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L’Enseignement Mathématique (2) 58 (2012), 333-373

RESULTANT, DISCRIMINANT

par Michel DEMAZURE

A Jean-Pierre Serre, pour son 86-ieme anniversaire.

INTRODUCTION

Dans le courant des années 1960, Bourbaki avait décidé de reprendre la
premiere partie de son Traité pour en produire une édition définitive. L’idée
avait été avancée d’en profiter pour adjoindre au chapitre IV (Polynémes
et Fractions Rationnelles) du livre d’Algebre ([BouO7b]) un appendice in-
troduisant résultants et discriminants. C’est ainsi qu’a son «congres» de
juillet 1969, Bourbaki a discuté d’une proposition pour cet appendice
(«rédaction n°® 538»). Il a été alors conclu a I’abandon du projet, en grande
partie pour un probleme de plan: les énoncés nécessaires sur les polyndmes a
plusieurs variables, comme le lemme de Gauss, bien qu’élémentaires, relevent
«naturellement» de la notion d’anneau factoriel, qui n’apparait dans le traité
qu’au chapitre VII de I’Algebre Commutative ([BouO6b]).

Plusieurs articles et ouvrages sont parus depuis, qui développent cette
théorie dans un cadre plus avancé, marqué notamment par I’utilisation de
méthodes homologiques'). Il n’en demeure pas moins qu’une approche
élémentaire reste utile, d’autant qu’elle permet d’obtenir a moindre cott le
critere de lissité dont nous parlerons ci-dessous.

Cet article reprend la rédaction 538, avec quelques modifications et
I’adjonction de deux appendices. J’ai conservé le style bourbachique, le

1) On pourra consulter le traité [GKZO08] de I.M. GELFAND, M.M. KAPRANOV et A.V.
ZELEVINSKY et les articles [Jou80], [Jou91] et [Jou97] de J.-P. JOUANOLOU.
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systtme de référence canonique du Traité et le «positionnement» de la
rédaction 538: le texte se place apres les chapitres IV et V d’Algebre
([BouO7b]) et n’utilise de la partie postérieure que les résultats de base sur
les anneaux factoriels (rappelés dans I’appendice 1) et le théoreme des zéros
(démontré dans 1’appendice 2).

Venons-en au critere de lissité pour les hypersurfaces de 1’espace projectif.

Fixons deux entiers n > 1 et d > 2. Pour tout anneau k, notons P(k)
le k-module formé des polyndmes en n indéterminées (notées Xi,...,X,), a
coefficients dans k, qui sont homogenes de degré d. On pose P = P(Z) et
on a naturellement un isomorphisme k ® P = P(k).

Le Z-module P est libre de base la famille des monomes X<, ol o par-
court I’ensemble des multi-indices a = (a;) € N” tels que oy +-- -+, = d.
On note T, les éléments de la base duale, chaque T, associant a p € P le
coefficient de X* dans p. On note U, 4 I’anneau des fonctions polynomiales
sur P, qui s’identifie a la Z-algebre des polyndmes en les indéterminées T, .
Nous noterons P,  le polyndme a coefficients dans U, 4 donné par

PuaXi,.. ., X)) =Y TaX*.
(e

C’est le polyndme universel. A tout anneau A et tout polyndme f € P(A), on
associe I’homomorphisme #;: U, 4 — A qui applique le coefficient T, de P, 4
sur le coefficient de X* dans f. Pour tout u € U, 4, I'élément hy(u) de A

n’est autre que 'image de f par I’application polynomiale 14 ®u: P(A) — A.

On posera donc h(u) = u(f). Par définition u = u(P, ).

Le discriminant divisé universel disc = disc(P, 4) est un élément de U, 4
jouissant notamment des trois propriétés suivantes.

a) Comme application polynomiale P — Z, il est de degré n(d—1)""! (n°5,
prop. 11, ¢)).

b) C’est un élément premier (appendice 1) de ’anneau U, 4 (cor. 1 a la prop.
14 du n° 6): il est irréductible comme polyndme de Q®U,, 4 (il I’est méme
comme polyndme de Q ® U, 4) et n’est divisible par aucun entier > 1.

¢) Pour tout corps algébriquement clos k et tout polyndome f € P(k), les
conditions suivantes sont équivalentes (n° 5, prop. 12):

(1) f et ses n dérivées partielles n’ont que 1’origine comme zéro commun
dans k",

(ii) disc(f) n’est pas nul.
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De la propriété c) et du critere jacobien, on tire le critere de lissité suivant.

Soit S un schéma, notons O(S) l’anneau de ses fonctions globales, soit
f € P(OS)) et soit disc(f) € O(S) son discriminant. Considérons [’espace
projectif ngl de dimension n — 1 au-dessus de S, soit H le sous-schéma
fermé d’équation f =0 et soit s un point de S de corps résiduel k(s). Alors
les conditions suivantes sont équivalentes :

(1) l'image f; de f dans P(k(s)) est non nulle (ce qui signifie que la
fibre Hg n’est pas l’espace entier) et H est lisse sur S en tous les
points de Hg;

(ii) L’élément disc(f)(s) du corps résiduel k(s) n’est pas nul.

Notons que la version du critére jacobien utilisée ici est trés simple. Par
exemple, si x est un point de H et si D;f(x) est non nul dans le corps
résiduel, alors la projection de H sur I’hyperplan de coordonnées X; = 0 est
étale en x, donc H est lisse sur S en x.

Cela étant, considérons la situation universelle, ou I’on prend S = Spec(U, 4)
et f = P, 4. Notons A la partie de I’ensemble sous-jacent a S formée des s € S
ne satisfaisant pas a la condition de lissité (i) ci-dessus. Le critere de lissité
implique que A est décrite par I’équation disc = 0. La conjonction des pro-
priétés b) et c) signifie que A est le support d’un diviseur irréductible dont
le discriminant divisé universel est une équation, ce qui le détermine au signe
pres, car 1 et —1 sont les seuls éléments inversibles de U, 4.

Considérons maintenant I’anneau des fonctions de ce diviseur, c’est-a-dire
le quotient de I’anneau U, 4 par I’idéal principal engendré par I’élément disc.
Il est integre, notons k une cloture algébrique de son corps des fractions et
soit f € P(k) I'image canonique de P, 4. Alors disc(f) = 0, de sorte que les
dérivées partielles D, f,...,D,f ont d’apres ¢) un zéro commun non trivial
dans k". Mais cela implique que leur résultant res(D;f,...,D,f) est nul.
Autrement dit, le résultant disc, = res(DiPy 4, - - . , DuPyq) est multiple de disc
dans I’anneau U, 4. Comme ces deux polyndmes ont le méme degré d’apres a),
le discriminant divisé universel s’obtient en divisant le résultant disc, par un
contenu (pgced des coefficients, défini au signe pres). Le lemme 11(n°5)
explicite ce contenu?).

La terminologie mérite un commentaire. La définition «classique» du
discriminant (en caractéristique z€ro) est le résultant disc, des dérivées

2) qu’on trouve aussi dans [GKZ08], chap. 13, §1.D.
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partielles. L’approche par la théorie de 1’élimination ameéne naturellement,
comme on vient de le voir, au choix disc ci-dessus. La question du signe
n’est pas tranchée. Le choix fait ici est de garder le signe de disc,, c’est-a-
dire de définir disc comme le quotient de disc, par son contenu positif. Dans
I’article [Sai] a paraitre, T. SAITO introduit dans le cas ol n est pair?), un
«discriminant signé» e(n, d) disc, avec e(n,d) = (—1)@~Y/2 si d est impair
et e(n,d) = (—1)¥?"/2 si d est pair. Pour d = 2, on retrouve la valeur
(—1)"2disc = (—1)"/2 disc, usuelle pour les formes quadratiques; pour n = 2,
on retrouve le discriminant usuel des polyndmes & une indéterminée (voir n° 5,
exemple 5).

On démontre que le discriminant divisé universel est absolument irréductible
en caractéristique 0, la démonstration restant valable en caractéristique p pour
les «bons» p (n° 6, prop. 14). Le fait que cela reste vrai pour tout p, sauf
lorsque p = 2 et que n est pair, n’est pas traité. Pour le faire par la méthode
élémentaire suivie ici pour les «bons» p (cor. a la prop. 13 du n°5), il
faudrait exhiber des exemples adéquats. Pour une démonstration de ce fait et
pour la situation exacte dans le cas exceptionnel, voir la proposition 2.5 and
le théoreme 4.1 de I’article [Sai] déja cité.

Je terminerai cette introduction par un commentaire plus personnel.

Le cadre historique naturel de la Géométrie algébrique est celui des
polyndmes. Le développement de 1’ Algebre moderne, commencé il y a pres
d’un siecle, a renvoyé les anneaux de polyndmes au statut de cas particulier
et les méthodes propres aux polyndmes, comme la Théorie de 1’élimination,
au conservatoire. Mais «les objets sont tétus» et les méthodes explicites ne
cessent de ressurgir. Un calcul est toujours plus général que le cadre théorique
dans lequel on I’enferme a une période donnée. La résolution de I’équation du
second degré, provenant des tablettes babyloniennes (et introduisant le premier
discriminant de I’Histoire), reparait dans la décomposition en carrés des formes
quadratiques, dans la méthode des moindres carrés de Legendre-Gauss, dans
I’orthonormalisation de Gram-Schmidkt. ..

Au fameux «Il faut éliminer la théorie de 1’élimination» de Dieudonné,
Abhyankar avait répondu par un poéme qui commencait par « Eliminate,
Eliminate, Eliminate / Eliminate the Eliminators of Elimination Theory». La
décision de Bourbaki sur la rédaction 538 était « Il est décidé que cette
rédaction ira en appendice a AC XII, donc au frigidaire en attendant». L'en
voila sortie. . .

3) Dans cet article, le nombre de variables désigné par n dans notre texte est noté n+2, la
lettre n y désignant la dimension de I’hypersurface H.
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1. THEOREME DE L ELIMINATION

Dans la suite, tous les anneaux sont supposés commutatifs. Si k est un
corps (commutatif), on appelle extension de k une k-algébre qui est un corps
(commutatif).

Nous utiliserons la notation suivante: si #: A — B est un homomorphisme
d’anneaux, et si P est un élément de A[X|, ..., X,], nous noterons P 1’élément
de B[Xj,...,X,] image de P par I’extension canonique de A aux anneaux
de polynomes considérés.

LEMME 1. Soient A un anneau, M un A-module de type fini, a C A
Uannulateur de M et h: A — k un homomorphisme de A dans un corps k.
Pour que M @4 k # 0, il faut et il suffit que h(a) = 0.

Démonstration. Comme tout élément de h(a) annule le k-espace vectoriel
M ®4 k, la condition est évidemment nécessaire. Inversement, supposons que
M ®4 k = 0 et prouvons que h(a) # 0. Soient (mj)i—;,., une famille
génératrice finie de M, f: A? - M 1’homomorphisme de A-modules tel que
f(@)) = > am;, N le noyau de f et g: N — AP Iinjection canonique.
D’apres [BouO7a], A, II, p.58, prop. 5, on a une suite exacte de k-espaces
vectoriels

N &gk L% 10 1% Mok —0,

de sorte que g ® 1; est surjectif, ce qui signifie que les éléments g(n) ® 1,
n € N, engendrent le k-espace vectoriel k7. D’apres le théoreme d’échange
([BouO7a], A, II, p. 95, th. 2), il existe donc ny,...,n, € N tels que la famille
(9(ni)®1)i=1,..., soit une base de k”. Si (e;) est la base canonique de A? et si
n; = Zj ajej, ou (a;j) € My(A), ona gn)®1 = Zj a;e;®1 = Zj h(ay)e;j, ce
qui montre que la matrice (h(a;)) est inversible. Posons d = det(a;) € A; on a
h(d) = det(h(a;)) # 0; d’autre part les formules de Cramer ([BouO7a], A, III,
p- 102, formule (37)) entrainent que les vecteurs de; sont des combinaisons
linéaires des n;, de sorte que dA? C N, ou encore d € a. On a donc bien
h(a) # 0, ce qu’il fallait démontrer.
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LEMME 2. Soit E un anneau gradué de type N. Pour m € N, notons E,,
I’ensemble des éléments homogeénes de degré m de E. Soient a € Ey et £ € E;.
Pour que a appartienne a (1 —&)E, il faut et il suffit qu’il existe m € N avec
aé™ = 0.

Démonstration. Soit u = ug + - -+ + u, un élément de E, avec u; € E;
pour tout i. La relation a = (1 — &)u se décompose en relations homogenes
up = a, uy = upl, ..., Uty = 1€, ué = 0. Cela s’écrit aussi u; = a¢’
pour i =0,...,n et a&"' =0.

PROPOSITION 1. Soit E un anneau gradué de type N. Pour m € N,
notons E,, ’ensemble des éléments homogenes de degré m de E et a,, C Ey
'annulateur du Eo-module E,,. Supposons que le Ey-module E; soit de type
fini et que I’anneau E soit engendré par Ey U E|. Notons a la réunion
des a,,. Alors a est un idéal de Ey. Soit h un homomorphisme de Ey dans
un corps k. Les conditions suivantes sont équivalentes :

(i) On a h(a) =0.
(i) 1l existe un corps K et des homomorphismes f: E — K et itk — K
tels que ioh =f|Ey et f(E)) # 0.

Démonstration. L’homomorphisme canonique de Ej-algebres de 1’algebre
symétrique Sg,(E;) dans E est surjectif. Si le Ep-module E; est engendré
par xi,...,x; et si n € N, alors E, est engendré par les x’l” ---xZ" avec
> n; =n. On en déduit aussitot les trois assertions suivantes :
1) L’homomorphisme E; ®g, E,, — E,+; déduit de la multiplication de E
est surjectif.

2) Pour tout m € N, le Eyp-module E,, est de type fini.

3) Si m € N est tel que x;" =0 pour i =1,...,q, alors E, = 0 pour
n>qgim-—1).

D’apres 1) ci-dessus, on a a,, C a,4+; pour m € N, de sorte que a est bien
un idéal de Ey. Démontrons 1’équivalence des conditions (i) et (ii) de I’énoncé.

(i1) = (i) : avec les notations de (ii), soit £ € E; tels que f(§) # 0. Pour
neNetaca,ona al" =0, donc i(h(a))f(E)" = 0, donc h(a) = 0
puisque K est un corps et que i est injectif.

(i) = (ii) : supposons que h(a,) = 0 pour tout m. D’apres 2) ci-dessus
et le lemme 1, on a E, ®g, k # 0 pour tout m. Appliquant 3) ci-dessus
a 'anneau gradué F = E ®g, k, on en conclut qu’il existe £ € F; tel que
&M £ 0 pour tout m. Il résulte alors du lemme 2, appliqué avec a = 1,
que 1p — & n’est pas inversible dans F. L’'idéal (1p — &)F est donc distinct
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de F. Appliquant [BouO7a], A, I, p. 99, th. 1, on en déduit qu’il existe un idéal
maximal m de F contenant 1p — £. Soient K le corps F/m et p: F — K
la projection canonique; on a p(§) = lg. Notons f: E — K et itk — K
les homomorphismes définis par f(x) = p(x ® 1) et i(y) = p(1g ® y). Alors
i(h(x)) = p(1g ® h(x)) = p(x ® 1) = f(x), de sorte qu’on a bien ioh =f|Ey.
Par ailleurs, écrivant £ = > x;®y;, avec x; € E; et y; €k, ona lg = p(§) =
> f(x)i(y;), ce qui implique f(E;) # 0 et achéve la démonstration.

REMARQUE. L’extension K de k construite dans la démonstration
précédente est une k-algebre de type fini, donc est de degré fini sur k
(appendice 2). La condition (ii) est donc équivalente a celle qu’on obtient en
y ajoutant que K est de degré fini sur k.

Soient A un anneau et / un idéal de I’anneau de polyndémes A[X, ..., X,].
Si h: A — B est un homomorphisme de A dans un anneau B, on appelle zéro
de I dans B" un élément (b;) de B" tel que "P(by,...,b,) =0 pourtout P € I.
Si I est engendré par les polyndmes P;, j € J, on dit aussi que (b;) est un
zéro commun aux P; dans B". Par exemple, si I est gradué et si A(INA) =0,
il est clair que I’élément (0) € B" est un zéro de I ; on I’appelle le zéro trivial.

DEFINITION 1. Soient A un anneau et [ un idéal gradué de I’anneau
des polyndmes A[Xi,...,X,]. On appelle idéal éliminant de I et on note
e(I) I'idéal de A formé des a tels qu’il existe m € N avec aX]" € [ pour
i=1,...,n.

Soit h: A — B un homomorphisme d’anneaux et soit J I’idéal de
B[Xi,...,X,] engendré par les polyndmes "P, ot P parcourt I. Alors h
applique e¢(/) dans e(J).

PROPOSITION 2 (THEOREME DE L’ELIMINATION). Soient A un anneau, I un
idéal gradué de I'anneau des polynomes A[Xy,...,X,] et p: A — k un homo-
morphisme de A dans un corps k. Les conditions suivantes sont équivalentes :

(1) On a p(e(1)) = 0.

(ii) Il existe une extension K de k et un zéro non trivial de I dans K".

(i1 bis) Il existe une extension K de k, de degré fini, et un zéro non trivial
de I dans K".

(iii) Une extension algébriquement close L de k étant donnée, il existe un
zéro non trivial de I dans L".
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Démonstration.

(i1 bis) = (iii) = (ii) : c’est clair.

(i) = (1) : soit (&) € K" un zéro non trivial de I et soit a € e¢(I). On a,
pour tout i et pour m € N assez grand, aX!" € I, donc p(a){]" = 0, d’ou
enfin p(a) =0.

(1) = (i bis): supposons que p(e(/)) = 0 et considérons 1’anneau
gradué E = A[Xy,...,X,]/I. On a INA C e(), donc p(I NA) = 0.
Comme Ey = A/(INA), p se factorise par un homomorphisme h: Ey — k.
D’autre part, I’annulateur a,, du Ep-module E, est I'image dans E; de
I’ensemble des a € A tels que aP appartienne a / pour tout polyndme
homogene P de degré m; comme ce dernier ensemble est contenu dans e(/),
on a h(a,) C p(e(I)) = 0. On peut donc appliquer a ’anneau E et a
I’homomorphisme h: Ey — k la proposition 1 et la remarque qui la suit,
et il existe une extension K de k, de degré fini, et un homomorphisme
f: E — K prolongeant h tel que f(E;) # 0. L’homomorphisme composé
AlXi,...,Xy,] =& E — K est de la forme P — P((§)) ou (&) € K" est un
zéro de I et ou les & ne sont pas tous nuls, ce qui démontre (ii bis).

2. POLYNOMES HOMOGENES UNIVERSELS

Soient n > 1 et d > 0 deux entiers. On note U,, la Z-algebre de
polyndmes en les indéterminées T, o « parcourt I’ensemble des multi-
indices a € N" tels que o +---+ a, =d, et on pose

PuaXi, .. Xp) =Y TaX*.

Alors P,, est un polynome homogene de degré d en les indéterminées
Xi,...,X, a coefficients dans U, 4.

EXEMPLE 1. Pour d =0, ona U,o=Z[T] et P,o(Xy,...,X,)=T.

EXEMPLE 2. Pourd=1,ona U, =Z[T,...,T,] et P, 1(Xy,...,X,) =
Xy +---+T,X,.

EXEMPLE 3. Pour d =2, on a U, = Z[(Ts)], out S parcourt I’ensemble
des parties de [1,n] a 1 ou 2 éléments et
Pua(Xi,. X)) =Y T XP+ Y Ty pXiX;,
i {i,j}
ou la seconde somme est étendue aux sous-ensembles de [1,n] a deux
éléments.
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Soit A un anneau et soit f un polynome homogene de degré d en les
indéterminées X1, ..., X, et a coefficients dans A. Il existe un homomorphisme
d’anneaux h: U,4 — A et un seul tel que f = hP,,,d. On le note hy. Par
construction, pour tout élément u = u((Ty)) € U, q, 'élément hr(u) de A
s’obtient en substituant a chaque variable T, de u le coefficient de X<
dans le polyndme f. On dira aussi que hr(u) s’obtient en substituant a
Poq € UyalXi,...,X,] le polynome f € A[Xi,...,X,]. On notera i(f)
I’élément hy(u) de A. On a ainsi par exemple (P, q) = u.

En vertu de ce qui précede, on dira que P, 4 est le polyndme homogene
universel (relativement aux indéterminées Xj,...,X, et au degré d fixés).

Considérons maintenant un entier r > 0 et une suite d = (dy,...,d,) € N".
On notera Upq le produit tensoriel des Z-algebres U, 4, qui s’identifie a la
Z-algebre de polyndmes en les indéterminées T ;, ol j parcourt Iintervalle
[1,7] et ol, pour chaque j, « parcourt I’ensemble des multi-indices o € N”
tels que oy + -+ + o, =d;.

Pour j=1,...,r, notons P; € UyqlXi,...,X,] le polyndme hy nd;» OU I
est I'injection canonique du j-e¢me facteur U, 4, dans U,q. C’est un polyndme
homogene de degré d; :

PiXi,. o X) = T X, el r].
[e2
Soit A un anneau et soit f = (fi,...,f;) une famille de polynémes
homogenes de degrés respectifs di,...,d, en les indéterminées X;,...,X, et
a coefficients dans A. Il existe un homomorphisme d’anneaux h: Upg — A
et un seul tel que f; = "P; pour j = 1,...7. On le note he. Comme dans
le cas précédent d’une famille d réduite a un élément, pour tout élément
u=u((Ta,;)) € Upa, 'élément he(u) de A s’obtient en substituant a chaque
variable Tq ; de u le coefficient de X dans le polyndme f;. On dira aussi

que he(u) s’obtient en substituant a chaque polynéme P; de U,qlXy,...,X,]
le polynome f; de A[X,...,X,]. On notera i(fi,...,f;) 'élément he(u) de A.
On a ainsi par exemple #(Py,...,P,) =u.

On dira que (P)) est la famille universelle de polyndmes homogénes et que
U,.a est I'anneau universel de coefficients, ou simplement 1’anneau universel
(relativement aux indéterminées X,...,X, et a la suite de degrés di,...,d,
fixés).

EXEMPLE 4. Prenons tous les d; égaux a 1. Alors U,q est ’algebre
de polyndmes Z[T;li<i<n,i<j<r» avec P; = > . T;X;. Le produit P;---P,
est homogene de degré r, d’ou I’on déduit un homomorphisme d’anneaux
h: U, — Uya tel que ”Pn,, = P; --- P,. Le groupe symétrique &, opere dans
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le produit tensoriel U,,q par permutation des facteurs (on a donc o(Tj;) = Tio(j)
pour 0 € &,) et il est clair que I'image de h est formée de tenseurs
symétriques.

3. IDEAL RESULTANT DE r POLYNOMES HOMOGENES A n INDETERMINEES

Dans ce numéro, nous fixons des entiers n > 0 et r > 0 et un élément
d=(d,...,d) de N" tel que d; >0 pour j=1,...,r.

Considérons I’anneau universel de coefficients U,q et la famille universelle
de polynémes (P1,...,P,) introduits au numéro précédent. Chaque P; est un
polyndme homogene de degré d; en les indéterminées Xi, ..., X, a coefficients
dans U,q. On notera I,,q 1’idéal (gradué) de U,q[Xi,...,X,] engendré par
les P; et ¢, = ¢(I;a) C Upq son idéal éliminant (n° 1, déf. 1).

Soit A un anneau et soit f = (fi,...,f;) une famille de polynomes
homogenes de degrés respectifs d,...,d, en les indéterminées Xi,...,X,
et a coefficients dans A. Considérons 1’homomorphisme u — #a(fi,...,f.)

de U,q dans A.

DEFINITION 2. On appelle idéal résultant de la famille (fi,...,f,) et on
note R(fi,...,f,) I'idéal de A engendré par les @(f,...,f,), ou u parcourt
I’idéal e¢,.q de U,q.

Par exemple, ¢,q est l’idéal résultant R(P,...,P,) de la famille uni-
verselle. On appellera l’idéal résultant universel.

Soient B un anneau et g : A — B un homomorphisme d’anneaux. Posons
9f = (%,...,9;). On a aussitdt hest = g o hg, donc

g(ij(flw'-vfr)):ﬁ(?flv"'vgfr)a MGU,,;,;[.

En particulier, R(%f,...,%,) est I'idéal de B engendré par g(R(fi,...,f)).
D’apres la proposition 2 du n° 1, on a:

SCHOLIE. Soit A un anneau et, pour j=1,...,r, soit fj € A[Xy,...,X,]
un polynéme homogene de degré d;. Notons I l'idéal de A[Xi,...,X,] en-
gendré par les f;, soit ¢(I) C A l'idéal éliminant de I, et soit p: A — k
un homomorphisme de A dans un corps k. Les conditions suivantes sont
équivalentes :

(i) On a p(R(fi1,...,/)=0.
(i) On a p(e()) = 0.
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(iii) 11 existe une extension K de k telle que les f; aient un zéro commun
non trivial dans K".

(iii bis) Il existe une extension K de k, de degré fini, telle que les f; aient
un zéro commun non trivial dans K".

(iii ter) Une extension algébriquement close L de k étant donnée, il existe
un zéro commun non trivial des f; dans L".

REMARQUE 1. Notons t I’idéal résultant R(fi,...,f;). On a v C e(l) et,
en vertu de I’équivalence de (i) et (ii), tout idéal premier de A contenant t
contient ¢(/). Ainsi, on a ¢(/) = ¢ lorsque v est premier. * Plus généralement,
e(I) est compris entre t et sa racine ([BouO6a], AC, II, §2, n°6, cor. 1 de la
prop. 13). .

Il résulte notamment du scholie qu’on a ¢,q # 0 pour r > n. En effet,
les r polyndmes Xf‘, . ,X,‘f", 0,...,0 n’ont pas de zéro commun non trivial
dans un corps.

LEMME 3. Soient A un anneau, f un élément de A, Ay I’anneau-quotient
A[T1/(fT—1) et h: A — Ay ’homomorphisme canonique.

a) Le noyau de h est formé des a € A tels qu’il existe m € N avec
af™ = 0.

b) Si A est intégre et si f est non nul, h est injectif et I’anneau Ay est
integre.

Démonstration. La partie a) résulte immédiatement du lemme 2 appliqué
a E=A[T].

Démontrons b). Supposons A intégre et f # 0, et soit K le corps
des fractions de A. Puisque f est inversible dans K, 1’homomorphisme
canonique de K dans K[T]/(fT — 1) est bijectif, et il suffit de prouver
que I’homomorphisme canonique Ay — K[T]/(fT — 1) est injectif, ou encore
que A[TIN(fT—1)K[T] = (fT—1)A[T]. Soit donc x = ap+- - -+a,T" € A[T].
Siona x e (fT — 1)K[T], il existe des éléments d, by,...,b,—; de A avec
d#0 et day+ - +a, ") =1 —fT)(bo+ -+ b,_1T" ). Cela s écrit

da() = b()7 dal = bl—fb(), ey da,,_l = bn_l—fb,,_z, da,, = —fb,,_l 3

ce qui implique aussitdt par récurrence sur i que chaque b; est divisible par d.
On a alors x = (1 —fT)(bo/d + - - - 4 (by—1 /d)T""") donc x € (1 —fTA[T].
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LEMME 4. Soient V un anneau intégre, Yy, ..., Y, et X des indéterminées.
Considérons I’anneau de polynémes

VIY,X] = V[Yi,..., Y, X].

Pour chaque j=1,...r, soit Q; € V[Yy,...,Y;_1,X] un polynome et soit Fj
I’élément de V[Y,X] défini par:

Fj(Y|7"'7Yr7X): Qj(Yla"wY}'—hX)—I' Y}Xd]

Soit a l'ensemble des x € V[Y,X] tels que xX™ appartienne, pour m assez
grand, a l'idéal engendré par les F;. Alors a est un idéal premier de V[Y,X]
etona anV[X]=0.

Démonstration. Introduisons I’anneau V[X]y = V[X,T]/(XT — 1) et
I’homomorphisme canonique u: V[X] — V[X]x. Considérons de méme
I’homomorphisme canonique v: V[Y,X] — V[Y,X]x, avec V[Y,X]x =
VIY,X,T1/(XT — 1). Notons I 1’idéal de V[Y,X] engendré par les F; et
soit J I'idéal de V[Y,X]x engendré par wv(I), donc aussi engendré par
les “F;. On déduit de v, par passage aux quotients, un homomorphisme
w: V[Y,X]/I — V[Y,X]x/J. On a un diagramme commutatif d’applications
canoniques

VIX] —X—  V[XIx

Jo |
VIY, X1/l —2— V[Y,XIx/J.

D’apres le lemme 3, b) appliqué a I’anneau integre V[X], ’homomorphisme u
est injectif et ’anneau V[X]y est integre. D’apres le lemme 3, a) appliqué
a VIY,X]/I, a est le noyau de I’homomorphisme composé de w et de
I’application canonique de V[Y,X] dans V[Y,X]/I. Il nous suffit alors de
prouver que S est bijectif. Cela impliquera en effet que V[Y, X]x/J est intégre,
donc que a est premier, et que w o« est injectif, donc que aNV[X] =0.

Posons pour simplifier A = V[X]x et B = V[Y,X]x/J. Par construction,

B s’identifie au quotient de A[Yy,...,Y,] par I'idéal J' engendré par les
polyndmes “F;. Mais, notant 7' I’image de T dans A, on a T'X = 1, donc
“F; = X9(Y; + T'%Q;). Posons G; = —T'%Q; € A[Y),...,Y;—1]. Comme
X est inversible dans A, I'idéal J' est engendré par les r polyndmes
Y;—Gj(Yy,...,Y;—1). Soient yi,...,y, les éléments de A définis récursivement
par

}’1:G1, y2:G2(y1)7 ey yj:Gj(y17~~~7yj—l)7
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et soit v: A[Y),...,Y,] = A ’homomorphisme qui applique tout polyndme
L(Yy,...,Y,) sur L(yj,...,y,) € A. Alors ~y induit par passage au quotient
un homomorphisme B — A inverse de (3. Cela montre que [ est bijectif,
comme annoncé, et achéve la démonstration.

Rappelons qu’on a noté [,.4 'idéal (gradué) de U,.q[X,...,X,] engendré
par les polyndmes universels P;j(X,...,X,) et que I’idéal résultant universel
end C Upa est formé des u € U,q tels que, pour chaque i = 1,...,n, il
existe m € N avec uX!" € I,q.

Dans la démonstration des propositions 3 et 4 qui suivent, nous utiliserons
les notations suivantes. Pour j = 1,...r, notons Y; le coefficient de Xf,l’
dans P;, c’est I'une des indéterminées de I’anneau universel U,.q. Notons Uy
I’anneau de polyndmes sur Z en toutes les indéterminées de U,q autres que
les Y;, de sorte que U,q s’identifie a ’anneau de polyndmes Up[Yy,...,Y,]
et que chaque P; s’écrit

P =YX+ Qi(X),...,X,) avec Q€ UolXy,...,X,l.

L’idéal résultant universel ¢,q = R(Py,...,P,) C Uyq est premier. Plus
généralement :

PROPOSITION 3. Soit K un anneau intéegre. Considérons [’anneau
U = K ®gz Upq et soit h: Uyq — U I’homomorphisme canonique. Soit |
lidéal de U[X,,...,X,] engendré par les polynémes "Py,...,"P,. Alors
l'idéal éliminant ¢(I) de U est premier.

Démonstration. Notons a ’ensemble des u € U[X|,...,X,] tels qu’il
existe m € N avec uX) € I. Soit V I'anneau K ® Up[Xi,...,X,—1], de sorte
que U[Xy,...,X,] s’identifie a V[Y,...,Y,, X,]. Les th appartiennent tous
a V[X,]. On peut donc appliquer le lemme 4 et on voit que a est premier et
ne contient aucun élément non nul de V[X,] et en particulier aucun des X;.

Pour chaque i = 1,...,n, notons a; 'ensemble des u € U[X,...,X,] tel
qu’il existe m € N avec uX" € I. On a donc a, = a et par définition
(1) o) =Un(a.

Soit u € a;. Il existe m € N avec uX]" € I C a. Comme a est premier et
ne contient pas X;, on a u € a. On donc prouvé I'inclusion a; C a,. Comme
évidemment I’ordre des indéterminées X; ne joue aucun rdle, on a a; C q;
pour tout couple (7,j). Il en résulte que les idéaux a; sont donc tous égaux.
La relation (1) s’écrit donc ¢(/) = UNa, ce qui implique que ¢(/) est premier.
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COROLLAIRE. Pour qu’'un élément u de U,q appartienne a [’idéal
résultant universel ¢,.q, il faut et il suffit que, pour tout corps k et toute famille
(fi,--.,fr) de polynémes homogenes de k[Xi,...,X,] de degrés respectifs
di,...,d, ayant un zéro non trivial dans k", on ait u(fi,...,f,) =0.

Démonstration. La condition est nécessaire d’apres le scholie. Inversement,
supposons-la vérifiée. Puisque e¢,.q est premier, I’anneau-quotient U,.q/¢na est
integre. Soit k son corps des fractions et soit h: U,q — k 1’homomorphisme
canonique. Posons f; = "P; pour j = 1,...,r. D’apres le scholie, il existe
une extension K de k telle que les f; aient un zéro commun non trivial
dans K". 1l résulte alors de I’hypotheése que #u(fi,...,f;).1x = 0. Mais,
puisque #(fi,...,f;) = h(u), cela implique u € ker h = ¢,4q.

Soit A un anneau et soient fi,...,f; des éléments de A[X),...,X,].
On dit que la famille (f;) est algébriquement liée s’il existe un polynome
R € A[Ty,...,T;], non nul, tel que R(fi,...,fs) = 0. On dit que (f;) est
algébriguement libre dans le cas contraire. Par exemple, la famille (X;) est
algébriquement libre.

LEMME 5. Soient A un anneau, B une A-algébre de polynémes en un nom-
bre fini d’indéterminées, fi,...,fs des éléments de B[Xi,...,X,] et h: B— A
un homomorphisme. Si les f; sont algébriquement liés, il en est de méme des "f,.

Démonstration. Si B = A[U;,...,U,] et si a; = h(U;), alors h est
I’unique homomorphisme de A-algebres tel que A(U;) = a;. Il se factorise en
K oh”,ou h":AlUy,...,U,] — A[Uy,...,U,—1] est ’homomorphisme de
AlUy,...,U,_]-algebres tel que h"’(U,) = an, et h': A[Uy,...,Up_1] = A
est ’homomorphisme de A-algebres tel que #'(U;) = a; pour i =1,...,m—1.
Raisonnant par récurrence sur m, on est donc ramené au cas ou m = 1, ¢’est-a-
dire B =A[U]. Posons a = h(U). Soit R € B[Ty,..., T, =AlU,Ty,...,T],

non nul, tel que R(U,fi,...,f;) = 0 et dont le degré en U est minimum parmi
les éléments de B[T),...,T,] ayant ces propriétés. On a "R("fi,....," ;) =0
et il suffit de voir que "R est non nul. Mais "R(T,...,T,) n’est autre que

R(a,T,...,T,). S’il était nul, R s’écrirait (U —a)R’ avec R’ € B[Ty,...,Ts]
et on aurait R' # 0 et R'(U,fi,...,fs) = 0 puisque (U — a) ne divise pas
z€ro, ce qui contredirait le caractere minimal de R.

PROPOSITION 4. a) L’idéal résultant universel ¢,q est nul si r < n, non
nul si r > n.
b) Si r = n, lidéal résultant universel ¢,q est principal.
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Démonstration. Démontrons d’abord un résultat auxiliaire. Soit u € ¢4,

identifié a un polynome de Up[Yy,...,Y,]. Posons s = inf(n — 1,r) et
supposons que u ne fasse pas intervenir les indéterminées Y; pour j > s,
autrement dit que I'on ait u = w(Yy,...,Ys) € UplYy,...,Y,]. Nous allons
prouver que u =0, c’est-a-dire que ¢,.q N Up[Yy,..., Y] =0.

Rappelons qu’on a posé
P =YXy +Qi(X),....X,) avec Q€ UolXy,...,X,].

Il existe par définition un entier m € N et des polyndmes u;(Yy,...,Y,) €
UplYy,...,Y,] avec

u(Yr,. L YOXE = (Y, YK+ QX X))

J

Posons Q]/»(Xl7 ey Xp1) = —Qj(Xl, X1, 1) € UglXy, ..., Xu—1]. Sub-
stituant 1 a X, et QJ‘ a Y; pour chaque j, on obtient, dans 1’anneau
UolXi,...,Xu—1] la relation u(Qf,...,0Q%) = 0. Si u est non nul, la famille
(QJ’-)lg,gs est donc algébriquement liée.

Par définition de 1’anneau universel, il existe un homomorphisme d’anneaux
h: Upa — Z avec "P; = —X;X#~' pour j < s et "P; = 0 pour j > 5. Puisque
h annule les Y;, on en déduit un homomorphisme d’anneaux k: Uy — Z tel
que pour j=1,...,s, on ait *Q; = —XjX,‘,l’_l et donc *Qf = X;. D’apres le

lemme 5, la famille (Xj)j—,..., de Z[X;,...,X,] est liée si u est non nul.
Par conséquent, u est nul et on a ¢,q N Up[Y7,..., Y] =0 comme annoncé.
Cela étant, si on a r <n, donc s =r, on a Up[Yy,...,Ys] = U,a et par

conséquent ¢,q = 0. Cela prouve I’assertion a), puisque 1’on sait déja que
ena 7 0 lorsque r est > n. Sil’on a r =n, alors s = n—1 et par conséquent
enaNUolY1,...,Y,—1] = 0. Pour prouver que I’idéal ¢,.q est principal, il suffit
alors d’appliquer le lemme suivant:

LEMME 6. Soit A une Z-algebre de polyndmes en un nombre fini
d’indéterminées et soit p un idéal premier de A[X]. Si pNA =0, l'idéal p
est principal.

Démonstration. Soit K le corps des fractions de A. D’apres [BouO7b], A,
IV, p. 11, prop. 11, I'idéal pK de K[X] est principal. Il existe donc u(X) € p
et a €A, avec a # 0, tels que pK = (u(X)/a)K[X] = u(X)K[X]. Soit ¢ € A
un contenu (appendice 1) de u(X), de sorte que u(X)/c appartient a A[X] et
est de contenu 1. On a c(u(X)/c) € p et ¢ ¢ p puisque pNA = 0, donc
u(X)/c € p. Remplagant u(X) par u(X)/c, on peut donc supposer que u(X)
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est de contenu 1. Soit v(X) un élément non nul de p. Montrons que v(X)
est un multiple de u(X) dans A[X], donc que u(X) engendre I’idéal p. I
existe b € A et w(X) € A[X], non nuls, avec bv(X) = u(X)w(X). Alors b
divise un contenu de u(X)w(X), donc divise un contenu de w(X) d’apres
le lemme de Gauss (appendice 1), et on a bien v(X) = u(X)(w(X)/b), avec
w(X)/b € A[X].

REMARQUE 2. La démonstration du lemme 6 n’utilise que le fait que A
est factoriel.

COROLLAIRE. Soient k un corps et I un idéal gradué de k[Xi,...,X,]
tel que Ip = 0. Si I est engendré par des polyndmes en nombre strictement
inférieur a n, il existe une extension K de k, de degré fini, telle que I possede
un zéro non trivial dans K".

Démonstration. Cela résulte de la partie a) de la proposition 4 et du
scholie.

4. RESULTANT DE n POLYNOMES HOMOGENES A n INDETERMINEES

Dans ce numéro, on fixe l’entier n > 0 et on se place dans le cas ou
r=n.

Pour chaque famille d = (di,...,d,) de N" tel que d; > O pour
Jj = 1,...,n, on note respectivement Ug et eq l’anneau universel U,q et
I’idéal éliminant universel ¢,.q introduits au numéro précédent.

D’apres la proposition 4, b) du n° 3, I'idéal eq est principal. Soit a € Uy
un générateur de cet idéal. Considérons les polyndmes X;if de Z[X,,...,X,]
et ’entier m = &(le‘, . ,X,‘f"). D’apres le scholie du n° 3, on a h(m) # 0
pour tout homomorphisme % de Z dans un corps k. En particulier, m n’est
divisible par aucun entier premier, donc est égal a 1 ou a —1. Comme les
seuls éléments inversibles de I’anneau Uy sont 1 et —1, on voit que u = a/m
est 'unique générateur de 1’'idéal eq tel que Et(Xfl, ... ,X,‘f") =1.

DEFINITION 3. On note Rq 1'unique élément u de Uy tel que eq = ulUy
et ﬁ(X;l‘, ..., X%) = 1. Pour chaque anneau A et chaque famille (fi,...,f;)
de polyndomes homogenes de A[X,...,X,] de degrés respectifs di,...,d,,
I’élément ﬁd(fl, cooyfn) de A est noté res(fi,...,f,) et appelé résultant de
la famille (fi,...,fu)-
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REMARQUE 1. Dans I’anneau Uy, on a
I'eS(Pl,...,Pj_l,O,PH_],...,P,,):O

comme il résulte des cor. aux prop. 3 et 4 du n°3 appliqués au corps
des fractions de Ug. Il s’ensuit que res(fi,...,f,) = 0 dés que I'un des
polyndmes f; est nul; comme d’autre part un polynéme homogene non nul
possede un degré uniquement déterminé, on voit que 1’élément res(fi, ... ,f,)
ne dépend pas du choix de la famille d tel que f; soit de degré d; pour tout j.
Cela justifie I’absence de la mention des d; dans la notation du résultant.

On a par définition Rq = res(Py, ..., P,). Aussi dirons-nous que Rq est le
résultant universel (relativement aux degrés d;). Puisque 1’idéal eq est premier
(prop. 3 du n° 3), le polyndme R4 est premier (appendice 1).

SCHOLIE. A chaque famille (fi,...,f,) de polyndmes homogénes de
degrés > 0 en Xi,...,X, a coefficients dans un anneau A, nous avons
associé un élément res(fi,...,fn,) de A. De plus:

a) si h: A — B est un homomorphisme d’anneaux, on a

res("fi, ..., ") = h(res(fi,....f);

b) si A est un corps, on a res(fi,...,f,) = 0 si et seulement s’il existe une
extension K (de degré fini) de A telle que les f; aient un zéro commun
non trivial dans K" ;

(11

1

) on a res(X{",...,X%) = 1, pour toute famille (dj) d’entiers strictement

positifs;
d) pour toute famille (d;) d’entiers strictement positifs, le résultant
res(Py,...,P,) des polynomes universels correspondants engendre un

idéal premier de I’anneau universel de coefficients Uy.

EXEMPLE 1. Soient A un anneau, (a;) une matrice carrée d’ordre n a
coefficients dans A. On a

I'CS(Z a],'X,‘, ceey Zanixi) = det(aij) .

l

Il suffit de faire la démonstration lorsque A = Uq,... 1) = Z[(Tj)1<i, j<nl
et a; = T;, auquel cas la relation proposée s’écrit R .1 = det(Ty).
D’apres le corollaire a la proposition 3 du n°3 et [BouO7a], A, III,
p. 102, prop. 14, il existe f = f((T;)) € A avec dew(Ty;) = f((Ty) Rq,....1)-
Puisque det(Tj;) est homogene de degré n, le polyndme f est homogene
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de degré s < n. Attribuons alors la valeur 0 a chaque variable Tj;
avec i # j. On obtient alors dans I’anneau Z[T)y,...,T,,] une relation
Ti... Ty, = 9Ty ..., Tap) res(T11 Xy, ..., TynXn), ou g est un polyndome
homogene de degré s. Mais, puisque le polyndme res(711Xy,. .., TwX,)
s’annule lorsque 1’un des Tj; s’annule, il est divisible par le produit Ty; - - - Ty, .
Cela implique que s = 0, donc que f est constant. Prenant pour (a;) la matrice
unité, on voit que f = 1.

REMARQUE 2. a) On peut exprimer la relation précédente comme suit:
le résultant d’une suite de n formes linéaires est le déterminant de cette suite
relativement a la base canonique (Xi,...,X,).

b) II résulte de ce qui précede que le polyndme det(7j;) est premier.

REMARQUE 3. Les propriétés a) a d) du scholie caractérisent le résultant.
En effet, supposons donné, pour chaque famille (fi,...,f,) de polyndmes
homogenes de degrés > 0 en Xj,...,X, a coefficients dans un anneau A,
un élément p(fi,...,f,) de A, de fagon que les propriétés analogues soient
satisfaites. Posons a = p(Py,...,P,) € Uq. D’apres a), on a p(fi,...,[fu) =
a(fi,...,fu). Appliquant alors b) au corps des fractions de 1’anneau integre
Ug/ea et a la famille image de la famille universelle, on voit qu’on a a € eq,
donc que a s’écrit a = bRy, avec b € Ug. Comme a et Rq sont premiers
d’apres la condition d), b est inversible, donc égal a £1. La condition c)
implique alors b = 1.

Nous utiliserons a plusieurs reprises le résultat technique suivant:

LEMME 7. Soit V une Ug-algébre de polyndémes en un nombre fini
d’indéterminées et soit (qi,...,qn) une famille de polynéomes homogenes de
degrés > 0 de V[Xi,...,X,]. Supposons que, pour tout homomorphisme h
de V dans un corps k tel que la famille (P;) ait un zéro commun non trivial
dans k", il en soit de méme de la famille (q;). Alors res(q,...,qn) est
divisible dans V par le résultant universel res(Py,...,P,).

Démonstration. L’anneau V/VRq est une algébre de polyndmes sur
I’anneau intégre Ug/UgRq, donc est integre. Notons k son corps des fractions.
II existe une extension K de k telle que les P; aient un zéro commun non
trivial dans K" (propriétés a) et b) du scholie). Alors les g; ont aussi un
z€ro commun non trivial dans K" et (toujours d’apres a) et b)) I’'image de
res(gi, ..., 9gs) dans k est nulle, donc res(gi,...,g,) appartient a VRq.
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Fixons une permutation o € S,,. Nous allons définir un élément D, de e¢q,
appelé déterminant de Sylvester d’indice o (pour les degrés fixés dy,...,d,).
Posons

r:i(d[—l)-i-l:idi_”"f‘l

i=1 i=1

et soit M I’ensemble des mondmes X* pour || = r. Par définition de r,
tout mondme de M est divisible par au moins un des X&.

Pour i = 1,...,n, soit M; la partiec de M formée de ceux de ces
A . L doii - do;
mondmes qui sont divisibles par X7/ et ne sont divisibles par aucun des Xa(/";)

pour j < i. Il est clair que les M; forment une partition de M.

Pour chaque mondme m € M, soit i(m) l'unique entier tel que m
appartienne a Mj,), soit u(m) le mondme tel que

d o (i(my)

m= u(m)XO_(i(m))

et posons
O(m) = u(m)Poigmy) -

La famille (m),ep est une base du Ug-module libre des polyndmes homogenes
en les X; de degré total r. Les Q,, appartiennent a ce module et on note D,
le déterminant de la famille (Q,,)necy relativement a la base (m),cp .

LEMME 8. Le déterminant D, est un élément non nul de ¢q. Il n’est
divisible par aucun entier > 1. Il est homogéne et de degré (d, - -dy)/dyu)
en les coefficients du polynome universel Py .

Démonstration. Par construction, I’élément 50(le‘, e ,X,‘f") est le déter-
minant de la matrice unité, donc est égal a 1, ce qui implique que D, n’est
pas nul et n’est divisible par aucun entier > 1. Pour chaque i =1,...,n, le
mondme X appartient a M ; les formules de Cramer ([Bou07a], A, III, p. 102,
formule (37)) entrainent que D,X] est une combinaison linéaire des Q(m),
donc appartient a I’idéal engendré par les P;; ainsi, D, appartient a eq par
définition de ce dernier. Enfin, D, est homogene de degré Card(M;) en les
coefficients de P, pour chaque i et notamment pour i = n. Mais M, est
I’ensemble des X* € M avec o; < d; pour j # o(n), de sorte qu’on a

Card(M,,) = Hj;écr(n) dj = (d[ s> 'dn)/da(n)-
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PROPOSITION 5. Soit A un anneau et, pour i = 1,...,n, soit f; un
polynome homogene de degré d; >0 de A[Xy,...,X,].
a) Soient \i,...,\, des éléments de A. On a

1es(A1 fi, .oy Anfu) = AT s A res(fi, . )

ou rp = (d] dn)/d, :dl '--d,'_ldH_] d,, pour i= 1,...,)’1.
b) Soit i € [1,n] et soit f{ un polyndme homogéne de degré > 0 de
AlXy,...,X,]. On a

I'CS(f], e ,f;‘,] aﬁf;‘lvﬁ+l7 e 7ﬁ1) =
reS(f], e 7ﬁ—laﬁ7fi+l7 e vfn)'res(flv e 7ﬁ—l7fi’7fi+17 e 7fn) .

Démonstration. La démonstration s’effectue en plusieurs étapes.

1) Posons r; = (dy---dy)/d;. D’aprés le lemme 8, I'idéal e¢q formé
des multiples de Rq contient pour chaque i un élément non nul qui est
homogene de degré r; relativement aux coefficients de P;. Il s’ensuit que Rgq
est homogene de degré s; relativement aux coefficients de P; avec s; < r;
([BouO7b], A, IV, p.9, remarque). Pour démontrer a), il suffit donc de
démontrer que s; = r; pour chaque i.

2) Plagons-nous dans les hypothéses de b) et notons d,y; le degré

de f!. Considérons I’anneau universel U,qgr, ot d' = (dy,...,d, duny1) et
les polyndmes universels Py, ..., P,y € Uj[Xy,...,X,], et posons

R = reS(Pla°°°7Pi—l7Pi7Pi+la'"7Pn)7

R =res(Pi,...,Pi_1,Pui1,Pis1,...,Py),

S :I‘eS(Pl,...7P,'_1,P,'Pn+17pi+1,...,Pn).

Pour démontrer b), il suffit de prouver que S = RR’. En effet, il existe un homo-
morphisme d’anneaux h: U,q — A tel que hp, :fl,...,"P,, :f,,,"P,,_H =f
et 1’égalité cherchée n’est autre que h(S) = K(R)A(R).

3) Montrons que RR’' divise S. Appliquant le lemme 7 a I’anneau V = U, g/
et a la famille (Py,...,Pi—1,PiPpt1,Pit1,...,P,), on voit que R divise S.
On voit de méme que R’ divise S. Mais R est premier et il suffit maintenant
de noter qu’il ne divise pas R’, puisque R’ est de degré O par rapport aux
coefficients de P; tandis que R ne I’est pas (cela résulte par exemple de la
remarque 1).

4) Dans U'anneau Z|Ty, ..., T,], I’élément res(TlX’li‘, e T,,Xff") est divi-
sible par T}' - -- T, . Raisonnons par récurrence sur d;+- - -+d, > n. Lorsque
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di+---+d, =n, chaque d; est égal a 1 et I’assertion résulte de I’exemple 1.
Si di+---+d, > n, on a par exemple d; > 1. D’aprés I’hypotheése de
récurrence, res(Tlle‘f1 , T2X§12, ..o, T,X%) est divisible par Tla/(dl_l) e T,f/d" ,
ot a = (d — )dy---d,, tandis que res(Xl,Tngz,...,T,,X,‘f") est divisi-
ble par sz/dz«"T,f/d" avec b = d,---d,. Appliquant 3), on en conclut
que res(T]X’lj‘, .o, T,X%) est divisible par le produit des deux expressions
précédentes, produit qui est bien T7'---T)".
5) Fin de la démonstration. D’apreés 1), on a
res(Ti XM, ... T, X%y = T9 . T3 res(X, ... X&) =T ... TS

avec s; < r; pour tout i. Comparant a 4), on voit qu’on a s; = r;, ce qui acheve
de démontrer a). Enfin, avec les notations de 2), on a vu dans 3) que RR’
divise S. Mais, d’apres a), RR’ et S ont le méme multi-degré. Il existe donc un
entier a € Z avec S = aRR’. Comme on a §(le‘, .. ,Xfl"’Ld”*‘,...,X;l") =1,
RXD, . X4 Xy =1 et RIOXD, ... X0 X%) =1, il $ensuit que
a =1, ce qui acheve la démonstration.

COROLLAIRE 1. Soit d = (dy,...,d,) une suite d’entiers > 0. Le résultant
universel Rq est l'unique élément R € Uqg satisfaisant aux trois conditions
suivantes :

a) Pour i = 1,...,n, R est homogéne de degré (d,---d,)/d; en les
coefficients de P;.

b) Si k est un corps, si, pour chaque i = 1,...,n, f; est un polynéme
homogene de degré d; de k[X,,...,X,] et si les f; ont un zéro commun
non trivial dans k", alors R(fi,....f,) = 0.

¢) Ona RX, ... X&) =1.

Démonstration. On sait déja que Ry satisfait a ces conditions: a) résulte
de la partie a) de la proposition 5; b) et ¢) résultent des conditions b) et ¢)
du scholie. Inversement, soit R € Ug satisfaisant a ces conditions. D’apres le
corollaire de la prop. 3 du n° 3, la condition b) implique qu’il existe u € Uy
avec R = uRy. La condition a) implique alors u € Z. On déduit enfin de la
condition ¢) que u = 1.

EXEMPLE 2. Pour n =1, on obtient
res(AXfl) =\

EXEMPLE 3. Supposons n = 2. A chaque polyndme homogene en
deux indéterminées Q(X,X3), associons le polyndome en une indéterminée
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0°(X) = O(X,1). Soient A un anneau, f et g deux polyndmes homogénes de
degrés respectifs p > 0 et ¢ > 0 de A[X},X2], f* et g° les polyndmes associés
dans A[X]. Considérons le résultant res, 4( fb, g") € A défini en [BouO7b], A,
IV, p.71, déf. 1. On a alors res(f,g) = res,,yq(fb,gb). En effet, 1’élément
R = resM(P?,PZ) € U,y Jjouit des propriétés a), b) et ¢) du corollaire 1, en
vertu respectivement de [BouO7b], A, IV, p.72, formule (28), p.73, cor. 2 et
p.75, cor. 1, (i).

COROLLAIRE 2. Soit d = (dy,...,d,) une suite d’entiers > 0 et, pour
chaque i, soit o; € S, une permutation telle que ci(n) = i. Alors I’élément Rq
de Uq est un plus grand commun diviseur des déterminants de Sylvester D,,.

Démonstration. Cela résulte du fait que Rq divise chacun des D,,, que
Rq et les D, ne sont divisibles par aucun entier > 1 (lemme 8) et que,
pour chaque i, Rq et D,, sont homogenes du méme degré en les coefficients
de P[.

COROLLAIRE 3. Avec les notations de la proposition 5, soit 0 € S, une
permutation et soit €, sa signature. On a

res(foa1)s - - - sfom) = e‘é"“d" res(fi, .- fu) -

Démonstration. D’apres le corollaire 1, il suffit de prouver la relation
proposée lorsque f; = X% . Mais la partie b) de la proposition implique

de do(n di---dy
res(X, 1) - - > Xgim) = 188(Xo(1), - Xo@m) .

»“Ya(n)

et on conclut en appliquant I’exemple 1.

EXEMPLE 4. Soit A un anneau. Pour j = 1,...,n, soit (u;)icg, une
famille de d; formes linéaires en Xj,...,X, a coefficients dans A, de sorte
que [ £ Wi est un polynome homogene de degré d;. On a alors

FCS(H Lti],...,HM,'n) = H det(uil],...,ui,,n).
i€k, i€k, (i1y..sin)EE1 X+ X E,

Cela résulte en effet de la proposition 5, b) et de I’exemple 1.

Comme on I’a vu, le résultant universel Rq est irréductible en tant que
polyndme a coefficients rationnels. Plus généralement:

PROPOSITION 6. Pour tout anneau factoriel K, le polynome g ® Rq est
premier dans I’anneau de polynomes K @z Ug.
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Démonstration. Posons d = dy+- - -+d,, et soit § la suite formée de d fois
I’entier 1. Considérons ’anneau universel de coefficients U, s et la famille
universelle de formes linéaires (L;,...,Ls). Posons V = K ® U, 5. C’est
une algebre de polyndmes sur K, donc un anneau factoriel (appendice 1).
Décomposons Dintervalle [1,d] en n intervalles consécutifs Iy,...,1,, de
longueurs respectives di,...,d,. Pour j = 1,... n, soit ﬁj e ViXy,..., X,
le produit des d; formes linéaires L;.1x pour i € I;, et soit h: K®@ Ug — V
I’homomorphisme tel que "(P,-.l,() — Fj pour j=1,...,n. On a h(Rq.1gx) =
res(Py,...,P,). Tous les éléments de I’image de 4 sont invariants sous ’action
du groupe de permutations G = H_,' S, C Gy (n°2, exemple 4). Si Rq.1g
pouvait s’écrire comme produit de deux polyndmes non constants de K® Uy,
alors le résultant res(Pi,...,P,) pourrait s’écrire comme produit de deux
polyndmes de V, non constants et invariants sous l’action de G. Mais,
d’apres I’exemple 4 ci-dessus, cet élément est le produit d’une famille de
polyndmes premiers distincts, cette famille étant une orbite du groupe G. Une
telle décomposition est donc impossible, ce qui acheve la démonstration.

PROPOSITION 7. Supposons n > 2. Soient A un anneau, fi,....f, des
polynémes homogénes de degrés > 0 de A[Xy,...,X,] et soit i € [1,n] tel que
fi = Xfl. Pour j # i, notons fj le polynome de AlXi,...,Xi—1,Xi+1,---,Xul
obtenu en substituant 0 a X; dans f;. On a alors

res(fl, o ,f,'_l,X;i,fH_l, > 5 ,f,,) = res(fl, . o0 ,ﬁ_l,f_;'+],. . ,fn)d.

Démonstration. Pour simplifier les notations, nous ferons la démonstration
dans le cas i = n. D’aprés la proposition 5, b), il suffit de traiter le
cas d = 1. Notons d; le degré de f; et posons d = (di,...,d,—1) et
d* = (d,,...,d,_1,1). 1l suffit de faire la démonstration dans le cas ou
A=Ug et f =P pour i = 1,...,n— 1. Mais A est une algebre de
polyndmes sur Uy et res(Py,...,P,_;) est le résultant universel Rq € Uq.
Appliquant le lemme 7, on voit que res(Py,...,P,—1,X,) est divisible dans A
par res(Py, ..., P,_1). Mais ces polyndmes sont homogenes et de méme degré;
leur rapport est donc un entier. La relation proposée étant vraie lorsque f; = X¢
pour i =1,...,n—1, cet entier est égal a 1, ce qui ache¢ve la démonstration.

PROPOSITION 8. Soient A un anneau, fi,...,f, des polyndmes homogenes
de degrés respectifs d; > 0 de A[Xy,...,X,l, et gi1,...,g9, des polynémes
homogeénes de degrés respectifs d,—d; (on convient que g; = 0 lorsque d,—d;
est <0). On a alors

res(fi, .- s fo—1- 910+ + gnfn) = (g,,)d“"d"*l res(fiy .- fn)-
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Démonstration. Nous allons classer les indices i = 1,...,n suivant le
signe de d, — d;. D’apres le cor. 3 a la prop. 5, les deux membres se
modifient de la méme maniere lorsqu’on permute les polyndmes fi, ..., f,—1.
On peut donc supposer qu’il existe s € [1,n], tel qu'on ait d, —d; < 0
pour i < s, et d, —d; > 0 pour s < i < n. Ainsi, g = 0 est
nul pour i < s et est de degré d, — d; pour s < i < n. Posons
d = d,...,d) et d = (,,...,d,d, — ds,...,d, — d,). Introduisons
I’anneau universel U,q et notons Py,...,P,,Qy,...,0, la suite universelle
correspondante de polyndmes. Notons au passage que Q,, comme g,, est de
degré 0 par hypothese. Il existe un homomorphisme d’anneaux h: U,q — A

tel que "P; =f; pour i =1,...,n et "Q; = g; pour s < i < n. Le premier
membre de la relation & démontrer est donc I'image par 4 de I’élément
S =res(Py,...,P,—1,0), avec Q = Q;Ps+ -+ + Q,P,. Tout zéro commun
a Py,...,P, étant un zéro de Q, on déduit directement du lemme 7 qu’il

existe u € Uyqg tels que uRq = S. 1l s’agit donc de démontrer que l'on a
u= Qo

Mais S et Rq sont homogenes et de méme degré (d, - - - d,)/d; relativement
a I’ensemble des coefficients de chaque polyndme P;. Il en résulte que u ne
dépend pas de ces coefficients. Substituant alors les X% aux P;, on obtient
la relation u = res(X‘ll‘,...,XS"_’ll,Q), avec Q = QX% + - + QX% . Par
application itérée de la prop. 7, cela donne

u =r1es(Q0, ..., 0, X)) 1 = res(Q, X",

qui vaut bien Q% "~ d’aprés I’exemple 2.

PROPOSITION 9. Soient A un anneau, fi,....f, des polyndmes homogenes
de degrés respectifs d; > 0 de A[Xy,...,X,l, et (a;) une matrice carrée
d’ordre n a coefficients dans A. Pour i = 1,... n, posons

fil(X]’ LX) :f,-(Zalej, .. .,Zaanj).
j j

On a
res(fly. ... f0) = det(ay)™ " res(fi, ..., f) -

Démonstration. 11 suffit de faire la démonstration dans le cas ou A est
Ianneau Ugl[(Zj)li<i,j<n» fi = Pi pour tout i et (a;) = (Z;). Soit h: A = k
un homomorphisme de A dans un corps k, posons z; = h(Z;). Si la matrice
Z = (zj) est inversible, le produit par z d’un zéro commun non trivial des P;
dans k" est un zéro commun non trivial des P}; si z n’est pas inversible,
tout vecteur non nul du noyau de z est un zéro commun non trivial des P;.
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Appliquant le lemme 7, on voit qu’il existe u € A avec res(P|,...,P,) = uRq.
Mais u est alors homogene de degré O par rapport aux coefficients des P;,
donc appartient a Z[(Z;)]. Posant X! = ZJ.Z,-]X]' pour tout i et substituant
les Xf"' aux P; dans la relation précédente, on obtient

d d,
u=res(X|", ..., X)) =res(X],...,X))" ¥ = det(Zy)" M,

d’apres la prop. 5, b) et 'exemple 1.

REMARQUE 4. La proposition précédente s’applique notamment lorsque
A = U4lZy,...,Z,] et f;i = P; pour i = 1,...,n et quon prend pour
matrice (a;) la matrice diagonale (Z;0;). On en conclut que si 1’on munit
Uqg de la multigraduation de type N" pour laquelle le coefficient de X* dans
chacun des P; est de multidegré «, le résultant universel res(Py,...,P,) est
multihomogene de degré (d; ---d,,...,d;---d,).

5. DISCRIMINANT D’UN POLYNOME HOMOGENE A n INDETERMINEES

Soient n et d deux entiers, avec n > 0 et d > 2. Si A est un anneau
et f € A[X),...,X,] un polynome homogene de degré d, nous noterons J(f)
I'idéal de A[X),...,X,] engendré par f et ses n dérivées partielles D;f
([BouO7b], A, IV, p.6).

Nous appellerons zéros critiques de f les zéros de I'idéal J(f), c’est-a-
dire les zéros communs a f et a ses dérivées partielles. Rappelons [’identité
d’Euler ([BouO7b], A, 1V, p.8, prop. 6):

> XiDif =df.
i=1,...,n
Il en résulte que si I’entier d ne divise pas zéro dans A, tout zéro commun
aux D;f est aussi un zéro de f, donc un zéro critique de f.
Il existe un unique homomorphisme d’anneaux h: U,; — A tel que
f ="P,q et on peut traduire dans cette situation le scholie du n°®3:

SCHOLIE. Soient k un corps, f € k[Xy,...,X,] un polynéme homogene
de degré d et h: U,4 — k I’homomorphisme d’anneaux tel que f = hP,,vd.
Les trois propriétés suivantes sont équivalentes :

(1) On a h(e(J(Py,a) = 0.
(i) On a e(J(f)) =0.
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(iii) 1l existe une extension K de k telle que f posséde un zéro critique
non trivial dans K".

(iii bis) 1l existe une extension K de k, de degré fini, telle que f possede
un zéro critique non trivial dans K".

(iii ter) Une extension algébriquement close L de k étant donnée, il existe
un zéro critique non trivial de f dans L".

REMARQUE 1. On a ZNe(J(P,q) = 0. En effet, distinguons deux cas.
Pour n =1, 0n a U4 =Z[T] et P 4X) = TX?, donc J(P1,4) est engendré
par TX¢ et dTX?! et par conséquent ¢(J(Piq)) = TZ[T]. Pour n > 2,
appliquons le scholie avec k = Q et f = X?; puisque f posséde le zéro
critique (1,0,...,0) € Q", ¢(J(Ppnq)) est contenu dans le noyau de &, mais
la restriction de 7 & Z est injective.

L’idéal éliminant ¢(J(Ppq)) C U, q est premier. Plus généralement:

PROPOSITION 10. Soit K un anneau integre. Considérons I’anneau U =
K ®z Upa et soit h: U, — U I’homomorphisme canonique. Alors 1’idéal
éliminant e(J(hP,,,d)) C U est premier.

Démonstration. Notons pour simplifier P ="P, ; et J = J(P). Lorsque
n = 1, on voit comme dans la remarque précédente que e(J(P)) est 1’idéal
TK[T] de K[T], donc est premier. On peut donc supposer n > 2. La
démonstration est calquée sur celle de la proposition 3 du n° 3.

Soit a I’idéal de U[X),...,X,] formé des a tels que aX]' appartienne
a J pour m assez grand. Exactement comme dans la proposition 3, il suffit
de prouver que a est premier et ne contient aucun des X;.

Notons J' Tl'idéal de U[X\,...,X,] engendré par P et les D;,P pour
i < n. Il résulte immédiatement de 1’identité d’Euler que I’on a X, D,P € J',
donc X,J C J' C J. Ainsi a peut aussi étre défini comme I’ensemble des
a € UlXy,...,X,] tels que aX appartienne a J' pour m assez grand. Mettons
en évidence dans P les termes divisibles par X,”f‘l et leurs coefficients (les Y;
de la formule ci-dessous, qui sont certaines des indéterminées de U):

P=FXy,.., X))+ VX X7 4o Y, X, X yxe
ou F est de degré d —2 en X,,. On a, pour j=1,...,n—1,
D;P = D;F + VX"

Mais U[X,...,X,] est de la forme V[Yy,...,Y,—1,X,] ou V est I’anneau
des polyndmes a coefficients dans K dont les indéterminées sont tous les
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coefficients de P autres que les Y;, ainsi que les indéterminées X; pour
Jj < n. Les polyndmes F et D;F appartiennent a V[X,]. Les propriétés
annoncées de a découlent alors directement du lemme 4 du n° 3, appliqué a
la suite de polyndémes D\P,...,D,_P,P.

Dans ce qui suit, pour tout anneau A et tout polyndme homogeéne
f€AlX),...,X,] de degré > 2, nous notons A, 4(f) et 6, 4(f) les éléments
de A définis par

An,d(f) = I'CS(le7 s 7D’Z—1f7f)7
5n,d(f) - reS(D]f, e 7Dn—1f7 an) .

Ils appartiennent par construction a 1’idéal éliminant de J(f).

En particulier, A, 4(Pp.q) et 6,,q4(Ppq) sont des éléments de e(J(P,q)). Si
h: Upq — A est ’homomorphisme tel que th,d = f, alors (A, 4(Ppaq)) =
Ana(f) et de méme h(0,,a(Pn.a)) = Ona(f)-

EXEMPLE 1. Ona A #(TX?) = res(TX?) = T et &; 4(TX?) =res(dTX‘"") =
dT. Prenons plus généralement A = Z[Ty,...,T,] et f(Xi,...,X,) =
T\ X¢+ -+ T,X?, avec d > 2. On a alors

5n,d(f) = dn(d_l)”_l(Tl e Tn)(d_l)n_1 .
En effet, on a D;f = dT;X¢~' donc, d’aprés la prop. 5, a) du n°4,
Ona(f) = Hi(dTi)(dfl)nfl, Il en résulte notamment que 9, 4(P,q) n’est pas
nul.

EXEMPLE 2. Prenons A = Z[T] et f = X¢ + TX,X¢~', avec d > 2. On
a alors
Sa(f) = (1 —dy*~'a* 1.

En effet, on a d’abord &, 4(f) = res(dX¢~" + X4~ (d — HTX,X47?). Par
multiplicativité et homogénéité du résultant relativement au second terme
(prop. 5, b) du n°4), 6, 4(f) est le produit de ro = (d — D791, de
r = res(dX’l"_l —I—TXg_l,Xl) etde rp, = res(aVXf_l +TX§_1,X2’1_2). Appliquant
la prop. 7 du n° 4, on obtient r, = res(de_l)‘l_2 = d?2. Appliquant cette
méme proposition ainsi que le cor. 3 a la prop. 5 du n°4, on obtient
rno= (=1 res(X;,dX! + TXT) = (1) lres(TX4") = (— 1) T,
Reportant les valeurs de rg, r; et r, dans la relation 6 4(f) = ror 12,
on obtient le résultat indiqué.
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LEMME 9. Si f est un polyndme homogene de degré d > 2 de
AlXy,...,X,), n>2, et si f € A[X,...,X,_1] est obtenu en substituant 0
a X, dans f, on a

_qy! =
d“V Ay a(f) = bna(f) Snr,a(F) -
Démonstration. On a successivement

d9VT A J(F) =

=res(D1f,...,Du1f,df) (n°4, prop. 5, a))
=res(Dif,...,Dy—1 f,XiD1f + ...+ X,D,f) (identité d’Euler)
=res(Dif,...,Du_1f, XuDpf) (n°4, prop. 8)
=res(Dif,...,Du_1f,X,) res(D1f,...,D,f) (n°4, prop. 5, b))
= Gu—1,a(f) On.a(f) (n°4, prop. 7).

Dans la suite de ce numéro, étant donnés deux entiers n > 0 et d > 2,
nous poserons :

atn = @IV
_ 1yl
sn.d) = n(d—1) _ a(n,d).

On a a(0,d) =s(0,d) =0, a(l,d)=1, s(1,d) =0 et, pour n > 2,

2 amn,d)=d—-2)an—-1,d)+(d—1).a(n—-2,d),
3) s(nyd)y = (d —1Y""24+(d—2).s(n—1,d)+ (d —1).s(n—2,d),

ce qui montre que a(n,d) et s(n,d) sont des entiers > 0. On a par ailleurs,

4) an,d)+an—1,d)=d—-1""", n>1.

LEMME 10. Si fuq € Z[X,,...,X,] est défini par
FraXiy o Xo) = X+ X0 XS+ XX 4 X X

on a
Onalfaa) = (1 = )= Dg D,

Démonstration. Fixons d. Posons pour simplifier f, = f,4 et §, =
Sna(fua)- On a fi = X{, donc §; = d = d“V9, et d’apres 1'exemple 2,
=1 —-ad)1d%? =1 — d)y*'d*>?D . Supposons n > 2 et raisonnons par



RESULTANT, DISCRIMINANT 361

récurrence. On a D, f = (d — 1)X4~2X,_ . Par homogénéité et multiplicativité
du résultant (prop. 5 du n®4), §, est le produit de trois termes, a savoir

o= -1
ry =res(Dy fu, . .. 7Dn—1fn7Xn)d_27
ry = 1e8(Dy fu, .-y Dot fo, Xu—1) -

Les deux résultants ci-dessus sont justiciables de la proposition 7 du n° 4.
Lorsqu’on substitue 0 & X, dans les n — 1 premicres dérivées de f,, on
trouve les dérivées de f,_;, ce qui donne r; = (6,_1)*"2. Pour calculer r,,
commengons par permuter les deux derniers polynomes, ce qui donne (cor. 3
ala prop. 5 du n°4) rn = ary avec a = (—DU = (~1)¥! et
rh =res(Dy fu, ..., Du—2fus Xn—1,Dn—1fn). Lorsqu’on substitue 0 & X,,—; dans
les n—2 premieres dérivées de f,, on trouve les dérivées de f,—,. Lorsqu’on
substitue 0 a X,,_; dans D,_;f,, on obtient X,‘f*‘, ce qui, par une nouvelle
application de la prop. 7, donne 7, = (J,—2)?~'. On obtient ainsi la formule
de récurrence

n—

5y = =) (5, )26, 0)

Compte tenu des relations (2) et (3) et de ’hypothese de récurrence, cela

donne bien 6, = (1 — d)¥—Dstndgatnd)

Rappelons (appendice 1) que 1’on appelle contenu d’un élément non nul P
de la Z-algebre de polyndmes U, 4, le plus grand entier (positif) qui divise P.

LEMME 11. Dans I’anneau U, q, A, a(Pn.q) est de contenu 1 et 6, q(Pp.q)

est de contenu d*™9.

Démonstration. Fixons d > 2. Notons c(n) le contenu de 9, 4(Pnq) et
C(n) le contenu de A, (P, q). Posons g, = 0, 4(Pn.a)/c(n) € U, 4. Pour tout
anneau A et tout polyndme homogene f € A[X|,...,X,] de degré d, on aura

(&) Sn.a(f) = c(m)Gu(f),

de sorte que c(n) divise 9, 4(f). Il résulte alors du lemme 10 qu’il existe des
entiers u, et s, > 0 avec

©) u,c(n) = (d — l)s”d“("vd).
Appliquant le lemme 9 et le lemme de Gauss (appendice 1), on obtient

7) d9V""Cn) = c)e(n — 1),
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et donc d’apres la relation (6)
d9V"" Yy C(n) = (d — 1)1 gadtan—1.d)

D’apres la formule (4), il en résulte qu’on a wu,u,_;C(n) = (d — 1)1, ce
qui implique que u, est premier a d. Revenant a (6), on voit alors que c(n)
s’écrit vd ™D avec v premier & d. Mais I’exemple 1 impose que c(n) divise
une puissance de d, donc que v = 1. Cela donne la valeur annoncée pour c(n).
Reportant dans (7) et appliquant a nouveau (4), on obtient C(n) = 1.

DEFINITION 4. Soient A un anneau, n > 1 un entier et f un polyndme
homogene de degré d > 2 de A[X),...,X,]. On appelle discriminant divisé
de f, ou simplement discriminant de f, et on note disc(f) I’élément #@(f)
de A, ou u est I’élément de U, , défini par

d“Dy = 1es(D\ Py g, . . ., DuPp.a) .
En particulier, I’élément u = disc(P, 4) de U, q est appelé le discriminant

(divisé) universel. C’est par construction un polyndme a coefficients entiers
de contenu 1. Il est homogene de degré n(d — 1)"~!.

REMARQUE 2. Puisque I'idéal e(J(P,q)) est premier (prop. 10) et ne
contient pas I’entier d“*»% (remarque 1), il contient disc(P, 4). Nous verrons
ci-dessous (n° 6, cor. 1 a la prop. 14) qu’en fait le polyndme disc(P, q)
engendre I'idéal e(J(P,.q)).

REMARQUE 3. Compte tenu de I’identité (4), la relation du lemme 9 peut
aussi s’écrire A, 4(f) = disc(f) disc(f).

EXEMPLE 3. On a disc(AX9) = \. Plus généralement, on a d’apres
I’exemple 1, et la relation n(d — 1)"~! — a(n,d) = ds(n,d) :

discO XY + - -+ + AX9) = dBEDy .. A

EXEMPLE 4. Avec les notations du lemme 10, on a
disc(fn,d) = (1 - d)(d_l)S(an)~
EXEMPLE 5. Prenons n = 2. Comme dans I’exemple 3 du n° 4, associons

2 f(X1,X2) le polyndbme en une variable f’(X) = f(X,1). Considérons le
discriminant disq(f %) introduit en [BouO7b], A, IV, p- 79, formule (52). Compte
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tenu de ce qui a été établi dans I’exemple cité, de la remarque 3 et de la
formule (54) de loc. cit., on voit qu’on a

dise(f) = (— )™= 2disy(f*).

EXEMPLE 6. Prenons d =2, donc (n° 2, exemple 3)
PuaXi,. o X)) =Y T X7+ T pXiX;.
Soit M la matrice carrée d’ordre n telle que M; = 2Ty et My = Ty
pour i #j. On a DiP,, = ZjM,-ij, donc res(DPp2,...,D,Py2) = det(M)
d’apres I’exemple 1 du n°4. On a ainsi disc(P, ) = det(M;;) lorsque n est
pair et disc(Py2) = 'idet(M,j) lorsque n est impair.

PROPOSITION 11. Soient A un anneau, n > 1 un entier et f un polynéme
homogene de degré d > 2 de A[Xy,...,X,].
a) Pour tout homomorphisme d’anneaux h: A — B, on a

disc("f) = h(disc(f)) .

b) On a
tes(D1f,...,Duf) = d“™® disc(f).

¢) Pour tout A\ € A, on a
disc(\f) = A= dise(f).

d) Sin>2etsifeAX,...,Xo—1] est obtenu en substituant 0 a X,
dans f, on a

tes(Dyf, ..., Du-r f.f) = disc(f) disc(f).

e) Soit (a;) une matrice carrée d’ordre n a coefficients dans A. Posons
FX Xy = aXy, Y anX;) -
J J

On a 1
disc(f') = det(a;)™ """ disc(f).

Démonstration. Les propriétés a) et b) résultent de la définition. La
propriété d) a déja été énoncée (remarque 3). Compte tenu de a), il suffit
de prouver ¢) lorsque A = U, 4 et f = P, 4; mais, puisque d ne divise pas 0
dans A, c) résulte de b) et de la proposition 5, a) du n° 4.
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De méme, pour démontrer e), il suffit de le faire dans le cas ou A est
I’algebre de polynomes U, 4[(Z;)], ou les Z; sont n? nouvelles indéterminées,
avec f = P, 4 et a; = Z;. On peut alors se placer dans le corps de fractions
de A, ce qui nous ramene au cas ou A est un corps de caractéristique O et
il suffit de prouver dans ce cas qu’on a

/ N _ Ndd—1y!
res(Dif",...,D,f") = det(ay) res(Dif,...,Duf).

Mais, si cette relation est vraie pour deux matrices, elle est vraie pour leur
produit. Il résulte alors de la prop. 14 de [BouO7a], A, II, p. 161 qu’il suffit
de considérer les deux cas suivants:

1) il existe des entiers i et j, avec i # j, et un scalaire A € A tels que
f/(Xl7 LX) = f(Xl, e X1, X + >“Xj7Xi+l7 ..., Xyn), et il faut démontrer
que I'on a res(Dyf’,...,D,f") =res(D1f,...,D,f);

2) il existe des scalaires \; € A, i =1,...,n tels que f'(X1,...,X,) =
fOuXi, ..., Xy, et il faut démontrer que 1'on a res(Dyf’,...,D,f") =
A1 A= res(Dy f, ..., D, f).

Dans le premier cas, on applique les prop. 8 et 9 du n°4. Traitons le
second. On a D;f'((X;)) = \;D; f((A\iX;)). De la prop. 5 du n° 4, on tire alors

wes(D1f', .., Daf’) = Ap -+ A res(Dy f(AX0), - . ., Du f(NX0))
tandis que la prop. 9 du n° 4 implique
res (D1 f(NXD)), - - -, Duf(NXD)) = A1 - M) res(Di f, ..., Duf).
On conclut en notant que (d — 1)"! +(d — 1)* =d(d — 1)""".

REMARQUE 4. Puisque d(d—1)"~" est pair lorsque n > 2, il résulte de e)
que le discriminant d’un polynome ne dépend pas de 1’ordre choisi sur les
indéterminées.

REMARQUE 5. Appliquant e) comme dans la remarque 4 du n°4, on
voit que le discriminant universel disc(P,4) est multihomogene de degré
(dd — 1)y1,...,d(d — 1)"") pour la multigraduation dans laquelle le
coefficient de X® dans P,  est de degré a.

REMARQUE 6. Le degré d étant fixé, notons pour simplifier R, € U, 4
I’élément A, 4(P,q) = 1res(D1Pyg,...,Dp_1Pya,P,q). D apres la partie d) de
la proposition, on a pour tout n > 1, disc(P, 4) disc(P,—1,4) = Ry, et on a vu
que disc(Py,4) = Ry . Il s’ensuit que le discriminant universel peut s’exprimer
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comme le produit alterné

, RuRy—2- - iy
disc(Pra) = ———— = [ @RV,
isc(Py,4) R, i (Ru—i)

Fixons deux entiers n > 1 et d > 2. Nous allons démontrer simultanément
les deux propositions suivantes :

PROPOSITION 12. Soient k un corps et f un polyndme homogeéne de
degré d de k[Xy,...,X,]. Pour qu’il existe une extension L de k telle que f
possede un zéro critique non trivial dans L", il faut et il suffit que disc(f) =0
et, s’il en est ainsi, on peut prendre L de degré fini sur k.

PROPOSITION 13. Soit K wun corps. Considérons la K-algeébre de
polynomes U = K ®z, Uy 4. 1l existe un polynéme irréductible q € U, un
scalaire o € K* et un entier m > 0 tels que disc(P,q.1x) = agq™ et
e(J(Pna-1k)) = qU.

Considérons d’abord I'anneau U, 4, I'idéal a = e(J(P,q)) et 1’élément
disc(P,,q). On sait déja que a est premier (prop. 10) et contient disc(P,q)
(remarque 2).

LEMME 12. I existe un polynome premier q € Uy, et un entier m > 0

m

tels que a = qU, 4 et disc(P,q) = £q".

Démonstration. Soit g € U, 4 un diviseur premier (c’est-a-dire irréductible
et de contenu 1) de disc(P,4). Notons F le corps des fractions de I’anneau
integre U, q4/qU,q et h: U,, — F 1’homomorphisme canonique, et soit
f = "P,,,d € k[Xi,...,X,]. On a disc(f) = h(disc(Pnq)) = 0, donc
res(Df,...,D,f) = 0. 1l existe donc une extension L de F telle que les D;f
aient un zéro commun non trivial £ € L". Mais, d’apres le lemme de Gauss
(appendice 1), le contenu de ¢ doit diviser celui de disc(P, ), qui est égal
a 1; I’'homomorphisme canonique de Z dans U, 4/qU, 4 est donc injectif, de
sorte qu’on a d.1p # 0. L’identité d’Euler implique alors que & est un zéro
critique (non trivial) de f. Il s’ensuit par le scholie de ce numéro que 1’on a
h(a) =0, c’est-a-dire a C qU, 4.

Ecrivons alors disc(P, 4) comme un produit g - - - g, de facteurs premiers.
L’idéal premier a contient le produit g; - - - g, et, d’aprés ce qu’on vient de
voir, est contenu dans chacun des q;U,q; il s’ensuit que les g; sont tous
associés, c’est-a-dire égaux au signe pres. Si g est 'un d’entre eux, on a
donc disc(Ppq) = £q" et a=qU,4.
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Ce lemme étant acquis, démontrons maintenant les propositions 12 et 13.

Démonstration. Avec les notations de la proposition 12, considérons
I’homomorphisme h: U, 4 — k tel que f ="P, 4. On a disc(f) = +g(f)".
Il est donc équivalent de dire que disc(f) = 0, ou que G(f) = 0, ou encore
que ’homomorphisme canonique h: U,, — F annule ¢, donc annule a. La
proposition résulte alors directement du méme scholie que précédemment.

Passons a la proposition 13. Posons P = hP,,,d et a =e¢(J(P) CU.
On a disc(P) € a, puisque disc(P) = h(disc(P, q)) et que h(e(J(P,q))) est
contenu dans e(J(P)), et on sait déja que a est premier (prop. 10). Soit
q € U un facteur irréductible de disc(P). Soit k le corps des fractions
de 'anneau integre U/qU et soit h': U — k I’homomorphisme canonique.
Comme A'(disc(P)) = 0, il existe d’apres la proposition 12 une extension L
de k telle que le polyndme P ait un zéro critique non trivial dans L", ce qui
implique, toujours d’aprés le méme scholie, que ’on a #'(a) = 0, c¢’est-a-dire
a C qU. Raisonnant alors exactement comme dans le lemme précédent, on en
conclut qu’il existe un polyndme irréductible ¢ € U, un entier m > 0 et un
élément inversible @ de K tels que a = qU et disc(P) = ag™. Cela acheve
la démonstration des propositions 12 et 13.

COROLLAIRE. Soit K un corps. Supposons qu’il existe une K-algébre A
et un polynéme homogene f € A[X,,...,X,] de degré d tel que I’élément
disc(f) € A ne puisse s’écrire sous la forme aa™, avec o € K*, a € A
et m > 1. Alors le polynome disc(Ppq).1x € K ®z Uy q est irréductible et
engendre ’idéal éliminant ¢(J(P,q4.1k)).

Démonstration. Appliquons la proposition 13. Il existe un homomorphisme
h:K®U,; — A tel que h(P,,,d.IK) =f, donc disc(f) = ah(g)". On a alors
nécessairement m = 1, donc disc(P,q).1x = ogq.

6. IRREDUCTIBILITE DU DISCRIMINANT

Soit K un corps. Considérons la K -algebre de polyndomes A = K[Z, . ..,Z,]
et le polynome

Py, X)) =Y X —(ZiXi + -+ ZX)" € AIXy, .. Xl

l

Nous démontrerons ci-dessous le lemme suivant:
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LEMME 13. Si la caractéristique de K ne divise ni d, ni d—1, I’élément
disc(P) de K|Z,,...,Z,] est irréductible.

Appliquant le corollaire a la proposition 13, on en déduit:

PROPOSITION 14. Soit K un corps dont la caractéristique ne divise ni d
ni d — 1. Alors le polynome disc(Ppq).1x € K @ U, q est irréductible et
engendre ’idéal éliminant ¢(J(Ppq.1k)).

COROLLAIRE 1. Le discriminant universel disc(P,q) est premier et
engendre 1'idéal éliminant ¢(J(Pp q)).

Démonstration. Appliquons la proposition 14 avec K = Q. Puisque
disc(P,,q) est irréductible comme polynome a coefficients rationnels et de
contenu 1, il est premier. Il engendre donc e(J(P,4)) d’apres le lemme 12.

COROLLAIRE 2. Soit u € U, 4. Les conditions suivantes sont équivalentes :

(i) L’élément u est divisible par disc(P, q).

(ii) Pour tout corps K et tout polynéme homogéne f de degré d de
K[Xi,...,X,] possédant un zéro critique non trivial dans K", on a

u(f) = 0.

Démonstration. (i) = (ii) : cela résulte de la prop. 12.

(ii) = (i) : 'anneau quotient U, 4/ disc(P,4)U, 4 est intégre, soient k son
corps des fractions, h: U, 4 — k I’homomorphisme canonique et f = "P, ;.
On a disc(f) = 0. Appliquant a f la proposition 12, on voit qu’il existe une
extension K de k telle que f posseéde un zéro critique non trivial dans K”.
La condition (ii) implique alors #@(f).1x = 0, donc #(f) = 0. Mais on a
i(f) = h(u), donc u € ker(h) = disc(P, 4)U.

Démonstration du lemme 13. On a D;P = dQ;, avec
Qi =X{"' - ZZ X, + -+ ZX)

donc d9md disc(P) = res((D;P)) = d"4=V""" res((Q;)) d’aprés la proposition
5, a) du n°4. Si I’on note A(Z,,...,Z,) € Z[Z,,...,Z,] le résultant des Q;,
on a donc

disc(P) = &°AZ,y,...,Z,) avec s=n(d—1)""—a(n,d).

Notons au passage que le terme constant de A s’obtient en annulant les Z;,
donc est égal a 1 en vertu de I’exemple 3 du n° 5. Puisque d est inversible
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dans K, il s’agit de prouver que A est irréductible, ce qui nous ramene au
lemme suivant:

LEMME 14. Si la caractéristique de K ne divise ni d, ni d — 1, le
polynéme A est irréductible dans K[Z,, ... ,Z,].

Démonstration. Quitte a remplacer K par une extension convenable,
on peut supposer qu’il possede une racine primitive d — 1-ieéme de 1’unité
([BouO7b], A, V, p.77, prop. 4). Soit ¢ une telle racine, de sorte qu’on a
dans K[X]

j=0,...,d—2
Rappelons qu’on a noté A I'anneau K[Z,,...,Z,]. Introduisons une deuxi¢me
série d’indéterminées (T, ..., T,), posons B = K[Ty,...,T,] etsoit h: A — B

I’homomorphisme qui applique Z; sur T¢~! pour chaque i. Posons

LXy, .., X) =" zX) =Y T7'X;,
i

L

de sorte que

AT T = res(XT — (iDL X — (T, LY.
Mais on a des décompositions en produit de formes linéaires
7 - = [ - dTn.
Ji=0,...,d—2

En vertu de la proposition 5, b) du n® 4 (multiplicativité du résultant) et de
I’exemple 1 du n° 4, le résultant de ces polyndomes s’exprime donc comme
produits de (d — 1)" déterminants de formes linéaires. D’apres le lemme 15
ci-dessous, on obtient dans K[Ty,...,T,] la relation:

@®) A= I I a-Sdr.
d—1 i

i=1,...,n ji=1,...,

Mais les divers facteurs (1—3", ¢#T¢) du produit précédent sont distincts deux
a deux. Puisque n > 1, ils sont irréductibles dans B = K[T},...,T,], d’apres
le lemme 16 ci-dessous, de sorte que la relation (8) fournit la décomposition
du premier membre en polyndmes irréductibles.

Soit Q = Q(Z;,...,Z,) un diviseur non constant de A dans K[Z,...,Z,],
qu’on peut supposer &tre de terme constant égal a 1. Alors Q(Tji*' S .
divise le produit précédent, donc est le produit d’une partie non-vide de
la décomposition précédente. Mais le polyndme Q(T¢™',... T¢"") reste
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inchangé si ’on y substitue & chaque 7; un produit ¢%T;. Une telle substitution
remplace le facteur (1 — >, ¢#T¢) par (1 — >, ¢FF5T¢). Ces substitutions
opérant transitivement dans 1’ensemble des facteurs, il en résulte que la partie
considérée est totale, donc que Q = A, ce qui acheéve la démonstration.

On a utilisé ci-dessus les deux résultats suivants:

LEMME 15. Soient (a;) et (I;) deux familles de n éléments d’'un anneau
et soit L la forme linéaire Y 1X;. Le déterminant des n formes linéaires
Li = X; — a;L dans la base (X;) est égal a 1— )", ail;.

Démonstration. Dans 1’algebre extérieure, on a L AL =0, donc

Ll/\...ALH:XI/\.../\X,,fZaiXI/\.../\L/\.../\Xn
i

=(1=> al)Xi A...AX,.

LEMME 16. Soient K un corps, d > O un entier tel que d.1x # 0, et
ai,...,a, des éléments de K dont au moins deux sont non nuls. Alors le
polynéme P =1+, a;X¢ est irréductible dans K[X,, ..., X,].

Démonstration. On peut supposer que a; et ap sont non nuls et,
en I’étendant si nécessaire, que le corps K contient d racines d-iémes
de l'unité. Notons L le corps des fractions rationnelles a coefficients
dans K en les indéterminées X,...,X,. Alors P s’écrit al(X‘l’ + b), avec
b=1/ai+Y ., ai/a;X{ € L. Si P n’était pas irréductible dans K[Xi,...,X,],
alors Xj’ + b ne serait pas irréductible dans L[X;] et il existerait, d’apres le
lemme 17 ci-dessous, un diviseur m > 1 de d et un élément ¢ € L avec
b = c¢". Or b étant un polyndme, ¢ en est aussi un, puisque |’anneau
K[X»,...,X,] est factoriel. Substituant 0 aux X; pour i > 2 dans la relation
précédente, on obtient une relation 1 + ang = a10(X»)", avec Q € K[X;].
Par hypothese, a;, a,, d.1x et m.1x sont non nuls. Dérivant, on voit que
Q(X5) divise a la fois 1 + azXf et Xg_', ce qui est impossible.

LEMME 17. Soit L un corps et soit d > 0 un entier tel que d.1;, # 0 et
que L contienne d racines d-iemes de ['unité. Soit a un élément de L tel
que le polynéme P = X? + a ne soit pas irréductible dans L[X]. Il existe un
diviseur m > 1 de d et un élément b de L tels que a = b".
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Démonstration. Soit Q = coX"+- - -+c¢, un diviseur irréductible de P, avec
0 < n < d. Pour toute racine d-ieme (¢ de I'unité, posons Q¢ (X) = Q(¢X).
C’est un diviseur irréductible de P. Il s’écrit

Oc(X) =coC"X" + -+

Les Q¢ distincts sont en nombre au moins égal a celui des ¢" et ont tous le
méme terme constant non nul, donc ne sont pas associés. Ainsi leur produit
divise P, et leur nombre est au plus égal a d/n. Mais, si on note 0 le pged
de n et d, les ¢" décrivent les racines de 1'unité d’ordre d/d. On obtient
I'inégalité d/§ < d/n, soit n < § et en définitive n = §. Ainsi n divise d.
Posons m = d/n et, pour chaque racine m-i¢me de ’unité 6, choisissons ’un
des polyndmes Q¢ avec ¢" = . On obtient ainsi m polyndmes de degré n
dont le produit divise P, ce qui donne une décomposition de P, indexée par
les racines m-iemes de 1’unité

X"+a=cH(609X”+~~~+cn).
0

Les termes extrémes donnent alors ccff =1 et cc)) = a, donc a = (c,/co)™.
Nous avons ainsi achevé la démonstration du lemme et par conséquent celle
de la proposition 14.

EXEMPLE. Prenons n =2 et d =3, soit P(X,Y) = X>+Y? — (aX+bY)>.
On obtient disc(P) = 3°A(a,b), avec A = [[(1 + a*/> + b¥/?), ou le
produit est étendu aux quatre choix de signes. Un calcul immédiat donne
A= (@ +D — 1) —4a’p.

APPENDICE 1: ANNEAUX FACTORIELS

On rassemble dans cet appendice les énoncés de divisibilité utilisés dans
le texte.

Soit A un anneau integre. On dit que deux éléments non nuls a et b de A
sont associés si les idéaux Aa et Ab sont égaux, c’est-a-dire si I'un est le
produit de I’autre et d’un élément inversible, ou encore si chacun divise 1’autre.

Un élément p de A est dit premier s’il est non nul et si I’idéal principal pA
est premier, ce qui signifie que p n’est pas inversible et que, chaque fois qu’il
divise un produit, il divise I’'un des facteurs. En particulier, si un élément
premier p divise un élément premier ¢, alors p et g sont associés. En effet,
écrivons g = ap; comme ¢ divise ap et ne divise pas a, il divise p; de
méme p divise q.
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On dit que A est factoriel si tout élément non nul et non inversible peut
s’écrire comme produit d’une famille finie d’éléments premiers. Par exemple,
un corps est factoriel et ne posséde aucun élément premier, I’anneau Z est
factoriel et ses éléments premiers sont les entiers naturels premiers et leurs
Opposés.

Supposons A factoriel et soient x = p;---p, et x = ¢q;---qs; deux
décompositions d’un méme élément non nul et non inversible x de A en produit
d’éléments premiers. Alors r = s et il existe une permutation o telle que p;
soit associé a g, pour tout i. En effet, p; divise le produit des g;, donc I'un
des gj, donc lui est associé. Ecrivant p1 = ugj, on conclut par récurrence, en
considérant les deux décompositions de x/p; et x/(ug;). Plus généralement, et
par la méme démonstration, si p; ---p, divise ¢ - - - g5, il existe une injection
o:[1,r] = [1,s] telle que p; soit associé a g, pour tout i.

Ce résultat d’unicité (2 des éléments inversibles prés) montre que la
définition donnée ci-dessus des anneaux factoriels €quivaut a celle de [BouO6b],
AC, VII, §3 (voir notamment la prop. 2 de loc. cit. n°3) et permet de faire
fonctionner le mécanisme usuel de plus grand commun diviseur et plus petit
commun multiple (cf. [BouO7b], A, VI, §1, n°8).

Si A est factoriel, I’anneau de polyndmes A[X, ..., X,] est factoriel (voir
par exemple [BouO6b], AC, VII, §3, n°5, cor. au th. 2). En particulier, les an-
neaux de polyndmes Z[X,...,X,] et K[X|,...,X,], ou K est un corps, sont
factoriels. Les éléments premiers de K[Xi,...,X,] sont appelés polyndmes
irréductibles.

Soit A un anneau factoriel et soit P € A[X},...,X,] un polyndme non

nul. On appelle contenu de P un pged c¢ de ses coefficients. Alors P est le
produit de ¢ € A et du polyndme P/c de contenu 1. Les éléments premiers
non constants de A[Xj,...,X,] sont les polyndmes P qui sont de contenu 1
et qui sont irréductibles dans K[Xi,...,X,], ou K est le corps des fractions
de A. Le lemme de Gauss affirme que le contenu d’un produit est le produit
des contenus. De maniere équivalente, si les polynomes P et Q sont de con-
tenu 1, alors leur produit est de contenu 1. En effet, si un élément premier m
de A divisait le contenu de PQ, on obtiendrait par passage au quotient deux
éléments non nuls et de produit nul de I’anneau intégre (A/mA)[Xy,...,X,].

APPENDICE 2: THEOREME DES ZEROS

THEOREME. — Soient k un corps et K une extension de k qui est une
k-algebre de type fini. Alors K est une extension algébrique de degré fini.
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Démonstration. Soit S une partie finie de K I’engendrant comme
k-algebre. Raisonnons par récurrence sur le cardinal de S. Soit x un élément
de S, notons k(x) la sous-extension engendrée par x. D’apres ’hypothese de
récurrence, K est une extension de degré fini de k(x). Il suffit de prouver
que x est algébrique sur k, puisqu’alors k(x) est une extension de degré fini
de k.

Supposons donc x transcendant, de sorte que k(x) est le corps des fractions
de l'algebre de polyndmes A = k[x]. Soit (e;)i<i<, une base (finie) du
k(x)-espace vectoriel K telle que e; = 1. Tout €lément de K s’exprime
comme une combinaison linéaire des e; dont les coefficients sont des quotients
de deux éléments de A. Soit p(x) € A un dénominateur commun a toutes les
coordonnées de tous les éléments s.r pour s et ¢ dans SU{1}. Considérons
le sous-anneau B de k(x) formé des fractions dont le dénominateur est
une puissance de p(x). L’ensemble des combinaisons linéaires des e; a
coefficients dans B est un sous-anneau contenant k£ et S, donc est égal
a K. En particulier k(x) = k(x)e; est contenu dans Be; = B et on en déduit
k(x) = B.

Mais cela est absurde. Soit en effet g(x) un polyndme non constant de
k[x] = A. L’élément 1/g(x) de k(x) peut s’écrire sous la forme d’une fraction
a(x)/p(x)", ce qui signifie que g(x) divise une puissance de p(x), ce qui est
évidemment exclus pour g(x) = xp(x) + 1.

COROLLAIRE (THEOREME DES ZEROS). — Soient k un corps, L une
extension algébriquement close de k, A une k-algébre de type fini et I

un idéal de A distinct de A. Il existe un homomorphisme de k-algebres
h: A— L tel que h(I) = 0.

Démonstration. Soit m un idéal maximal de A contenant / ([BouO7a], A,
I, p.99, th. 1) et soit K le corps A/m. Alors K est de degré fini sur k d’apres
le théoreme et il existe un homomorphisme de k-algebres, nécessairement
injectif, de K dans L ([BouO7b], A, V, p.20, th. 1). L’homomorphisme
composé A — A/m — L annule m, donc 1.
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