Myat) I'anneau Ko(M,ai(k; Q)) et on appelle motif de X 1’élément
hrat(X) € Myae(k; Q).

KC ..
KPw
£ Les variétés |“

< X et Y ont © cniZida —

Les groupes méme classe | <= | Les variétés Les varictés

de Chow _<PCs X et Y sont <KP X ot Y sont

de XetYsont |~ _ isomorphes | =" P PATREn
isomorphes (®Q) Ki=m | par morceaux K-équivalentes

dans Ky(Vary)

l

Les motifs
de X et Y ont
méme classe

[Arat(X)] = [rar(Y)]
dans Ko(Mrat)

KS : ﬂ
Y

Les motifs
de X et Y sont
de dimension finie,
ont méme classe
dans Ko(Mrat)

Les motifs
de X et Y sont
isomorphes dans

Mrat (k; Q)

- PM

KM

4. GEOMETRIE ALGEBRIQUE PAR MORCEAUX ET MOTIFS

4.1 LA MOTIVATION DERRIERE PM

4.1.1. Nous commencerons par rappeler la construction de la catégorie
des motifs purs pour une relation d’équivalence adéquate ~ sur les cycles
algébriques. Nous renvoyons a I’ouvrage [1] pour de plus amples détails.

Soient R un anneau et X une k-variété projective et lisse sur k. Nous
notons A’ (X; R) le groupe R-linéaire des cycles algébriques de codimension r
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dans X modulo la relation ~. La catégorie M..(k; R) des motifs purs est définie
comme suit. Si Y est une k-variété projective et lisse sur k, si les k-variétés
Xi,...,X, désignent les composantes irréductibles de X, I’on note

14
Corr_ (X, Y; R) = @D A" (X; x, Y3 R)

i=1

le R-module des correspondances de degré r modulo ~. Ces groupes sont
munis d’une loi de composition associative :

Corr’_(Y,Z;R) Qg Corr’_(X, Y;R) — Cort’ (X, Z; R)
(B,0) = Boa=pypipyy” B ~ pxy "a).
L’on construit alors la catégorie M..(k; R) comme la catégorie dont les objets
sont les triplets (X,p,a), ou X est une k-variété projective et lisse sur k,
pE CorrO(X ,X;R) est un idempotent et a € Z, et dont les morphismes sont
décrits par la formule suivante :

Homw_ r) (X, p, @), (Y, g, b)) = qCort”“(X, Yi R)p .
L’on dispose d’un foncteur monoidal
h~.: SmProj,” — M_(k; R)

qui envoie la k-variété X, projective et lisse sur k, sur le triplet (X,Idy,0),
et le morphisme f: X — Y entre deux k-variétés projectives et lisses sur k
sur la correspondance ‘[T¥], ou I'y désigne le graphe de f.

Le n-iéeme twist a la Tate M(n) du motif pur M = (X,p,a) se définit
comme le motif M(n) := (X,p,a + n). 1l est important de noter que, pour
tout motif pur M, il existe un entier n et une k-variété X, projective et lisse
sur k, tels que M soit un facteur direct de A..(X)(n). L'on note 1 le motif
h.(Spec(k)), et L = 1(—1) le motif de Lefschetz.

La catégoric M. (k;R) est une catégorie tensorielle rigide, pseudo-
abélienne, et I’on a End(1) = R.

4.1.2. Kimura dans [17] et O’Sullivan ont avancé I’'idée que le fait que les
groupes de cohomologie H*(X), d’une k-variété X projective et lisse sur k,
soient des K-espaces vectoriels de dimension finie, pour toute cohomologie
de Weil H* (a coefficients dans un corps K), pourrait se traduire sur son
motif de Chow. C’est cette notion correspondant, dans la catégorie des motifs,
a la «dimension finie » que nous rappelons maintenant.
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DEFINITION 4.1. Un motif de Chow M € M, (k; Q) est dit pair (resp.
impair) s’il existe un entier n € N* tel que A"M =0 (resp. S"M = 0). Un
motif M € M,:(k; Q) est dit de dimension finie s’il admet une décomposition
en somme directe

M~MtToM™

avec MT un motif pair et M~ un motif impair.

En général, il n’y a pas de décomposition canonique en parties paire et
impaire des motifs de dimension finie. La sous-catégorie pleine M9, (k; Q) de
Miat(k; Q) formée des motifs de dimension finie est une catégorie tensorielle
rigide, pseudo-abélienne, qui contient les motifs d’Artin et les motifs des
variétés abéliennes. Comme cette sous-catégorie contient également les motifs
des k-courbes projectives et lisses sur k, la formule du blow-up et le théoréme
de factorisation faible des applications birationnelles assurent que la dimension
finie est un invariant birationnel pour les k-variétés, projectives et lisses sur k,
de dimension inférieure ou égale a 3.

La conjecture de Kimura et O’Sullivan peut maintenant &tre formulée
comme suit. (Nous renvoyons le lecteur a [2, 17, 15] pour de plus amples
détails.)

CONJECTURE KS. Tout motif de Chow M € M,1(k; Q) est de dimension
finie.

Soit Mf,dum(k; Q) I'image essentielle de M‘:gt(k; Q) dans Myym(k; Q). Le
théoreme de nilpotence, prouvé par Kimura dans [17], implique en particulier
que le foncteur

M. (k; Q) — M (k; Q)

est conservatif, i.e. jouit de la propriété suivante : un morphisme de la catégorie
Mfd (k; Q) est un isomorphisme si et seulement si son image dans M _(k; Q)
est un isomorphisme.

4.1.3. Dans sa lettre a J.-P. Serre du 16 aotit 1964, Grothendieck évoque
I’existence d’un morphisme d’anneaux

4.1 Ko(Vary) — Ko(Mrat(k; Q)
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défini par X — [hat(X)], et que nous appellerons caractéristique d’Euler
motivique. Ce morphisme fut initialement”) construit de maniere explicite
dans [8], voir également [12, 4].

REMARQUE 4.2. Soit k un corps de caractéristique zéro. Dans sa lettre
a J.-P. Serre, Grothendieck pose la question de savoir si la caractéristique
d’Euler motivique est injective. La réponse a cette question est négative.
Historiquement, et bien que la réponse n’y figure pas, des contre-exemples
peuvent se déduire des travaux de Poonen [29], en considérant un couple de
variétés abéliennes isogénes non isomorphes (voir §4.2). Dans [23, Remark 14],
d’autres contre-exemples sont obtenus. Plus récemment, Mazza et Weibel ont
donné dans [24] une preuve alternative de cette non injectivité.

Nous donnons ici un nouveau type d’exemples d’éléments non triviaux
appartenant au noyau de la caractéristique d’Euler motivique. Dans [13],
Pedrini et Guletskii ont montré que la classe du motif de la surface
de Godeaux complexe X, qui est projective et lisse sur C, et de type
général, possédait dans I’anneau Ky(M,,:(C;Q)) une décomposition de la
forme [hy(X)] = [L]*> @ 9[L] & [1]. 1I découle d’un calcul facile que cette
décomposition est aussi celle de la surface rationnelle Y obtenue par éclatement
de 8 points dans P%. Enfin, en vertu de [23, Corollary 1], I’on ne peut avoir
[X] = [Y] dans I’anneau Ky(Varc). De tels exemples peuvent également &tre
construits a partir des surfaces d’Enriques.

4.1.4. Le groupe de Grothendieck Ky(7) d’une catégorie </ abélienne et
semi-simple est le groupe abélien libre engendré par les classes d’isomorphisme
des objets simples de <7 . En particulier, deux objets A et B de la catégorie </
sont isomorphes si et seulement si [A] = [B] dans le groupe Ky(<).

Cette simple remarque permet de lier, via le foncteur naturel

Mrat(k; Q) = Mpum(k; Q) ,

la question PMs a la question KS. Précisément, on a 1’énoncé suivant.

PROPOSITION 4.3. Soient X et Y deux k-variétés projectives et lisses
sur k, telles que les motifs de Chow heat(X) et heat(Y) soient de dimension
finie.

(1) Siles k-variétés X et Y sont isomorphes par morceaux, alors les motifs

de Chow hyt(X) et heat(Y) sont isomorphes dans 'anneau M, (k; Q).

7) A I’heure actuelle, les travaux de Bittner [4] (voir §4.2) ou de Bondarko [6] fournissent
deux autres preuves de I’existence de la caractéristique d’Euler motivique.
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(2) Si [X] =1Y] dans I’anneau Ky(Vary), alors les motifs de Chow hya(X)
et hat(Y) sont isomorphes dans ’anneau M,(k; Q).

(3) En particulier, si la question KS possede une réponse positive, alors il
en va de méme pour les questions PMs, PCs, PM et PC.

Cet énoncé découle directement de la proposition suivante.

PROPOSITION 4.4. Soient M et N deux motifs de Chow de dimension finie
dans My, (k; Q). Soient M et N leurs images dans Maum(k; Q). Supposons
que [M] = [N] dans I’anneau Ko(Mnum(k; Q)). Alors M et N sont isomorphes
dans Mpi(k; Q).

Démonstration. En vertu du théoréme de Jannsen [16], la catégorie
Mpum(k; Q) est semi-simple et abélienne. L’égalité des classes [M] = [N]
dans I’anneau Ko(Muum(k; Q)) implique, par la remarque du début du para-
graphe 4.1, que les motifs M et N sont isomorphes dans Mpym(k; Q). Par le
théoréme de nilpotence de Kimura [17], le foncteur

Mgk Q) — Mis,rn(k: Q)

est conservatif. Donc les motifs M et N sont déja isomorphes dans

Mrat(k; Q). U

REMARQUE 4.5. Un tel énoncé peut se déduire également des conjectures
de Murre-Bloch—Beilinson (voir [9, §2]). La version complete des conjec-
tures de Murre et la conjecture®) standard D impliquent, a elles deux, la
conjecture de Kimura-O’Sullivan (voir [1, 11.5.3.1]). Réciproquement, la di-
mension finie du motif de Chow #,,(X) et la conjecture®) standard C(X)
impliquent que A, (X) possede une décomposition de Kiinneth, pour toute
k-variété X projective et lisse sur k (ce qui forme une partie des conjectures
de Murre, telles qu’énoncées dans [25]).

4.2 LA QUESTION PM EN PETITES DIMENSIONS

Soit k& un corps algébriquement clos de caractéristique zéro. Comme les
motifs de Chow des k-courbes, projectives et lisses sur k, sont de dimension

8) La conjecture standard D prédit que (2 torsion prés) la relation d’équivalence homologique
coincide avec la relation d’équivalence numérique.

%) La conjecture standard C(X) prédit I'algébricité des projecteurs de Kiinneth de la
k-variété X . Pour plus de détails sur les conjectures standard (de Grothendieck), voir par exemple
le texte de Kleiman [18].
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finie dans M, (k;Q), il découle de la proposition 4.3 que les questions
PMs, PM (et donc PCs et PC) admettent des réponses positives pour les
k-courbes projectives et lisses sur k. Nous montrons que les réponses sont
encore positives pour les k-surfaces, projectives et lisses sur k.

PROPOSITION 4.6. Soit k un corps algébriquement clos de caractéristique
zéro. Soient X et Y deux k-surfaces projectives et lisses sur k. Supposons
que [X] = [Y] dans I’anneau Ko(Vary). Alors il existe un isomorphisme de
motifs (X)) ~ heat(Y) dans Miai(k; Q).

Démonstration. En vertu de [23, Lemma 9], on sait que les k-surfaces X
et Y sont birationnellement équivalentes. Comme la dimension finie des motifs
est un invariant birationnel des surfaces projectives et lisses, 1’on conclut que
les motifs de Chow /h,,:(X) et hpe(Y) sont de dimension finie si et seulement
Si hpat(X) ou hat(Y) est de dimension finie. Nous allons traiter les trois cas
suivants découlant de la classification des surfaces.

Si 'une des k-surfaces X ou Y est rationnelle, 2,.¢(X) et A (Y) sont de
dimension finie, et donc isomorphes par la proposition 4.3.

S’il existe une k-courbe C, connexe, projective et lisse sur k, telle que
I'une des k-surfaces X ou Y est birationnellement équivalente a P,'( x; C,
alors il en est de méme pour I'autre. Comme le motif de Chow h,(C) est
de dimension finie, 'on conclut encore que les motifs de Chow hp(X) et
heat(Y) sont de dimension finie, et donc isomorphes par la proposition 4.3.

Supposons enfin que ni la k-surface X, ni la k-surface Y ne soient réglées.
Dans ce cas, il existe une k-surface V, connexe, projective et lisse sur k, et
deux suites finies )

xLvdy
d’éclatements de points rationnels (i.e. V est le modele minimal de la classe
d’équivalence birationnelle de X). Dans I’anneau Ky(Vary), la formule de
I’éclatement implique qu’il existe deux entiers naturels m et n, correspondants
aux nombres d’éclatements dans f et g respectivement, tels que:

[X]-m-L=[V]=[Y]—n-L.
L’hypothese entraine alors que m = n (spécialiser I’égalité par exemple via la
caractéristique d’Euler). La formule de I’éclatement pour les motifs de Chow

implique le résultat voulu. En effet, I’on déduit I’isomorphisme de motifs de
Chow :

hrat(X)zhrat(V)éBL@"'@Lzhrat(v)@L@"'@Lf—vhrat(Yy |:|

n termes m termes
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4.2.1. En utilisant le théoreme de factorisation faible des applications
birationnelles et la résolution des singularités, Bittner a donné dans [4] la
description plus simple suivante de 1’anneau de Grothendieck des variétés,
en termes de générateurs-relations. Soit k un corps algébriquement clos de
caractéristique zéro. Posons KJ'(Vary) le groupe abélien obtenu comme le
quotient du groupe abélien libre, engendré par les classes d’isomorphismes
des k-variétés projectives et lisses sur k, modulo les relations d’éclatement

ou X est une k-variété projective et lisse sur k, Z une sous-variété fermée
de X, lisse sur k, Y I’éclatement de X de centre Z et E le diviseur
exceptionnel. Alors le morphisme d’anneaux ') canonique

K{'(Vary) — Ko(Vary)

est un isomorphisme.

4.2.2. Soit AV I’ensemble des classes d’isomorphisme de variétés
abéliennes sur le corps k supposé algébriquement clos de caractéristique
z€éro (qui est un monoide pour le produit fibré au-dessus de k). L’on peut
alors définir un morphisme d’anneaux

Ko(Vark) — Z[AV]

par additivité en imposant que la classe d’une k-variété X, projective et lisse
sur k, soit envoyée sur sa variété d’Albanese Alb(X) (cf. [29] ou [23]). En
particulier, I’on déduit de I’existence de ce morphisme que deux k-variétés,
projectives et lisses sur k, telles que [X] = [Y] dans I'anneau Ko(Vary) ont
des variétés d’Albanese isomorphes (et, par dualité, des variétés de Picard
isomorphes). En outre, en tant que groupes abstraits, Pic’(X) et Pic®(Y) sont
isomorphes.

4.2.3. La présentation de I’anneau Ky(Var), via les relations d’éclatement,
et les théoremes de finitude classiques permettent d’énoncer les résultats
suivants.

PROPOSITION 4.7. Soit k un corps de caractéristique zéro. Soient X et Y
deux k-variétés connexes, projectives et lisses sur k, telles que [X] = [Y]
dans ’anneau Ky(Vary).

10) Le produit est ici encore induit par le produit fibré au-dessus de k.
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(1) Les groupes de Néron-Severi NS(X) et NS(Y) sont isomorphes.

(2) Si le corps k est une extension de type fini de Q, alors les groupes de
Picard Pic(X) et Pic(Y) sont isomorphes.

Démonstration. Soit </ la catégorie des groupes abéliens de type fini.
C’est une catégorie additive. Nous considérons son groupe de Grothendieck
Ko(<7). L’on montre d’abord le second point.

(2) Par hypothese, il découle de [14, Proposition 6.1] que le groupe de
Picard d’une k-variété, projective et lisse sur k, est de type fini. Il définit
donc un objet de 7. Ainsi ’on construit un morphisme de groupes abéliens

Pic: Z[SmPr;] — Z[ <]

qui a la classe d’isomorphisme d’une k-variété V, projective et lisse sur k,
associe la classe d’isomorphisme de son groupe de Picard {Pic(V)}. Comme,
pour toute k-variété V, projective et lisse sur k, I’on a:

Pic(V) = CH'(V) = Hom,,.¢:z)(L, hrat (V) ,

la formule de I’éclatement pour les motifs de Chow assure, via [4], que le
morphisme Pic induit un morphisme de groupes

Pic: Ky(Vary) — Ko() .

Il découle du théoreme de structure des groupes abéliens de type fini que
deux objets A et B de &/ sont isomorphes si et seulement si [A] = [B] dans
I’anneau Ky(<7). Le résultat se déduit alors facilement.

(1) La preuve est similaire, en utilisant cette fois les groupes de Néron-
Severi. Si V est une k-variété, projective et lisse sur k, son groupe de
Néron-Severi, qui est un groupe abélien de type fini, est donné par la formule :

NS(V) = Homwm,,x:z)(L, haig(V)) .

Comme précédemment, la formule de I’éclatement pour les motifs de Chow
permet de construire, via [4], un morphisme de groupes

NS: Ko(Vary) — Ko(#)

qui associe, a la classe d’une k-variété, projective et lisse sur k, la classe de
son groupe de Néron-Severi. [

REMARQUE 4.8. Soit k& un corps algébriquement clos de caractéristique
z€ro. Si Z est une k-variété, projective et lisse sur k, son groupe de Néron-
Severi est donné par la formule:

NS(Z) = Pic(Z)/ Pic’(Z) .
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En vertu de la proposition 4.7, ’on déduit que si deux k-variétés X et Y,
projectives et lisses sur k, ont méme classe dans I’anneau de Grothendieck des
variétés, alors les groupes Pic(X)q and Pic(Y)q sont isomorphes. L’on conclut
donc que la question PCs' possede une réponse positive. Si n = dim(X), les
questions PC" et PCs" ont également une réponse positive, car les groupes
de Chow de codimension n sont des invariants birationnels (cf. par exemple
[23, Corollary 6]).

5. GEOMETRIE ALGEBRIQUE PAR MORCEAUX ET QUESTION KP

Dans cette section, nous nous intéressons a la question KP. Le théoreme 5.4,
la proposition 5.5 ainsi que la remarque 5.7 fournissent des éléments de
réponse originaux, en direction d’une réponse positive a cette question. Nos
énoncés completent ceux donnés antérieurement dans [32], mais demeurent
partiels.

5.1. Soit k un corps algébriquement clos de caractéristique zéro. Soient
X et Y deux k-variétés connexes, propres et lisses sur k, et K-équivalentes.
Il sera commode de disposer de la notion de lieu K -exceptionnel que nous
introduisons maintenant.

Par définition, il existe une k-variété Z, connexe, propre et lisse sur k,

et deux morphismes birationnels de k-schémas X L7 %y tels que
Kz/x = Kzjy. 1l existe donc trois ouverts U, V et W de X, Y et Z
respectivement tels que les morphismes f et ¢ induisent par restriction des

isomorphismes de k-schémas U Lwv Le morphisme de k-schémas
h = gwo (f|W)_l produit donc un isomorphisme de k-schémas U — V.
Désignons par Cx et Cy les uniques sous-variétés fermées et réduites de
X et Y respectivement, dont les supports sont égaux aux ensembles X \ U
et Y\ V. La donnée d’un tel couple (Cx,Cy) constitue ce que nous ap-
pellerons un lieu K-exceptionnel de X et Y dans la suite. Une telle donnée
ne peut &tre unique. Remarquons cependant que, si (Cx,Cy) est un lieu
K -exceptionnel d’une paire de k-variétés X,Y supposées K-équivalentes,
alors, en vertu du corollaire 1.3, la dimension de Cx est égale a celle
de Cy.
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5.2. Ci-apres, nous établissons un lemme que nous utiliserons par la suite.

LEMME 5.1.  Soit k un corps algébriquement clos de caractéristique zéro.
Soient V et W deux k-variétés réduites de méme dimension d. Si d < 1,
si SB(V) = SB(W) et si les k-variétés V et W ont le méme nombre de
composantes irréductibles de dimension d, alors les k-variétés V et W sont
isomorphes par morceaux.

Démonstration. L’unique difficulté réside en dimension 1. Par hypothese,
il existe un élément o € Ko(Varg) tel que [V] — [W] = o - L dans ’anneau
Ko(Vary). Soit n le nombre de composantes irréductibles de V de dimension 1.
Pour tout i, 1 < i < n, nous désignons par V; et W; respectivement les
modeles projectifs et lisses sur k de chacune des composantes irréductibles
de dimension 1 de V et W. Il existe alors un entier m € Z tel que
n n
Z[Vi] *Z[Wj] =a-L+m,
i=1 =1
dans I’anneau Kj(Vary). Si ’on applique le morphisme SB a cette relation, on
peut conclure que m = 0, puis, quitte a renuméroter, que SB(V;) = SB(W),),
pour tout i, 1 <7< n. Autrement dit, pour tout i, 1 < i < n, les k-courbes V;
et W; sont isomorphes. L’on conclut donc que les composantes irréductibles de
dimension 1 de V et W correspondantes sont birationnellement équivalentes.
Il existe donc des sous-variétés fermées et réduites Cy et Cy de V et W
respectivement, de dimension 0, telles que

[Cv]—[Cw]=a-L.

dans I’anneau Ky(Vary). Par conséquent, SB(Cy) = SB(Cy). Comme Cy
et Cy sont des sommes disjointes de points rationnels, cette dernicre relation
implique que leurs ensembles sous-jacents ont le méme cardinal, ou que
Cy et Cy sont isomorphes. Par conséquent, les k-variétés V et W sont
isomorphes par morceaux.  []

5.3. Soit f: X --» Y une application birationnelle entre deux k-variétés
connexes, propres et lisses sur k, de dimension d. Notons Cx le lieu excep-
tionnel de f (i.e. I’ensemble des points de X ou f n’est pas un isomorphisme
local). Notons Ux I’ouvert de X défini par X\Cy. Comme f est supposée bi-
rationnelle, il découle du théoréme principal de Zariski I’existence d’un ouvert
Vy de Y tel que f induise un isomorphisme de k-schémas Uy — Vy. Nous
notons Cy l'unique sous-variété fermée et réduite de Y dont le support est
égal a ’ensemble Y\Vy. L’énoncé suivant est une conséquence du lemme 5.1.
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LEMME 5.2. Soit k un corps algébriquement clos de caractéristique
zéro. Soit f: X --+ Y une application birationnelle entre deux k-variétés
connexes, propres et lisses sur k, de dimension d > 3. Notons Cx le lieu
exceptionnel de f. Supposons que 1 > dim(Cx) > dim(Cy), et que les nombres
de Betti by(X) et by(Y) sont égaux. Alors les k-variétés sont isomorphes par
morceaux.

Démonstration. Par hypothese, I’on a dans I’anneau Ky(Varg) la relation
suivante

(.1 [X]—[Cx] =[Y] - [Cy].

Si I’on applique le morphisme SB a cette relation (5.1), I’on déduit que
SB(Cx) = SB(Cy), puisque les k-variétés X et Y sont supposées propres et
lisses sur k, et birationnellement équivalentes. Si 1’on applique le morphisme
P a la relation (5.1), ’on obtient une relation de la forme suivante dans
I’anneau Z[u], avec a;,a; € Z, pour tout i, 0 <i<2:

2 2d
(5.2) Z biXOu' — (axu® + ayu + ap) = Z bi(Y)u' — (abu® + dyu + ap) .
i=0 i=0

Comme by(X) = by(Y), I'on conclut que a; = d. Il découle alors de
I’hypothese et de la remarque précédente que la dimension de Cx est égale
a celle de Cy. Si dim(Cyx) = 1, les k-variétés Cx et Cy ont en outre le
méme nombre de composantes irréductibles de dimension 1. Le lemme 5.1
permet alors de conclure. Si dim(Cx) = 0, I’on conclut directement grace a
la relation SB(Cyx) = SB(Cy). [

REMARQUE 5.3. Les arguments utilisés dans la preuve du lemme 5.2
permettent d’obtenir certains cas particuliers quand dim(Cx) > 2. En voici une
illustration. Soient X et Y deux k-variétés K-équivalentes. Fixons (Cx, Cy)
un lieu K-exceptionnel. Supposons que les k-variétés Cx et Cy soient des
k-surfaces, projectives et lisses sur k. Alors les k-variétés X et Y sont
isomorphes par morceaux.

Le lemme 5.2 et la remarque 5.3 précédents soulignent le fait que la
réponse a la question KP s’obtient facilement en dimension d < 3, mais que
la question sous-jacente reste toutefois pertinente en dimension supérieure.

5.4. Rappelons le résultat suivant, que 1’on peut déduire de [32, Propo-
sition 3.2, Lemme 3.4].
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THEOREME 5.4. Soit k un corps algébriqguement clos de caractéristique
zéro. Soient X et Y deux k-variétés K-équivalentes. Fixons un lieu
K -exceptionnel (Cx, Cy). Notons CT** [’ensemble des points de C. de di-
mension maximale. Alors il existe une bijection

. max max
o: Cy™ — Cy™,

telle que, pour tout x € CY*, il existe un entier s € N et un isomorphisme
de k-algebres ¢: k(x)(Ty,...,Ts) = k(cx)(Ty, ..., Ts).

La preuve de cet énoncé utilise, de maniere cruciale le théoreme de
Kontsevich, sous la forme du corollaire 1.3, et des résultats techniques
provenant de la théorie géométrique de I’intégration motivique.

5.5. Le théoreme 5.4 souligne I’'importance du probleme de simplification
«a la Zariski» dans les questions au centre de ce travail. Dans certains cas
particuliers, le théoréme 5.4 permet malgré tout de répondre a la question KP.
Par exemple, nous pouvons déduire I’énoncé suivant.

PROPOSITION 5.5.  Soit k un corps algébriquement clos de caractéristique
zéro. Soient X et Y deux k-variétés connexes, projectives et lisses sur k,
K -équivalentes, de dimension d. Fixons (Cx,Cy) un lieu K-exceptionnel.
Supposons
a) ou bien dim(Cx) < 2;

b) ou bien que les k-variétés Cx et Cy sont isomorphes a des sommes
disjointes de k-variétés de la forme S Xy P,Z_z (r >3) ou S est une
k-surface intégre projective.

Alors les k-variétés X et Y sont isomorphes par morceaux.

Démonstration. Par hypothése, on a la relation
(5.3) [Y]—[Cy] = [X] — [Cx]

dans I’anneau Ky(Varg). En vertu du corollaire 1.3, I'on peut conclure que
les k-variétés Cy et Cy ont la méme dimension, et le méme nombre de
composantes irréductibles de dimension maximale. Notons r cette dimension,
et fo: X\Cx — Y\Cy l'isomorphisme de k-schémas.

Supposons que I’hypothese faite au point a) soit valide. Ce cas a été
traité dans [32, Théoreme 3.5]. Nous en redonnons ici la preuve. Grice au
théoreme 5.4, I’on construit deux sous-vari€tés fermées et réduites Dy et Dy
de Cx et Cy respectivement, de dimension au plus 1, et un isomorphisme de
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k-schémas fi: Cx\Dx — Cy\Dy. En particulier, cet isomorphisme permet de
réécrire la relation (5.3) sous la forme

[X] — [Dx] = [Y] — [Dyl,

dans I’anneau Ko(Varg). Si I’on applique le morphisme SB a cette relation,
I’on conclut que SB(Dx) = SB(Dy) dans I’anneau Z[SB]. Par ailleurs, le
corollaire 1.3 permet encore d’affirmer que les k-variétés Dx et Dy ont
la méme dimension et le méme nombre de composantes irréductibles de
dimension maximale. L’on déduit alors du lemme 5.1 que les k-variétés Dy
et Dy sont isomorphes par morceaux via (f>,f3). La donnée de (fo,fi,f>,/3)
définit un isomorphisme par morceaux entre X et Y.

Supposons que I’hypothese faite au point b) soit valide. Soit C une com-
posante irréductible de dimension maximale de Cy. Posons alors C’ := o(C),
ou o est la bijection construite dans le théoreme 5.4. Par hypothese, il existe
des k-surfaces inteégres Sy, et Sy, telles que la k-variété C (resp. C') est
isomorphe a Sx x; P} (resp. Sy x;P}), avec s =r—2. L’on peut déduire du
théoréme 5.4 que S et S’ sont stablement birationnelles, donc birationnelle-
ment équivalentes en vertu du théoreme de Castelnuovo. Il existe donc des
sous-variétés fermées et réduites Fy et Fy de Sy et Sy respectivement, de
dimension au plus 1, telles que Sx\Fx = Sy\Fy.

Supposons que la k-variété Cx (resp. Cy) possede n composantes
irréductibles de dimension maximale. Soient S}(,..., v (resp. Sly,...,S’;)
des k-surfaces integres telles que les composantes irréductibles Cy,...,C,
(resp. Cf,...,C)) de dimension maximale de Cx (resp. Cy) soient biration-
nellement équivalentes a Sy xx P, ..., S% X, P§ (resp. S} x Py, ..., Sp %, PY).
Quitte a renuméroter, et en vertu de la remarque précédente, nous construisons
des sous-variétés fermées et réduites Fy,...,F% (resp. F),...,F%) respec-
tivement de S}(, ..., S% (resp. S,',, ...,S8%), de dimension au plus 1, telles que,
pour tout i, 1 <i < n, Si\Fi = Si\Fi. Les relations de découpage dans
I’anneau Kj(Vary) permettent donc d’écrire

(5.4) [X] — [P[Fx] = [Y] — [PI[Fy],

avec Fy := L' Fi et Fy = L\"_Fi,. Notons que nous avons construit un
isomorphisme de k-schémas fi: Cx\(Fx xx P}) — Cy\(Fy x; Py).

Comme [P;] est un élément inversible de I’anneau M\k, I’on conclut par
le corollaire 1.3 que les k-variétés Fx et Fy ont la méme dimension et
le méme nombre de composantes irréductibles de dimension maximale. En
outre, en appliquant le morphisme SB a la relation (5.4), 'on obtient que
SB(Fx) = SB(Fy). L’on déduit du lemme 5.11’existence d’un isomorphisme
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par morceaux entre Fy et Fy, ce qui induit naturellement I’existence d’un
isomorphisme par morceaux (f2,f3) entre Fx x; P} et Fy x;P;. La donnée de
(fo,f1,/2,f3) définit alors un isomorphisme par morceaux entre X et Y. []

COROLLAIRE 5.6.  Soit k un corps algébriquement clos de caractéristique
Zéro.

(1) La réponse a la question KP est positive pour tout couple de k-variétés
de Calabi-Yau (X,Y), de dimension au plus 4, birationnellement
équivalentes. En particulier, deux k-variétés de Calabi-Yau X et Y, de
dimension au plus 4, sont isomorphes par morceaux si et seulement si
elles sont birationnellement équivalentes.

(2) Si la conjecture KS est valide pour les k-variétés de Calabi-Yau
de dimension au plus 4. Alors les réponses aux questions KM, KC
sont positives pour tout couple de k-variétés de Calabi-Yau (X,Y),
birationnellement équivalentes, de dimension au plus 4.

Démonstration. La premiere assertion provient du fait que I’on peut choisir
un lieu K-exceptionnel (Cy,Cy) tel que les k-variétés Cy et Cy soient de
codimension au moins 2 (cf. [3, Proposition 3.1]), et de la proposition 5.5.
La seconde assertion est claire.

REMARQUE 5.7. Soit k& un corps algébriquement clos de caractéristique
zéro. Soient X et Y deux k-variétés de Calabi-Yau, de méme dimension d,
telles que [X] = [Y] dans I’anneau Ko(Vary). En vertu de [23, Theorem 2],
I’on conclut que les k-variétés X et Y sont birationnellement équivalentes. Si
d < 4, le corollaire 5.6 assure qu’elles sont en fait isomorphes par morceaux.
La question LL admet donc une réponse positive pour tout couple de k-variétés
de Calabi-Yau, de dimension au plus 4.
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