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THE DISTRIBUTION OF CLOSED GEODESICS

ON THE MODULAR SURFACE, AND DUKE'S THEOREM

by Manfred Einsiedler*), Elon Lindenstrauss*),
Philippe Michel §) and Akshay Venkatesh11)

Abstract We give an ergodic theoretic proof of a theorem of Duke about

equidistnbution of closed geodesies on the modular surface The proof is closely
related to the work of Yu Lmmk and B Skubenko, who m particular proved this
equidistnbution under an additional congruence assumption on the discriminant We

give a more conceptual treatment using entropy theory, and show how to use positivity
of the discriminant as a substitute for Lmnik's congruence condition
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1. Introduction

A non-zero integer d is called a discriminant if it can be represented in
the form

d b2 — 4ac a, b, c £ Z

or equivalently if d is the discriminant of the binary quadratic form with
integral entries

(1.1) q(x,y) ax2-\-bxy-\-cy2.

It is easy to see that J is a discriminant if and only if d 0,1 (mod 4). A
discriminant d is fundamental if d is either square-free (in which case d is

congruent to 1 modulo 4) or J/4 is a square-free integer congruent to 2, 3

(mod 4). Equivalently: d is fundamental if it is the discriminant of the ring
of integers of a quadratic field.

The study of integral binary quadratic forms goes back at least to
the Greeks. Significant breakthroughs were accomplished by Gauss. In his

Disquisitiones Arithmeticae he studied the set of GL2(Z)-orbits of such forms,
where GL2(Z) acts via the linear change of variables:

(1.2) 7. q(x,y) \ M(x,y)7) \ Mux + wy, vx + zy),
det(7) det(7)

for 7 £ GL2(Z). This action preserves the discriminant and Gauss
\w z J

proved that the set of GL2(Z)-orbits of integral binary quadratic forms of a

given discriminant is finite, see [7, p. 128] for an accessible and more general
treatment. Let

Rdisc(*0 {q(x,y) ax2+bxy-\-cy2 : a, £ Z, disc(g) J, gcd(a, b,c) 1}

~ {(a, b, c) £ Z3 : disc(a, b, c) b2 — 4ac J, gcd(a, b, c) 1}

denote the set of forms of discriminant d with coprime coefficients, and let

[Rchsc (d)\ GL2(Z)\Rdlsc(J)

be the set of orbits; its cardinality is the class number and is noted h(d). Gauss

also showed that the set [Rdisc(^)] could be given an additional structure of
an abelian group (the law of composition of quadratic forms), leading to the

notion of class group of quadratic forms of discriminant d. Nowadays these

venerable and beautiful results are usually interpreted in terms of the theory of
quadratic fields and ideal class groups. We will recall this connection below.
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1.1 Linnik and Skubenko equidistribution theorems

In the late 50's, Linnik studied more refined properties of the set of
representations R&Sc(d), in particular their distribution properties.

Let

Vdisc,±i(R) {(a,b,c) e R3 : b1 - Aac ±1};

this is a one-sheeted hyperboloid in the +1 case and a two-sheeted hyperboloid
in the —1 case, and is identified with the set of real binary quadratic form
with discriminant ±1. In both cases Vdisc,±i (R) is invariant under the natural
action of GL2(R) extending (1.2) and has one orbit.

The set of representation RdiscO^) projects on Vdisc,±i(R) (with ±1
sign(d)) by a homothety

Mr1/2Rdlsc(^) c vdlsc>±i(R),

and Linnik studied how this set is distributed when d -a oo These

hyperboloids carry a natural GL2(R)-invariant measure /Ahsc,±i defined, for

any open set Q C Vdisc,±i(R)> as the Lebesgue measure in R3 of the solid

cone emanating from the origin and ending at Q, i.e.

/Uisc,±l (0) /xr3(C(Q)),

where

C(Q) {r.x : xcQ, re [0,1]}.

Using an original argument of ergodic theoretic flavor, Linnik [19, Chap. V]
established the following equidistribution statement for negative discriminants.

Theorem 1.1 (Linnik). Let p > 2 be a fixed prime. As d -e — oo amongst
d\

the negative discriminants such that — 1, the set
\Pj

|J|-1/2Rdlsc(J) C V'asc.-dR),

becomes equidistributed with respect to /idisc,-i> in the following sense: for
any two continuous compactly supported functions pwpi on Vdlsc,-i(R) such

that the integral /idisc,-i((/92) 0 we have

/Ahse, —l(ty?l) i

eM)v2(\d\-^X)Msc,-iU2) asd^-°°-

In particular, J2xeRdisC(d) 0 if d as above is large enough.
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Building on Linnik's ergodic method Skubenko [24] (see also [19,

Chap. VI.]) proved the analogous statement for positive discriminants:

Theorem 1.2 (Skubenko). Let p > 2 be a fixed prime. As d ^ +oo
fd\

amongst the positive discriminants such that — 1, the set
\Pj

H"1/2RdlscU)c Vdlsc,+i(R),

becomes equidistributed with respect to /idisc,+i> in the following sense: for
any two continuous compactly supported functions on Vdlsc,+i(R) such

that the integral /idisc,+i(7?2) f1 0 we have

J2X£Rdlsc(d) 1/2*0 /Ahsc, + l(ty?l) iasä^+oo.

In particular, J2xeRdisc^ P2(\d\~l^2x) 0 if d as above is large enough.

We refer to Figure 1 for an illustration of the case d 377.

Figure 1

The distribution of 377" C2Rdlsc(377) viewed on the one-sheeted hyperboloid: /z(377) 1

fd\The condition — =1 for some fixed prime p is equivalent to the
\Pj

condition that

the fixed prime p splits in the quadratic field Q(sfd).
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This condition (which we shall refer to as Linnik's condition) was an essential

input for Linnik's ergodic method but, as was pointed out by Linnik himself,
it should not be necessary for the equidistribution theorem to hold. It was

only thirty years later that this condition was removed in the beautiful work
of Duke [9].

1.2 Duke's theorem

A key point of Duke's approach is to reformulate the prior theorems

in a dual form: in terms of equidistribution of "Heegner points" (for
negative d) or of closed geodesies (for positive J) on the modular surface

To(1):=SL2(Z)\H.
Assuming that d > 0 is not a square, one associates to any (a, b, c) E RdiscO^)

the geodesic corresponding to the geodesic semi-circle in the upper half-plane
whose end points are

f\ ^ ^ ^(1-3) — 02a

We lift this geodesic in the obvious way to the unit tangent bundle of H
and then project it to a geodesic orbit on the unit tangent bundle T1(To(l)).
This geodesic orbit, which we denote by 7[a,b,c], is compact and depends only
on the SL2(Z)-orbit of (a, b,c). We obtain in this way a collection of h(d)
closed geodesies

9d= (J iiaM cT(y0(i)),
[a,b,c]

see Figure 2 for the case d 377. This collection of compact orbits

of the geodesic flow then carries a natural probability measure invariant
under the geodesic flow which we denote by pd- Let /xl be the Liouville
(Haar) probability measure on T1(To(l)), then Duke's theorem (as extended

by Chelluri [8] to the unit tangent bundle) gives the following:

Theorem 1.3 (Duke). As d —) +00 amongst the positive fundamental
discriminants, the set Sd becomes equidistributed on the unit tangent bundle

T1(To(l)) with respect to the measure /xl •' for any continuous compactly
supported function cp on T1(To(l))J

/ ip(t)dp,d(t) -A / ip(u)dp,L(u).
Hd 7t1(T0(1))

The equivalence of the equidistribution statements in Theorem 1.2 and

Theorem 1.3 will be explained in §2.4.
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Figure 2

The distribution of C/377 projected on the fundamental domain of SL2(Z)\H

The restriction to fundamental discriminants is not essential; indeed all the

proofs extend to the general case, including the one we present here. Duke's

proof is fundamentally different from Linnik's; it does not rely on ergodic
theory but on harmonic analysis of the modular surface SL2(Z)\H, that is

on the theory of automorphic forms supplemented by deep arguments from
analytic number theory and in particular a breakthrough of Iwaniec [17].

In this paper we give a new proof of Duke's theorem in the case of positive
discriminant. Our proof is strongly influenced by Linnik's ergodic method, and

may be seen as a modern incarnation of Linnik's original ideas, and we use

the positivity of the discriminant as a substitute to Linnik's condition that
Skubenko relied on in his work.

There are two main ingredients in the proof:
1. Linnik's Basic Lemma — An upper bound on the number of nearby pairs

of points in the projection of RdiSC(^) t° Vdisc,-i(R) (as this set is infinite,
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the quantity to be bounded needs some additional interpretation), which

eventually reduces to an upper bound on the number of ways a given
binary quadratic form can be represented by a ternary quadratic form.

2. The uniqueness of measure of maximal entropy for the flow corresponding

We have made an effort to present both of these main ingredients in a self-

contained way, as each relies on some well-known results that are unfortunately
well known in essentially disjoint circles of mathematicians.

The second of these two ingredients replaces a more explicit but less

conceptual argument of Linnik and Skubenko. The uniqueness of the measure

of maximal entropy for this action is well known (both in the cocompact
and finite volume case) and in the cocompact case dates back to work of
R. Bowen [4]. However the version we give here is new in that it allows us

to control how much weight Sd gives to small neighborhoods of the cusp
in SL2(Z)\H : essentially, we give a finitary version of the uniqueness of
measure of maximal entropy in the noncompact quotient SL2(Z)\ SL2(R).
This finitary version is the content of Theorem 4.2, and involves a careful

analysis of how much entropy can be carried by at -invariant measures that

give disproportionately high weight to the cusp. A cleaner version of the

relationship between entropy and mass in the cusp (although not directly
applicable for our main purposes) is given in Theorem 5.1. We believe these

results are of independent interest, and will likely have other applications; it
also raises some interesting new questions (see e.g. [11]).

We mention that another modern exposition of Linnik's method in a similar
context (distribution of integer points on spheres) by J. Ellenberg and two of
us (Ph. M. and A. V.) has appeared already in [14]. In that work Linnik's Basic

Lemma is again a central ingredient, complemented by a different argument to

convert the upper bounds provided by the Basic Lemma to equidistribution (i.e.
both upper and lower bounds on the number of points in specified regions).
The reader may wish to compare these two complementary approaches.

1.3 Notation

We collect here some notation that is used throughout the paper:
The group SL2(R) acts transitively on the upper half-plane model H of

the hyperbolic plane by fractional linear transformations and the stabilizer of
the point i is the compact subgroup S02(R). The resulting identification

H ~ SL2(R)/S02(R)
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descends to an identification of H with PSL2(R)/ PS02(R); moreover the

action of PSL2(R) on the unit tangent bundle H is simply transitive. If
we let p G T\H) be the tangent vector pointing up at i, then g i-a gp
gives an identification PSL2(R) ~ TlH. Taking the quotient by PSL2(Z) we
obtain an identification with the unit tangent bundle of the modular curve1)

PSL2(Z)\PSL2(R) ~ Tl (PSL2(Z)\H).
We shall make use of another identification of the quotient

PSL2(Z)\ PSL2(R),

namely with the space of lattices in R2 up to homothety. Indeed, the space
of lattices ^(R) is identified with GL2(Z)\ GL2(R) via g i-a Z2.g\ the

same map also identifies the space [^(R)] of lattices up to homothety with
PGL2(Z)\ PGL2(R) and the set /^(R) % of lattices of covolume one with
SL2(Z)\ SL2(R) PSL2(Z)\PSL2(R). Finally, the sets [£2(R)] and 41}(R)
are also identified via the map [L] i-a vol(L)_1/2.L.

Thus the following spaces are identified:

X - PSL2(Z)\PSL2(R) ~ Tl(PSL2(Z)\H) - [£2(R)] ^
We take the following fundamental domain

s {(Z>W) G H X Sl : |5Rz| < 1/2, |z| > 1} C r'(H) ~ PSL2(R)

for PSL2(Z) r.
Fix an arbitrary left-invariant Riemannian metric d on PSL2(R). It descends

to a metric on X, denoted dx or simply d for short. Explicitly we have

(1.4) Jx(PSL2(Z)</1,PSL2(Z)</2) min d(gulg2).
7GPSL2(Z)

The geodesic curves on Tl (H) — which in the upper half-plane are circles
and lines intersecting the real axis in a normal angle — correspond to the

orbits of the right A-orbits in PSL2(R), where A {at} is the diagonal
subgroup of PSL2(R). By a slight abuse, we shall use A to refer to the

diagonal subgroup of all three groups: GL2(R),PGL2(R) and SL2(R).

Acknowledgements. The authors would like to thank Peter Sarnak for
encouragement and many helpful conversations. A. V. would also like to thank
Jordan Ellenberg for many discussions on the topic of quadratic forms. The
authors also thank Menny Aka, Asaf Katz, Ilya Khayutin, Lior Rosenzweig
for carefully going over a preliminary version of this paper.

1) Actually the modular curve has singularities at the points i and j owing to the
fact that these points have non-trivial stabilizers in PSL2(Z), we will ignore this minor point
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2. Representations by the discriminant, orbits and quadratic fields

In this section we explain in greater detail the relationship between

Skubenko's equidistribution theorem and Duke's and connect these questions
to the arithmetic of real quadratic fields. Along the way we will find a few

equivalent ways in which to describe compact A-orbits in Sj. Building on that

we prove in §2.4 the equivalence between Skubenko's and Duke's formulations.

2.1 Overview of the bijections

Recall that we have previously associated to any element of [Rdisc(^)] —
i.e. to any GL2(Z)-orbit in RdiSC(d) — a closed geodesic on SL2(Z)\H. On

the other hand, as discussed in §1.3, a closed geodesic in corresponds to

a closed A-orbit on the space X.

Write Öd '•= Z[d+^] for the order of discriminant d.

We shall show below that the following sets are in natural bijection to
each other:

(i) [RdiscfaQ] >
the set of GL2(Z)-orbits of primitive representations in R^lsc(d) •

(ii) The set of GL2(Z)-conjugacy classes of ring embeddings l: öd ^ Miijd)
which are optimal, i.e. for which the embedding cannot be extended to

an embedding of a strictly bigger order ö > öd with image in M2(Z).

(iii)Cl(O^) the set of 7Tx-homothety classes of proper öd -ideals, where

K Q(Vd).
In the case of a fundamental discriminant the above objects and their

bijections are a bit easier to explain. In fact, if J is a fundamental discriminant,
then every representation is primitive, every embedding is optimal, and every
öd -ideal is proper. In reading the remainder of the section the reader may
first specialize to this case, or even continue reading with Section 3 and only
refer to the portions of this section as needed for the remainder of the paper.

2.2 Discriminant and quadratic fields

We establish the bijections of §2.1.

Before beginning, we note that the sequence of maps

(2.D VLL ~D
defines an isometry between the spaces of (real) binary quadratic forms,

symmetric 2x2 real matrices and trace zero 2x2 real matrices, where each
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of those is equipped with a quadratic form:

(Q(R2), disc) ~ (Sym2(R), -4 det) ~ (M$(R), - det).

The action of GL2(Z) in (1.2) is the restriction of the following action of
GL2(R) on Q(R2):

54_<K»« + »y,»» + ?y). »=(» I),
which intertwines with the actions

2 2\
1 (a b/2\t (b -2a\ _x+fay + cy)M—9^/2 _b)s

Observe that these actions factor through PGL2(R). They also induce an

isomorphism between PGL2(Z) and the group of orthogonal transformations

of (Q(R2),disc) preserving the integral quadratic forms.

Let J be a discriminant which is not a perfect square; let (a, b, c) E RdiscC^O

be a representation, and let

n b -2a\
(2.2) in ma,b,c f 1

be the trace zero matrix associated to it via the map (2.1). Since

m2 d Id

this defines an embedding of the quadratic field (J is not a square) K Q(Vd)
into M2(Q)

K -a M2(Q)
m' u + vyfd ha uld+v.m

2.2.1 Representations and optimal embedding. The integrality properties

of this embedding are measured by considering

0m := I~\M2(Z))

which is an order in K. Let us identify which order: Note that 0\m Gm

for any A E Qx Hence if b2 — 4ac d for a, Z?, c E Z we may write

(a,b,c) =f(a/,b/,c/)

with / E Z and a,Jb,Jc/ E Z coprime integers satisfying

disc(ax, b', cx) </ d/f2.

This reduces the discussion to the case where (a, b, c) is a primitive
representation of J (a representation with coprime entries).
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Assuming that (a, b, c) is primitive, one sees quickly that

(2.3) 0m 0 d

is the order of discriminant d. If (2.3) holds, we say that im defines an

optimal embedding of öd into M2(Z). We obtain in that way a bijection
between

the set of GL2(Z)-orbits of primitive representations [RdiscfaO]

and

the set of GL2(Z)-conjugacy classes of optimal embeddings i\ Od^M2(Z).

2.2.2 Embeddings and ideal classes. Let us recall that a lattice I c K
is a proper Öd-ideal, iff

0/ := {A E K : X.I Cl} Od.

Then there is a bijection between

the set of GL2(Z)-conjugacy classes of optimal embeddings of 0d

and the set of proper ideal classes of 0d

C1(0d) the set of Kx -homothety classes of proper öd -ideals.

This bijection goes as follows [18]: Given a proper 0d -ideal I C K, one

may choose a Z-basis I Z.a + Z.ß which gives an identification

9:
1 Z2

ua + vß ha (u,v)

This identification induces the embedding

i\ K^M2(Q)
defined by

l(X)(u, v) Q(\.(ua + vß))

(or in other terms, such that O(X.x) 0(jc)^(A)).
Since öd.I C /, one has l(ö^)Z2 c Z2, that is i(öd) C M2(Z) and

the fact that I is a proper 0d -ideal is equivalent to the fact that i is an

optimal embedding of öd. If we replace the Z-basis (a, ß) by another basis

(aß ß') then i is replaced by a GL2(Z)-conjugate. Finally if I is replaced

by an ideal in the same class V A./, A E Kx then the corresponding
GL2(Z)-conjugacy classes coincide: [li>] [tj].
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The inverse of the map
II] ^ [H]

is as follows: given an optimal embedding i\ K M2(Q) of Ölet
e\ (1,0) G Z2 be the first vector of the standard basis2) of Z2, then

the map

6:
K ^ Q2

A i—y 6\.L(\)

is an isomorphism of Q-vector spaces; next define the lattice I #-1(Z2)
in K which is invariant under multiplication by Öd- In other words, I is an

öd -ideal and I being proper is equivalent to i being optimal.

2.2.3 The Picard group of the order 0d - We now recall the definition
and basic properties of the Picard group for an order öd in a quadratic field.

The product of two öd -ideals I and J gives another öd -ideal

I J {AY : A g /, Y G /} ;

and clearly this operation respects the equivalence relation introduced above

on öd -ideals. An öd -ideal I is invertible if there is some öd -ideal J so that

I - J öd- An öd -ideal I is locally principal if for any prime p,

Ip := I ®zZp Ap(öd)p

where {öd)P öd^zZp and Xp is an element of (K<S>qQp)x - Both properties
depend only on the ideal class [/] and not on I itself.

For general orders Ö in number fields and Ö -ideals I, one has the following
implications:

I is locally principal I is invertible I is proper.

We shall make use of the following property of orders in quadratic number
fields:

PROPOSITION 2.1. For the orders Öd in quadratic number fields the inverse

implication
I is proper I is locally principal

holds for Öd-ideals I. In particular, the set of proper ideal classes Cl(CY),
endowed with the composition law induced by forming the product of two

lattices, has the structure of an abelian group.

2) We could have chosen any primitive vector in Z2
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This nice special feature of quadratic orders comes from the fact that in
the quadratic case, orders are always monogenic (i.e. of the form 0 Z[x]).

Proof. Recall that 0d Z[x] for x d+^d. Assume now that I
is a proper Gj -ideal and consider the 2-dimensional ¥p-vector space

Ip/pip —Ijpl. The natural map

(Od)P/p(Od)p Endpp(Ip/pIp)

is injective. To see this, suppose that A E (Od)P acts trivially on Ip/plp. Then

XIP C pip and Ip and so ^ E Op as required. It follows that v the image

of V in EndpP(jp/plp) has a minimal polynomial of degree 2 and that Ip/plp
is a cyclic J?p[x]-module. So there exist Xp E Ip such that Ip Ap(Od)p +p!P
which implies that

Ip Xp((Dd)p + p(Xp((Dd)p pip)

\p(Od)p + P2ip d)p +P3ip Xp(0d)p.

2.3 Interpretation in terms of lattices
Let us verify that the various descriptions of Sd are equivalent:
Given (a, b,c) E R^c{d), put

Kb,c (f \fd b
~2f^j and w -1) G SL2(Z).

Then wha,b,c maps {oo,0} to • Therefore, the geodesic 7\a,b,c] on

PSL2(Z)\H associated to (a,b,c) after Equation (1.3) is:

7\a,b,c\ whaybyc(Qj OO)

where (0, 00) is the geodesic on H joining 0 and 00. Now (0, 00) corresponds,
in the realization r!(H), to the A-orbit of the identity in SL2(R); therefore

7[a,b,c] corresponds to SL2(Z) • wha^,cA SL2(Z) • /*a^)CA, or equivalently the

lattices of the form Z2 • ha,b,c&t C (at E A). Now one calculates

te«kZ)haAc(l c)'

which shows that in a particular basis of Z2hayb,c the quadratic form
<7o(t, y) Ay takes the shape as in (2.4) below.

Since A is the stabilizer subgroup of qo, we have verified that 7[a,b,c]

corresponds to:
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The set of homothety classes of lattices L, such that the restriction of the

quadratic form qo(x,y) xy to L, expressed in terms of a basis a, ß of L,
takes the form

au2 + buv + cv2
(2.4) q0(ua + v/3) vol(L)-

d1/2

Note that the particular quadratic form aul + buv + cv2 js not canonically
Vd

attached to the lattice L because of the different choices of a basis.

Set mo= and to be the embedding lq \ K ^ Diag2(R) C M2(R)

obtained by mapping y/d to dxl2m§ and 0q be the linear embedding
0o : K ^ R2 given by

0o(A) (1, l)^o(A), i.e. 0o(u + vy/d) (u + v\d\1/2, u — v\d\1^2).

Now let us verify, as asserted in §2.1, that the A-orbit of 0q(/) belongs
to Sd, for any proper öd -ideal I. (We do not verify the more precise
assertion that this is exactly the element of Sd that corresponds to the class

of I under the bijection Cl(öd) ^ [RdiscfaOl •) We need to verify (according

to (2.4)) that A E I i-a \fd is a quadratic form of discriminant d.
vol(0o (A) n

But ^o(0o(A)) N^/q(A) is the norm; and for any ideal I C K we have

vol(0o(/)) Idl1/2^/). Here we have defined the norm N(7) of an ideal

(relative to öd) by the ratio of indexes

(0.:0,n/)
(/ : Orf n /)

Now, for any ideal /, the map x G / ha is easily verified to be an

integer quadratic form of discriminant d, as desired.

2.4 A DUALITY PRINCIPLE

Our goal now is to show that the equidistribution statements of Skubenko's
theorem and of Duke's theorem are equivalent.

The discussion which follows is valid in great generality; but we will
consider only G PGL2(R), T PGL2(Z), and the diagonal torus A in G.

Since PGL2(R) is identified with SOdiSC(R), it acts transitively on

Tdisc,+1 (R) (by Witt's theorem) and equals the PGL2(R)-orbit of (say)
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gofay) xy; equivalently Vdlsc,+i(R) is identified with the PGL2(R)-
conjugacy class of the matrix mo which has A as its stabilizer subgroup
in G. Hence

Vdisc,+i(R) PGL2(R).<?o ^ PGL2(R).mo ~ PGL2(R)/A.

2.4.1 Duality between orbits. It follows from the previous discussion

that each representation (a, b,c) E RdiscfaO is identified with some class

ga,b,cA/A E G/A or what is the same to an orbit ga,b,cA C G for some

ga,b,c £ G such that

9a,b,c-qo | d\~1/2(a,b,c), q0 (0,1,0).

As we have seen T acts on R^lsc(d) and the latter decomposes into a finite

disjoint union of T-orbits, setting

[a, b, c] T\T(a, b, c) G [RdiSC(üO],

for the orbit of (a,b,c), one has

RdiscU) |_| r.(a, b, c).
[a,&,c]£[RdiscCO]

Hence |J|_1/2.RdiSC(^) is identified with the collection of T-orbits

U TgaAcA/AcG/A;
[a,b,c]£[Rdlscm

thus the problem of the distribution of | J|_1/2.RdiSC(^) inside Vdlsc,+i(R) is a

problem about the distribution of a collection of T-orbits inside the quotient

space G/A.
There is an almost tautological equivalence between (left) T-orbits on G/A

and (right) A-orbits on T\G given by

(2.5) TgA/A TgA T/TgA

This duality induces a close relationship between the study of the distribution
of |d|-1/2.Rdisc(tff) inside Vdlsc,+i(R) and the distribution of the collection of
right A-orbits

Sd X[a,b,c]A C r\G
[a,b,c]e[Rd,sc(d)]

inside the homogeneous space T\G, with

(2.6) X[a,blC\ — ^\^ga,b,c '
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This is the "duality principle" alluded to at the beginning of this section. Let
us make this principle a bit more precise by identifying the orbits in question:

Assuming that (a,b,c) E RdiscfaO is primitive; one has

X[a,b,c]A r\r^,ör,z?,cA

where

Aa,b,c 9a,b,cH9a,b,c Stab(a,b,c)(.G)

is the stabilizer of (a,b,c) in G. That group is the group of real points
of a Q-algebraic group, which we will denote by Ta^c, namely the image
in PGL2 of the centralizer Zm of

b 2c
m m^ {-2a -b_

In terms of the embedding t tmabc \ K ^ M2(Q), one has

Zm(Q) t(Kxf
and

T(Q) i(Kx)/Qx Id, AaAc Ta>ft,c(R) l{K ® R)x/Rx Id,

and (since Af2(Z) fl l(K) t(Oj)),

raAc :=rnv *(0*)/{±id}.

Alternatively, let ^0 denote the (real) embedding

K -a M2(R)
L°'

u + vVd ha uld-\-v.dl/2mo

obtained by conjugating tm with g~\ c, we have

io(K (g)Q R)x/Rx Id A

and

T'a,b,c := 9ä,lcr9a,b,c nd to(0£)/{±ld}
so that we have homeomorphisms

(2.7) xAbAA T\ga,b,cA ~ 9äAcT9a,b,c n A\A l0(K ® R)X/RX(.0(A).

By Dirichlet's unit theorem, q)(7T(g)R)x/Rxq)(0^) is compact hence X[a,b,c]A

is compact and since [Rdisc(^)] is finite we obtain:

Theorem 2.2. The union of A-orbits Sd is compact.
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2.4.2 Duality between measures. To consider equidistribution problems,

one needs to refine the correspondence (2.5) at the level of measures.

Roughly speaking, the choice of the counting measure pr on T and of the

left-invariant Haar measure fiA on3) A define a measure-theoretic version of
the correspondence (2.5):

Fact. There exist homeomorphisms between the following spaces of
Radon measures (relative to the weak-* topology):

left r-invariant left T, right A-invariant right A-invariant
(2.8) Radon measures <—> Radon measures <—> Radon measures

A on G/A p on G v on T\G.

These homeomorphisms are characterized by the identities: for any p £ Cc(G),

one has

Mi-Pa) pip) Mpr),

where

Pa(9) := / <p(gh)dßA(h), prig) T pil-g)
JA 7Gr

See for instance [2, §8.1] for a proof of that fact. We work out this

correspondence in specific cases:

— p is a Haar measure /iG on G, which is G-biinvariant as G is unimodular.
The correspondence (2.8) yield the quotient measures v pr\G on r\G,
and X pG/A cc /idisc,±i on G/A. The former measure v is finite (i.e. T
is a lattice in G) and we may adjust pG so that pT\G is a probability
measure.

— The sum Ad of Dirac measures on G/A given by

M= A 0 cA/A 55 S9A/A

(a,b,c)£Rdlsc(d) [a,b,c] geT ga b c

b cA/A '

[a,b,c] 7GT/rfl b c

Proposition. The measure ug on T\G corresponding to Xg under (2.8)
is the sum of the push forwards of the Haar measure pA over the set of
A-orbits *[fl,j,,c]A, [a,b,c\ £ [RdiscW].

3) Note that A is unimodular
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Indeed, set A [a,b,c] Xl7er/rah c$igab A/a- Then if S denotes a

fundamental domain in A for T'abc

ha,b,c]{fA) / Al9a,b,ch)dh / f^l9a,b,ch)dh
iaT/TabcjA 7£r^5

/ <Pr(ga,b,ch)dh / ipr(h)dh,
JK b c\A ^X\-a h 0A

hence the measure on T\G corresponding to A[a,b,c] is given by the push
forward of the Haar measure fi& to the periodic A-orbit X[a,b,c]A, and the

proposition follows.
Let

vol(Sd) := Vd(9d) L] vol(x[aMA)
[a,b,c]

denote the total volume of this (finite) collection of (compact) A-orbits.
From (2.7) we see that the various orbits associated to primitive representations
of d have the same volume, namely with the correct normalization of the

Haar measure of A

vol(*[fl,*,c]A) vol(Rx^o(öx)\A) Reg(O^),

where Reg(O^) is the regulator of Gj. Therefore,

vol(Srf) \Fic(Od)\ Reg(G^).

If d disc(O^) is a fundamental discriminant, the Dirichlet class number

formula gives

voKSj) | Pic(Od)| Reg(O^) \\d\l'2L({*), l),
where A is some absolute constant, (-) is the Kronecker symbol and L((-),L)
its associated L-function. Then by Siegel's theorem L((-), 1) as

d —) oo so that

(2.9) vol(S^) |z/|1/2+ö(1).

If d d'f2 with d' a fundamental discriminant

|Pic(Oj)| Reg(O^) rr/
|Pic(Od0| Reg(Oj0 JII>v P \p)J

which shows again that | Pic(Gj)| Reg(G^) \d\l^2Jr0{1^ and hence (2.9) holds
in general (cf. e.g. [10, Sect. 9.6]). We let

1

V>d —T77^\yd •

vol(Sd)
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This is an A-invariant probability measure on T\G and the above discussion
shows that Skubenko's Theorem 1.2 follows from the following:

Theorem 2.3. As d -A oo amongst the non-square discriminants, the

sequence of measures pd weak-* converge to the probability measure Py\g>
i.e. for any cpr £ Cc(T\G), one has

Pd(<Pr) —T77TT [ <Pr(h)dh -a /ir\G(<Pr) •

VOl(S'\«Ac]-W

Indeed any continuous compactly supported function on G/A is of the

form pa for ec(G), hence by Theorem 2.3

Aj(^a) Vdfpr) vol(Sj)/ij(^r)
vol(Srf>(Atr\G(Vr) + o(l)) vol(Srf) (Mg/a CVa + o(l)).

3. Spacing properties of torus orbits

In this section, we show that the various distinct orbits *[a,&,C]A C Sare in
a suitable sense we// spaced from each other; the main result is Proposition 3.6.

Recall that

— | | X[a,b,c\A

[<2,Z?,c]G[Rdisc(^)]

where X[a,b,c] is defined in (2.6).

3.1 Ideal classes are controlling the time spent near the cusp

The space X is not compact and this is measured through a height function
(normalized to be invariant under scaling) given, for L Z2.g C R2 a lattice,

by

h rn _
/minxGL_{0} ||*|| \ -i /minxGZ2_{0} ||^||\-1

j V vol(L)1/2 J I | det(g)!1/2 J '

where ||.|| denote the Euclidean norm. This continuous function is proper.
Indeed, if x G X and (z, v) G S any representative, then the height ht(*) and

the imaginary part $5(z) satisfy ^(z) ht(v)2. For any H > 1 let X>H denote

the set of all x G X with ht(*) > H.
In this section we evaluate explicitly how big the height of a lattice in

could be.
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Proposition 3.1. Suppose the proper integral ideal J c Öd corresponds
to [a, b,c\ G RdiscW under the bijection of §2.1. Then %^C]A fl X>g
is nonempty if and only if J~l is equivalent to an ideal I C Öd of
norm < \H~2dx!2. Moreover, this defines a bijection between connected

components of 9d^X>H and proper Öd-ideals I C Öd of norm < \H~2dxl2.

Even though the above does not control escape of mass for pd as d —) oo

it does give an upper bound for pd(XyH), see Proposition 3.3, which we will
use in our proof of Duke's theorem. Note that Proposition 2.1 guarantees that
there is an inverse J~x to the proper ideal J.

Remark 3.2. Applying this result to H J1/4 we see that Sd öX>di/A
is empty (as there are no ideals of norm < 1). This implies that Sd is

pre-compact.

Proof Note that, if we identify x G X with a lattice L of covolume 1,

then xA D X>h is nonempty if and only if there is some nonzero vector
(w, v) G L with \uv\< \H~2.

Therefore (using the explicit bijection of §2.1) the A-orbit defined by J
intersects X>h, if and only if J contains an element A with

|N(A)| < 1/T2N(7)J5

Recall that N(7-1) N(7)-1 by standard properties of the norm. It follows
that the A-orbit defined by J intersects X>H if and only if N(A7~-1) < \H~2d~2

for some A e J (so that AJ~l c öd).
Finally, notice that for H > 1 there is, in a lattice L' G X>h, up to

sign, only one primitive nonzero vector of length < H~l wo\(L')1/2 (which is

a simple volume computation). Therefore, fixing J, in the above argument,
a connected component of 9q(J).A fl X>h corresponds to a unique primitive
element A G J with |N(A)| < ^H~2N(J)di (up to sign) and we can associate to

this connected component the ideal I A/-1 C öd of norm < \H~2dl2.

Proposition 3.3. There is ((not too much mass high in the cusp" in the

sense that

ßd(X>H) <e d£H~2

for all £ > 0 and H > 1.

Note that to make this estimate useful, we will set later H d£ for
some £>0.
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Proof. We note first that in any orbit in the maximal height achieved

is < J4 (see Remark 3.2). This implies that for H > 1 any connected

component of Sd H X>H has length <C log(d). Indeed such a component
corresponds (in the upper half-plane model) to the segment of some oriented

geodesic circle (i.e. a half-circle centered on the real line) made of those

points which have imaginary part between H and J1/4 : the hyperbolic length
of such a segment is bounded by «C log(j4 /H).

Therefore, by Proposition 3.1

vol(Sj H X>H) < log(d)N<H(d),

where N<n(d) is the number of proper ideals I c 0d of norm N(7) < \H~2dl2.
Recall that for any /i G N the number of proper ideals in Öd of norm equal
to n is bounded by the number of divisors of n and so by <Ce rf. By
summing over all 1 < n < ^H~2S we get that N<n(d) <Ce (H~2d^)l+£.
Together with (2.9) this proves the proposition.

3.2 Linnik's Basic Lemma and representing binary quadratic forms
BY TERNARY FORMS

Following Linnik we will derive the "Basic Lemma" from representation
numbers of quadratic forms: Let q, Q be two integral non-degenerate quadratic
forms on Zm and Zn respectively. Assuming that m < n, a representation
of q by Q is an isometric embedding of quadratic lattices

(Zm,q)^(Z\Q)

in other terms a Z - linear map t: Zm -a Zn such that for x G Zm

ß«x)) q(x).

For instance a representation x G Zn of an integer d G Z by a quadratic
form Q on Zn may be viewed as the isometric embedding

(Z, dx2) ^ (Z",Q)
ix

n ha nx

Let RQ(q) be the set of such representations: the group T SOq(Z) acts

on Rg(q) (for 7 G T, 7.^ 70^) and the quotient T\Rg(q) is finite.
We are interested here in evaluating |r\R^(<7)| in the codimension one

case (i.e. when n — m= 1). More precisely, we will need to show that, in this

case, |r\Rß(^)| is rather small. The simplest evidence comes from the case

m 1, n 2 : the representations of an integer by a binary quadratic form.
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For instance it is well known that for d 0 the number of integral solutions

to xy d (i.e. the number of divisors of d) is bounded by Oe(d£). Similarly
the number of representations of an integer as a sum of two squares satisfies

the same bound; indeed, for any binary integral quadratic form Q one has

|r\Rß(d)| <Cq \d\£ for any e > 0. The following is a version of this claim
for m 2, n 3, where in the case of non-fundamental discriminants the

estimate is not as strong.

PROPOSITION 3.4. Let Q be an integral ternary quadratic form, and let

y) — axl + bxy + cy2

an integral binary quadratic form, both supposed non-degenerate. Assume

that f2\ gcd(a, b, c) is the greatest common square divisor of a,b,c. Then

the number N of embeddings of (Z2,g) into (Z3,ß), modulo the action

of SOß(Z), is <ß>e/max(|a|, \b\, \c\)£.

When Q x2 + y2 + z2 is the "sum of three squares" quadratic form
such a bound is a consequence of an explicit formula on the number of
representations due to Venkov [25] (assuming a square-free). This bound was

later generalized by Pall [21, Thm. 5]. We provide a self-contained treatment
in Appendix A. Let

((a, b, c), (ax, bf, c/))disc disc(a + a\ b + b\ c + cf) — disc(a, b, c) — disc(a\ b\ cf)

2bb' - Aac' - Aa'c

be the polarization inner product associated with the quadratic form disc. We

will apply Proposition 3.4 to the pair

Q — disc q(x, y) dx2 + £xy + dy2,

and note that q(x,y) is non-degenerate if and only if £ ±2d. Hence we
obtain:

Corollary 3.5. Let T SOdiSC(Z). Then for any two integers d,£ with
£ ±2d, the number of T-orbits on pairs

{((a,b,c),(af,bf,cf)) G Z3 x Z3 :

disc(a, b, c) disc(ax, bf, cf) J, ((a, b, c), (ax, bf, c/))disc

is <Ce/(max(|J|, \£\))£, where f2 is the largest square factor of gcd(d, £).
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We now translate the information obtained about quadratic forms above

to Linnik's Basic Lemma, which we phrase in the geometric context. This
falls short from equidistribution but will suffice as the arithmetic input to the

ergodic arguments later.

Proposition 3.6 (Basic Lemma). We have

dd X ßd{{x,y) G X\H : dx(x,y) < (5} <e H4S3de

whenever d~* < 8 < \H~2 and s > 0.

Note that the exponent 3 of 53 is optimal, and suggests that gd is

3-dimensional in the appropriate scale. The trivial exponent is 1, which
follows from A-invariance of fid-

Proof. We start by indicating the relationship between 5 -close

tuples in (3d Ll X<H)2 and the representation of the binary quadratic form
#(*> y) — dx2 + Ixy + dy2 by the discriminant ternary quadratic form disc.

From (1.4), g\,g2 G PSL2(R) are such that xt Tgt G 3d n X<h for
i 1,2 and dx(x\, X2) < 5, then we may assume

(3.1) fliGS, 92 G §', TgiX<H and d(gi,g2)<S,

where §>' is some slightly bigger set containing the fundamental domain 8 in
its interior. For concreteness we take

8' {(z, v) G H x Sl : |Sftz| <1, > 1/2}.

This clearly shows that the matrix entries of both gt are controlled, i.e.

\\gt|| < H where

iiflii trigyy12-

Moreover, we may associate to gt the primitive integral quadratic form,

ql(x,y) Vd[gl.q0](x,y)=alx2+blxy+cly2, b2-4a,c,=d, gcd(a„ b„ c,) 1.

We have to consider two different possible cases. Either q\ q2 (i.e.

g2 G giA) or qx ^ q2.
The total mass for the first case is easy to estimate by <e dl/2+e6 before

normalization by the total volume, which gives after the normalization that

hd x /dd{(Tgurgih) G X\H : h G A, J(Id,h) < (5} 5d~1/2d£ < 53d£

since J-1/4 < 5.



272 M EINSIEDLER, E LINDENSTRAUSS, PH MICHEL AND A VENKATESH

Henceforth we assume q\ ^ qi. Since \\gt\\ <//, we have

(3.2) max(|a,|, \bt\, |c,|) < d1/2H2.

Also by assumption g2 g\h with d(h. Id) < 8. This shows that q2

y/dg\.(h.qo) where \\h.qo — qo\\ £. Therefore,

(3.3) max(|ai — \b\ — &2I, \c\ — C21) dl^2H25

We now define

q(u, v) disc(w(ai, b\, c\) + v(ü2, ^2, £2)) du2 + te; + dv2.

From the bound (3.3) on the difference of the vectors we know

|^(1,-1)| \2d — £\ «C dH4S2.

In order to apply Corollary 3.5 on g, we need to check that q is not
degenerate, i.e. that £ ^ ±2d. Indeed, if £ ±2d then

J(^2T^I)2 q(ß2, —d\) disc(a2(^i, ci) —ai(^2, ^2, £2)) (#2^1 —^i^2)2,

which contradicts the assumption that d is not a perfect square. Therefore
£ ^ ±2d. In this case we may apply Corollary 3.5 to obtain the bound

Ne,d |SOdlsc(Z)\{(Z2,dx2 + £xy + dy2) (Z3,disc)}| <C/max(|d|, \l\f
on the number N^d of inequivalent ways in which the quadratic form
dx2 + £xy + dy2 can be represented, where /21 gcd(J, £) is the greatest square
divisor. Note that the group SOdiSC is rationally equivalent to PGL2, and so up
to isogeny rationally equivalent to SL2. Therefore, SOdiSC(Z) is commensurable

to the image of T SL2(Z) and we may also use T instead of SOdiSC(Z) in
the above estimate.

Let
T(q[1\q(2\...,r(qf\q<2))

be a complete list of diagonal T-orbits of pairs of quadratic forms which can
be written as

q\j)(x,y) VdglJ).qo(x,y)

with g\". g2" satisfying (3.1)
The number k of these diagonal T-orbits of quadratic forms is bounded by

2d+L

k< e a^ E E' Ne,d

t=2d-L p\d \2d-£\<L
f\e, e^±2d

«e E E fd J2fd
f2

S
dl+2e52H4,

f\d \2d-e\<L f\d
f\£, £^±2d
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where L <C dHA82 and Y! denotes a sum over t for which is square-

free.

We claim that for q[j) / we have

(3.4) d(g[j)at, g^A) > J-1.

Indeed suppose d(g[j)at, at>) < cd~l (for some constant c determined in a

moment). Then we may find some 7 G T with ^fg\J^at G S, which also implies
7#2JW G S'. By Remark 3.2 we have c 2f<#/ for H' J1/4. Hence by
choosing c appropriately the upper bound in (3.3) (applied for H' J1/4

and 5 cd~l) is less than one, which gives a contradiction.

Writing 02 9\ exp v for some v v~ +v+ +va G 5b(R), with v~ ,v+ ,va
eigenvectors of Adöf with eigenvalues e~\e\ 1 respectively, the estimate (3.4)

implies that both ||i;-1|, \\v+\\ d~l. It follows that for any j the inequality

(3.5) d{g[])at,g^A)<\

can hold only for t in some interval l3 of length <C log d.

Claim. For each pair (g[J\g2^) there is an interval I3 c R of
length <C e d£ with the following property:

If (jci JC2) G (9d H X<H)2 with d(x1,^2) < S have representatives (<71,02)

satisfying (3.1) for which the associated forms qt Vdgt.qo are different,
then x\ rg[j)at for some j and some t G I3.

Indeed, (7.01,7.02) (01^02^) f°r some 7 G T and some j G [l,k] and

so 0i 7~lg\j)at resp. 02 G /y~lg(2J">A. By assumption on 01,02 we have

d(g[j)at, g^A) < S.

Using the claim and a fixed Haar measure of A (i.e. before normalization)
we get that the measure of the collection of points (x\, *2) G (Sd H X<H)2,
which can be represented as xt Tgt with gt as in (3.1) and for which the

associated quadratic forms are different, is

k

< ^ IIj\S <e de5k <e dl+2eH453.

j=1

Therefore, by dividing the above by the total volume of (Sd)2, the claim

(together with the analysis of the case q\ 02) implies the proposition.
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4. An ergodic theoretic proof of Duke's theorem

4.1 Entropy and the unique measure of maximal entropy

A basic underlying concept in our proof is that of entropy. We recall that

if IP is a finite partition of the probability space (A, v), the entropy of CP is

defined as

H„(?) := ~v(s) log KS).
seT

It is clear that Hv(fP) Hu(T~l<J)) if T: A -A A preserves v — below we
will use this fact without explicit reference. We note for future reference that

entropy is controlled by an L2-norm

(4.1) ff„cp)> -iog(y>(s)2)
\sea> /

as one easily sees from convexity of the logarithm map. Moreover, entropy
has the following basic subadditivity property: if y2 are two partitions,
then

(4.2) Hv(yx v y2) < hm + hm
where V denotes common refinement.

If T is a measure-preserving transformation of (A, v), then the measure
theoretic entropy of T is defined as:

//„(yvrTv-vrc-"?)(4.3) hv(T) sup lim
rp n—> oo n

where the supremum is taken over all finite partitions of A. We also note
that the limit in the definition exists and is equal to the infimum because the

sequence

a,, //„(? V T'1 V • • • V T-{n~V)?)

is subadditive (i.e. < an + am).

A key role in our argument is played by the fact that the uniform measure

on r\ SL2(R) for any lattice T can be distinguished using entropy, as it is

the unique measure of maximal entropy:

Theorem 4.1. Let A r\ SL2(R) be a quotient by a lattice T < SL2(R),
and let T denote the time-one-map of the geodesic flow, i.e. right translation

m='(eo A
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Then for any invariant measure v the entropy satisfies hv(T) < 1 where

equality holds if and only if v gx is the SL2(R)-invariant probability
measure on X.

The inequality hv{T) < 1 is not hard and can be proved in many ways.
Identifying the uniform measure as the unique measure where this maximum
is attained is somewhat more delicate. We give a self-contained treatment in

Appendix B.

4.2 Proof of Duke's theorem, an outline
Let T: X -a X denote the time-one-map of the geodesic flow as in

Theorem 4.1. Recall that

y"={(i 0:'eR} resp- "MC T'£R
are the stable, resp. unstable horocycle subgroups. The orbits of these two
subgroups give the foliation into stable and unstable manifolds in the following
sense. If u u(t) E U~, then the distance between Tn(x) and Tn(xu)

converges rapidly to zero:

d(Tn(x), Tn(xu)) d(x (ff fn/^j ,xu (ff e_°n/2^j^

< d

d

1 (A (e~n/2 0 \ (en'2 0
0 1 ' I 0 en!2 / u I 0 e~n!2

1 0\/l e~nt
0 1j'\0 1

To give an outline of our argument, it is perhaps preferable to simplify the

situation. In our proof, the noncompact nature of our space A is a significant
complication, so instead of considering the quotient SL2(Z)\ SL2(R) for the

purposes of this outline let us consider a compact quotient X T\ SL2(R) on
which we have a sequence of T-invariant probability measures pd satisfying
the following simplified version of the conclusion of Proposition 3.6:

(4.4) pd x /U/{(T,y) E X : <Ce 63d£ for 5 > d~1^4

Let r > 0 be an injectivity radius of X so that for any xEl the map
Bf(e) -a X sending g to xg is injective (with G SL2(R), and denoting
a ball of radius r in G). Also assume g < ir is small enough so that B^(e)
is an injective image under the exponential map of a neighborhood of 0 in
the Lie algebra.
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Let IP be a finite measurable partition all of whose elements have "diameter
smaller than 77", i.e. if a and y xg with g £ Bf belong to the same element

of T, then g £ Assume that the same holds as well for Tl(x) and Tl(y)
for i —A,..., 0,1,...,A. Then d(T(x), T(y)) < 77 and d(e, a~lga) < r so

that a~lga E B^(e). Repeating, this implies that

We define a Bowen N-ball to be the translate xBN for some a E X.
Notice that the set BN is "tube-like": it has width at most e~Ng along

the stable and unstable directions, but is of length 77 in the direction A of
the geodesic flow. The above shows that every element of the partition

N

(4.5) yt-A'.W] \J T-ny
n=—N

is contained in a single Bowen A-ball. Together we conclude that

k

(J S x S C (J {(x,yat) : d(x,y) < re~N}
Serp[_NN] l=l

where k «C eN and a\,..., E B^(l) are chosen to be 6-dense — that is to

say, the union of the 5 -neighborhoods around at cover 1).

Together with (4.4) this shows that

ßd(S)2 <e e~2Nde

Serp[_NN]

whenever S ge~N > d~^ or equivalently A < \ log J + logr. We choose

A L^logdJ (the "extra space" will be useful in suppressing a d£). Using
(4.1) we have

Hßd(y[-N>N]) > (2 — 6s)N

for large enough d.
In this statement we cannot yet let d —) 00 to get a statement about a

weak* limit /i, because A is a function of J, and so the size of
increases with d. Thus let Ao > 1 be any fixed integer: [—A,A] can be

covered by \^~\ many translates of [—Ao, Ao]. This in turn shows that

can be obtained as a refinement of the |"^_~| partitions

2>[-A,-A+2Vo] y[-A+2Ao,-7V+4A0]
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(in the obvious generalization of the notation (4.5)). By subadditivity (4.2)
(and invariance) this implies

Hßd(yl~No,AW) > (2-l£)N0

for large enough d. By choosing the original partition 7 such that ju(dS) 0

for all S E CP and some weak* limit p of the sequence pd we can now take

the limit as d -A oo to obtain

Hß(?[~No'No]) > (2 - 7e)N0 for all £ > 0 and N0 > 1,

i.e. that h^T) > 1. Theorem 4.1 can now be invoked to show that p must
be the SL2(R) -invariant measure on X.

We remark that the analysis above works only in the cocompact case; for
e.g. r SL2(Z), there is no global injectivity radius; and no matter how fine

one takes the partition CP, to cover a single atom of the partition CP1-^'^ one

typically needs exponentially many Bowen N-balls.

4.3 Proof of Duke's theorem, controlling the time spent
NEAR THE CUSP

Passing from the cocompact to the nonuniform case raises two difficulties:

(i) Why is such a weak* limit a probability measure (indeed, why cannot
such a sequence of measures fid converge to the zero measure)

(ii) The proof outline presented in §4.2 used heavily the relation between

Bowen N-balls and atoms of the partition CP1-^'^ for a finite partition CP.

How can we adapt this argument to the nonuniform situation where in general

many Bowen N-balls are needed to cover a partition element S E

It turns out that these two difficulties are not unrelated, and to handle
them one needs to control the time an orbit spends in the neighborhood of
the cusp, so that this problem is related to controlling the escape of mass.

What is needed is the following finitary version of the uniqueness of measure
of maximal entropy:

Theorem 4.2. Suppose pt is a sequence of A-invariant measures on X,
and suppose there is a constant r > 0 and a sequence St —y 0 such that for
all sufficiently small e > 0 the "heights" Ht 5f£ satisfy

(1) gLi(X>]~[f) —y 0, as i —y oo /
(2) ß, x ß,({(x,y) G X<Hl x X<Hl : d(x,y) < <5,} <e Sf~5£.

Then pt —y px> the SL2(R)-invariant measure on X, as i —y oo.
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Clearly, this, Proposition 3.3, and Proposition 3.6 with S d~^ are

sufficient to prove Duke's theorem. Apart from the ideas already discussed in
the last section, the main additional step is:

Proposition 4.3. Fix a height M > 1. Let A > 1 and consider a subset

V C [—A, A]. Then the set

Z(V) jx G TnX<m n T~nX<m : for all n G [~N,N] we have

Tn(x) G X>M ötiev)
can be covered by «Cm e2N~^v\ Bowen A-balls. Moreover, Z(V) is nonempty

2 log log M -Kj

for only «Cm e logM different sets V C [—A, A].

In words, Z(V) is the set of points a e X so that the trajectory T~Nx,
T~N+lx, Tnx between times —A and A begins and ends below height M
and are above height M precisely at the time specified by the set V. So the

content of the proposition is that orbits that spend a lot of time in a neighborhood

of the cusp in fact can be covered by relatively few tube-like sets. Later

we will turn this into the statement that those orbits have relatively little mass.

Note that as the size of V grows the number of Bowen A-balls needed to

cover Z(V) decreases, though even if V [—A— 1, A+l] it is still exponential
— indeed x eN, which is essentially the square root of the estimate we get
for V 0

We defer the proof of Proposition 4.3 to the next section. A purely ergodic
theoretic formulation of this phenomenon is that a lot of mass near the cusp
for an invariant probability measure results in a significantly smaller entropy
for the geodesic flow. We will give such a formulation in Theorem 5.1; it
implies in particular that:

Given a sequence of T-invariant probability measures pt with entropies

hfifT) > c, any weak* limit j± satisfies p(X) > 2c — 1.

We will discuss in Remark 5.2 why c 1/2 is the critical point for this

phenomenon.

4.4 Controlling escape of mass, and maximal entropy

We proceed to the proof of Theorem 4.2, and start by showing that mass

cannot escape, using assumption (2). We will use (1) of that theorem which
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gives a mild control on how fast mass could possibly escape to be able to

apply the covering argument in Proposition 4.3. That (2) can replace entropy
in that argument is not surprising since we have already seen in Section 4.2

a relationship between this assumption and entropy.

Lemma 4.4. Let pt be a sequence of T-invariant measures as in
Theorem 4.2. Let j± be a weak* limit of any subsequence of fit. Then

for every sufficiently large M, and so j± is a probability measure.

Proof Fix some n > We will show that p(X<M) > I — n.

We set Nt \— log^] and Ht 5fe for some e > 0 determined below

(more precisely: before the final displayed equation of this proof) in terms

of k. Notice that a geodesic trajectory of a point v E X<Hi will visit X<M in
less than 2 log Ht — 2 log M < 2eNt steps either in the future or in the past.
Hence

L2etfJ

(J T~nX<M D X<Hi
n=— [2eNt\

and so this union contains most of the /a-mass according to the assumption (1)
of Theorem 4.2.

Let N[ Nt + [2eNt\. Then TN'x<Hl n T~N'x<Hl is contained in the

union of «C (c/VJ2 many sets of the form TNi +n-X<M n T~N> +n+X<M where

|/i_ |, | < 2eNt. We apply this to the set

r i lix U X<Hl n T-N- X<Hi : —— £ 1x>_m(T"x) > K
f i "t"

n=-N'l '
consisting of points that spend an unexpected high portion of [—N^N']
above M.

We wish to estimate pfX^.The set XK is also a union of sets of the form

z' xK n TN'+n~x<M n T~N'+n+x<M

with /i_,/i_|_ as before. It suffices to estimate pt(Z') for some fixed

Replacing Z' by an appropriate shift Z := TkZ' we may consider instead

Z C TnX<m H T~nX<m where N E [NtJNt +4eNt\. Adjusting the condition

on the "average time spent above M" appropriately,

f 1
N

"Izclxe tnx<m n t~nx<m : Y Wm(t"x) >k~ °C) [ •

^ n=—N '
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To the right-hand set we apply Proposition 4.3; which shows that Z is covered

by

l «M (rWrLNe2tf-(«-0(e)W < ^N^-^LN.-kN.+O^N,

many Bowen N-balls. Because N > Nt, we may also cover Z by I many
Bowen Nt -balls S\,..., Sz.

Since Bowen Nt -balls have thickness < e~N' < 5, along stable and unstable

horocycle directions and thickness «C 1 along A, we get that

l k

|J Sj X Sj C (J {(x,ycij) : d(x,y) < (5,}

7=1 7=1

where k «C eNl and üj G Bf are 5t -dense. This remains true if we make the

sets Sj disjoint by replacing S2 by S'2 S2\S\, S3 by S3 S3\(SiUS2),
By our assumption (2) we now get

J2^(S'j)2 «£ S?~5ek « e~2N-+5eN-.

7=1

Therefore, by Cauchy-Schwarz

v. < y>A') < (£v(s;)2Y/2il/2 «c,M
7=1 ^7=1 '

Going through all possibilities for (of which there are « eeN- many)
this implies

th(XK)

Given that we assume a > 21^^M we can choose e > 0 small enough

such that the exponent in the above expression is negative so that the measure

goes to zero for i -A 00 (since Nt -A 00). By definition of XK we have

f f 1
K

/ 1x>Mdfit= / ^ lx>M d/i; < A+/ii(^)+2/ii(Z>//;),

which when i -A 00 implies that n(X<M) > 1 — k for any a > 21^^M.
This gives the lemma.

We indicated in Section 4.2 how the elements of the refinement

VL-a T~n(J) are related to Bowen Af-balls; but that analysis fails in the

noncompact case, when trajectories visit the cusp. We now discuss the general
case.
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Lemma 4.5. For every M > 1 there exists a finite partition CP of X
such that for every ft G (0,1) and every N, "most elements of the refinement
MNn=-N T~n<J) are controlled by Bowen N-balls" in the following sense: there

exists a set X' C X so that

- X' is a union of S\,... ,Sz G \f„=_N T~n(F;

- each such Sj is contained in a union of at most ^2N+l) many Bowen

N-balls;

- p(Xf) > 1—2pl(X>m)k~1 for every invariant probability measure p.
For a given j± the choice of IP can be made such that the boundaries of all
sets of CP have zero measure.

Proof We define 9 {<2, P\,..., /\} where Q X>M and {Pi,..., /\}
is a measurable partition of X<M whose elements have diameter less than 77,

where 77 is small enough in comparison to the injectivity radius of X<M (in
the same sense as in the discussion in Section 4.2).

Note that the boundary of Q is a null set for every probability measure p
that is invariant under the geodesic flow. This is because every trajectory hits
the boundary of Q in a countable set. Also, given p we can find for every
point v G X<M an e < p/2 so that the boundary has measure zero. Applying
compactness we construct Pi,..., Pk from the algebra generated by finitely
many such balls.

We claim that S G TV \fn=-N T~ny has the property that any two
points x,y G 5 satisfy

Tnx G X<M & Tny G X<M for ne[-N, N] and

d(Tnx, Tny) < 77 whenever Tnx, Tny G X<M and n G [—N,N].

Therefore, the average f(x) — yjj+i Yln=-N ^x>M(rnx) is constant on sets of TV •

We define

Xf {xe T~nX<m :f(x) < k}

If p is an invariant probability measure, invariance implies Jf(x) dp
p(X>M) and so p({x :f(x) > ft}) < p(XyM)^~l • Therefore, X' has measure

p(X0 > 1 - p(X>M) - p(X>M)n~l.
Consider now an element S G TV with S C X'. After taking the image

of S under TN we have for any jt,y G S' TNS that

I
2N

xeX<M, and
^ ' ' n=0

d(Tnx, T"y) < t) whenever T"x, Tny G X<M and n G [0,2N].
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Let V {n E [0,2N] : TnS' C X>M} • We can now show inductively that for

every n E [0,2A^] the set Sf is contained in a union of 3l[°'n_1]nyl many sets

of the form

xB^e-nB2rt A
>

where x E S'.

We will refer to these sets as forward Bowen n-balls and to x as its

center. For n 0 there is nothing to show (for notice that we allowed

a bigger radius in the subgroups U+ and U~A). Suppose the claim holds

for some n and let x E S' be a center of one of the forward Bowen n -balls.

If Tn+lx E X<M then TnJrlS' C Pt for i > 1 and it follows easily that any
point y xu+g E S' with u+ E B^e_n and g E A satisfies u+ E B^e_(n+l)

(assuming again that rj is small enough in comparison with the injectivity
radius). If Tn+lx E X>M then we can cover the forward Bowen n-ball by 3

forward Bowen (n + 1)-balls.

Recall that for S c X' we have |V| < nN and so by taking the preimages
of S' TNS and the forward Bowen 2N-balls obtained the lemma follows.

To prove Theorem 4.2 it remains to establish the following lemma and

combine it with Lemma 4.4 and Theorem 4.1.

Lemma 4.6. A weak * limit g of a subsequence of the invariant probability
measures gt as in Theorem 4.2 has maximal entropy hfl(T) 1.

Proof Let V be as in Lemma 4.5. Set Nt [— log^] and define

Nt

yNi y T~ny.
n=—Nt

We wish to show that is large by using Lemma 4.5 and assumption

(2). Let n g{XyM)1^2 for some weak* limit g and define Xt as in
Lemma 4.5 using N Nt.

For any S E CP^ with S C Xt there exists a cover of S consisting
of < 3^+b many Bowen Nt-balls; so there is a partition Jl(S) of S

into < 3^(2^+L sets, each a subset of a Bowen A^-ball. We define the

partition Qt as the partition consisting of all S E TV, with S C X \ Xt and

all elements of ^(S) for any S C Xt. It follows that

(4.7) ^,(0.1^,)= < «(2M + l)log3.
seVN^scXt
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Also since Qt is a finer partition than yNi we have

(4.8) HpXQt V ?Ni) H^Nl) + H»(Qt\VNl),

which together with (4.7) indicates that we wish to show that Hßi(Qi) is large.
Here we will use the assumption (2) from Theorem 4.2; but the elements

of Qt that lie outside Xt can be irregularly shaped, requiring a further estimate:

(4.9) H^Q,) > H^Qt\{X„X \ X,}) >

Using (4.1) for the restriction ß,\x, we see that

By construction of Qt every S G Qt with S C Xt is a subset of a Bowen

Nt-ball. Proceeding as in Section 4.2 it follows that

k

U sxsc\J {(x,ya,) : d(x,y) < 5,}
seQ^scXt 1=1

where k «C eNl and a\,... G 1) are chosen to be St -dense. Together
with assumption (2) of Theorem 4.2 this shows

^ ßl(S)2 5^eN' «e<"2+5^.
Q^scx,

Let Ce be the implicit constant here, that is to say,

£ ßl{S)2<Cee~^N'.
se Qt,SCXt

Then, taking into account (4.9)-(4.10),

H^iQi) > 2fit(Xt)logfit(Xt) - fii{Xj) log Ce + fit(Xt)(2 - 5 e)Nt.

Here the first two terms are bounded, so for large enough i

H^XQi) > /LÄ)(2 - 6e)Nt

> (1 - 2k~- 6e)N,,

where we also used the estimate for Xt in Lemma 4.5. Combining this with
(4.8) and (4.7) we get

V T~ny) ^ (l ~ 2k~V.(X>m))(2 " 6e)N, - 0(KN,)
\=-Nt '
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Now fix some integer No > 1. Using subadditivity of entropy we have for

any large enough i that

No x

\J T~a9 > (1 - 2V,(X>M)) (2 - 6e)N0 - O(kN0) - eN0

n=-N0 '
This is now a statement involving only finitely many test functions, namely
the characteristic functions of all elements of and of X>M-
Since there is no escape of mass by Lemma 4.4 and since we can assume

without loss of generality that all boundaries have zero measure for the weak*
limit fi by Lemma 4.5, we get the same estimate for p. Dividing by 2No

and letting No now go to infinity we arrive at

h^T) > (1 - 2M(X>m)1/2)(1 " 3e) - 0(ii(X>My/2) - e

for any M > 1 and e > 0.
Since p(X>M) can be made arbitrarily small, it follows that hß(T) > 1,

i.e. T has maximal entropy.

5. Trajectories spending time high in the cusp,
AND A PROOF OF PROPOSITION 4.3

Apart from the characterization of the Haar measure as the unique measure

of maximal entropy in Theorem 4.1, the main technical estimate needed to

prove Theorem 4.2 is Proposition 4.3. We recall that this proposition states

that the set

Z(V) jx G TnX<m fi T~nX<m : for all n e [—N,N] we have

Tn(x) g x>M öfiey)
can be covered by «Cm e2N~^v\ Bowen A-balls.

In addition to proving this, we shall also prove here the promised purely
ergodic formulation of "high entropy inhibits escape of mass", namely:

Theorem 5.1. Let T be the time-one-map for the geodesic flow. There

exists some Mo with the property that

Mr)<i + lof
w log M 2
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for any probability measure j± on X SL(2, Z)\ SL(2, R) invariant under the

geodesic flow and any M > Mo. In particular, for a sequence of T-invariant
probability measures pt with entropies hPi(T) > c, any weak* limit j± satisfies

p(X) >2c-l.

Remark 5.2. Roughly speaking 1/2 is the critical point for Theorem 5.1

because the "upward" and "downward" parts of a trajectory, that goes high in
the cusp, are strongly related to each other. In fact, in the case of a p-adic
flow this phenomenon is easy to explain.

We consider another dynamical system of similar flavor: here the space
will be4)

Y PGL2(Z[1//?])\PGL2(R) x PGL2(Qp)

and the action will be by multiplication on the right of the PGL2(Qp)-

component by ap (^ ^ Let M < PGL2(R) x PGL2(Qp) be the product

of P02(R) and the group of diagonal matrices in PGL2(Zp). There is a natural

right M-invariant projection tt : Y -A PSL2(Z)\H, and on this latter space we
have the Hecke correspondence which attaches to a point z E PSL2(Z)\H a

set Tp(z) of p + 1 new points, namely if z E H is a representative of z, then

(5.1) Tp(z) PSL2(Z)\ {pz, z/p, (z + 1 )/p, (z + /> - 1 )/p}
The space Y/M can be identified with the set of bi-infinite sequences

,y_i,y0,;yu • • • with yt E Tp(yt-i) \ {yz_2}, and under this identification

multiplication by ap in the p-direction becomes simply the shift action. This in

particular shows that multiplication by ap on Y/M (or, with a bit more effort
on Y) has entropy < log/?, and just like in our case this maximum is attained

for the Haar measure on Y. From (5.1) it is clear that if y E PSL(2,Z)\H
is high up in the cusp, precisely 1 of its Tp -points will be higher in the

cusp, and p of these points would be lower than y in the cusp. Therefore

if .y_i,yo,yi,... is a sequence of points of PSL(2,Z)\H as above and if
yk are high up in the cusp for some contiguous range of k's, say n < k < m,
then in this range given the value of yk there is only one possible way of
choosing y^+i so that it is higher than yk. Since by assumption y^+2 yk

once yk+1 is lower than yk, the point y^+2 must be lower than yk+\. Hence

if yk+1 is lower than yk for some k in the above range, then yk'+\ must be

lower then y^ for all k! in the range k <k! <m. From the above discussion

it follows that while the trajectory is high up in the cusp, we have a choice of
which subsequent point to choose only half of the time, whence the factor \.

4) For technical reasons, it is preferable to use PGL2 here rather than SL2.
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5.1 Proof of Proposition 4.3: the number of possible sets V

The easiest part of Proposition 4.3 is the final assertion, i.e. if we write

N

Qm,N V T~n{X>M,X<M},

2 log log M pjthen the above partition Qm,n has Cm e lo^M many elements.

We make use of the fundamental domain 8 c PSL2(R) from §1.3; the

geodesic flow X corresponds to following the geodesic determined by (z, v)
until the boundary of the fundamental region is reached, at which point one

applies either ^ to shift the geodesic horizontally or ^ ^ to

reflect on the bottom boundary of the fundamental region.
The basic point in the proof is that if a G X satisfies ht(v) > M, then

ht(Tnx) > 1 so long as n < \2\ogM\, i.e. one needs at least \2\ogM\ steps

to reach points of height less than 1.

Therefore, in a time interval of length 2[2\ogM\ there can be only
one stretch of times for which the points on the orbit are of height at

least M. In other words, the possible starting and end points of that time
interval completely determine an element of <2m, [2 log mj which therefore has at

most C log2M, say < colog2 M, many elements. To obtain the final assertion

of Proposition 4.3, we note that Qm,n can be obtained by taking refinements

of L2[2fogMj' +i-l ^ man? ima8es and Pre-images of ßM,L2iogMj

and at most 2\2\ogM\ many of {X>M,X<M}. We get that Qm,n has

2 2N 2 log log M j. j
size Cm (To l°g M)410^-1 which is at most e lo%M once M is large enough.

5.2 Proof of Proposition 4.3: covering Z(V) by Bowen balls
(eh 0 \Write a I i I, so that T(x) xa. Since X<M has compact

closure, it suffices to restrict ourselves to a neighborhood O of a point
xo G X<M. By taking the image under TN it also suffices to study the forward
orbit as follows. We will show that for the set V C [0,Af — 1] picked, the set

Z+ {x G o n T~nX<m :

for all n G [0, Af — 1] we have Tn(x) G X>M n G Vj
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can be covered by «Cm 2n forward Bowen N-balls xB^, where

N-1

Bn f| a~"B°an-
n=0

We may assume that the neighborhood we will consider is of the form

0 x0<2</7>

where Bf denotes the r-ball of the identity in a subgroup H < SL2(R),
A denotes the diagonal subgroup, and U+ resp. U~ denote the unstable and

stable horocyclic subgroups as in Section 4.2.

Notice that by applying Tn to O we get a neighborhood of Tn(xo) for
which the f/+ -part is en times as big while the second part is still contained
in ^/2A* ®y breaking the U+-part into \en] sets of the form for

various u+ E U+ we can write 7^(0) as a union of \en] sets of the form

Tn(x0)utB^2a-nBuriJ2Aan,

i.e. we obtain neighborhoods of similar shape. If we take the preimage
under Tn of this set, we obtain a set contained in the forward Bowen n-ball
T~n(Tn(xo)u+)B+. We will be iterating this procedure, but by using the

information that the orbit has to stay above height M for a long time we will
be able to cut down on the number of u+ E U+ needed to cover Zq

In the proof of the claim we will use a partition of [0, TV] into subintervals

of two types according to the set V. Notice that as in the proof of §5.1, we

can assume that V itself consists of intervals that are separated by 2 [2 log M\.
For otherwise the set Zq is empty since no orbit under T can leave X>M and

return to it in a shorter amount of time. We enlarge every such subinterval

of V by [21ogMj on both sides to obtain the first type of disjoint intervals

Z\,..., Zk. At the end points 0 and N we have required that x, TN(x) E X<M
for all x e Zq For this reason we can assume without loss of generality that

all of these intervals are contained in [0, N]. (If this is not the case, we can

enlarge the interval [0, TV] accordingly and absorb the change of the desired

upper estimate in the multiplicative constant that depends on M alone.) The

remainder of [0, N] we collect into the intervals J\,..., Ja.
We will go through the time intervals Zx and Jj in their respective order

inside [0,A/]. At each stage we will divide any of the sets obtained earlier
into \e'x''] — or |~eW~| — many sets, and in the case of Zv show that we
do not have to keep all of them. More precisely, we assume inductively that

for some K < N we have [0, K] Z\ U U Zx U J\ U U Jj and that all
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points in Zq can be covered by

< 2^l^il+ +WI+iL21°g2MJ + i(l:z:il+ +1^1)

many preimages under TK of sets of the form

(5.2) T^(x0)u+Bu^2a-KBuvnAaK.

Note that for K N this gives the lemma since by construction \X\ | H h

\lk\ =2k[2logM\ + |V|.
For the inductive step it will be useful to assume a slightly stronger

inductive assumption, namely that the multiplicative factor 2 is only allowed

if [0, K] ends with the interval Jj. Therefore, notice that if the next interval
is Jj+1 (i.e. [0,K] ends with Xt) then there is not much to show. In that case

we keep all of the < 2^ I ^+11-many Bowen balls constructed above

and obtain the claim.

So assume now that the next time interval is Xl+\ [K + 1, K + S]. Here

we will make use of the geometry of geodesies that visit X>M during that
subinterval. Pick one of the sets (5.2) obtained in the earlier step and denote

it by Y. By definition of Zq we are only interested in points y G Y which
satisfy

Tn(y)GX>M&K + neV,
or equivalently

ht(y), ht(roo),...,ht(rL2l0gMJGO) < m

ht(rl-2iogMJ+i(y)),... ,ht(rs"L21ogMJ(;y)) >M,
ht(rs-L21ogMJ+1(y)),... ,ht(TS(y)) <M.

If there is no such point in Y there is nothing to show. So suppose y, y' E Y

are such points. We will use the above restrictions on the heights to show

that if

(5.3) y T% (xq)u+u+(t)v and y'

for G B^/"2 and v,v' in the conjugate of then

\t — t'\ < 7rsl2. We can draw the geodesic orbits defined by y and y'
in the upper half model of the hyperbolic plane and relate the conditions

on y,yx to geometric information about these geodesies. We choose the lifting

of the paths in such a way that the time interval for which the height
is above M becomes the part of the geodesic where the imaginary part is

above M2.
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For the translation of the properties we will use the following observation:
For two points zi,Z2 G H on a geodesic line that are either both on the

upwards part or both on the downwards part of the corresponding semi-circle
their hyperbolic distance satisfies

(5.4) | logIm(zi) - logIm(z2)| < d(z\,zi) < I loglm(zi) - logIm(z2)| + 1
•

The lower bound actually gives the shortest distance between points with
imaginary part Im(zi) and points with imaginary part Imfe). The upper
bound gives the length of a path that first connects the point lower down,

say z\, to the point z! immediately above with imaginary part Imfe) and

then moves horizontally to a point that is Imfe) far to the left or right of z!

towards zi- For two points z\,zi on the upwards or downwards part of a

semi-circle this path actually goes through zi-
Applying the lower bound in (5.4) to the points corresponding to

j and r2L21ogMj+1(j)

whose hyperbolic distance is [2 log M\ + 1 we see that Im(y) >> 1 (where in
a slight abuse of notation we identify y with the lifted point in H). Similarly,
we get from the upper bound for y and T^XogM^(y) that Im(y) <C 1. Similar
estimates hold for TfCy),/ and T^y').

We assume that the points y,y' are lifted in such a way that Sft(y) G

[—1/2,1/2] and such that y' is close to y. Denote by <r_,<r+ G R the

backwards and forwards limit points of the geodesic defined by y on the

boundary of H and similarly by a'_, athe endpoints of the geodesic for y'.
Then |a_| < 2 + \ since the lifting of the point y was chosen such that the

times of height > M in A correspond to imaginary part > M2. For y' this

implies for small enough 77 that \a'_ \ < 3.

Let R \\a+ — a-\ be the radius of the half-circle defined by y and

define R' similarly for y'. Then the above shows R <C |a+| R once M
and so R are large enough to make a- negligible in comparison to a+.
Similarly R' <C |a^_| R'.

Applying (5.4) twice, once for y and the point z on the same geodesic
with imaginary part R, and once for z and T%(y) we get

(5.5) \S -2logR\ < 1 and similarly \S -2logR'\ < 1.

Therefore, R <C Rf <C R and so |a+| <C |a^_| <C |a+|.

Suppose g G SL(2,R) defines y 7T|:(vo)w+w+(/L)v in the

sense that the natural action of g maps the upwards vector at i to the vector
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associated to y for the lifting considered above. Then ce+ g(oo) ^ and

a_ g(0) 2- Similarly, suppose g' defines y' T^x^u+u+^v' such

that a^j_ g\oo). Using this notation we summarize what we already know
about these matrices

max(|a|, \b\, |c|, \d\) <C 1,

Ä« |a+| |-|
(5.6) C.

/? <C |a+| <C and

|«_| ||| « 1.

Here the first estimate follows since we know roughly the position of the

lift corresponding to y which means that g belongs to a compact subset

of SL(2, R). We claim the above implies that

(5.7) 1 < \d\ 1 < \a\ and |c| < |a|R_1 < R_1.

The first estimate follows since \b\ \d\ by the last estimate in (5.6) and

since g E SL(2, R) belongs to a compact subset so that not both b and d are

small. The second claim follows similarly from the second estimate in (5.6).

To simplify the following calculation we would like to remove the

elements v,v' (as in (5.3)) from our consideration — but to do this we need

to see how this affects the above statements. Recall first that v,v' E A

and so v(oo) ?/(oo) oo. Therefore, the first three estimates above remain
unaffected when changing g resp. g' on the right by v~x ,(y')~x. Moreover,
we have |v-1(0)| «C rj and so for small enough 77 that 1 «C \d\ \cv~l(0)+d\
which implies \gv~l(0)\ «C 1. In other words, none of the estimates in (5.6)

are affected (apart from possibly the values of the implicit constants) by
the proposed transition from g to gv~l resp. g' to g'(y')~x and we can

assume v vf e.

Comparing the definitions of y and y' we get g' gu+{t)~xu+(jf).
Therefore,

' ^ ^ 7=~t+b a + b(t' — t)
°+ =9 <0O) (»" (' - "X00'

c + <Ht-n

Since 1 <C \a\, u+(t),u+(t') E anc* so V ~ A we can simplify the

numerator and obtain together with the third estimate in (5.6) that for small

enough g > 0

/?< I J".—-i </?,1

c + d(tf — t)1
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or equivalently
R~l < \c + d(tf -t)\ «r1.

Since \c\ <C R~l and 1 <C \d\ by (5.7) this implies the estimate \t' —1\ <C R~l.
Now recall from (5.5) that es!2 <C R, so that we get the desired |7 —1\ <C £_lS/2.

Recall next that in the current time interval we divide B^j2 into \es]

balls of the form B^-sv/2- Since all points y' that belong to YHTk(Zq) satisfy

the estimate \t' —1\ «C e~s!2 we see that only <C ese~s!2 c5/2 of these balls

can (after the correct thickening along AU~) contain an element of YHTk(Zq)
This implies the inductive claim if we assume M sufficiently large that the

upper bound we got is strictly bounded from above by lel2lo£M\+s/2.

This concludes the proof of Proposition 4.3.

5.3 Entropy and covers; proof of Theorem 5.1

For the proof of Theorem 5.1 we need to relate entropy and covers via
Bowen balls. For this we need the following (well-known) result, which is

proved in Appendix B below (for cocompact T it follows from Brin and

A. Katok [5]).

Lemma 5.3. Let p be an A-invariant measure on X T\SL(2,R). For

any N > 1 and e > 0 let BC(N, e) be the minimal number of Bowen N-balls
needed to cover any subset of X of measure bigger than 1 — e. Then

i rrr\ ^ r r • ^OgBC(N,e)
hniT) < lim liminl7 - e—>-0 N^oo 2N

where T is the time-one-map of the geodesic flow.

Proof of Theorem 5.1. Note first that it suffices to consider ergodic
measures. For if p is not ergodic, we can write p as an integral of its ergodic

components p f ptdr(t) for some probability space (7, r). Therefore,

h(X>M) f pt(X>M)dr(t) but also hß(T) f hßt(T)dr(t) by [26, Thm. 8.4],
so that the desired estimate follows from the ergodic case.

Suppose p is ergodic. To apply Lemma 5.3 we need to show that most
of X can be covered by not too many Bowen A-balls. Once M > 3 we have

that every T-orbit visits X<M, and so p(X<M) > 0. By the ergodic theorem
there exists for every e > 0 some K > 1 such that

K-1
Y (J T~kX<M satisfies fj,(Y) > 1 - e.

k=0
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Moreover, also by the ergodic theorem

1
N

2tfTT E ->• A*>m)
n=—N

as N —) oo for a.e. a e X. So for large enough N the average on the left
will be bigger than a /j,(X>m) — e for any a e X\ and some subset X\ C X
of measure /j,(Xi) > 1 — e. Clearly for any N the set

z Xi n tny n t~ny

has measure bigger than 1 — 3e. Recall that we are interested in the asymptotics
of the minimal number of Bowen N-balls needed to cover Z. Here N —) oo

while e, and so also K, remains fixed. Since we can decompose Z into K2

many sets of the form

z' =xx n TN~k,x<M n T~N~k2x<M,

it suffices to cover these, and for simplicity of notation we assume k\ 0.
Next we split Z' into the sets Z(V) as in Proposition 4.3 for the various subsets

2 lOg lOg Myy
V C [—N,N]. §5.1 shows that we need at most <Cm e logM many of these.

Moreover, by our assumption on X\ we only need to look at sets V C [—N,N]
with |V| > k(2N + 1). Therefore, Proposition 4.3 gives that each of those

sets Z(V) can be covered by <Cm e^l~^2N many Bowen A/^-balls. Together
2 log log M Aj\ /1 YL YIN

we see that Z can be covered by «Cm,k e l0%M ^ 2) Bowen A/^-balls.

Applying Lemma 5.3 we arrive at

/ 7^/. l°glogM ß(X>M)-e
hß(T) < 1 + — — =-^ logM 2

for any e > 0, which proves the theorem.

A. Representations of binary quadratic forms by ternary forms

In this section we establish Proposition 3.4:

PROPOSITION. Let Q be an non-degenerate, integral5) ternary quadratic
form on Z3, and let

y) — ^l-T2 + ayxy + ayy1

5) Ie Q(Z3)CZ
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be a non-degenerate binary quadratic form on Z2. Let f2 be the greatest

square dividing gcd(ai, <22, <23). Then the number N(q) ofembeddings of (Z2, q)
into (Z3, Q), modulo the action of SO^Z), is <C«2,e/max(|ai |, |^2|, |<23|)e.

We recall that an embedding of (Z2,<7) into (Z3,ß) is a linear map

l: Z2 -a Z3 with the property that Q(t(x)) q(x). Such a proposition was
established for the first time by Venkov for Q x2 + y2 + z2 and extended

by Pall to other quadratic forms [25, 21]. The proposition can be deduced

from Siegel's mass formula', here we present a direct and elementary argument
inspired by the adelic proof of Siegel's mass formula as outlined by Tamagawa

(cf. Weil's paper [27]).

Remark A.l.
- One may wonder what the dependency on Q in the above bound looks

like; this is for instance important to obtain equidistribution results when Q

is allowed to vary (see for instance [14, Thm. 1.8]). In the case where Q is

a multiple of the norm form on a lattice in the space of trace zero elements

of a quaternion algebra whose associated order is an Eichler order, it can be

shown that the dependency is of the shape <Ce | disc(ß)|1/2+e It seem

plausible that this holds in general

- The argument provides, in fact, an upper bound for the sum over a set

of representatives Qt, i 1,..., g of the genus classes of Q, of the number

of embeddings of (Z2,q) into (Z3,Qt) modulo SOQt(Z).

- Finally it is easy to see that this argument carries over without significant
changes to quadratic forms defined over a general number field.

A.l Reduction to local counting problems

Fix an embedding i\ (Z2,q) ^A (Z3,g) and let

L := i(Z2)

be its image (if no such embedding exists, we are obviously done). Then

any other embedding d is (by Witt's theorem; see [22, IV. 1.5, Theorem 3])
of the form g o t, with g G SOg(Q). The stabilizer of t inside SOg(Q) is

trivial, for any isometry fixing L pointwise would need to map L1- to itself
and so must be multiplication by ±1 on L1 ; the condition of determinant 1

forces it to be the identity. The number of embeddings N(L) (up to the action

of SO(2(Z)) is therefore precisely the number of cosets g E SO0(Z)\ SO^Q)
so that gL C Z3.
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Given a rational lattice A c Q3, for any prime p we denote by

Ap A <S>z

its closure inside Q3. Let us recall that the map

A ha (Ap)p

is a bijection between the set of lattices in Q3 and the set of sequences of
lattices indexed by the primes (Ap)p, Ap c Q3 such that Ap Z3 for a.e. p.
Write Kp SOß(Zp) for the stabilizer of Z3 inside SOß(Qp) and let

SOß(Af) {gf (gp)p : gp G SOq(Qp) gp G SOQ(Zp) for a.e. p} ;

the above bijection induces an action of SOß(Ay) on the set of rational
lattices:

gf.A o g/.(Ap)p := (gpAp)p

Remark A.2. The group SOß(Ay) is the group of finite adeles of SOß.
The SO,2(Ay)-orbit of a lattice A G Q3 under this action is called the Q-genus
of A. We will not need much of this terminology or discuss further properties
of adelic groups here.

The group SO£(Q) embeds diagonally into SO^Ay). Now the stabilizer
of Z3 in SOß(Af) is Kf YlpSOQ(Zp) and since Kf n SOß(Q) SOß(Z),
SOß(Z)\ SOß(Q) injects into Kf\ SOß(A/).

Consequently, letting Lp L <g>z Zp be the closure of L inside Z3, we
have

N(D < \{gf e Kf\ SOg(A/) : gf.L C Z3}|

< II I fa e SOg(Zp)\ SOg(Qp): gp.Lp C Z3}|
P

ft \{9p e SOß(Qp)/ SOQ(Zp): Lp c gpZ3}|
P P

with

N(LP) \{gpe SOe(Qp)/Kp : Lp c gPZ3}| |{A G SOß(Qp).Z3 : Lp c A}|

being the number of lattices in Q3, within the ß-isometry class of Z3 that
contain Lp. We have proven that

A(D<n^(A)>
p



DISTRIBUTION OF CLOSED GEODESICS 295

and thus have reduced our counting problem to a collection of local counting
problems (as we will see below N(LP) 1 for a.e. p); a more careful analysis
of what we have said so far is very closely related to the proof of the mass

formula. In the present paper, however, we need only upper bounds.

A.2 The anisotropic case and a reduction step

We first introduce some notations. We denote by

(x, x7) Q(x + x') - Q(x) - Q(x')

the bilinear form associated with Q; so (x, x) 2Q(x). The discriminant

of Q is set to be

disc(ß) det((xnxJ)X)J<3

for {jci, JC2, JC3} any basis of Z3. Since Q is integral (Z3,Z3) C Z, so disc(ß)
is a non-zero integer.

We notice first that if Q does not represent 0 nontrivially over Qp (i.e.
is anisotropic over Qp), then SO^Q^) is compact and

(A.l) N(Lp) < [SOß(Qp) : SOQ(Zp)] <ß 1.

This (favorable) situation can occur only if p divides disc(ß).
We suppose now that Q is isotropic over Qp for some prime p | 2 disc(ß),

we will reduce the problem of bounding N(Lp) to the case where the integral
quadratic form is given by <2(x,y,z) xy + z2. We note that disc(xy + z2) 2.
This reduction comes with the cost that we also have to replace q by a

different quadratic form q' upmpq with u E Z* and mp > 0. However, we

only have to make this change for p | 2 disc(Q) and mp will only depend

on Q. Using these facts we will see in Subsection A.l that the bound for
the number of representations of q' by xy + z2 will suffice for the proof of
Proposition 3.4.

We claim that there exists a basis of Q3 over Qp so that the quadratic
form Q with respect to the coordinates of this basis has the form up~i(xyJrZ2)
for some u G Z* and t E {0,1}. Indeed as Q is isotropic, there exists a

hyperbolic plane in Q3. Complementing the basis of the hyperbolic plane with
a vector of the orthogonal complement we arrive at a basis so that Q has the

form xy + up~iz2 with u E Z* and f E Z. If necessary we may replace the

last basis vector by a multiple and can ensure that t E {0,1}. Similarly we

may divide the first basis vector by up~l and arrive at the claim.

Let A be the Zp-lattice in Q3 spanned by the above basis. There exists

some k (depending only on A) so that pkZ3p c A. Let t: (J? q) ^ (J? Q)
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be an embedding of q. Then pki: (ZpJp2kq) —^ (A, Q) and finally

ph: (Z2p, u-xp2k+lq) -> (A, u~YQ) ~ (Z|,xy + z2)

are also embeddings of quadratic lattices. We set mp 2k + i and

u~lpmpq and obtain that there is an injection from the set of embeddings
<•: (Z2,<?) -r (Z;, Q) to the embeddings (Z2p,qr) -t (Zp.xy + r).

A3 The case of an unramified lattice
The previous section reduces the proof of Proposition 3.4 to the problem

of finding an upper bound for N(Lp) where we may assume that either

p \ 2 disc(<2) or that Q(x, y, z) xy + z2. This will be done in the following
two local counting lemmas which depend on whether p 2 or p > 2 :

Recall that for p > 2 any quadratic form q on some rank two Zp -lattice L
taking value in 7jp may be written, in a suitable basis, in the form

(A.2) q(xe\ + yei) upax2 + vpby2, m,i;GZ?x, 0 < a < b Z>o

To see this take an element q Gl such that the valuation of #(ei) is minimal
and then take the orthogonal complement of e\, cf. [7, Sect. 8.3]. We shall call
the integers a < b the invariants of the quadratic form (e.g. the invariants of
x2 + 5y2 over Z5 are (0,1)). This is a kind of p-adic analogue of the notion of
successive minima. The invariants determine the quadratic form over Zp — up
to isometry — up to 0(1) possibilities. We will prove the following lemma.

Lemma A.3. Let p > 2, let Q be an isotropic quadratic form over Q2

so that p \ disc(<2). Let L C A be a rank two sublattice such that Q\L has

invariants (a,b), then

N(L; A) := |{A' e SOß(Qp).A : L C A'}| < (b + 1)V«/2J

where the implied constant is absolute. Moreover, if (a,b) (0,0),
N(L; A) 1.

In the 2-adic case, any quadratic form q on some rank two Z2 -lattice L
taking value in Z2 may be written, in a suitable basis either (cf. [16, Lemma

2.1] and [7, Sect. 8.4]) in the form

(A.3) q(xe\ + yef) u2ax2 + v2by2, G Z2x, 0 < a < b Z>o

or in the form

(A.4) q(xe\+ye2) u2bx2+w2axy+v2by2, u,v,we2a2, 0<a<b<EZ>o-
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In both cases we will refer to a < b once more as the invariants of q. We

have the following lemma.

Lemma A.4. Consider Q(x,y,z) xy + z2 as a quadratic form over
let A C Q2 be a lattice satisfying Q(A) C Z2 and which is maximal for
this property. Let L C A be a rank 2-sublattice such that Q\L has invariants

(a,b), then

N(L; A) <C (b+ 1)22^
where the implied constant is absolute.

The proof of these two lemmas will use a geometric interpretation of the

quotient SOß(Q^)/SOß(A).

A.4 The Bruhat-Tits tree

Let Q be an isotropic quadratic form such that p \ disc(ß) or Q(x, y, z)

xy + z2. Note that Ao Zp has the property that Q(Ao) C Zp and that Ao is

maximal for this property. We set

TQ SOß(Q3)Ao ~ soQ(Q3P)/KP

Even though this will not be used here, let us also mention that Tq is the set

of all lattices A in Qp such that

ß(A) C Zp

and which are maximal for this property (see [15, Cor. 4.17]).
We will need that Tq has the structure of a (p+1) -regular tree (see [6]) in

which A, Ax are adjacent if and only if AnAx has index p in A (or equivalently
in Ax). More generally, the distance d(A, Ax) between two vertices A, Ax

satisfies

pd(a,a') [A;AnA/] [A/:An Ax],

and the geodesic between A and A' consists of all A" E Tq satisfying

AnA'cA".
Let us describe the adjacency structure on Tq more explicitly using the

quadratic structure. Given any lattice A E Tq, and any primitive v E A (i.e.

v ^ pA) for which v v+pA E A/(pA) is isotropic over ¥p (i.e. p \ Q(v))
we can define a lattice Ay E Tq, which only depends on the line through v,
as follows. Since

(A.5) Q(a\ + z) a2Q(\) + Q(z) + a(z, v) E Zp
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and since the linear form (•, v) is not zero (even for p 2), we may modify v
by some element pz^ E pA to ensure that p2 \ Q(y +pzf). Here the element zo

is uniquely determined by v up to {z E A : (z, v) 0 mod p}. Therefore,
the lattice

Ay := -Zp(y + pz0) + {z E A : (z, v) 0 mod p}

depends only on v, indeed only on the line through v. Using (A.5) we see

quickly that ß(Ay) C Zp. Below we will always assume that p2 \ ß(v) and

set zo 0.
Under our assumptions on ß this lattice Ay E Tq is a neighbor of A, and

there are exactly p + 1 |P! (F^) | such lines, and thus every neighbor arises.

We will use also the following simple facts:

(1) For an isotropic v we have

A n Ay Zp\ + {z E A : (v, z) 0 mod p }.

(2) For v,v' generating distinct isotropic lines the intersection

Ay n Ay/ {z E A : (v, z) (v', z) 0 mod p} Z/;w + pA

is the preimage in A of the orthogonal subspace (F^v + Fpv')iCFj.
(3) Given three isotropic vectors v, vx, v" generating distinct lines and assum¬

ing p > 2 we have

Ay f| Ay/ fl Ay// pA

One establishes also the following generalization:

Proposition A.5. Let A lie at the mid-point of the geodesic between A'
and A" (i.e. there is n > 1 such that d(A, A') d(A, A") n, d(A\ A")
2n). There exists a primitive v E A so that Q(\) 0(pn) and w E A with

ß(w) ^ 0(p) and (v, w) 0(pn) so that

A H A' {z E A : (z,v> 0(pn)} Zpv + Zpw + pnA

and
A' n A" Zpw + pnA

is the preimage of the non-isotropic line defined by w under the projection
A i-A A/pnA. Moreover, for m < n, let A'm be the lattice on the segment

[A, A'] at distance m from A, then

A H a; {z E A : (z, v) 0(pm)} Zp\ + Zpw + pmA DAn Ax.
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A.5 Proof of Lemma A.3

Let p > 2 and Q be as in the lemma. Define

1Z(L) := {A e Tq : L C A} c Tq N(L) \1Z(L)\.

In the notation of Lemma A.3, N(L) N(L\ A) for any A G Tq.
We start by remarking that 7Z(L) is connected: if A, A' both contain L,

then LcAflA'cA" for any A" on the geodesic path between A and A'.
Let q be as in (A.2). Suppose 7Z(L) is non-empty and let i: (Z2, q) (A, Q)

be an isometric embedding with image L l(Z2) and let e\ *<(1,0),

62 <0,1) so

Q(ei) upa, Q(e2) vpb, {eue2}=0.

A.5.1 The case (a,b) (0,0). We show 7£(L) {A}. If not, L is

also contained in a neighbor Ay of A. However, the induced quadratic form
on the span of £1,^2 is nondegenerate, so this span cannot be for an

isotropic v e A/pA. So N(L) 1.

A.5.2 The case a 0, fo > 1. Suppose that N(L) > 1. Then there is

an isotropic v so that ~e{ belongs to This shows that e^~ is a hyperbolic
plane (first modulo p, and then since p T 2 also on Q^).

In other words, ej~ D A is a rank two lattice generated by two isotropic
vectors v, \f (which are liftings of isotropic vectors generating ~e[^) and then,
there are exactly two neighboring lattices containing e\, namely Ay and Ay/ ;

that there are at most two follows from Fact (A.4). Pursuing this reasoning,

we see that the only lattices that can contain e\ are the lattices

An := ZPp~n\ + Zpe\ + ZPpn\f, n e Z

(which is a geodesic in the tree determined by e\).
Let us now see that for n > b, A±2n does not contain £2, which will

show that N(L) <4b + 3. Suppose £2 £ An, then

£2 £ A n A2n Z^^i + pnAn

write ^2 + z, a GZpj z G pnAn we obtain

(^1, £2) =0 o; (mod pn), ß(^) vpb a2 0 (mod pn).

This is a contradiction for n > b.
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A.5.3 The case a 1. We show N(L) < 2 : Suppose that Lc Ay for
some v. Since e\ G A/pA is a non-zero isotropic vector contained in
it has to be a multiple of v. By symmetry between A and Ay, this also

shows that A is the only neighbor of Ay which contains L. Since 7Z(L) is

a connected subset of the tree, this shows that N(L) < 2 as claimed.

A.5.4 The case a > 2. Let

Li :=Zpe[+Zpe2, L2 := Zpei+Zpef2, e[ eljp, i= 1,2, Li+L2 ^L;

these are rank two lattices containing L, on which Q is -valued with
respective invariants (a — 2, b), (a, b — 2) and (a — 2, b — 2). We will show

that either A(L) 1 or

(A.6) TZ(L) c TZ(Li) U ft(L2) U |J B(A', 1),
A'GK(iL)

where ß(A', c/) {A" £ 7g, J(A', A") < J} is the ball in the tree of radius d
t t t T)^ \ O 7

centered at A ; it has cardinality 1 + (p + 1)L—_ < (1 + ppa.
Here is the proof of (A.6). Let A G 1Z(L). If e\ G pA or e2 G pA7 then

A G 7^(Li) U 7Z(L2). So suppose now e\,e2 G A are both primitive vectors.

By assumption, we have for i 1,2 (since ßfe) 0 (modp)) that is a

non-zero isotropic vector. Since (e\,e2) 0, ~e[ and ~ei have to be co-linear;
otherwise the induced form on the reduction A would be identically zero on

a plane. Now A^ contains both L\ and L2 ; so it belongs to 7Z(^L). Thus

A is at distance at most 1 from
Let us now see how to conclude the proof of Lemma A.3: for r, s G N,

let

Lrys '— ^pP ^pP ^2 •

Q takes integral values on Lr s for r < 5 < \bj2J. In this notation

(A.6) states

TZ(Lofi) C 7e(Llj0) U K(Lo,i) U |J B(A', 1).
A'£-R(L! D

We can now apply (A.6) again to each of the terms on the right. With each

application r or s or both increase by 1. In the latter case we obtain that the

previous lattice Af G 1Z(Lr^s) (to which (A.6) was applied) is at distance 1

from the new lattice A" G 7£(Lr_|_i)Ä+i). Also note that in the latter case both

a and b are reduced by 2, so that this case can only happen < \a/2J many
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times. Therefore, induction on a + b shows that

K(L) TZ(Lofi) C U{ß(LLfl/2j>s, [a/2\),B{Lrtyb/1^ \a/2\) : 0 <r,s< [b/2J }.

Each L' L|a/2j)Ä resp. L' Lr^b/2\ has invariants (0, Z/) or (1 ,b') with
b' < b and by the previous sections N(L') 0(b+1) in all cases. Consequently

|B(A',Lfl/2J)|<(fe+l)Va/2].
V a'en(L')

A.6 Proof of Lemma A.4

Recall that we assume that Q(jc, y, z) xy + z2. Note that (1,0,0), (0,1,0)
and (—1,1,1) are three isotropic vectors that are linearly independent
modulo 2, which define the neighbors of 7?2. For every pair f\, fi of these

vectors we can find a third vector fe £ 7?2 so that Q(xf\ -\-yf2-\-zf3) vy + z2.

Of the four non-zero non-isotropic vectors modulo 2 the vector k (0,0,1) is

special, it is the only element in the kernel of (•, •) modulo 2 and also satisfies

k =/3 modulo 2 for any basis C/1,/2,/3) as above. Below we will always

use the letter k to denote the corresponding element in the lattice A/2A.

A.6.1 The diagonal case (A.3). Suppose that in a suitable basis q
takes the form (A.3). This situation is similar to the proof of Lemma A.3.
We only discuss the details where the two proofs differ.

A.6.2 The case (a,b) (0,0). We claim that A £ 1Z(L) has at

most one neighbor in 1Z(L). If one of ~e[ or ~ey is not equal to k, then

we claim that 7Z(L) contains at most one neighbor of A. To see this suppose
~e\ 7^ k and L C Ay D Ay/. Then by Fact (2), L is contained modulo 2 in the

common kernel of (-,T) and (^v'), which is one-dimensional and actually
equal to the span of k — a contradiction. Therefore, L C A D Ay for at most

one neighbor Ay as claimed.

So suppose ~e\ ~ei k and w £ A is such that Q(xe 1 + y(e 1 + 2w))
ux2 + vy2 as in (A.3). Since we also have

Q(xe?i -hy(e 1 + 2w)) x2Q(e\) + ylQ(e\ + 2u;) + xy(2g(£q) + 2(^i,u;))

and 2 | (e\,w), it follows that Q(xe 1 + y(^i + 2u;)) is not as in (A.3). So

we have seen that in all possible cases we have at most one neighbor of A
in 7Z(L). However, this shows N(L) < 2 for (a, b) (0,0).
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A.6.3 The case a 0 and b > 1. We claim that the main difference
between the case of p 2 and p > 2 lies in this case. Here we will see

that 7Z(L) is only contained in the set of elements at distance one to points
on a geodesic. This is caused by the fact that if ~e[ k and £2 0, then

7Z(L) contains all neighbors of A due to Fact (1) and since h is orthogonal
to all three nonzero isotropic vectors in A/2A.

On the other hand, we have already seen above (in the case a 0,b 0)
that if ~e[ ^ k then only one neighbor of A can be in 1Z{L). To prove that

7Z(L) consists of points at distance one from a geodesic we only have to
show that if ~e[ k, then for at least one neighbor A' of A we have ~e\=ßk!
where kf E A//2A/ is the corresponding special vector for A'. This follows
if we can find some vector we A' with (cj~, w) ^ 0.

To see this we simplify the notation and assume without loss of generality
K Z\. Let e\ (a,/?,7) so that (£i, (1,0,0)) ß, (e\, (0,1,0)) a,
and (£i,(0,0,l)) 27. Since ~e[ ^ 0, one quickly sees that one of these

inner products is not divisible by 4. Without loss of generality we may
assume 4 \ ß. Now consider the neighbor A' \Z2 x 2Z2 x Z2 of A. Then

w (^,0,0) E A' satisfies (e\,w) ^ 0 (mod 2). Hence as claimed,

~e\=ßk! and so only one neighbor of A', namely A itself, can belong to 7Z(L).

It follows that there exists a line segment I c 7Z(L) in a geodesic in T(Q)
so that 7Z(L) C (JAG/i?(A, 1). Arguing as in Subsection A.5.2 we can bound
the length of I in terms of b and obtain N(L) < 3(4b + 3).

A.6.4 The case a > 1. The arguments for p > 2 carry over to the

remaining cases.

A.6.5 The non-diagonal case (A.4). So suppose now q is represented

by the lattice L Z2e\ +Z2e2 C A with

Q(e\) u2b, Q(e2) v2b, (e\1e2)=w2a1 u,v,weZ2, 0 <a<b.

A.6.6 The case a 0. If (a, b) (0,0), then ~e\~ and ~ei are linearly
independent in A/2A since otherwise w (£i,£2) 0 (mod 2). Also note
that the plane generated by ~e[ and £2 does not contain any isotropic vector.

However, this implies that £1, £2 cannot be both contained in any Ay for then
Y1- would contain £f, £2, v three linearly independent vectors.

If now (a, b) (0, b > 1), £1 and £2 are two linearly independent isotropic
vectors and so £1 can only be contained in A^. Similarly, £2 is only contained
in A^. So L cannot be contained in any neighbor of A.
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In conclusion for a 0 we have

N(L) 1.

A.6.7 The case a 1. In that case at least one of the vectors ~e{ and

Hi must be a non-zero isotropic vector, for otherwise a >2. Suppose ~e[ ^ 0.
Then ~e[ G Ay only for ~e[ v. Therefore, L can only have one neighbor
in 12(L) and so N(L) < 2.

A.6.8 The case a >2. We consider again the 2 rank two lattices

L\ := + 7j2&2 T2 := Z2^i + ^2^2
•>

e[ ei/2

which contain L and on which <2 is Z2-valued:

ß(4) M2fc"2, ß(4) v2b~2, (e[,e2) (ei,e'2) w2a~l.

We describe now the type and the invariants of L\ — by symmetry L2

behaves the same way.
If a b we may solve the equation in ^ G Z2X

0 (e2 + rc2ö!_1 + ßu2b~l

and so ß|Ll is of diagonal form (A.3) in the basis {e2 + ße[, e[}. Furthermore,
since

(e2 + ße[,e2 + /M) 2ß(<?2 + /M) v2b+l + ßw2a~l

it has invariants (a — 2, b — 2).
If a < b, take ß 2^-ö! : in the basis {^2 + ß|Li takes the

non-diagonal form (A.4) with (a\bf) (a — 1,& — 2). Finally Q\hxL2 — ß|L/2
takes the form (A.4) with (a7/, Z/7) (a — 2, b — 2).

We then conclude exactly as in Subsection A.5.4 by proving that either

N(L) 1 or (A.6) holds. This implies once more the desired bound.

A.7 Proof of Proposition 3.4

We now show how the previous subsections combine to the proof of
Proposition 3.4.

Recall that we are bounding the number of representations N(L) of the

quadratic form q(x, y) ci\x2 + <22xy + ayy1 by the ternary quadratic form Q

up to SOg(Z). For any p let us write ap and bp for the invariants of q

over Zp as in Section A.3. Let f2\ gcd(ai, <22, aß) be the greatest common

square divisor of the coefficients of q. Then a vp(f).
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By the discussion in Sections A.1-A.2 we know that

N(L) < J[ N(Lp).
P

Q p -isotropic

Also recall from Section A.2 that for bounding N(LP) for p \ disc(ß) we may
replace Q by xy + z2 and q by a fixed multiple q' of q, where the factor

only depends on Q. From this we see that Lemmas A.3-A.4 also hold for
p|disc(<2) for q and Q, except that the implicit constant depends for those

primes also on Q.
Notice that for any prime p > 2 we have ap + bp ^(disc(g)) and

ap ^/?(gcd(ai, <22, #3)). For p 2 we have ^2(disc(g)) a + b + 2 in the

diagonal case and ^2(disc(g)) 2a in the non-diagonal case. Also let c > 1 be

the implied constant in Lemma A.3. Together with Lemmas A.3-A.4 this gives

A(L) < JJ c(vp(disc(^)) + l)2p^(/) <Ce/max(ai, a2,

p|2disc(^)

as desired.

B. Entropy, Bowen balls and
UNIQUENESS OF MEASURE OF MAXIMAL ENTROPY

B.l Statement of main results
We recall some notations: we work in the space X T\G with

G SL2(R), and let T denote the time-one-map of the geodesic flow, i.e.

the map
v/2 0

T: x 1—y xci with a \

^ ^-1/2

We define a Bowen (A, 77) -ball in this space to be any set of the form xBN^
with x e X and

N

Bn,v= f| a-nB%{e)an
n=—N

(in the sections above rj remained fixed and was omitted from the notations,
but here it will be convenient to be able to use Bowen balls of varying rj).

If r is cocompact, for all 77 sufficiently small, the Bowen (A, 77)-ball

xBn,v coincides with the set

xBNyT] {y : d(Tn(x), Tn(y)) < 77 for all -A < n < A}
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This is not true any more for noncompact quotients, where in general the

right-hand side can be significantly bigger than the left-hand side which is

the source of some complications.
The following theorem was proved for compact quotients by Bowen in [4].

It is certainly well known also in the finite volume case, and proofs using
leafwise measures can be found e.g. [20, Prop. 9.6] and the more recent
lecture notes [12, Thm. 7.9].

Theorem B.l. Let X T\SL2(R) and T: X -a X be as above. Then

for any T-invariant probability measure v the entropy satisfies hv(T) < 1.

Moreover, equality holds if and only if v px Is the SL2(R)-invariant
probability measure on X.

We give here a direct proof not using leafwise measures, based on
Lemma B.2 (which is identical to Lemma 5.3 and was needed for the proofs
in §4), in the spirit of Bowen's proof (that in turn was inspired by a proof
by Adler and Weiss [1] of the uniqueness of measure of maximal entropy in
irreducible shifts of finite type).

Lemma B.2. Let p be an A-invariant measure on X T\SL(2,R). Fix

rj > 0 and e E (0,1). For any N > 1 we let BCv(N,e) be the minimal
number of Bowen (A, rf) -balls needed to cover any subset of X of measure

than 1 — e. Then

B.l)J J
at—irvi OAT

It is easy to see that for any V,T}'>0 a Bowen (N, 17) -ball can be covered

by <C 1 Bowen (A, ?/)-balls. Therefore,

(B.2) liminf logRC„(A, e)/2A
A—>-oo

is independent of p. One can show that if p is ergodic, equality holds

in (B.l), and moreover that the quantity in (B.2) is independent of e. If p is

not ergodic, then in general equality in (B.l) fails: in this case hß(T) is the

average of the entropy of the ergodic components of p and the right-hand
side of (B.l) gives the essential supremum of the entropies of the ergodic

components of p. We shall not need either fact (nor will we prove them),
but will use the following related estimates for p ergodic:
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Lemma B.3. Assume that i± is in addition ergodie for T. Then for any
sufficiently small rj (depending only on X) and for any e E (0,1) and any
large enough N (depending on for any e\ E (0, e), if k is sufficiently
large (depending on e\,e,N,/i,r}) then

1ogBC^kN, ei) < k( 1 - 2e) 1ogBC^N, e) + 4eNk + qk.

Here q is some absolute constant.

For our proof of Theorem B.l it is crucial that the second error term (qk)
does not depend on N. Roughly speaking the lemma says, if we manage
to cover some set of measure bigger than 1 — e by relatively few Bowen

(N, rj) -balls, then a set of size 1 — e' can also be covered by relatively few
Bowen (Nk, rj) -balls.

The reader may wish to look now at the proof of Theorem B.l in
Subsection B.4 to see how the above two lemmas are used in combination to

imply the uniqueness of the measure of maximal entropy.

B.2 Proof of Lemma B.2

In the proof we will need the notion of relative entropy for partitions:
For two partitions 7 {Si,..., Si} and Q {Qi,..., Qm} of a probability
space (X, fi) the relative entropy of 7 given Q is defined by

KSi n Qj)
Htl{y\Q)=~Y,ß(Slr\QJ)\og

and it is easy to see that it gives the following additivity of entropy

(B.3) Hß(7 VQ) Hß(Q) + Hß(7\ Q).

We should also use the notation V(x) to denote the elements of the finite or
countable partition V containing v.

Proof Let 7 {Q,S\,... ,St} be a finite partition where Q is the only
unbounded set, all boundaries dSt are null sets which satisfy additionally

V((dS,)B°) < Ck

for some constant C > 0 and all n > 0, and finally hß(T,7) > hß(T) — 8.

Here

hJT, 7) lim
Hß(7[~N>N])

N^oo 2N + 1

is the expression over which one needs to takes the supremum to define hß(T).
Such a partition exists since (i) by the general theory of entropy hß(T) can be
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approximated by hß(T, V) once V is a sufficiently fine partition, and (ii) one

can find for every x X arbitrary small r > 0 for which /i(($Pr(x))P^) < Ck
for all k, > 0 (since for every x the function r ^ /i(Br(x)) is monotone

increasing hence differentiable for a.e. r).
We claim that for most points x X (we shall quantify this presently) it

holds that

(B.4) y[-AWI(x) Z> xBN:2r)' for r/ rjN~2

hence if y E xBN^r, then yBN^ C y[_AWI(x). To show this, suppose

y xh ^ CPc—(jc) for h E BN^. Then for some n with \n\ < N the

elements
xan and xhan

belong to different elements of T. It follows that at least one of the elements

xan belong to (dP)#^' f°r some P E T, \n\ < N. Therefore, x belongs to

N

(B.5) (J T" [J (0S)B%,
n=—N Se1?

which has measure less than 2(2N-\- \)£CrjN~2 «C N~l. This proves the above

claim.

Roughly speaking BNyT] has length rj in the direction of A and rje~N along
stable and unstable horocycle directions while BN^> has r]N~2 and r]N~2e~N
instead. From this one can easily deduce that one needs at most «C N6 many
translates of BN^> to cover BNyT]. Choose / > lime^o lim inf#-^ log ^yV? ^

Then for any e > 0, there is some large N > 1 depending on e such that the

measure of the set in (B.5) is less than e, and moreover such that 1 — e of
the space can be covered by less than e2Nf many translates of the set BN^.

Say y\BN)77/,... ,ykBurf (with k < e2Nf) cover X\ C X with fi(Xi) > 1 — e.

If x E X\ is not in the union in (B.5). Since x E yjBN^> for some j, it follows
from (B.4) that yjBN^> C CPc—. In other words, it follows that 1 — 2e

of the space can be covered by e2Nf elements of the partition
Let P be the union of these partition elements and let V {P, X\P} C cr(T)

be the associated partition. Write (iB (fi(B))~l fi\B for the normalized
restriction of the measure /i to a Borel set B. It follows now from (B.3)
that

Hß(V) + H^~N'm\P)
Hß(V) + ß(P)Hßp(J>l~N>N]) + ß(X \ P)Hßx^~N^)

< log 2 + 2Nf + 4eN£
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since the entropy of a partition with K elements is at most log K. For N —) oo

this shows that

h^T) — 5 < hß(T, ?)</ + 2e£,

which implies the lemma since S and e were arbitrary. (Note that £ depends

on S but not on e.)

B.3 Proof of Lemma B.3

We shall say a Bowen ball yBNyT] is injective if the map g i-a yg is

injective on BNyT]. Let 770 > 0 be such that 2go is smaller than the length
of any closed geodesic in X. An easy compactness argument shows that if
T] < r]o for any compact F C X there is a No so that if N > No and y E F the

Bowen ball is injective. In the proof we shall also make use of shifted

(s, t\ rj)-Bowen balls — sets of the form yBSyt^v where Bs t 77 := p|[=s alB^a~l
and (s, t\ rj) sub-Bowen balls which are simply sets of the form yB for some

B C BsjiT). A shifted (s, t; g) -Bowen ball yBs^t^ (respectively, a (s,t;rj) sub-

Bowen ball yB) is injective if the map g ha yg is injective on (or B).
We note the following important properties of shifted Bowen balls:

(Bowen-1) For any s < t < r, the intersection of an injective (s,t;rj) sub-

Bowen ball with an injective (t, r; 77) sub-Bowen ball can be covered by
at most q injective (s, r; 77) sub-Bowen balls;

(Bowen-2) For any s < t < r, an injective (s,t;rj) sub-Bowen ball can be

covered by at most qer~f injective (s, r; 77) sub-Bowen balls.

Proof of claims. Both claims can easily be reduced to their special cases

where t 0 and where we only consider Bowen balls of the form gBSyT^

in G instead of injective sub-Bowen balls in X.
For the proof of (Bowen-1) notice that there exists some C > 0 so that

(B-6) 9\Bs,0,7] c QlBcrj Bcrje'^C'n 5

where Bf denotes the r-ball around the identity in a subgroup H C SL2(R).
Similarly,

(B.7) g2B0^Cg2Bucyr71BuCvBACv.

We can now decompose each of the balls appearing on the right-hand side of
(B.6)-(B.7) into <C 1 many balls with certain smaller radius and obtain that

giBs,o,rj H g2Bo,r,ri is the union of <C 1 many sets of the form

O (giufB^Ui B^eSßaiBA/s) n (g^B^^^B^ßa2BA/s),
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where u\ E u\ E B^e_r, E 5^, g ^ » aOa2 G 2^. If
g O and 770 is sufficiently small so that conjugation by an element of
distance Crjo does not increase the distance to the identity significantly, it
follows that O C gB^s^rj) which proves the first claim.

The second claim follows similarly by splitting the set #5,0,77 as in (B.6)
into <C er many sets of the form

o 5i«iH^tr/8«r^/8fli^/8

with u+ E and u~ E B1^ s, and showing that for g E O we have

O C gBs r 7j.
EH

Proof of Lemma B.3. Let g E (0,7/0) where 7/0 is as defined above, and

let M be sufficiently large so that g(X<M) > 1 — e/2 and similarly choose Mi
so that fi(X<Mi) > 1 — ei/2. We require that A/" be sufficiently large so that any
(N, 7/)-Bowen ball y#A^ intersecting X<M is injective, and we choose k\ so

that a similar statement holds for any (k\N, 7/)-Bowen ball intersecting X<Mi •

Let S be a collection of (N, ?7)-Bowen balls of cardinality BCv(N,c)
covering a subset of X with g -measure at least 1 — e. Then

S' {5GS :BnX<M 0}

has g (Uses'^ ~ T* ^et ^ U^gh'^- P0intwise ergodic
theorem, there is a > ^1 and a subset Ti c X<Ml of g -measure > 1 —

so that points in Y\ spend most of their time in Y in the following sense:

n— 1

(B.8) — V If(^Cv)) > 1 - 2e for all n > k2N and j G Yx.
2n z-^

s=—n

To complete the proof of Lemma B.3 we will show that for any k > £3

there is a collection Si of (kN, 7/)-Bowen balls covering Y\ of cardinality

|Si| < N(2q)kBCr](NJ ^(1-2^(4^+4)^

Let c be the implied multiplicative constant. Then for large enough q' (depending

only on q and some absolute constants above) we have cN(2q)ke4N < eqk

for all sufficiently large k (where the bound is allowed to depend on N).
Therefore, the existence of Si as above will establish the lemma.

Fix k>k2 and let y E Y\. We partition the finite orbit

{T-kN(y),...,TkN-1(y)}
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into the 2N finite orbits of the form

{T~kN+e(y), 1<-k+2)N+e(y),T{k~2)N+i{y)}

for t £ {0,..., 2N — 1}. By equation (B.8) there must for any y £ Y\ exist

some £(y) E {0,..., 2N — 1} so that

7 1 y(7<_t+^)Af+%)Cy)) > 1 - 2e
K

s=0

Let L [(1 — 2e)k \. It follows that there are 0 < t\ < h • • • < tL < k
with ^ y. Furthermore, there exist injective (N, ?7)-Bowen
balls B\,..., Bl E S so that

L

Recall that S has BC^iN, e) many elements. We now apply the properties
(Bowen-1) and (Bowen-2), and we conclude that the set of all y E Y\ with a

given value of £(y) and t\,..., can be covered by

« BCV(N, e)^(l-2e)+l/Me+2A^+l

injective (W, r/)-Bowen balls. Since there are at most 2N2k choices of £(y)
and t\,..., tL we are done.

B.4 Proof of Theorem B.l

We begin with the observation that the SL(2, R) -invariant measure fix on X
achieves the upper bounds stated on the entropy, and moreover is ergodic
under T. Let v ^ fix be another T -invariant probability measure and without loss

of generality we may assume that v is singular with respect to )±x (which is

the case e.g. if v is also ergodic), and let rjo be as in the proof of Lemma B.3.

Let / be a nonnegative, continuous, compactly supported function so that

(B.9) Jf dßX < J dt Jftxa,) du

R some real number strictly between the left-hand side and right-hand side

of (B.9) and set

Yj <j v : — / f(xat)dt > Rj, j f(xa,)dt >

By construction YT is compact, and (for e > 0 arbitrary) by the pointwise
ergodic theorem if T is large enough /jLx(Yt) < e and is(Yt) > 1 — e. In fact,
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if T is large enough, for any sufficiently large N it holds that

(B 10) ßx(YTBN t]o) < 2e

Fix such a T, and choose N so that (B 10) holds and moreover any (N,rjo)-
Bowen ball intersecting Yj is mjective

Now choose a maximal collection of disjoint (A, 770/2)-Bowen balls

intersecting YT Each of these balls has fix-volume ^>770 e
2N (the implicit

constant is independent of e and A) In view of (B 10), it follows that the

cardinality of this collection is <^Vo ee2N, and by maximality the corresponding
collection of (A, r/o)-Bowen balls covers YT As v(Yt) > 1 — e we obtain

BCVo(N, e, u) <^Vo ee2N (note that since we are simultaneously discussing two
measures we have added v to the notation BC())

Roughly speaking the above upper bound should lead to hu(T) < 1 by

using Lemma B 2 most of the space with respect to v is covered by relatively
few, namely < Cee2N, Bowen (A, 77)-balls However, as (B 1) first takes the

limit as A -a 00 this inequality does not directly imply hv(T) < 1 To

overcome this we introduce an e' E (0, e) and will use Lemma B 3 to obtain
the bound on the covering number for e' and kN Indeed applying Lemma B 3

we conclude that for any e' E (0, e) if k is sufficiently large

1ogBCV0(kN, ex, v) < k(l — 2e)(2N + log(Ce)) + 4ekN + qk

< k( 1 — 2e)2N + ^klog(Ce) + 4ekN + qk — 2Nk + [q + ^ log(Ce)^k,

where we also assumed e < 1/4 and Ce < 1 Hence we obtain for any
e' E (0, 6) that

'K!5fE s 1 +
2* + l°fCe>

However, for sufficiently small e the right-hand side is < 1 Hence by
Lemma B 2 we get hu(T) < 1 Therefore, mx is the only probability measure

on X with hmx(T) > 1
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