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L'Enseignement Mathematique (2) 58 (2012), 333-373

RESULTANT, DISCRIMINANT

par Michel Demazure

A Jean-Pierre Serre, pour son 86-ieme anniversaire.

Introduction

Dans le courant des annees 1960, Bourbaki avait decide de reprendre la

premiere partie de son Traite pour en produire une edition definitive. L'idee
avait ete avancee d'en profiter pour adjoindre au chapitre IV (.Polynomes

et Fractions Rationnelles) du livre d'Algebre ([Bou07b]) un appendice in-
troduisant resultants et discriminants. C'est ainsi qu'ä son «congres» de

juillet 1969, Bourbaki a discute d'une proposition pour cet appendice

(«redaction n° 538»). II a ete alors conclu ä 1'abandon du projet, en grande

partie pour un probleme de plan: les enonces necessaires sur les polynomes ä

plusieurs variables, comme le lemme de Gauss, bien qu'elementaires, relevent

«naturellement» de la notion d'anneau factoriel, qui n'apparait dans le traite

qu'au chapitre VII de YAlgebre Commutative ([Bou06b]).
Plusieurs articles et ouvrages sont parus depuis, qui developpent cette

theorie dans un cadre plus avance, marque notamment par 1'utilisation de

methodes homologiquesl). II n'en demeure pas moins qu'une approche
elementaire reste utile, d'autant qu'elle permet d'obtenir ä moindre coüt le

critere de lissite dont nous parlerons ci-dessous.

Cet article reprend la redaction 538, avec quelques modifications et

l'adjonction de deux appendices. J'ai conserve le style bourbachique, le

1) On pourra consulter le traite [GKZ08] de I M Gelfand, M M Kapranov et A V
Zelevinsky et les articles [Jou80], [Jou91] et [Jou97] de J -P Jouanolou
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Systeme de reference canonique du Traite et le «positionnement» de la
redaction 538: le texte se place apres les chapitres IV et V d'Algebre
([Bou07b]) et n'utilise de la partie posterieure que les resultats de base sur
les anneaux factoriels (rappeles dans l'appendice 1) et le theoreme des zeros

(demontre dans l'appendice 2).

Venons-en au critere de lissite pour les hypersurfaces de l'espace projectif.
Fixons deux entiers n > 1 et d > 2. Pour tout anneau k, notons V(k)

le &-module forme des polynömes en n indeterminees (notees X\,... ,Xn), ä

coefficients dans k, qui sont homogenes de degre d. On pose V V(Z) et

on a naturellement un isomorphisme k&V V(k).
Le Z -module V est fibre de base la famille des monömes X", oü a. par-

court 1'ensemble des multi-indices a. (at) E Nn tels que a\ H Yan d.
On note Ta les elements de la base duale, chaque Ta associant ä p E V le

coefficient de X" dans p. On note Un^ 1'anneau des fonctions polynomiales
sur V, qui s'identifie ä la Z-algebre des polynömes en les indeterminees Ta.
Nous noterons Pn^ le polynöme ä coefficients dans Un^ donne par

Pn,d(Xu...,Xn) Y,TaXa-
OL

C'est le polynöme universel. A tout anneau A et tout polynöme / E V(A), on
associe l'homomorphisme hf\ Un^ ^ A qui applique le coefficient Ta de Pn^
sur le coefficient de Xa dans /. Pour tout u E Un^, 1'element hf(u) de A
n'est autre que l'image de / par l'application polynomiale 1a<8>u: V(A) -a A.
On posera done hf(u) u(f). Par definition u u(Pn^).

Le discriminant divise universel disc disc(Pn^) est un element de Un^
jouissant notamment des trois proprietes suivantes.

a) Comme application polynomiale V -A Z, il est de degre n(d— l)n~l (n° 5,

prop. 11, c)).

b) C'est un element premier (appendice 1) de 1'anneau Un^ (cor. 1 ä la prop.
14 du n° 6): il est irreductible comme polynöme de Q®Unyd (il l'est meme

comme polynöme de Q (8) Un^) et n'est divisible par aucun entier > 1.

c) Pour tout corps algebriquement clos k et tout polynöme / E V(k), les

conditions suivantes sont äquivalentes (n° 5, prop. 12):

(i) / et ses n derivees partielles n'ont que l'origine comme zero commun
dans kn ;

(ii) disc(/) n'est pas nul.
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De la propriete c) et du critere jacobien, on tire le critere de lissite suivant.

Soit S un schema, notons O(S) l'anneau de ses fonctions globales, soit

f £ V(0(S)) et soit disc(/) £ 0(S) son discriminant. Considerons Vespace

projectif P^-1 de dimension n — 1 au-dessus de S, soit H le sous-schema

ferme d'equation f 0 et soit s un point de S de corps residuel k(s). Alors
les conditions suivantes sont äquivalentes:

(i) Vimage fs de f dans V(k(s)) est non nulle (ce qui signifie que la

fibre Hs n'est pas Vespace entier) et H est lisse sur S en tous les

points de Hs ;

(ii) L'element disc(/)(s) du corps residuel n{s) n'est pas nul.

Notons que la version du critere jacobien utilisee ici est tres simple. Par

exemple, si a est un point de H et si Dtf(x) est non nul dans le corps
residuel, alors la projection de H sur 1'hyperplan de coordonnees Xt 0 est

etale en a, done H est lisse sur S en a.
Cela etant, considerons la situation universelle, oü l'on prend S Spec(Un^)

et / Pn,d- Notons A la partie de l'ensemble sous-jacent ä S formee des s £ S

ne satisfaisant pas ä la condition de lissite (i) ci-dessus. Le critere de lissite

implique que A est decrite par 1'equation disc 0. La conjonction des pro-
prietes b) et c) signifie que A est le support d'un diviseur irreductible dont
le discriminant divise universel est une equation, ce qui le determine au signe

pres, car 1 et —1 sont les seuls elements inversibles de Un^>

Considerons maintenant l'anneau des fonctions de ce diviseur, c'est-a-dire
le quotient de l'anneau Un^ par 1'ideal principal engendre par 1'element disc.
II est integre, notons k une cloture algebrique de son corps des fractions et

soit / £ V(k) l'image canonique de Pn,d- Alors disc(/) 0, de sorte que les

derivees partielles £>i/,... ,Dn/ ont d'apres c) un zero commun non trivial
dans kn. Mais cela implique que leur resultant res(L>i/,... ,DW/) est nul.

Autrement dit, le resultant discr res(DiPn^,... ,DnPn^) est multiple de disc
dans l'anneau Un^> Comme ces deux polynomes ont le meme degre d'apres a),

le discriminant divise universel s'obtient en divisant le resultant discr par un

contenu (pgcd des coefficients, defini au signe pres). Le lemme ll(n°5)
explicite ce contenu2).

La terminologie merite un commentaire. La definition «classique» du

discriminant (en caracteristique zero) est le resultant discr des derivees

2) qu'on trouve aussi dans [GKZ08], chap 13, §1 D
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partielles. L'approche par la theorie de 1'elimination amene naturellement,

comme on vient de le voir, au choix disc ci-dessus. La question du signe
n'est pas tranchee. Le choix fait ici est de garder le signe de discr, c'est-a-
dire de definir disc comme le quotient de discr par son contenu positif. Dans

1'article [Sai] ä paraitre, T. SAITO introduit dans le cas oü n est pair3), un
«discriminant signe» e(/i,d) disc, avec e(/i,d) (— \fd~lV2 si d est impair
et e(M) (-l)^/2n/2 si d est pair. Pour d 2, on retrouve la valeur
(—l)n/2dise (—l)n/2discr usuelle pour les formes quadratiques; pour n 2,
on retrouve le discriminant usuel des polynömes ä une indeterminee (voir n° 5,

exemple 5).

On demontre que le discriminant divise universel est absolument irreductible
en caracteristique 0, la demonstration restant valable en caracteristique p pour
les «bons» p (n° 6, prop. 14). Le fait que cela reste vrai pour tout p, sauf

lorsque p 2 et que n est pair, n'est pas traite. Pour le faire par la methode

elementaire suivie ici pour les «bons» p (cor. ä la prop. 13 du n° 5), il
faudrait exhiber des exemples adequats. Pour une demonstration de ce fait et

pour la situation exacte dans le cas exceptionnel, voir la proposition 2.5 and

le theoreme 4.1 de Particle [Sai] dejä cite.

Je terminerai cette introduction par un commentaire plus personnel.
Le cadre historique naturel de la Geometrie algebrique est celui des

polynömes. Le developpement de l'Algebre moderne, commence il y a pres
d'un siecle, a renvoye les anneaux de polynömes au Statut de cas particulier
et les methodes propres aux polynömes, comme la Theorie de Velimination,
au conservatoire. Mais «les objets sont tetus» et les methodes explicites ne

cessent de ressurgir. Un calcul est toujours plus general que le cadre theorique
dans lequel on l'enferme ä une periode donnee. La resolution de 1'equation du

second degre, provenant des tablettes babyloniennes (et introduisant le premier
discriminant de l'Histoire), reparait dans la decomposition en carres des formes

quadratiques, dans la methode des moindres carres de Legendre-Gauss, dans

l'orthonormalisation de Gram-Schmidt...
Au fameux «II faut eliminer la theorie de Telimination» de Dieudonne,

Abhyankar avait repondu par un poeme qui commengait par «Eliminate,
Eliminate, Eliminate / Eliminate the Eliminators of Elimination Theory». La
decision de Bourbaki sur la redaction 538 etait «II est decide que cette

redaction ira en appendice ä AC XII, done au frigidaire en attendant». L'en
voilä sortie...

3) Dans cet article, le nombre de variables designe par n dans notre texte est note n + 2, la
lettre n y designant la dimension de l'hypersurface H
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1. Theoreme de l'elimination

Dans la suite, tons les anneaux sont supposes commutatifs. Si k est un

corps (commutatif), on appelle extension de k une k-algebre qui est un corps
commutatif).

Nous utiliserons la notation suivante: si h: A -A B est un homomorphisme
d'anneaux, et si P est un element de A[Xi,..., Xn], nous noterons hP l'element
de B\X\,...,Xn\ image de P par 1'extension canonique de h aux anneaux
de polynömes consideres.

Lemme 1. Soient A un anneau, M un A-module de type fini, a C A
Vannulateur de M et h: A -A k un homomorphisme de A dans un corps k.

Pour que M <S>a k 7^ 0, il faut et il suffit que h(a) 0.

Demonstration. Comme tout element de h(a) annule le k-espace vectoriel
M ®Ak, la condition est evidemment necessaire. Inversement, supposons que
M ®a k 0 et prouvons que h(a) 7^ 0. Soient (mj)j=\^ yP une famille
generatrice finie de M, /: Ap -A M 1'homomorphisme de A-modules tel que

fifaj)) N le noyau de / et g: N —) Ap 1'injection canonique.

D'apres [Bou07a], A, II, p. 58, prop. 5, on a une suite exacte de k-espaces
vectoriels

N <g>A k k? M®Ak^ 0,

de sorte que <7 ® U est surjectif, ce qui signifie que les elements g(n) (8) 1,

n G N, engendrent le k-espace vectoriel kp. D'apres le theoreme d'echange
([Bou07a], A, II, p. 95, th. 2), il existe done /ii,..., np G A tels que la famille

(gißt)® l)i=i, ,p s°it une base de kp. Si (ef) est la base canonique de AP et si

"< Ej avej' °ü («y) S Mp(A), on a g(nt) ® 1 ayej ® 1 h(a,})e}, ce

qui montre que la matrice (h(atJ)) est inversible. Posons d det(atJ) G A ; on a

h(d) det(h(atj)) 0; d'autre part les formules de Cramer ([Bou07a], A, III,
p. 102, formule (37)) entrament que les vecteurs det sont des combinaisons
lineaires des nj, de sorte que dAp c A, ou encore d G a. On a done bien

h(a) 0, ce qu'il fallait demontrer.
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Lemme 2. Soit E un anneau gradue de type N. Pour m E N, notons Em

Vensemble des elements homogenes de degre m de E. Solent a E E$ et £ E E\.
Pour que a appartienne ä (1 — 0F, il faut et il suffit qu'il existe m E N avec

aim 0.

Demonstration. Soit u uq + • • • + un un element de E, avec E Et

pour tout i. La relation a (1 — 0m se decompose en relations homogenes

uo a, u\ mq0 • • • > i0 un^ 0. Cela s'ecrit aussi a0
pour i 0,..., et a0+1 0.

Proposition 1. Soit E un anneau gradue de type N. Pour m E N,
notons Em Vensemble des elements homogenes de degre m de E et am C Eq

Vannulateur du E$-module Em. Supposons que le E$-module E\ soit de type

fini et que Vanneau E soit engendre par EqVJE\. Notons a la reunion
des am. Alors a est un ideal de Eq. Soit h un homomorphisme de E$ dans

un corps k. Les conditions suivantes sont äquivalentes:

(i) On a h{a) 0.

(ii) II existe un corps K et des homomorphismes f:E—>K et i: k —) K
tels que i o h /|Fo et /(Fi) ^ 0.

Demonstration. L'homomorphisme canonique de Fo-algebres de l'algebre
symetrique S^^i) dans E est surjectif. Si le Eq -module E\ est engendre

par x\,... ,xq et si n E N, alors En est engendre par les xy1 • • • Xqq avec

n. On en deduit aussitot les trois assertions suivantes:

1) L'homomorphisme E\ ®e0 Em —^ Em+1 deduit de la multiplication de E
est surjectif.

2) Pour tout m E N, le Eq -module Em est de type fini.

3) Si m E N est tel que x'Ln 0 pour i 1,... ,q, alors En 0 pour
n > q(m — 1).

D'apres 1) ci-dessus, on a am C am+i pour m E N, de sorte que a est bien

un ideal de Eq. Demontrons 1'equivalence des conditions (i) et (ii) de l'enonce.

(ii) (i) : avec les notations de (ii), soit £ E E\ tels que /(0 ^ 0. Pour

n E N et a E an, on a a£n 0, done i(h(a))f(Qn 0, done h(a) 0

puisque K est un corps et que i est injectif.
(i) (ii) : supposons que h(am) 0 pour tout m. D'apres 2) ci-dessus

et le lemme 1, on a Em ®Eo k ^ 0 pour tout m. Appliquant 3) ci-dessus
ä 1'anneau gradue F E ®Eo k, on en conclut qu'il existe £ E F\ tel que

0* 0 pour tout m. II resulte alors du lemme 2, applique avec a 1,

que If — £ n'est pas inversible dans F. L'ideal (1^ — 0F est done distinct
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de F. Appliquant [Bou07a], A, I, p. 99, th. 1, on en deduit qu'il existe un ideal

maximal m de F contenant 1f — 0 Soient K le corps F/m et p\ F -a K
la projection canonique; on a p(0 Ik- Notons f.E^K et i: k -A K
les homomorphismes definis par f(x) p(x® 10 et i(y) p(1e Alors
i(h(x)) p(1e (8) h(x)) p(x (8) 10 =f(x), de sorte qu'on a bien i o E /|£0.
Par ailleurs, ecrivant £ J2xj®yj> avec x3 E E\ et ^ E k, on a 1^ p(0
^2f(Xj)i(yj), ce qui implique /(Ei) 7^ 0 et acheve la demonstration.

Remarque. L'extension K de k construite dans la demonstration

precedente est une &-algebre de type fini, done est de degre fini sur k

(appendice 2). La condition (ii) est done equivalente ä celle qu'on obtient en

y ajoutant que K est de degre fini sur k.

Soient A un anneau et I un ideal de l'anneau de polynömes A[X1,..., Xn].
Si h \ A —) B est un homomorphisme de A dans un anneau B, on appelle zero
de I dans Bn un element (bt) de Bn tel que hP(b\,..., bn) 0 pour tout Pel.
Si I est engendre par les polynömes P3, j E J, on dit aussi que (bt) est un

zero commun aux P3 dans Bn. Par exemple, si I est gradue et si h(lnA) 0,
il est clair que 1'element (0) E Bn est un zero de I; on 1'appelle le zero trivial.

Definition 1. Soient A un anneau et I un ideal gradue de l'anneau
des polynömes A[X\,..., Xn]. On appelle ideal eliminant de I et on note

e(/) 1'ideal de A forme des a tels qu'il existe m E N avec aX171 E I pour
i 1

Soit h\ A —) B un homomorphisme d'anneaux et soit 7 l'ideal de

B[X\,..., Xn] engendre par les polynömes hP, oü P parcourt /. Alors h

applique e(/) dans e(7).

Proposition 2 (Theoreme de l'elimination). Soient A un anneau, I un
ideal gradue de Vanneau des polynömes A[X1,... ,Xn] et p: A —^ k un
homomorphisme de A dans un corps k. Les conditions suivantes sont äquivalentes:

(i) On a p(e(/)) 0.

(ii) II existe une extension K de k et un zero non trivial de I dans Kn.

(ii bis) II existe une extension K de k, de degre fini, et un zero non trivial
de I dans Kn.

(iii) Une extension algebriquement close L de k etant donnee, il existe un

zero non trivial de I dans Ln.
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Demonstration.

(ii bis) =A (iii) =A (ii) : c'est clair.

(ii) =A (i) : soit (£) G Kn un zero non trivial de I et soit a G e(/). On a,

pour tout i et pour m G N assez grand, aX G /, done p(a)£ 0, d'oü
enfin p(a) 0.

(i) =A (ii bis) : supposons que p(e(/)) 0 et considerons l'anneau

gradue E A[X\,... ,Xn]/I. On a I D A C e(/), done p(I D A) 0.
Comme Eq A/(/ D A), p se factorise par un homomorphisme h: Eo ^ k.
D'autre part, l'annulateur am du E$ -module Em est 1'image dans E$ de

1'ensemble des a G A tels que aP appartienne ä I pour tout polynome
homogene P de degre m; comme ce dernier ensemble est contenu dans e(/),
on a h(am) C p(e(/)) 0. On peut done appliquer ä l'anneau E et ä

1'homomorphisme h: Eq -a k la proposition 1 et la remarque qui la suit,
et il existe une extension K de k, de degre fini, et un homomorphisme

f.E^K prolongeant h tel que f(E\) ^ 0. L'homomorphisme compose

A[Xi,... ,Xn] -A E -A K est de la forme P i-a P((0) oü (£) G Kn est un

zero de I et oü les £ ne sont pas tous nuls, ce qui demontre (ii bis).

2. POLYNÖMES HOMOGENES UNIVERSELS

Soient n > 1 et d > 0 deux entiers. On note Un^ la Z-algebre de

polynömes en les indeterminees fa, oü a parcourt 1'ensemble des multi-
indices a. G Nn tels que a\ + • • • + an d, et on pose

Pn,d(Xu...,Xn) J2TaXa-
OL

Alors Pn^d est un polynome homogene de degre d en les indeterminees

X\,..., Xn ä coefficients dans Un^.

Exemple 1. Pour d 0, on a t/n>0 Z[7] et Pn$(Xi,. ..,Xn) T.

Exemple 2. Pour d 1, on a f/W)i Z[Ti,..., Tw] et PW)i(Xi,..., Xn)

Zi^i + • • • + TnXn.

Exemple 3. Pour d 2, on a f/W)2 Z[(7^)], oü S parcourt l'ensemble
des parties de [l,/i] ä 1 ou 2 elements et

pn,2(xu. ..,x„) y, aa2 + E tmx'xj -

' {hj}
oü la seconde somme est etendue aux sous-ensembles de [1 ,/i] ä deux

elements.
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Soit A un anneau et soit / un polynome homogene de degre d en les

indeterminees X\,..., Xn et ä coefficients dans A. II existe un homomorphisme
d'anneaux h: Un^ -£ A et un seul tel que / hPn,d- On le note hf. Par

construction, pour tout element u u((Ta)) £ Un^, 1'element hffiü) de A
s'obtient en substituant ä chaque variable Ta de u le coefficient de X"
dans le polynome /. On dira aussi que hf(u) s'obtient en substituant ä

Pn,d £ Un^[X\,... ,Xn~\ le polynome f £ A[X\,... ,XW]. On notera u(f)
l'element hf(u) de A. On a ainsi par exemple u(Pn^) u.

En vertu de ce qui precede, on dira que Pn^ est le polynome homogene
universel (relativement aux indeterminees X\,,Xn et au degre d fixes).

Considerons maintenant un entier r > 0 et une suite d (d\,..., dr) £ Nr.
On notera Una le produit tensoriel des Z-algebres Un^r qui s'identifie ä la

Z-algebre de polynömes en les indeterminees Ta^, oü j parcourt 1'intervalle

[l,r] et oü, pour chaque y, a. parcourt 1'ensemble des multi-indices a. £ Nn

tels que a\ + • • • + an dj.
Pour j 1,..., r, notons P3 £ Un$\X\,... ,XW] le polynome hjPn,dj, oü h3

est 1'injection canonique du j-eme facteur Un^ dans Una- C'est un polynome
homogene de degre d3 :

Pj(Xu...,Xn) y2Ta,jXa, 7 G [1, r].
OL

Soit A un anneau et soit f (/!,... ,/r) une famille de polynömes
homogenes de degres respectifs d\,..., dr en les indeterminees X\,..., Xn et

ä coefficients dans A. II existe un homomorphisme d'anneaux h: Una —^ A
et un seul tel que f3 hPj pour j 1,... r. On le note hf. Comme dans

le cas precedent d'une famille d reduite ä un element, pour tout element

u u((Taj)) £ Un,d, l'element hf(u) de A s'obtient en substituant ä chaque
variable Taj de u le coefficient de X" dans le polynome f3. On dira aussi

que hf(u) s'obtient en substituant ä chaque polynome P3 de Un^\X\,... ,XW]

le polynome f3 de A[Xi,... ,XW]. On notera m(/i, ,/r) l'element hf(u) de A.
On a ainsi par exemple u(P\,..., Pr) u.

On dira que (P3) est la famille universelle de polynömes homogenes et que
Un a est Vanneau universel de coefficients, ou simplement 1'anneau universel

(relativement aux indeterminees X\,..., Xn et ä la suite de degres d\,..., dr

fixes).

Exemple 4. Prenons tous les d3 egaux ä 1. Alors Una est l'algebre
de polynömes Z[ry]i^n>i^r, avec P3 Le produit P\ • • • Pr
est homogene de degre r, d'oü l'on deduit un homomorphisme d'anneaux
h: UUyr —Una tel que hPn^r P\ • • • Pr• Le groupe symetrique 6r opere dans
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le produit tensoriel Un$ par permutation des facteurs (on a done cr(ry) Tla<j)

pour a G &r) et il est clair que 1'image de h est formee de tenseurs

symetriques.

3. Ideal resultant de r polynömes homogenes ä n indeterminees

Dans ce numero, nous fixons des entiers n > 0 et r > 0 et un element

d (d\,..., dr) de Nr tel que dj > 0 pour j 1,..., r.
Considerons l'anneau universel de coefficients Un a et la famille universelle

de polynömes (Pi,..., Pr) introduits au numero precedent. Chaque P3 est un

polynöme homogene de degre d3 en les indeterminees X\,..., Xn ä coefficients
dans Una- On notera Ina 1'ideal (gradue) de Uns\[X\,... ,Xn] engendre par
les Pj et en,d e(/?,d) C Una son ideal eliminant (n° 1, def. 1).

Soit A un anneau et soit f (/i,... ,/r) une famille de polynömes
homogenes de degres respectifs d\,..., dr en les indeterminees X\,..., Xn

et ä coefficients dans A. Considerons l'homomorphisme u ha

de Una dans A.

Definition 2. On appelle ideal resultant de la famille ,/r) et on

note R(f\,... ,/r) l'ideal de A engendre par les ,/r), oü u parcourt
1'ideal en,d de Un4.

Par exemple, en,d est l'ideal resultant R(P\,..., Pr) de la famille
universelle. On l'appellera Videal resultant universel.

Soient B un anneau et g : A -a B un homomorphisme d'anneaux. Posons

9f (9fi,..., 9fr). On a aussitöt h9{ g o hf, done

5(«(/i, • • • Jr)) H9fi ,,%), ue unA.

En particulier, R(9fi,..., 9fr) est l'ideal de B engendre par g(R(f\J...,/-)).
D'apres la proposition 2 du n° 1, on a:

SCHOLIE. Soit A un anneau et, pour j 1,..., r, soit f3 G A[X\,... ,Xn]
un polynöme homogene de degre d3. Notons I l'ideal de A[X\,... ,Xn]
engendre par les /, soit e(/) C A l'ideal eliminant de I, et soit p\ A -a k

un homomorphisme de A dans un corps k. Les conditions suivantes sont

äquivalentes:

(i) On a p(R(fu...Jr)) 0.

(ii) On a p(e(/)) 0.
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(iii) II existe une extension K de k telle que les f aient un zero commun

non trivial dans K".

(iii bis) II existe une extension K de k, de degre fini, telle que les f aient

un zero commun non trivial dans Kn.

(iii ter) Une extension algebriquement close L de k etant donnee, il existe

un zero commun non trivial des f dans Ln.

Remarque 1. Notons t l'ideal resultant R(/i,... ,/r). On a t c e(/) et,

en vertu de 1'equivalence de (i) et (ii), tout ideal premier de A contenant t
contient e(/). Ainsi, on a e(/) t lorsque t est premier. * Plus generalement,

e(/) est compris entre t et sa racine ([Bou06a], AC, II, §2, n°6, cor. 1 de la

prop. 13). *

II resulte notamment du scholie qu'on a tn a ^ 0 Pour r ^ n. En effet,
les r polynomes 0,..., 0 n'ont pas de zero commun non trivial
dans un corps.

Lemme 3. Soient A un anneau, f un element de A, Af Vanneau-quotient

A[T]/(fT — 1) et h: A —^ Af Vhomomorphisme canonique.

a) Le noyau de h est forme des a E A tels qu'il existe m E N avec

afm 0.

b) Si A est integre et si f est non nul, h est injectif et Vanneau Af est

integre.

Demonstration. La partie a) resulte immediatement du lemme 2 applique
ä E A[T].

Demontrons b). Supposons A integre et / 0, et soit K le corps
des fractions de A. Puisque / est inversible dans K, l'homomorphisme
canonique de K dans K[T]/(fT — 1) est bijectif, et il suffit de prouver
que Phomomorphisme canonique Af —) K[T]/(fT — 1) est injectif, ou encore

que A[T]n(fT—l)K[T] (fT-l)A[T]. Soit done x a0 + - • -+anTn e A[T].
Si on a x G (fT — 1 )K[T], il existe des elements J, &o,..., bn-\ de A avec

d 0 et d(ao H h anTn) (1 —fT)(bo H b bn-\Tn~l). Cela s'ecrit

dao bo dai=bi-fb0, dan-\ bn-i-fbn-2, dan -fbn-1,

ce qui implique aussitot par recurrence sur i que chaque bt est divisible par d.
On a alors x (1 -fT)(b0/d + • • • + (bn-Xjd)Tn~l) done x G (1 -fT)A[T].
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Lemme 4. Soient V un anneau integre, Y\,..., Yr et X des indeterminees.

Considerons Vanneau de polynomes

V[Y1X\ V[Yu...1YnX\.

Pour chaque j 1,... r, soit Qj E V[Y\,..., Yj-\,X] un polynöme et soit Fj
Velement de V[Y,X] defini par:

Fj(Yu. ..,Yr,X) Qj(Yu..., Yj-!,X) + YjXdj.

Soit a Vensemble des x E V[Y,X] tels que xXm appartienne, pour m assez

grand, ä Videal engendre par les Fj. Alors a est un ideal premier de V[Y,X]
et on a an V[X] 0.

Demonstration. Introduisons 1'anneau V[X]x V[X, T]/(XT — 1) et

1'homomorphisme canonique u: V[X] V[X]x. Considerons de meme

1'homomorphisme canonique v: V[Y,X] —^ V[Y,X]x, avec V[Y,X]x
V[Y,X,T]/(XT - 1). Notons I 1'ideal de V[Y,X] engendre par les Fj et

soit J 1'ideal de V[Y,X]x engendre par v(I), done aussi engendre par
les uFj. On deduit de v, par passage aux quotients, un homomorphisme

w: V[Y,X]/I V[Y,X]x/J. On a un diagramme commutatif d'applications
canoniques

V[X} V[X\x

ß

V[Y,X]/I V[Y,X]x/J.

D'apres le lemme 3, b) applique ä l'anneau integre V[X], 1'homomorphisme u

est injectif et l'anneau V[X]x est integre. D'apres le lemme 3, a) applique
ä V[YjX]/I, a est le noyau de 1'homomorphisme compose de w et de

l'application canonique de V[Y,X] dans V[Y,X]/I. II nous suffit alors de

prouver que ß est bijectif. Cela impliquera en effet que V[Y,X]x/J est integre,
done que a est premier, et que woa est injectif, done que an V[X] 0.

Posons pour simplifier A V[X]x et B V[Y,X]x/J. Par construction,
B s'identifie au quotient de A[Y\,... ,Yr] par l'ideal J' engendre par les

polynomes uFj. Mais, notant Tf l'image de T dans A, on a TX 1, done

uFj Xdj(Yj + T,djQj). Posons G, -T,d'Qj E A[YU Y^i]. Comme

X est inversible dans A, l'ideal J' est engendre par les r polynomes
Yj — Gj(Yi,..., Yj-1). Soient yi,... ,yr les elements de A definis recursivement

par

yi=Gu y2 G2(y\), y; G/yi,... ,y;_0
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et soit 7: A[Y\,..., Yr] -A A l'homomorphisme qui applique tout polynöme

L(Y\,..., Yr) sur L(y\,...,yr) G A. Alors 7 induit par passage au quotient
un homomorphisme B -a A inverse de ß. Cela montre que ß est bijectif,
comme annonce, et acheve la demonstration.

Rappelons qu'on a note Ini\ l'ideal (gradue) de Un$[X1,...,Xn] engendre

par les polynomes universels Pj(X1,..., Xn) et que l'ideal resultant universel

tn,d C Un a est forme des u G Un a tels que, pour chaque i 1,..., n, il
existe m G N avec uX171 G In,a •

Dans la demonstration des propositions 3 et 4 qui suivent, nous utiliserons
les notations suivantes. Pour j notons Yj le coefficient de Xn

dans Pj, c'est l'une des indeterminees de l'anneau universel Una- Notons Uo

l'anneau de polynomes sur Z en toutes les indeterminees de Un a autres que
les Yj, de sorte que Una s'identifie ä l'anneau de polynomes Uo[Y\,..., Yr]

et que chaque Pj s'ecrit

L'ideal resultant universel tn a R(Pi,..., Pr) C Un a est premier. Plus

generalement:

Proposition 3. Soit K un anneau integre. Considerons l'anneau
U K <S>z UUfd et soit h: Una —^ U l'homomorphisme canonique. Soit I
l'ideal de U[X\,...,Xn] engendre par les polynomes hP\,... ,hPr. Alors
l'ideal eliminant e(/) de U est premier.

Demonstration. Notons a l'ensemble des u G U[X\,...,Xn] tels qu'il
existe m G N avec uX G I. Soit V l'anneau K<g> 1/oK, • • • ,Xn-\], de sorte

que U[X1,... ,Xn] s'identifie ä V[Y\,..., YnXn]. Les hQj appartiennent tous
ä V[Xn]. On peut done appliquer le lemme 4 et on voit que a est premier et

ne contient aucun element non nul de V[Xn] et en particulier aucun des Xt.
Pour chaque i 1,..., n, notons at l'ensemble des u G U[X\,...,Xn] tel

qu'il existe m G N avec uX171 G I. On a done an a et par definition

Soit u G at. II existe m G N avec uXm G / Ca. Comme a est premier et

ne contient pas Xt, on a u G a. On done prouve 1'inclusion a, c an. Comme
evidemment 1'ordre des indeterminees Xt ne joue aucun role, on a C <Xj

pour tout couple (ij). II en resulte que les ideaux at sont done tous egaux.
La relation (1) s'ecrit done e(/) Una, ce qui implique que e(/) est premier.

Pj YjXi' + QjiXx ,...,Xn) avec Q} £ U0[XU., Xn].

(1)
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COROLLAIRE. Pour qu'un element u de Una appartienne ä Videal
resultant universel zna, ilfaut et il suffit que, pour tout corps k et toute famille
(/i,... ,/r) de polynömes homogenes de k[X\,..., Xn] de degres respectifs

d\,..., dr ayant un zero non trivial dans kn, on ait ü(f\,... ,/r) 0.

Demonstration. La condition est necessaire d'apres le scholie. Inversement,

supposons-la verifiee. Puisque tn a est premier, l'anneau-quotient Un,d/tn,d est

integre. Soit k son corps des fractions et soit h: Una —^ k l'homomorphisme
canonique. Posons fj hPj pour j l,...,r. D'apres le scholie, il existe

une extension K de k telle que les fj aient un zero commun non trivial
dans Kn. II resulte alors de l'hypothese que ü(/i,... ,/r).l^ 0. Mais,
puisque ü(f\,... ,/r) h(u), cela implique u E ker h en?(j •

Soit A un anneau et soient /Ä des elements de A[X\,... ,Xn].
On dit que la famille (fj) est algebriquement liee s'il existe un polynöme
R E A[Ti,..., Ts], non nul, tel que R(f\,... Js) 0. On dit que (fj) est

algebriquement libre dans le cas contraire. Par exemple, la famille (Xj) est

algebriquement libre.

Lemme 5. Soient A un anneau, B une A-algebre de polynömes en un nom-
bre fini d'indeterminees, /i,... Js des elements de B[Xi,... ,Xn] et h \ B —^ A

un homomorphisme. Si les fj sont algebriquement lies, il en est de meme des hfj.

Demonstration. Si B A[U\,..., Um] et si at h(Ul), alors h est

l'unique homomorphisme de A-algebres tel que h(Ut) at. II se factorise en
h' o h", oü h": A[U\,..., Um] —^ A[U\,..., Um-1] est l'homomorphisme de

A[UU..., I/m_i]-algebres tel que h"(Um) am, et ti \ A[UU Um-1] ^ A

est l'homomorphisme de A-algebres tel que h'iU^ at pour i 1,..., m— 1.

Raisonnant par recurrence sur m, on est done ramene au cas oü m 1, c'est-ä-
dire B A[U]. Posons a h(U). Soit R E B[T\,..., Ts] A[U, T\,..., Ts],

non nul, tel que R(UJi,... Js) 0 et dont le degre en U est minimum parmi
les elements de B[T\,..., Ts] ayant ces proprietes. On a hR(hf\,..., hfs) 0

et il suffit de voir que hR est non nul. Mais hR(T\,... ,Tn) n'est autre que
R(a, Li,..., Tn). S'il etait nul, R s'ecrirait (U — a)R' avec R' E B[T\,..., Ts]

et on aurait R' ^ 0 et ,fs) 0 puisque (U — a) ne divise pas

zero, ce qui contredirait le caractere minimal de R.

Proposition 4. a) Uideal resultant universel tna est nul si r < n, non
nul si r ^ n.

b) Si r n, Videal resultant universel zn a est principal.
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Demonstration. Demontrons d'abord un resultat auxiliaire. Soit u E en?(j,

identifie ä un polynöme de Uo[Y\,..., Yr]. Posons s inf(n — 1, r) et

supposons que u ne fasse pas intervenir les indeterminees Yj pour j > s,
autrement dit que Ton ait u u(Y\,..., Ys) E Uo[Y\,..., Ys]. Nous allons

prouver que u 0, c'est-a-dire que tna H Uo[Y\,... ,YS] 0.

Rappelons qu'on a pose

Pj Y}xi + Q,(Xi ,...,Xn) avec Q} £ Uq[X\, Xn].

II existe par definition un entier m £ N et des polynömes u,(Y]. ,Yr) e

U0[YU..., Yr] avec

u(Yu..., Ys)Xn: Y^u](.Yu..., Yr)(YjX$ + Qj(Xu..., Xn)).
J

Posons -Qj(Xu...,Xn-Ul) E U0[XU ,Xn_x\. Sub-

stituant 1 ä Xn et Q' ä Yj pour chaque j, on obtient, dans l'anneau

PoK, • • • ,Xn~\] la relation u(Q[,..., Q's) 0. Si u est non nul, la famille
est done algebriquement liee.

Par definition de l'anneau universel, il existe un homomorphisme d'anneaux
h: Una Z avec hPj —XjXn

1

pour j ^ s qt hPj 0 pour j > s. Puisque
/* annule les Y,, on en deduit un homomorphisme d'anneaux k: f/o —^ Z tel

que pour j 1,... ,s, on ait —XjXn
1

et done kQ'J D'apres le

lemme 5, la famille (Xj)j=yS de Z[XiJ...JXs\ est liee si u est non nul.
Par consequent, u est nul et on a en?(j n f/o[Yi, • • •, Ys] 0 comme annonce.

Cela etant, si on a r < n, done s r, on a f/o[Yi,..., Ys] Una et par
consequent en?(j 0- Cela prouve 1'assertion a), puisque l'on sait dejä que
e«,d ~f~ 0 lorsque r est > n. Si l'on a r n, alors s n— 1 et par consequent

e«,dn f/o[Yi,..., Yr-i] 0. Pour prouver que l'ideal tna est principal, il suffit
alors d'appliquer le lemme suivant:

Lemme 6. Soit A une Z-algebre de polynömes en un nombre fini
dyindeterminees et soit p un ideal premier de A[X]. Si p D A 0, Videal p

est principal.

Demonstration. Soit K le corps des fractions de A. D'apres [Bou07b], A,
IV, p. 11, prop. 11, l'ideal pK de K[X] est principal. II existe done u(X) E p

et a E A, avec a^ 0, tels que pK (u(X)/a)K[X] u(X)K[X]. Soit cEA
un contenu (appendice 1) de u(X), de sorte que u(X)/c appartient ä A[X] et

est de contenu 1. On a c(u(X)/c) E p et c £ p puisque p D A 0, done

u(X)/c E p. Remplagant u(X) par u(X)/c, on peut done supposer que u(X)
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est de contenu 1. Soit v(X) un element non nul de p. Montrons que v(X)
est un multiple de u(X) dans A[X], done que u(X) engendre 1'ideal p. II
existe b e A et w(X) e A[X], non nuls, avec bv(X) u(X)w(X). Alors b

divise un contenu de u(X)w(X), done divise un contenu de w(X) d'apres
le lemme de Gauss (appendice 1), et on a bien v(X) u(X)(w(X)/b), avec

w(X)/b G A[X].

Remarque 2. La demonstration du lemme 6 n'utilise que le fait que A
est factoriel.

COROLLAIRE. Soient k un corps et I un ideal gradue de k[X\,..., Xn]
tel que /o 0. Si I est engendre par des polynömes en nombre strictement

inferieur ä n, il existe une extension K de k, de degre fini, telle que I possede

un zero non trivial dans K".

Demonstration. Cela resulte de la partie a) de la proposition 4 et du

scholie.

4. Resultant de n polynömes homogenes ä n indeterminees

Dans ce numero, on fixe Vender n > 0 et on se place dans le cas oü

r n.
Pour chaque famille d (d\,..., dn) de Nn tel que dj > 0 pour

j 1on note respectivement U& et ea l'anneau universel Una et

1'ideal eliminant universel en,a introduits au numero precedent.

D'apres la proposition 4, b) du n° 3, l'ideal ea est principal. Soit a E Ua

un generateur de cet ideal. Considerons les polynömes XjJ de Z[X\,... ,Xn]

et Lender m D'apres le scholie du n° 3, on a h(m) 0

pour tout homomorphisme h de Z dans un corps k. En particulier, m n'est
divisible par aucun entier premier, done est egal ä 1 ou ä — 1. Comme les

seuls elements inversibles de l'anneau Ua sont 1 et —1, on voit que u a/m
est l'unique generateur de l'ideal ea tel que 1.

Definition 3. On note Ra l'unique element u de Ua tel que ea uUa

et ü(Xf\ 1. Pour chaque anneau A et chaque famille (/i,...,/«)
de polynömes homogenes de A[Xi,... ,Xn] de degres respectifs d\,...,dn,
l'element Ra(/u • • • Jn) de A est note res(/i,... Jn) et appele resultant de

la famille (/i,... Jn).
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Remarque 1. Dans l'anneau [/a, on a

res(R i 1,0, PJ+X 0

comme il resulte des cor. aux prop. 3 et 4 du n° 3 appliques au corps
des fractions de U&. II s'ensuit que res(/i,... Jn) 0 des que l'un des

polynömes f est nul; comme d'autre part un polynome homogene non nul
possede un degre uniquement determine, on voit que 1'element res(/i,... Jn)
ne depend pas du choix de la famille d tel que f soit de degre pour tout j.
Cela justifie 1'absence de la mention des dans la notation du resultant.

On a par definition Ra res(Pi,..., Pn). Aussi dirons-nous que Ra est le

resultant universel (relativement aux degres dt). Puisque l'ideal ea est premier
(prop. 3 du n° 3), le polynome R& est premier (appendice 1).

SCHOLIE. A chaque famille (/i,... ,/«) de polynömes homogenes de

degres > 0 en X\,...,Xn ä coefficients dans un anneau A, nous avons
associe un element res(/i,... ,/n) de A. De plus:

a) si h: A -A B est un homomorphisme d'anneaux, on a

res(Yi,..., hfn) A(res(/i,... ,/„));

b) si A est un corps, on a res(/i,... ,fn) 0 si et seulement s'il existe une

extension K (de degre fini) de A telle que les f aient un zero commun

non trivial dans K" ;

c) on a res(Xf\ 1, pour toute famille (df) d'entiers strictement

positifs;
d) pour toute famille (dj) d'entiers strictement positifs, le resultant

res(Pi,..., Pn) des polynömes universels correspondants engendre un
ideal premier de Vanneau universel de coefficients U&.

Exemple 1. Soient A un anneau, (af) une matrice carree d'ordre n ä

coefficients dans A. On a

res(^ ai,X„ • • ^ amX,) det(ay).
I I

II suffit de faire la demonstration lorsque A U(i, ,i) Z[(ry)i^i)i7^w]
et atJ TtJ, auquel cas la relation proposee s'ecrit R(i5 ^ det(ry).
D'apres le corollaire ä la proposition 3 du n° 3 et [Bou07a], A, III,
p. 102, prop. 14, il existe / f((Ty)) e A avec det(Ty) =f((TlJ))R(h 5i).
Puisque det(7Ty) est homogene de degre n, le polynome / est homogene
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de degre s ^ n. Attribuons alors la valeur 0 ä chaque variable TtJ

avec i j. On obtient alors dans l'anneau Z[7n,..., Tnn] une relation

Tu...Tnn g{Tn,... ,Tnn) res(TnX1,...,TnnXn), ou g est un polynome
homogene de degre s. Mais, puisque le polynome res(rnXi,..., TnnXn)

s'annule lorsque l'un des Tu s'annule, il est divisible par le produit T\\- • - Tnn.

Cela implique que s 0, done que / est constant. Prenant pour (atJ) la matrice

unite, on voit que / 1.

Remarque 2. a) On peut exprimer la relation precedente comme suit:
le resultant d'une suite de n formes lineaires est le determinant de cette suite

relativement ä la base canonique (2Q,..., Xn).

b) II resulte de ce qui precede que le polynome det(Ty) est premier.

Remarque 3. Les proprietes a) ä d) du scholie caracterisent le resultant.

En effet, supposons donne, pour chaque famille (/i,... Jn) de polynömes
homogenes de degres >0 en X\,..., Xn ä coefficients dans un anneau A,
un element p(f\ de A, de fagon que les proprietes analogues soient
satisfaites. Posons a p(Pi,... P«) G U&. D'apres a), on a p(/i,... Jn) —

a(/i,... ,/n). Appliquant alors b) au corps des fractions de l'anneau integre

Ua/td ^ ä la famille image de la famille universelle, on voit qu'on a a G ea,

done que a s'ecrit a bRd, avec b G Ud- Comme a et Rd sont premiers
d'apres la condition d), b est inversible, done egal ä ±1. La condition c)

implique alors b 1.

Nous utiliserons ä plusieurs reprises le resultat technique suivant:

Lemme 7. Soit V une Ud-algebre de polynömes en un nombre fini
d'indeterminees et soit (q\,... ,qn) une famille de polynömes homogenes de

degres > 0 de V[X\,..., Xn]. Supposons que, pour tout homomorphisme h

de V dans un corps k tel que la famille {Pf) ait un zero commun non trivial
dans kn, il en soit de meme de la famille {qf). Alors res(gi,..., qn) est

divisible dans V par le resultant universel res(/fi,... ,Pn).

Demonstration. L'anneau V/VRd est une algebre de polynömes sur
l'anneau integre Ud/UdRd, done est integre. Notons k son corps des fractions.

II existe une extension K de k telle que les P3 aient un zero commun non
trivial dans Kn (proprietes a) et b) du scholie). Alors les q3 ont aussi un

zero commun non trivial dans Kn et (toujours d'apres a) et b)) l'image de

res(gi,...,gn) dans k est nulle, done res(gi,...,gn) appartient ä VRd-
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Fixons une permutation a G &n. Nous allons definir un element Da de ea,

appele determinant de Sylvester d'indice a (pour les degres fixes d\,...,dn).
Posons

n n

r=-i)+i y~Ui-"+i
1=1 1=1

et soit M 1'ensemble des monomes X" pour \cx\ r. Par definition de r,
tout monome de M est divisible par au moins un des Xfl.

Pour i 1soit Mt la partie de M formee de ceux de ces

monomes qui sont divisibles par XdJ^ et ne sont divisibles par aucun des XdJ^

pour j < i. II est clair que les Mt forment une partition de M.
Pour chaque monome m G M, soit i(m) 1'unique entier tel que m

appartienne ä M^m), soit u(m) le monome tel que

m «(rnyxt

et posons

Q(m) u(m)P
La famille (m)mGM est une base du Ua -module fibre des polynömes homogenes

en les Xt de degre total r. Les Qm appartiennent ä ce module et on note Da
le determinant de la famille (Qm)meM relativement ä la base

Lemme 8. Le determinant Da est un element non nul de ea- II n'est
divisible par aucun entier > 1. II est homogene et de degre (d\ • • • dn)/da(n)

en les coefficients du polynöme universel Pa(n)-

Demonstration. Par construction, 1'element Da(X((\ ,X„n) est le
determinant de la matrice unite, done est egal ä 1, ce qui implique que Da n'est

pas nul et n'est divisible par aucun entier > 1. Pour chaque i 1le
monome X\ appartient ä M; les formules de Cramer ([Bou07a], A, III, p. 102,

formule (37)) entrament que DcTX\ est une combinaison lineaire des ß(m),
done appartient ä 1'ideal engendre par les P3; ainsi, Da appartient ä ea par
definition de ce dernier. Enfin, Da est homogene de degre Card(MJ en les

coefficients de Pa^) pour chaque i et notamment pour i n. Mais Mn est

1'ensemble des X" G M avec a3 < d3 pour j ^ o{rt), de sorte qu'on a

Card(Mn) Y\j^a(n) ''' ^n)/da(n) •
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Proposition 5. Soit A un anneau et, pour i 1, soit ft un

polynöme homogene de degre dt> 0 de A[Xi,... ,Xn].

a) Soient Ai,..., Xn des elements de A. On a

res(AifiXnfn) X[l Xrn" res(ft

ou rt (d\ - - - dn)jdl d\ • • • dt-\dl+\ • • • dn pour i 1,..., n.

b) Soit i G [1 ,/i] et soit // un polynöme homogene de degre > 0 de

A[Xi,... ,Xn]. On a

res(/i, • • • • • Jn)

res(/i, • • • ift—iifnft+ii' • • ,/„).res(/i,... ,/n).

Demonstration. La demonstration s'effectue en plusieurs etapes.

1) Posons (d\ - - - dn)/dt. D'apres le lemme 8, l'ideal ea forme
des multiples de R& contient pour chaque i un element non nul qui est

homogene de degre rt relativement aux coefficients de Pt. II s'ensuit que R&

est homogene de degre st relativement aux coefficients de Pt avec st < rt
([Bou07b], A, IV, p. 9, remarque). Pour demontrer a), il suffit done de

demontrer que st rt pour chaque i.
2) Plagons-nous dans les hypotheses de b) et notons le degre

de //. Considerons 1'anneau universel Un&, oü d' (di,..., dnj dn+\) et
les polynomes universels Pi,... P«+i G U'd[Xi,... ,Xn], et posons

R res(Pi,... ,P,_i,PnPi+i,... ,Pn),
R' res(Pi,... ,Pt-i,Pn+i,Pl+i,... ,Pn),

S res(Pi,... /Whj/Vh, ,Pn).

Ptfwr demontrer b), il suffit de prouver que S PP'. En effet, il existe un homo-

morphisme d'anneaux h: Un# —) A tel que hP\ /i,... ,hPn =fn,hPn+\ =//
et l'egalite cherchee n'est autre que h(S) h(R)h(R').

3) Montrons que RR' divise S. Appliquant le lemme 7 ä 1'anneau V Un^>

et ä la famille (Pi,...,P^-i,PjP«+i,P*+i,...,P«), on voit que R divise S.

On voit de meme que R' divise S. Mais R est premier et il suffit maintenant
de noter qu'il ne divise pas R', puisque R' est de degre 0 par rapport aux
coefficients de Pt tandis que R ne l'est pas (cela resulte par exemple de la

remarque 1).

4) Dans Vanneau Z[Pi,..., Tn], Velement res(PiA^1,..., TnX^n) est
divisible par T[l - - - Trnn. Raisonnons par recurrence sur d\-\ b dn > n. Lorsque
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d\-\ \-dn n, chaque dt est egal ä 1 et 1'assertion resulte de l'exemple 1.

Si d\ + • • • + dn > n, on a par exemple d\ > 1. D'apres l'hypothese de

recurrence, res(riXf1-1, T2Xd2,..., TnX„n) est divisible par p^/dn

oü a (d\ — \)d2 • • • dn, tandis que res(Xi, T2Xdl,..., TnX„n) est divisible

par T^dl - - - T^dn avec b d2 • • • dn. Appliquant 3), on en conclut

que res(7TiAf1,..., TnX„n) est divisible par le produit des deux expressions

precedentes, produit qui est bien T[l • • • Trnn.

5) Fin de la demonstration. D'apres 1), on a

res(hXfTnXdn'') A ''' K" res(*f,..., Xdn-) 7? • • •

avec st ^ rt pour tout i. Comparant ä 4), on voit qu'on a st rt, ce qui acheve

de demontrer a). Enfin, avec les notations de 2), on a vu dans 3) que RR'

divise S. Mais, d'apres a), RR' et S ont le meme multi-degre. II existe done un
entier a G Z avec S aRR'. Comme on a S(Xd'xf+dn+l,..., Xf) 1,

R{Xf ,...,Xd',...,Xf) \ et R'(XfXf"+',..., Xd") 1, il s'ensuit que
a 1, ce qui acheve la demonstration.

COROLLAIRE 1. Soit d (Ji,...,dn) une suite d'entiers > 0. Le resultant
universel Ra est Vunique element R G satisfaisant aux trois conditions
suivantes:

a) Pour i 1R est homogene de degre {d\---dn)!dl en les

coefficients de Pt.

b) Si k est un corps, si, pour chaque i ,n, ft est un polynome
homogene de degre dt de k[X\,..., Xn] et si les ft ont un zero commun

non trivial dans kn, alors R(f\,... ,/n) 0.

c) On a R{Xdl,... ,Xd") 1.

Demonstration. On sait dejä que R& satisfait ä ces conditions: a) resulte
de la partie a) de la proposition 5; b) et c) resultent des conditions b) et c)
du scholie. Inversement, soit R E Ua satisfaisant ä ces conditions. D'apres le

corollaire de la prop. 3 du n° 3, la condition b) implique qu'il existe u E Ua

avec R uRd. La condition a) implique alors u E Z. On deduit enfin de la

condition c) que u 1.

Exemple 2. Pour n 1, on obtient

res(AXf) A.

Exemple 3. Supposons n 2. A chaque polynome homogene en

deux indeterminees Q(X\,X2), associons le polynome en une indeterminee
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Q^{X) Q(X, 1). Soient A un anneau, / et g deux polynomes homogenes de

degres respectifs p > 0 et q > 0 de A[X1^X2], f et gb les polynomes associes

dans A[X]. Considerons le resultant resp,q(f\gb) GA defini en [Bou07b], A,
IV, p. 71, def. 1. On a alors res(/,#) resp^(/b, gb). En effet, 1'element
R resp,q(P\, P?) G U(p,q) jouit des proprietes a), b) et c) du corollaire 1, en

vertu respectivement de [Bou07b], A, IV, p. 72, formule (28), p. 73, cor. 2 et

p. 75, cor. 1, (i).

Corollaire 2. Soit d (Ji,...,Jn) une suite d'entiers > 0 et, pour
chaque i, soit at G une permutation telle que crt(n) i. Alors Velement Ra

de Ua est un plus grand commun diviseur des determinants de Sylvester DGi

Demonstration. Cela resulte du fait que R& divise chacun des DGi que
Ra et les DGi ne sont divisibles par aucun entier > 1 (lemme 8) et que,

pour chaque /, Rd et DGi sont homogenes du meme degre en les coefficients
de Pt.

Corollaire 3. Avec les notations de la proposition 5, soit a G &n une

permutation et soit ea sa signature. On a

res(/CT(i),... ,fa(n)) edJ'"d" res(fu... ,/„).

Demonstration. D'apres le corollaire 1, il suffit de prouver la relation

proposee lorsque ft Xfl. Mais la partie b) de la proposition implique

res^j1;,... ,X^) res(XCT(1),... ,Xa(n)f-d".

et on conclut en appliquant 1'exemple 1.

Exemple 4. Soit A un anneau. Pour j 1soit (Uy)^
famille de d} formes lineaires en ä coefficients dans A, de sorte

que YlieE Uy est un polynome homogene de degre J,. On a alors

res(H ua, H uln) P[ det(ullU ,uhn)
1EE1 lE:En (l\, ,ln~)£Ei X • • • XEn

Cela resulte en effet de la proposition 5, b) et de 1'exemple 1.

Comme on l'a vu, le resultant universel R& est irreductible en tant que

polynome ä coefficients rationnels. Plus generalement:

Proposition 6. Pour tout anneau factoriel K, le polynome 1 k ® est

premier dans Vanneau de polynomes K (g)z U&.
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Demonstration. Posons d d\ H Ydn et soit S la suite formee de d fois
l'entier 1. Considerons l'anneau universel de coefficients Un,5 et la famille
universelle de formes lineaires (Li,... ,Lj). Posons V K®Unj. C'est

une algebre de polynomes sur K, done un anneau factoriel (appendice 1).

Decomposons l'intervalle [1 d] en n intervalles consecutifs 7i,...,/n, de

longueurs respectives d\,..., dn. Pour j 1,..., n, soit Pj E V[X\,..., Xn]
le produit des dj formes lineaires LtAK pour i E et soit h: K ® U& V

l'homomorphisme tel que h(,PjAk) P3 pour j 1On a 1a:)

res(Pi,... ,Pn). Tous les elements de l'image de h sont invariants sous Paction
du groupe de permutations G Ylj&i, G &d (n° 2, exemple 4). Si ,Rd.l^
pouvait s'ecrire comme produit de deux polynomes non constants de K®Ua,
alors le resultant res(Pi,..., Pn) pourrait s'ecrire comme produit de deux

polynomes de V, non constants et invariants sous Paction de G. Mais,
d'apres 1'exemple 4 ci-dessus, cet element est le produit d'une famille de

polynomes premiers distincts, cette famille etant une orbite du groupe G. Une

telle decomposition est done impossible, ce qui acheve la demonstration.

Proposition 7. Supposons n ^ 2. Soient A un anneau, des

polynomes homogenes de degres > 0 de A[Xi,... ,Xn] et soit i E [1, n] tel que

ft Xf. Pour j / i, notons f le polynome de A[Xi,... ,2^-1,2^+1,... ,Xn]
obtenu en substituant 0 ä Xt dans f. On a alors

res(/i,... i-i.lfi+i,. • ,fn) res(/i,..... ,fn)d.

Demonstration. Pour simplifier les notations, nous ferons la demonstration
dans le cas i n. D'apres la proposition 5, b), il suffit de traiter le

cas d 1. Notons dj le degre de f et posons d (di,..., dn-\) et

(di,... ,dw_i, 1). II suffit de faire la demonstration dans le cas oü

A I/dtf et f Pt pour i 1,..., n — 1. Mais A est une algebre de

polynomes sur Ua et res(Pi,..., Pn-\) est le resultant universel R& E f/d.
Appliquant le lemme 7, on voit que res(Pi,...,\,Xn) est divisible dans A

par res(Pi,...,Pn~i). Mais ces polynomes sont homogenes et de meme degre;
leur rapport est done un entier. La relation proposee etant vraie lorsque f Xf1

pour i 1,..., n — 1, cet entier est egal ä 1, ce qui acheve la demonstration.

Proposition 8. Soient A un anneau, /i,... ,/n des polynomes homogenes
de degres respectifs dt > 0 de A[X\,... ,Xn], et g\,...,gn des polynomes
homogenes de degres respectifs dn — dt (on convient que gt 0 lorsque dn — dt

est < 0). On a alors

res(/i,... ,fn-Ugifi H b g„f„) (g„)dl d'-1 res(/i,... ,/„).



356 M DEMAZURE

Demonstration. Nous allons classer les indices i 1,..., n suivant le

signe de dn — dt. D'apres le cor. 3 ä la prop. 5, les deux membres se

modifient de la meme maniere lorsqu'on permute les polynomes Jn- \ •

On peut done supposer qu'il existe s £ [1 ,/i], tel qu'on ait dn — dt < 0

pour i < s, et dn — dt > 0 pour s ^ i ^ n. Ainsi, gL 0 est

nul pour i < s et est de degre dn — dt pour s ^ i ^ n. Posons

d (d\,..., dn) et d' (d\,..., dnj dn — dSj..., dn — dn). Introduisons
l'anneau universel Un& et notons Pi,...,Pm QS1..., Qn la suite universelle

correspondante de polynomes. Notons au passage que Qn, comme gn, est de

degre 0 par hypothese. II existe un homomorphisme d'anneaux h\ Un& —) A
tel que hPt fL pour i 1,... ,/i et hQt gt pour s < i < n. Le premier
membre de la relation ä demontrer est done 1'image par h de 1'element
S res(Pi,.. Q), avec Q QSPS H h QnPn• Tout zero commun
ä Pi,...,Pn etant un zero de ß, on deduit directement du lemme 7 qu'il
existe u £ Una> tels que uRa S. II s'agit done de demontrer que Von a

u Q$

Mais S et Rd sont homogenes et de meme degre (d\ • • • dn)/dl relativement
ä 1'ensemble des coefficients de chaque polynome Pt. II en resulte que u ne

depend pas de ces coefficients. Substituant alors les Xfl aux Pl9 on obtient
la relation u res(Xf,..., Xdn"~\, Q), avec Q QsXf + h Q„X^. Par

application iteree de la prop. 7, cela donne

u res(<2(0,..., 0,Xn)f d'-> res{QnXdn"t d"~l,

qui vaut bien Q'!,' d"~'
d'apres l'exemple 2.

Proposition 9. Soient A un anneau, des polynomes homogenes
de degres respectifs dt > 0 de A[X\,..., Xn], et (atJ) une matrice carree
d'ordre n ä coefficients dans A. Pour i 1posons

nxi ,...,xn)= a>A* a«A) •

j j
On a

res(/i',... det(a,/' d" res(/i

Demonstration. II suffit de faire la demonstration dans le cas oü A est

l'anneau f/d[(Zy)]i^^n, ft Pt pour tout i et (atJ) (Zy). Soit h: A -> k

un homomorphisme de A dans un corps k, posons ztJ h(ZtJ). Si la matrice

z (Zij) est inversible, le produit par z d'un zero commun non trivial des Pt

dans kn est un zero commun non trivial des P[; si z n'est pas inversible,
tout vecteur non nul du noyau de z est un zero commun non trivial des P[.
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Appliquant le lemme 7, on voit qu'il existe mGA avec res(P[,..., P'n) uRd.
Mais w est alors homogene de degre 0 par rapport aux coefficients des Pt,
done appartient ä Z[(Zy)]. Posant X' pour tout i et substituant
les aux dans la relation precedente, on obtient

« res(X(dl ,...,X'nd") res(X(,..., X'nt d" det(Z,/'

d'apres la prop. 5, b) et l'exemple 1.

Remarque 4. La proposition precedente s'applique notamment lorsque
A f/d[Zi,... ,ZW] et /i pour i 1et qu'on prend pour
matrice (ay) la matrice diagonale (Z^y). On en conclut que si l'on munit
f/d de la multigraduation de type Nn pour laquelle le coefficient de X" dans

chacun des Pt est de multidegre a., le resultant universel res(Pi,..., Pn) est

multihomogene de degre (d\ - • • dn,... ,d\ - • • dn).

5. Discriminant d'un polynöme homogene ä n indeterminees

Soient n et d deux entiers, avec n > 0 et d > 2. Si A est un anneau
et / E A[Xi,... ,XW] un polynöme homogene de degre d, nous noterons /(/)
l'ideal de A[Xi,...,Xn] engendre par / et ses n derivees partielles Dtf
([Bou07b], A, IV, p. 6).

Nous appellerons zeros critiques de / les zeros de l'ideal /(/), c'est-a-
dire les zeros communs ä / et ä ses derivees partielles. Rappeions Videntite

d'Euler ([Bou07b], A, IV, p. 8, prop. 6):

Y, x,D,f df.
i=l, ,n

II en resulte que si l'entier d ne divise pas zero dans A, tout zero commun
aux Dtf est aussi un zero de /, done un zero critique de /.

II existe un unique homomorphisme d'anneaux h\ Un^ ^ A tel que

/ hPn,d et on peut traduire dans cette situation le schöbe du n° 3:

SCHOLIE. Soient k un corps, f E k[X\,..., Xn] un polynöme homogene
de degre d et h: Unj -A k Vhomomorphisme d'anneaux tel que f hPnj.
Les trois proprietes suivantes sont äquivalentes:

(i) On a h(z(J(Pnid))) 0.

(ii) On a e(/(/)) 0.
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(iii) II existe une extension K de k telle que f possede un zero critique
non trivial dans K".

(iii bis) II existe une extension K de k, de degre fini, telle que f possede

un zero critique non trivial dans K".

(iii ter) Une extension algebriquement close L de k etant donnee, il existe

un zero critique non trivial de f dans Ln.

Remarque 1. On a Z n t{J{Pn^)) 0. En effet, distinguons deux cas.

Pour n 1, on a U\^ Z[T] et P\yd(X) — TXd, done J(P\,d) est engendre

par TXd et dTXd~l et par consequent 4)) TZ[T]. Pour n > 2,
appliquons le schöbe avec k Q et / Xd ; puisque / possede le zero

critique (1,0,... ,0) E Qn, t(J(Pn4)) est contenu dans le noyau de /*, mais

la restriction de h ä Z est injective.

L'ideal eliminant t(J(Pn,</)) C Un^ est premier. Plus generalement:

Proposition 10. Soit K un anneau integre. Considerons Vanneau U
K (g)Z Un^d et soit h: Un^ —^ U Vhomomorphisme canonique. Alors Videal
eliminant t(J(hPn^)) C U est premier.

Demonstration. Notons pour simplifier P hPn4 et J J(P). Lorsque
n 1, on voit comme dans la remarque precedente que t(J(P)) est l'ideal
TK[T] de K[T], done est premier. On peut done supposer n ^ 2. La
demonstration est calquee sur celle de la proposition 3 du n° 3.

Soit a l'ideal de U[X\,..., Xn] forme des a tels que aX appartienne
ä J pour m assez grand. Exactement comme dans la proposition 3, il suffit
de prouver que a est premier et ne contient aucun des Xt.

Notons J' l'ideal de U[Xi,...,Xn] engendre par P et les DtP pour
i < n. II resulte immediatement de l'identite d'Euler que l'on a XnDnP E J',
done XnJ c J' C /. Ainsi a peut aussi etre defini comme 1'ensemble des

a E U[Xi,..., Xn] tels que aX appartienne ä J' pour m assez grand. Mettons

en evidence dans P les termes divisibles par Xd~l et leurs coefficients (les Yt

de la formule ci-dessous, qui sont certaines des indeterminees de U):

P F(XU. ..,Xn) + YxXxXdn-x + • • • + Y^X^Xt1 + YnXdn

ou F est de degre d — 2 en Xn. On a, pour j=l,...,/i — 1,

DjP DJF+Y]Xdn~1-

Mais U[X\,...,Xn] est de la forme V[Ti,..., En_i,Xn] oü V est l'anneau
des polynömes ä coefficients dans K dont les indeterminees sont tous les



RESULTANT, DISCRIMINANT 359

coefficients de P autres que les Yt, ainsi que les indeterminees X3 pour

j < n. Les polynomes F et D3F appartiennent ä V[Xn]. Les proprietes
annoncees de a decoulent alors directement du lemme 4 du n° 3, applique ä

la suite de polynomes D\P,... ,Dn-\P,P.

Dans ce qui suit, pour tout anneau A et tout polynome homogene

f EA[Xi,... ,Xn] de degre > 2, nous notons A«,</(/) et 8n4(f) les elements

de A definis par

AM(/) res(D1/,...,Dn_1/,/),
5M(/) res(D1/,...,Dn_1/,Dn/).

lis appartiennent par construction ä 1'ideal eliminant de /(/).
En particulier, Anyd(Pn,d) et Sn^(Pn,d) sont des elements de z(J(Pn^)). Si

h: Un,d —^ A est l'homomorphisme tel que hPn,d /, alors h(An^(Pn^))
An4(f) et de meme h(8n4(Pn4)) — 8n4(f) •

Exemple 1. On a Ahd(TXd) res(TXd) T et 8hd(TXd) res(dTXd~l)
dT. Prenons plus generalement A Z[7i,..., Tn] et f(Xi,... ,Xn)
T\Xd + • • • + TnXd, avec d > 2. On a alors

M/) dn^-xf~\Tx • • • Tnid~l)n~l.

En effet, on a Dtf dTtXf~l done, d'apres la prop. 5, a) du n° 4,

$n,d(f) Ilm«-* II en resulte notamment que 5nyd(Pn,d) n'est pas
nul.

Exemple 2. Prenons A Z[T] et / Xf + avec d > 2. On

a alors

En effet, on a d'abord S2,d(f) res(dXf_1 + TXf~\(d - \)TXXX{~2). Par

multiplicativite et homogeneite du resultant relativement au second terme

(prop. 5, b) du n° 4), 824(f) est produit de ro (d — \)d~lTd~l de

r, res(dXd~x + TXd~\Xd et de r2 resCJXf"1 + TXd~x,Xd~2)- Appliquant
la prop. 7 du n° 4, on obtient r2 res(dXd~l)d~2 J''-2. Appliquant cette

meme proposition ainsi que le cor. 3 ä la prop. 5 du n° 4, on obtient

n (-l^-'res^dXf"1 + TXd~l) (-lA'res{TXd~l) {-\)d~xT.
Reportant les valeurs de ro, r\ et r2 dans la relation 824(f) ro ri r2»

on obtient le resultat indique.
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Lemme 9. Si f est un polynöme homogene de degre d ^ 2 de

A[Xi,... ,Xn], n ^ 2, et si f G A[Xi,... ,Xw_i] est obtenu en substituant 0

ä Xn dans f, on a

d(d~ir~l An,d(f) 5n,d(f)5n.hd{f).

Demonstration. On a successivement

An,d(f)

res(£>i/,..., Dn-if, df) (n° 4, prop. 5, a))

res(£>i/,..., Dw_i/,XiDi / + + XnDnf) (identite d'Euler)

res(Dxf,.. .,Dn_xf,XnDnf) (n°4, prop. 8)

iesCDi/,.. .,Dn_xf,Xn) res(A/,... ,AJ) (n°4, prop. 5, b))

Sn,d(f) (n° 4, prop. 7).

Dans la suite de ce numero, etant donnes deux entiers n > 0 et d > 2,
nous poserons:

(d - l)n-(-l)na(/i, d)

sin. d)

cl

n(d — l)n~l — a(n, d)
d

On a a(0,d) s(0,d) 0, a(l,d) 1, s(l,d) 0 et, pour n > 2,

(2) a(/i, d) (d — 2). a(/i — 1, J) + (J — 1). a(/i — 2, J),
(3) s(w, d) (d- I)""2 + (d - 2). s(w - 1, d) + (J - 1). s(n -2,d),
ce qui montre que a(n,d) et s(n,d) sont des entiers > 0. On a par ailleurs,

(4) a(n,d) + a(n- 1, d) (d - l)"-1, 1.

Lemme 10. 5/ G Z[Xi,... ,Xn] est defini par

fn,d(Xu ...,X„) Xd+ XxXd2-x + X2Xd~l + + Xn-iX*-1,

on a

Sn,d(fn,d) (1 " df-l*"'d)daM.

Demonstration. Fixons d. Posons pour simplifier fn fn^ et 8n

$n,d(fn,d)- On a fx Xd, done öx d da<did\ et d'apres l'exemple 2,

<52 (1 — d)d~ldd~2 (1 — d)d~lda(2'd\ Supposons n > 2 et raisonnons par
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recurrence. On a Dnf (d — l)Xd 2Xn-\. Par homogeneite et multiplicativite
du resultant (prop. 5 du n° 4) Sn est le produit de trois termes, ä savoir

n res(£>i/„,.. .,Dn_ifn,Xn)d~2,

res{D\fn,..., Dn-\ fn •> Xn—\).

Les deux resultants ci-dessus sont justiciables de la proposition 7 du n° 4.

Lorsqu'on substitue 0 a. Xn dans les n — 1 premieres derivees de fn, on
trouve les derivees de fn-\, ce qui donne r\ (5n-\)d~2. Pour calculer 7*2,

commengons par permuter les deux derniers polynomes, ce qui donne (cor. 3

ä la prop. 5 du n° 4) r2 ar2 avec a (—= (— \)d~l et

r'2 res(Di/n,... ,Dn-2fn,Xn-i,Dn-ifn). Lorsqu'on substitue 0 ä dans

les n — 2 premieres derivees de fn, on trouve les derivees de fn-2- Lorsqu'on
substitue 0 ä Xn-\ dans Dn-\fn, on obtient X„~x, ce qui, par une nouvelle

application de la prop. 7, donne r2 (8n-i)d~l • On obtient ainsi la formule
de recurrence

S„ (1 -
Compte tenu des relations (2) et (3) et de l'hypothese de recurrence, cela

donne bien Sn (1 - d)(d~1)sMdaM.

Rappeions (appendice 1) que l'on appelle contenu d'un element non nul P
de la Z-algebre de polynomes Un^, le plus grand entier (positif) qui divise P.

Lemme 11. Dans Vanneau Un^, An,d(Pn,d) est de contenu 1 et 5n^(Pn,d)
est de contenu da<Jl,d\

Demonstration. Fixons d > 2. Notons c(n) le contenu de Sn^(Pn,d) et

C(n) le contenu de An^(Pn,d)- Posons qn 8n^(Pn,d)/e(n) E Un^> Pour tout
anneau A et tout polynome homogene / E A[X\,... ,Xn] de degre J, on aura

(5) 8n,d(f) c(ri)qn(f),

de sorte que c(n) divise II resulte alors du lemme 10 qu'il existe des

entiers un et sn > 0 avec

(6) unc(n) (d —

Appliquant le lemme 9 et le lemme de Gauss (appendice 1), on obtient

(7) d(d~l)n~lC(n) c(n)c(n - 1),
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et done d'apres la relation (6)

unun-XC{n) {d- iyr.+^d^",d)+a(n-l,d) ^

D'apres la formule (4), il en resulte qu'on a unun-\C{n) (d — lyn+^-i, ce

qui implique que un est premier ä d. Revenant ä (6), on voit alors que c(n)
s'ecrit vda^n^d\ avec v premier ä d. Mais l'exemple 1 impose que c(n) divise

une puissance de d, done que v 1. Cela donne la valeur annoncee pour c(n).
Reportant dans (7) et appliquant ä nouveau (4), on obtient C(n) 1.

Definition 4. Soient A un anneau, 1 un entier et / un polynome
homogene de degre d > 2 de A[X\,... ,Xn]. On appelle discriminant divise
de /, ou simplement discriminant de /, et on note disc(/) 1'element u(f)
de A, oü u est 1'element de Un^ defini par

da(n'd)u res(D1Plhd,...,DnPlhd).

En particulier, 1'element u discCPn,d) de Un^ est appele le discriminant
(divise) universel. C'est par construction un polynome ä coefficients entiers
de contenu 1. II est homogene de degre n(d— l)n~l.

Remarque 2. Puisque 1'ideal t(J(Pn,</)) est premier (prop. 10) et ne

contient pas 1'entier da(riid) (remarque 1), il contient disc(Pn^). Nous verrons
ci-dessous (n° 6, cor. 1 ä la prop. 14) qu'en fait le polynome disc(Pn^)
engendre l'ideal z(J(Pn,</)).

Remarque 3. Compte tenu de l'identite (4), la relation du lemme 9 peut
aussi s'ecrire Anj(f) disc(/) disc(/).

Exemple 3. On a disc(AA^) A. Plus generalement, on a d'apres
1'exemple 1, et la relation n(d — l)n~l — a(n,d) ds(n,d):

disclAiXf + • • • + X„Xi) dds(n'd)(Xl Xn)(d~l)"~l.

Exemple 4. Avec les notations du lemme 10, on a

disc(fn,d) (1 - df-m"'d).

Exemple 5. Prenons n 2. Comme dans l'exemple 3 du n° 4, associons

ä /(X\,X2) le polynome en une variable fb(X) =/(A, 1). Considerons le

discriminant disd(/b) introduit en [Bou07b], A, IV, p. 79, formule (52). Compte
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tenu de ce qui a ete etabli dans l'exemple cite, de la remarque 3 et de la

formule (54) de loc. cit., on voit qu'on a

disc(/) (-l/w-1)/2disd(/).

Exemple 6. Prenons d 2, done (n° 2, exemple 3)

Pna(Xu ...,xn) J2 T{l}xf + 53 T,,./« •

' {hj}

Soit M la matrice carree d'ordre n telle que Mu =2et MtJ

pour / ^ j. On a DtPn2 donc res(£>iPn)2, • • .,DnPn2) det(M)
d'apres l'exemple 1 du n°4. On a ainsi discCPn>2) det(My) lorsque n est

pair et discCPn>2) \ det(My) lorsque n est impair.

Proposition 11. Soient A un anneau, n > 1 un entier et f un polynome
homogene de degre d > 2 de A[Xi,... ,Xn].

a) Pour tout homomorphisme d'anneaux h: A -A B, on a

disc(Y) A(disc(/)).

b) On a

Ks(Dlf,...,Dnf) daMdisc(f).

c) Pour tout A G A, on a

disc(A/) A"(d_1)"
'
disc(/).

d) 5/ n ^ 2 et si f £ A[Xi,... est obtenu en substituant 0 ä Xn

dans f, on a

res(A/,..., ZVi/,/) disc(/) disc(/).

e) Söfi (ay) matrice carree d'ordre n ä coefficients dans A. Posons

f'(X! ,...,X„)= /(53 53
J J

On a

disc(/) det(a,j)d^d~l)"1 disc(/).

Demonstration. Les proprietes a) et b) resultent de la definition. La
propriete d) a dejä ete enoncee (remarque 3). Compte tenu de a), il suffit
de prouver c) lorsque A Un^ et / Pn^ ; mais, puisque d ne divise pas 0

dans A, c) resulte de b) et de la proposition 5, a) du n° 4.
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De meme, pour demontrer e), il suffit de le faire dans le cas oü A est

l'algebre de polynömes f/w,</[(Zy)], oü les ZtJ sont n2 nouvelles indeterminees,

avec / Pn^ et atJ ZtJ. On peut alors se placer dans le corps de fractions
de A, ce qui nous ramene au cas oü A est un corps de caracteristique 0 et

il suffit de prouver dans ce cas qu'on a

res(Dif,DJ') det res(DJ,DJ).
Mais, si cette relation est vraie pour deux matrices, elle est vraie pour leur

produit. II resulte alors de la prop. 14 de [Bou07a], A, II, p. 161 qu'il suffit
de considerer les deux cas suivants:

1) il existe des entiers i et j, avec i ^ j, et un scalaire A E A tels que

f'(Xu ,Xn) f(Xu... ,Xt-\,Xt + AXj,Xt+u... ,Xn), et il faut demontrer

que l'on a res(Z>i/',.. .,Dnf) res(Z>i/,.. .,Dnf);
2) il existe des scalaires A; G A, i 1,... ,/i tels que ff(Xi,... ,Xn)

/(A1A4,..., \nXn), et il faut demontrer que l'on a res(Di//,... ,Dnf)
(A! •••A„A'i-1)""1res(D1/,...,DJ).

Dans le premier cas, on applique les prop. 8 et 9 du n° 4. Traitons le

second. On a Djf((Xt)) \jDJd\Xj)). De la prop. 5 du n° 4, on tire alors

res(Dj,..., DJ') (Ai • • • Anf~X)"" res(Z)1/((AIXI)),.. .,£>„/((A.X,))),

tandis que la prop. 9 du n° 4 implique

res(Z)1/((AIX,)),..., DJ((XJJ)) (Xi An){d~X)" res(DJ,DJ).
On conclut en notant que (d — l)n~l + (d — l)n d{d — l)n~l.

Remarque 4. Puisque d(d— \)n~l est pair lorsque n > 2, il resulte de e)

que le discriminant d'un polynome ne depend pas de 1'ordre choisi sur les

indeterminees.

Remarque 5. Appliquant e) comme dans la remarque 4 du n° 4, on
voit que le discriminant universel disc(Pn^) est multihomogene de degre

(d(d — l)n_1,..., d(d — l)n~l) pour la multigraduation dans laquelle le

coefficient de X" dans Pn^ est de degre a.

Remarque 6. Le degre d etant fixe, notons pour simplifier Rn e Un^
1'element An,d(Pnyd) res(DiPM,... PM). D'apres la partie d) de

la proposition, on a pour tout n> 1, disc(Pn^) disc(Pn_i^) Rn, et on a vu

que disc(Pi^) R\. II s'ensuit que le discriminant universel peut s'exprimer
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comme le produit alterne

disc(PM) Rfn~2 P[
1 ' ' '

n 11=0, J1— 1

Fixons deux entiers n ^ 1 et d ^ 2. Nous allons demontrer simultanement
les deux propositions suivantes:

Proposition 12. Soient k un corps et f un polynöme homogene de

degre d de k[Xi,..., Xn]. Pour qu'il existe une extension L de k telle que f
possede un zero critique non trivial dans Ln, il faut et il suffit que disc(/) 0

et, s'il en est ainsi, on peut prendre L de degre fini sur k.

Proposition 13. Soit K un corps. Considerons la K-algebre de

polynömes U K <S>z Un,d- H existe un polynöme irreductible q £ U, un
scalaire a £ K* et un entier m > 0 tels que discCPn,d-^K) OLqm et

t(J(Pn4'^K)) qu.

Considerons d'abord l'anneau Un^, 1'ideal a t(J(Pn4)) et 1'element

discCPn,d)- On sait dejä que a est premier (prop. 10) et contient disc(Pn^)
(remarque 2).

Lemme 12. II existe un polynöme premier q £ Un^ et un entier m > 0

tels que a qUnj et discCPn,d) ± qm •

Demonstration. Soit q £ Un^ un diviseur premier (c'est-a-dire irreductible
et de contenu 1) de disc(Pn^). Notons F le corps des fractions de l'anneau

integre Unid/qUnid et h\ Un^d —^ F l'homomorphisme canonique, et soit

/ hPn4 C k[X\,... ,Xn]. On a disc(/) h(disc(Pn^)) 0, done

res(£>i/,..., A?/) 0. II existe done une extension L de F telle que les Dtf
aient un zero commun non trivial £ £ Ln. Mais, d'apres le lemme de Gauss

(appendice 1), le contenu de q doit diviser celui de disc(Pn^), qui est egal
ä 1 ; l'homomorphisme canonique de Z dans Unid/qUnid est done injectif, de

sorte qu'on a d.lp ^ 0. L'identite d'Euler implique alors que £ est un zero

critique (non trivial) de /. II s'ensuit par le scholie de ce numero que l'on a

h(a) 0, c'est-a-dire aC qUn4.
Ecrivons alors disc(Pn^) comme un produit q\ • • • qm de facteurs premiers.

L'ideal premier a contient le produit q\ - • -qm et, d'apres ce qu'on vient de

voir, est contenu dans chacun des qtUn^d\ il s'ensuit que les qt sont tous

associes, c'est-a-dire egaux au signe pres. Si q est l'un d'entre eux, on a

done disc(Pn^) ±qm et a qUn^>
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Ce lemme etant acquis, demontrons maintenant les propositions 12 et 13.

Demonstration. Avec les notations de la proposition 12, considerons

rhomomorphisme h\ Un^ —^ k tel que / hPn4- On a disc(/) ±q(f)m.
II est done equivalent de dire que disc(/) 0, ou que q(f) 0, ou encore

que l'homomorphisme canonique h\ Un^ ^ F annule q, done annule a. La
proposition resulte alors directement du meme scholie que precedemment.

Passons ä la proposition 13. Posons P hPn,d et a t(J(P)) C U.
On a disc(P) G a, puisque disc(P) /z(disc(Pn^)) et que h(t(J(Pn^))) est

contenu dans e(/(P)), et on sait dejä que a est premier (prop. 10). Soit

q G U un facteur irreductible de disc(P). Soit k le corps des fractions
de l'anneau integre U/qU et soit h': U -G k l'homomorphisme canonique.
Comme ^'(discCP)) 0, il existe d'apres la proposition 12 une extension L
de k telle que le polynome P ait un zero critique non trivial dans Ln, ce qui
implique, toujours d'apres le meme scholie, que l'on a h\a) 0, c'est-a-dire

a C qU. Raisonnant alors exactement comme dans le lemme precedent, on en

conclut qu'il existe un polynome irreductible q G U, un entier m > 0 et un
element inversible a de K tels que a qU et disc(P) aqm. Cela acheve

la demonstration des propositions 12 et 13.

COROLLAIRE. Soit K un corps. Supposons qu'il existe une K-algebre A
et un polynome homogene f G A[X\,... ,Xn] de degre d tel que Velement

disc(/) G A ne puisse s'ecrire sous la forme aam, avec a G K*, a G A
et m > 1. Alors le polynome disc(Pn^).l^ G K (g)z Un^ est irreductible et

engendre Videal eliminant e(/(PW)j.lj^)).

Demonstration. Appliquons la proposition 13. II existe un homomorphisme
h: K (8) Un:d —^ A tel que h(Pn,d-^K) =/, done disc(/) ah(q)m. On a alors

necessairement m 1, done disc(Pn^).l^ aq.

6. IRREDUCTIBILITE DU DISCRIMINANT

Soit K un corps. Considerons la TT-algebre de polynömes A K[Z\,..., Zw]

et le polynome

P(XU. ..,xn) - (ZxXx + • • • + ZnXn)d G A[X1;... ,Xn]
I

Nous demontrerons ci-dessous le lemme suivant:
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Lemme 13. Si la caracteristique de K ne divise ni d, ni d— 1, Velement

disc(P) de K[Z\,..., Zn] est irreductible.

Appliquant le corollaire ä la proposition 13, on en deduit:

Proposition 14. Soit K un corps dont la caracteristique ne divise ni d
ni d — 1. Alors le polynöme disc(Pn^).l^ E K ® Un^ est irreductible et

engendre Videal eliminant

Corollaire 1. Le discriminant universel disc(Pn^) est premier et

engendre Videal eliminant t(J(Pn,</)).

Demonstration. Appliquons la proposition 14 avec K Q. Puisque

disc(Pn^) est irreductible comme polynöme ä coefficients rationnels et de

contenu 1, il est premier. II engendre done t(J(Pn,</)) d'apres le lemme 12.

Corollaire 2. Soit u E Un^- Les conditions suivantes sont äquivalentes:

(i) Lyelement u est divisible par disc(Pn^).

(ii) Pour tout corps K et tout polynöme homogene f de degre d de

K[X\,...,Xn] possedant un zero critique non trivial dans Kn, on a

"(/) 0.

Demonstration, (i) (ii) : cela resulte de la prop. 12.

(ii) (i) : l'anneau quotient Un^j disc(Pn,d)Un,d est integre, soient k son

corps des fractions, h: Un^ —) k l'homomorphisme canonique et / hPn,d-

On a disc(/) 0. Appliquant ä / la proposition 12, on voit qu'il existe une
extension K de k telle que / possede un zero critique non trivial dans Kn.
La condition (ii) implique alors fi(/).l^ 0, done ü(f) 0. Mais on a

u(f) h(u), done u E ker(h) disc(Pn^)U.

Demonstration du lemme 13. On a D,P dQ,, avec

Q, xf-1 - Z.M + • • • + u/-1,
done dfl("'d)disc(P) res((D,/J)) d"id~1' res((Q,)) d'apres la proposition
5, a) du n°4. Si l'on note A(Zi,... ,Zn) E Z[Zi,... ,Zn] le resultant des Qt,
on a done

disc(P) dsA(Z\,..., Zn) avec ^ n(d — \)n~l — a(n, d).

Notons au passage que le terme constant de A s'obtient en annulant les

done est egal ä 1 en vertu de l'exemple 3 du n° 5. Puisque d est inversible
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dans K, il s'agit de prouver que A est irreductible, ce qui nous ramene au

lemme suivant:

Lemme 14. Si la caracteristique de K ne divise ni d, ni d — 1, le

polynome A est irreductible dans K[Z\,..., Zn].

Demonstration. Quitte ä remplacer K par une extension convenable,

on peut supposer qu'il possede une racine primitive d — 1-ieme de l'unite
([Bou07b], A, V, p. 77, prop. 4). Soit une telle racine, de sorte qu'on a

dans K[X]
Xd~1-l= P[ (X-(J).

.7=0, ,d-2

Rappelons qu'on a note A l'anneau K[Z\,... ,Zn]. Introduisons une deuxieme
serie d'indeterminees (73,..., Tn), posons B K[T\,..., Tn] et soit h \ A -A B

l'homomorphisme qui applique Zx sur Tf~l pour chaque i. Posons

L(XU..., Xn) T'~lX''
I I

de sorte que

A(7?-\ Tdn~l) resCXf"1 - {T,L)d~\... ,Xdn~l - (TnL)d~l).

Mais on a des decompositions en produit de formes lineaires

xf-1 - (T,L)d~1 JJ (X, - C" T.L).
Jl=o, 4-2

En vertu de la proposition 5, b) du n° 4 (multiplicativite du resultant) et de

l'exemple 1 du n° 4, le resultant de ces polynomes s'exprime done comme
produits de {d — l)n determinants de formes lineaires. D'apres le lemme 15

ci-dessous, on obtient dans K[T\,..., Tn] la relation:

(8) A(Tdl-l,...,Td~l)= JJ JJ (1

i= 1, ,n /, 1, 4~ 1 1

Mais les divers facteurs (1 — du produit precedent sont distincts deux
ä deux. Puisque n > 1, ils sont irreductibles dans B K[T\,..., Tn], d'apres
le lemme 16 ci-dessous, de sorte que la relation (8) fournit la decomposition
du premier membre en polynomes irreductibles.

Soit Q Q(Z\,..., Zn) un diviseur non constant de A dans K[Z\,..., Zn],

qu'on peut supposer etre de terme constant egal ä 1. Alors T^~l)
divise le produit precedent, done est le produit d'une partie non-vide de

la decomposition precedente. Mais le polynome ,7^-1) reste
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inchange si l'on y substitue ä chaque Tt un produit (klTt. Une telle substitution

remplace le facteur (1 — J2tCJlTf) par (1 — ^2tCJl+klTf)- Ces substitutions

operant transitivement dans 1'ensemble des facteurs, il en resulte que la partie
consideree est totale, done que Q A, ce qui acheve la demonstration.

On a utilise ci-dessus les deux resultats suivants:

Lemme 15. Soient (at) et (lt) deux families de n elements d'un anneau
et soit L la forme lineaire lLXL. Le determinant des n formes lineaires

L, X, atL dans la base (Xt) est egal ä 1 —

Demonstration. Dans l'algebre exterieure, on a L AL 0, done

Li A A Ln Xi A A Xn — atX\ A A L A A X„
I

(l-^2alll)X1 A...AXn.

Lemme 16. Soient K un corps, d > 0 un entier tel que d. Ik 0, et

a\,..., an des elements de K dont au moins deux sont non nuls. Alors le

polynöme P 1 + ai^t est irreductible dans K[X\,..., Xn].

Demonstration. On peut supposer que a\ et 02 sont non nuls et,

en l'etendant si necessaire, que le corps K contient d racines d-iemes
de 1'unite. Notons L le corps des fractions rationnelles ä coefficients
dans K en les indeterminees X2, Alors P s'ecrit afXf + b), avec
b l/tfi+X^>i ai/ai^f £ L. Si P n'etait pas irreductible dans K[X1,...,Xn],
alors Xf + b ne serait pas irreductible dans L[X\] et il existerait, d'apres le

lemme 17 ci-dessous, un diviseur m > 1 de d et un element c G L avec
b cm. Or b etant un polynöme, c en est aussi un, puisque 1'anneau

K[X2,... ,Xn] est factoriel. Substituant 0 aux Xt pour i > 2 dans la relation

precedente, on obtient une relation 1 + «2^2 Q(^if1, avec Q E ^[^2].
Par hypothese, a\, <22, d. Ik et m. Ik sont non nuls. Derivant, on voit que
Q(X2) divise ä la fois 1 +«2^2 et ^2_1' ce est impossible.

Lemme 17. Soit L un corps et soit d > 0 un entier tel que d.Il 7^ 0 et

que L contienne d racines d-iemes de Vunite. Soit a un element de L tel

que le polynöme P Xd + a ne soit pas irreductible dans L[X]. II existe un
diviseur m > 1 de d et un element b de L tels que a bm.
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Demonstration. Soit Q coXn-\ Ycn un diviseur irreductible de P, avec
0 < n < d. Pour toute racine d-ieme £ de l'unite, posons Qq(X) Q(£X).
C'est un diviseur irreductible de P. II s'ecrit

QC(X) c0CnXn + • • • +

Les Q(- distincts sont en nombre au moins egal ä celui des Q1 et ont tous le

meme terme constant non nul, done ne sont pas associes. Ainsi leur produit
divise P, et leur nombre est au plus egal ä d/n. Mais, si on note 8 le pgcd
de n et d, les (n decrivent les racines de l'unite d'ordre d/8. On obtient

l'inegalite d/8 ^ d/n, soit n ^ 8 et en definitive n 8. Ainsi n divise d.
Posons m d/n et, pour chaque racine m-ieme de l'unite 0, choisissons l'un
des polynömes <2c avec Cn ®

• On obtient ainsi m polynömes de degre n

dont le produit divise P, ce qui donne une decomposition de P, indexee par
les racines m-iemes de l'unite

Xn + a c [(c0OXn + • • • + Cn).
e

Les termes extremes donnent alors cc 1 et cc a, done a (cn/co)m.
Nous avons ainsi acheve la demonstration du lemme et par consequent celle
de la proposition 14.

Exemple. Prenons n 2 et d 3, soit P(X, Y) X3 + Y3 — (aX + bY)3.

On obtient disc(P) 35A(a,b), avec A ]J( 1 ± a3/2 ± Z?3/2), oü le

produit est etendu aux quatre choix de signes. Un calcul immediat donne
A (a3 + b3 — l)2 - 4a3b3.

Appendice 1: anneaux factoriels

On rassemble dans cet appendice les enonces de divisibility utilises dans

le texte.

Soit A un anneau integre. On dit que deux elements non nuls a et b de A
sont associes si les ideaux Aa et Ab sont egaux, c'est-a-dire si l'un est le

produit de 1'autre et d'un element inversible, ou encore si chacun divise 1'autre.

Un element p de A est dit premier s'il est non nul et si 1'ideal principal pA
est premier, ce qui signifie que p n'est pas inversible et que, chaque fois qu'il
divise un produit, il divise l'un des facteurs. En particulier, si un element

premier p divise un element premier q, alors p et q sont associes. En effet,
ecrivons q ap; comme q divise ap et ne divise pas a, il divise p; de

meme p divise q.
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On dit que A est factoriel si tout element non nul et non inversible peut
s'ecrire comme produit d'une famille finie d'elements premiers. Par exemple,

un corps est factoriel et ne possede aucun element premier, l'anneau Z est

factoriel et ses elements premiers sont les entiers naturels premiers et leurs

opposes.

Supposons A factoriel et soient a p\ • • -pr et a q\ - - - qs deux

decompositions d'un meme element non nul et non inversible a de A en produit
d'elements premiers. Alors r s et il existe une permutation a telle que pt
soit associe ä q^) pour tout i. En effet, p\ divise le produit des done l'un
des qj, done lui est associe. Ecrivant p\ uqj, on conclut par recurrence, en

considerant les deux decompositions de x/p\ et x/(uqj). Plus generalement, et

par la meme demonstration, si p\ • • -pr divise q\ • • • qs, il existe une injection
a\ [1 r] -A [1 ,s] telle que pt soit associe ä q^) pour tout i.

Ce resultat d'unicite (ä des elements inversibles pres) montre que la

definition donnee ci-dessus des anneaux factoriels equivaut ä celle de [Bou06b],
AC, VII, §3 (voir notamment la prop. 2 de loc. cit. n°3) et permet de faire
fonctionner le mecanisme usuel de plus grand commun diviseur et plus petit
commun multiple (cf. [Bou07b], A, VI, §1, n°8).

Si A est factoriel, l'anneau de polynömes A[Xi,...,Xn] est factoriel (voir
par exemple [Bou06b], AC, VII, §3, n°5, cor. au th. 2). En particulier, les

anneaux de polynömes Z[X\,..., Xn] et K[Xi,..., Xn], oü K est un corps, sont
factoriels. Les elements premiers de K[X\,...,Xn\ sont appeles polynömes
irreductibles.

Soit A un anneau factoriel et soit P E A[Xi,...,Xn] un polynöme non
nul. On appelle contenu de P un pgcd c de ses coefficients. Alors P est le

produit de c E A et du polynöme P/c de contenu 1. Les elements premiers
non constants de A[Xi,...,Xn] sont les polynömes P qui sont de contenu 1

et qui sont irreductibles dans K[X\,..., Xn], oü K est le corps des fractions
de A. Le lemme de Gauss affirme que le contenu d'un produit est le produit
des contenus. De maniere equivalente, si les polynömes P et Q sont de contenu

1, alors leur produit est de contenu 1. En effet, si un element premier m
de A divisait le contenu de PQ, on obtiendrait par passage au quotient deux
elements non nuls et de produit nul de l'anneau integre (A/mA)[Xi,... ,Xn].

Appendice 2: Theoreme des zeros

Theoreme. — Soient k un corps et K une extension de k qui est une

k-algebre de type fini. Alors K est une extension algebrique de degre fini.
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Demonstration. Soit S une partie finie de K l'engendrant comme

&-algebre. Raisonnons par recurrence sur le cardinal de S. Soit x un element
de S, notons k(x) la sous-extension engendree par x. D'apres l'hypothese de

recurrence, K est une extension de degre fini de k(x). II suffit de prouver
que x est algebrique sur k, puisqu'alors k(x) est une extension de degre fini
de k.

Supposons done x transcendant, de sorte que k(x) est le corps des fractions
de l'algebre de polynömes A k[x]. Soit (et)\<,<„ une base (finie) du

&(x)-espace vectoriel K telle que e\ 1. Tout element de K s'exprime
comme une combinaison lineaire des et dont les coefficients sont des quotients
de deux elements de A. Soit p(x) E A un denominateur commun ä toutes les

coordonnees de tous les elements s.t pour s et t dans SU {1}. Considerons
le sous-anneau B de k(x) forme des fractions dont le denominateur est

une puissance de p(x). L'ensemble des combinaisons lineaires des et ä

coefficients dans B est un sous-anneau contenant & et S, done est egal
ä K. En particulier k(x) k(x)e\ est contenu dans Be\ B et on en deduit

k(x) B.
Mais cela est absurde. Soit en effet q(x) un polynome non constant de

k[x] =A. L'element 1 /q(x) de k(x) peut s'ecrire sous la forme d'une fraction

a(x)/p(x)n, ce qui signifie que q(x) divise une puissance de p(x), ce qui est

evidemment exclus pour q(x) xp(x) + 1.

COROLLAIRE (Theoreme DES ZEROS). — Soient k un corps, L une
extension algebriquement close de k, A une k-algebre de type fini et I
un ideal de A distinct de A. II existe un homomorphisme de k-algebres
h \ A —) L tel que h(I) 0.

Demonstration. Soit m un ideal maximal de A contenant I ([Bou07a], A,
I, p. 99, th. 1) et soit K le corps A/m. Alors K est de degre fini sur k d'apres
le theoreme et il existe un homomorphisme de &-algebres, necessairement

injectif, de K dans L ([Bou07b], A, V, p. 20, th. 1). L'homomorphisme

compose A —^ A/m —) L annule m, done I.
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