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ON THE MODULAR SURFACE, AND DUKE’S THEOREM
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Philippe MICHEL #) and Akshay VENKATESH ¥)

ABSTRACT. We give an ergodic theoretic proof of a theorem of Duke about
equidistribution of closed geodesics on the modular surface. The proof is closely
related to the work of Yu. Linnik and B. Skubenko, who in particular proved this
equidistribution under an additional congruence assumption on the discriminant. We
give a more conceptual treatment using entropy theory, and show how to use positivity
of the discriminant as a substitute for Linnik’s congruence condition.
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1. INTRODUCTION

A non-zero integer d is called a discriminant if it can be represented in
the form
d=0b*—4ac, ab,cel,

or equivalently if d is the discriminant of the binary quadratic form with
integral entries

(1.1 q(x,y) = ax* + bxy + ¢y’

It is easy to see that d is a discriminant if and only if d =0,1 (mod 4). A
discriminant d is fundamental if d is either square-free (in which case d is
congruent to 1 modulo 4) or d/4 is a square-free integer congruent to 2,3
(mod 4). Equivalently: d is fundamental if it is the discriminant of the ring
of integers of a quadratic field.

The study of integral binary quadratic forms goes back at least to
the Greeks. Significant breakthroughs were accomplished by Gauss. In his
Disquisitiones Arithmeticae he studied the set of GL,(Z)-orbits of such forms,
where GLy(Z) acts via the linear change of variables:

1
(1.2)  7.q(x,y) = ——q((x,y)7) = q(ux + wy, vx + zy),

det(7) det()

for v = (Z} Z) € GLy(Z). This action preserves the discriminant and Gauss

proved that the set of GL,(Z)-orbits of integral binary quadratic forms of a
given discriminant is finite, see [7, p. 128] for an accessible and more general
treatment. Let

Raise(d) = {q(x, y)=ax’+bxy+cy*: a,b,c € Z, disc(q)=d, ged(a,b,c) = 1}
~ {(a,b,c) € Z* : disc(a,b,c) = b* — 4ac = d, ged(a,b,c)=1}

denote the set of forms of discriminant d with coprime coefficients, and let
[Rdisc(d)] = GLZ(Z)\RdiSC(d)

be the set of orbits; its cardinality is the class number and is noted h(d). Gauss
also showed that the set [Ryisc(d)] could be given an additional structure of
an abelian group (the law of composition of quadratic forms), leading to the
notion of class group of quadratic forms of discriminant d. Nowadays these
venerable and beautiful results are usually interpreted in terms of the theory of
quadratic fields and ideal class groups. We will recall this connection below.
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1.1 LINNIK AND SKUBENKO EQUIDISTRIBUTION THEOREMS

In the late 50’s, Linnik studied more refined properties of the set of
representations Rgisc(d), in particular their distribution properties.
Let
Viise.+1(R) = {(a,b,c) € R* : B> — dac = +1};

this is a one-sheeted hyperboloid in the +1 case and a two-sheeted hyperboloid
in the —1 case, and is identified with the set of real binary quadratic form
with discriminant £1. In both cases Viyisc,+1(R) is invariant under the natural
action of GL,(R) extending (1.2) and has one orbit.

The set of representation Rgisc(d) projects on Viise+1(R) (with +1 =
sign(d)) by a homothety

|d] ™" *Raisc(d) C Vagse, 21 (R) ,

and Linnik studied how this set is distributed when d — oo. These
hyperboloids carry a natural GL,(R)-invariant measure figisc,+1 defined, for
any open set © C Vyise, +1(R), as the Lebesgue measure in R3 of the solid
cone emanating from the origin and ending at Q, i.e.

Hdisc,+1(Q) = prs (C(Q)),

where
CQ)={rx: xeQ, rel0,1]}.

Using an original argument of ergodic theoretic flavor, Linnik [19, Chap. V]
established the following equidistribution statement for negative discriminants.

THEOREM 1.1 (Linnik). Let p > 2 be a fixed prime. As d — —o0 amongst

the negative discriminants such that | — ) = 1, the set
P

|d| ™ ?Ryise(d) C Vigise,—1(R),

becomes equidistributed with respect to |igisc,—1, in the following sense: for
any two continuous compactly supported functions 1, s on Vgise,—1(R) such
that the integral pgisc,—1(p2) # 0 we have

ZXeRdisc(d) (‘01(|d|_ l/2x) Ndisc,—l(‘ﬁl)

— as d — —o0.
ZXERdisc(d) <p2(|d|_]/2x) Ndisc,—l(%OZ)

In particular, 3 cq. ) ©2(|d|~"?x) # 0 if d as above is large enough.
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Building on Linnik’s ergodic method Skubenko [24] (see also [19,
Chap. VL.]) proved the analogous statement for positive discriminants:

THEOREM 1.2 (Skubenko). Let p > 2 be a fixed prime. As d — 400

. L d
amongst the positive discriminants such that (— =1, the set
p

|d| ™" Raise(d) C Vigise, 41(R)
becomes equidistributed with respect to |igisc+1, in the following sense: for
any two continuous compactly supported functions 1,2 on Vgise,+1(R) such
that the integral [igisc +1(2) # 0 we have
2 reRued) ¥ (|d|~"/2x) Haisc,+1(£1)
ZXGRdisc(d) 802(|d|_1/2x) Mdisc,+1(2)
In particular, Y7 cp. o) ©a(|d|="%x) # 0 if d as above is large enough.

as d — +o0o.

We refer to Figure 1 for an illustration of the case d = 377.

FIGURE 1
The distribution of 377~/ 2Rdis,;(377) viewed on the one-sheeted hyperboloid: h(377) =1

d
The condition (—) = 1 for some fixed prime p is equivalent to the
p

condition that
the fixed prime p splits in the quadratic field Q(\/d).
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This condition (which we shall refer to as Linnik’s condition) was an essential
input for Linnik’s ergodic method but, as was pointed out by Linnik himself,
it should not be necessary for the equidistribution theorem to hold. It was
only thirty years later that this condition was removed in the beautiful work
of Duke [9].

1.2 DUKE’S THEOREM

A key point of Duke’s approach is to reformulate the prior theorems
in a dual form: in terms of equidistribution of “Heegner points” (for
negative d) or of closed geodesics (for positive d) on the modular surface
Yo(1) := SLy(Z)\H.

Assuming that d > 0 is not a square, one associates to any (a, b, ¢) € Ryisc(d)
the geodesic corresponding to the geodesic semi-circle in the upper half-plane
whose end points are

—b++/d

2a
We lift this geodesic in the obvious way to the unit tangent bundle of H
and then project it to a geodesic orbit on the unit tangent bundle T'(Yy(1)).
This geodesic orbit, which we denote by (45, 1S compact and depends only
on the SL,(Z)-orbit of (a,b,c). We obtain in this way a collection of h(d)
closed geodesics

(13) Xa,b,c,+ =

Sa = |J Yapa C T'(Vo(1)),
[a,b,c]
see Figure 2 for the case d = 377. This collection of compact orbits
of the geodesic flow then carries a natural probability measure invariant
under the geodesic flow which we denote by 4. Let pp be the Liouville
(Haar) probability measure on T!(Y((1)), then Duke’s theorem (as extended
by Chelluri [8] to the unit tangent bundle) gives the following:

THEOREM 1.3 (Duke). As d — +oo amongst the positive fundamental
discriminants, the set G; becomes equidistributed on the unit tangent bundle
T'(Yo(1)) with respect to the measure pi : for any continuous compactly
supported function ¢ on T'(Yo(1)),

/ odpa(t) — e(u)dpr(u) .
SGa T!(Yo(1))

The equivalence of the equidistribution statements in Theorem 1.2 and
Theorem 1.3 will be explained in §2.4.
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-1,0 -0,5 0 05 10

FIGURE 2
The distribution of G377 projected on the fundamental domain of SL,(Z)\H

The restriction to fundamental discriminants is not essential ; indeed all the
proofs extend to the general case, including the one we present here. Duke’s
proof is fundamentally different from Linnik’s; it does not rely on ergodic
theory but on harmonic analysis of the modular surface SL,(Z)\H, that is
on the theory of automorphic forms supplemented by deep arguments from
analytic number theory and in particular a breakthrough of Iwaniec [17].

In this paper we give a new proof of Duke’s theorem in the case of positive
discriminant. Our proof is strongly influenced by Linnik’s ergodic method, and
may be seen as a modern incarnation of Linnik’s original ideas, and we use
the positivity of the discriminant as a substitute to Linnik’s condition that
Skubenko relied on in his work.

There are two main ingredients in the proof:

1. Linnik’s Basic Lemma — An upper bound on the number of nearby pairs
of points in the projection of Rgisc(d) to Viise,—1(R) (as this set is infinite,
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the quantity to be bounded needs some additional interpretation), which
eventually reduces to an upper bound on the number of ways a given
binary quadratic form can be represented by a ternary quadratic form.

2. The uniqueness of measure of maximal entropy for the flow corresponding

!
to the one parameter group a, = <e e’) on SL,(Z)\ SL,(R).

We have made an effort to present both of these main ingredients in a self-
contained way, as each relies on some well-known results that are unfortunately
well known in essentially disjoint circles of mathematicians.

The second of these two ingredients replaces a more explicit but less
conceptual argument of Linnik and Skubenko. The uniqueness of the measure
of maximal entropy for this action is well known (both in the cocompact
and finite volume case) and in the cocompact case dates back to work of
R. Bowen [4]. However the version we give here is new in that it allows us
to control how much weight G, gives to small neighborhoods of the cusp
in SLo(Z)\H : essentially, we give a finitary version of the uniqueness of
measure of maximal entropy in the noncompact quotient SL,(Z)\ SL,(R).
This finitary version is the content of Theorem 4.2, and involves a careful
analysis of how much entropy can be carried by a,-invariant measures that
give disproportionately high weight to the cusp. A cleaner version of the
relationship between entropy and mass in the cusp (although not directly
applicable for our main purposes) is given in Theorem 5.1. We believe these
results are of independent interest, and will likely have other applications; it
also raises some interesting new questions (see e.g. [11]).

We mention that another modern exposition of Linnik’s method in a similar
context (distribution of integer points on spheres) by J. Ellenberg and two of
us (Ph.M. and A.V.) has appeared already in [14]. In that work Linnik’s Basic
Lemma is again a central ingredient, complemented by a different argument to
convert the upper bounds provided by the Basic Lemma to equidistribution (i.e.
both upper and lower bounds on the number of points in specified regions).
The reader may wish to compare these two complementary approaches.

1.3 NOTATION

We collect here some notation that is used throughout the paper:

The group SL,(R) acts transitively on the upper half-plane model H of
the hyperbolic plane by fractional linear transformations and the stabilizer of
the point i is the compact subgroup SO,(R). The resulting identification

H ~ SL,(R)/SOx(R)
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descends to an identification of H with PSL,(R)/PSO,(R); moreover the
action of PSL,(R) on the unit tangent bundle H is simply transitive. If
we let p € T'(H) be the tangent vector pointing up at i, then g > gp
gives an identification PSL,(R) ~ T'H. Taking the quotient by PSL,(Z) we
obtain an identification with the unit tangent bundle of the modular curve')
PSL,(Z)\ PSLy(R) ~ T'(PSLy(Z)\H).

We shall make use of another identification of the quotient

PSLy(Z)\ PSLy(R),

namely with the space of lattices in R?> up to homothety. Indeed, the space
of lattices L(R) is identified with GL,(Z)\ GLy(R) via g +— 7Z2.g; the
same map also identifies the space [L,(R)] of lattices up to homothety with
PGL,(Z)\ PGL,(R) and the set L;”(R) = X of lattices of covolume one with
SLy(Z)\ SLa(R) = PSL,(Z)\ PSLy(R). Finally, the sets [L(R)] and L3"(R)
are also identified via the map [L] — vol(L)~'/2.L.

Thus the following spaces are identified :

X ~ PSLy(Z)\ PSLy(R) ~ T'(PSLy(Z)\H) ~ [£,(R)] ~ L (R) .
We take the following fundamental domain
§={(z,v) EHxS": [Rg] <1/2, |z > 1} C T'(H) ~ PSLy(R)

for PSL,(Z) =T .
Fix an arbitrary left-invariant Riemannian metric d on PSL,(R). It descends
to a metric on X, denoted dx or simply d for short. Explicitly we have

(1.4) dx(PSLy(Z)g,,PSL2(Z)g2) = min _ d(g1,792) -
~YEPSL,(Z)

The geodesic curves on 7' (H) — which in the upper half-plane are circles
and lines intersecting the real axis in a normal angle — correspond to the
orbits of the right A-orbits in PSL,(R), where A = {a,;} is the diagonal
subgroup of PSL,(R). By a slight abuse, we shall use A to refer to the
diagonal subgroup of all three groups: GL,(R),PGL,(R) and SL,(R).

ACKNOWLEDGEMENTS. The authors would like to thank Peter Sarnak for
encouragement and many helpful conversations. A. V. would also like to thank
Jordan Ellenberg for many discussions on the topic of quadratic forms. The
authors also thank Menny Aka, Asaf Katz, Ilya Khayutin, Lior Rosenzweig
for carefully going over a preliminary version of this paper.

]) Actually the modular curve has singularities at the points i and j = Lt 3 =3 owing to the
fact that these points have non-trivial stabilizers in PSL(Z); we will ignore this minor point.
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2. REPRESENTATIONS BY THE DISCRIMINANT, ORBITS AND QUADRATIC FIELDS

In this section we explain in greater detail the relationship between
Skubenko’s equidistribution theorem and Duke’s and connect these questions
to the arithmetic of real quadratic fields. Along the way we will find a few
equivalent ways in which to describe compact A-orbits in G,;. Building on that
we prove in § 2.4 the equivalence between Skubenko’s and Duke’s formulations.

2.1 OVERVIEW OF THE BIJECTIONS

Recall that we have previously associated to any element of [Ryisc(d)] —
i.e. to any GLy(Z)-orbit in Rgisc(d) — a closed geodesic on SL,(Z)\H. On
the other hand, as discussed in §1.3, a closed geodesic in G, corresponds to
a closed A-orbit on the space X.

Write Oy := Z[d%‘/g] for the order of discriminant d.

We shall show below that the following sets are in natural bijection to
each other:

(1) [Ruaisc(d)], the set of GL,(Z)-orbits of primitive representations in Rgis.(d).
(i1) The set of GL,(Z)-conjugacy classes of ring embeddings ¢: Oy — M»(Z)
which are optimal, i.e. for which the embedding cannot be extended to
an embedding of a strictly bigger order O > O, with image in My(Z).

(iii) CI(Q,) = the set of K*-homothety classes of proper O,-ideals, where

K = QWd).

In the case of a fundamental discriminant the above objects and their
bijections are a bit easier to explain. In fact, if d is a fundamental discriminant,
then every representation is primitive, every embedding is optimal, and every
Og4-ideal is proper. In reading the remainder of the section the reader may
first specialize to this case, or even continue reading with Section 3 and only
refer to the portions of this section as needed for the remainder of the paper.

2.2 DISCRIMINANT AND QUADRATIC FIELDS

We establish the bijections of §2.1.
Before beginning, we note that the sequence of maps

) ) a b/2 b —2a
2.1 ax® + bxy + cy” — (b/2 . -y 2e  —b
defines an isometry between the spaces of (real) binary quadratic forms,
symmetric 2 X 2 real matrices and trace zero 2 x 2 real matrices, where each
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of those is equipped with a quadratic form:
(Q(R?), disc) ~ (Sym,(R), —4 det) ~ (MI(R), — det) .

The action of GLy(Z) in (1.2) is the restriction of the following action of
GLy(R) on Q(R?):

1
9-q9(x,y) = mq((x,y)g) = det()

which intertwines with the actions

1 a b/2\, PN b —2a\ _,
det(g)g b/2 ¢ g INoe —b)9

Observe that these actions factor through PGL,(R). They also induce an
isomorphism between PGL,(Z) and the group of orthogonal transformations
of (Q(R?),disc) preserving the integral quadratic forms.

Let d be a discriminant which is not a perfect square; let (a, b, ¢) € Ryisc(d)
be a representation, and let

(ux + wy, vx + zy) —(* v
q Vs y), g_wz’

g.(ax* + bxy + ¢y?) +—

b —2a
2.2 =Mype =
22 "= Mab, (2c b)
be the trace zero matrix associated to it via the map (2.1). Since
m?=d-1d

this defines an embedding of the quadratic field (d is not a square) K = Q(W4d)
into M,(Q)

L K =  My(Q)

" u+ovd — uld+v.m

2.2.1 REPRESENTATIONS AND OPTIMAL EMBEDDING. The integrality prop-
erties of this embedding are measured by considering
O = 1y, (Ma(Z))

which is an order in K. Let us identify which order: Note that Oy, = O,
for any A € Q*. Hence if b> — 4ac = d for a,b,c € Z we may write

(a,b,0) = f(d',b',c)
with f € Z and d',b’,c’ € Z coprime integers satisfying
disc(d’,b',c'y = d' = d/f*.

This reduces the discussion to the case where (a,b,c) is a primitive
representation of d (a representation with coprime entries).
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Assuming that (a, b, c) is primitive, one sees quickly that

2.3) 0, = 0 = 2[4

is the order of discriminant d. If (2.3) holds, we say that ¢, defines an
optimal embedding of O, into M,(Z). We obtain in that way a bijection
between

the set of GL,(Z)-orbits of primitive representations [Rgisc(d)]
and

the set of GL,(Z)-conjugacy classes of optimal embeddings ¢: Oy— My (Z).

2.2.2 EMBEDDINGS AND IDEAL CLASSES. Let us recall that a lattice / C K
is a proper Og4-ideal, iff
Op:={AeK: NICI} =0,.
Then there is a bijection between
the set of GLy(Z)-conjugacy classes of optimal embeddings of O,
and the set of proper ideal classes of Oy
Cl(O4) = the set of K*-homothety classes of proper O,-ideals.

This bijection goes as follows [18]: Given a proper Oy-ideal I C K, one
may choose a Z-basis I = Z.ao + Z.5 which gives an identification

I - 77
ua+vB —  (u,v)

This identification induces the embedding
t: K — M(Q)

defined by
tA)(u,v) = 0(\.(ua + vB3))

(or in other terms, such that (\.x) = 6(x)c(\)).

Since Og4. C I, one has «(Oy)Z? C 77, that is «(O4) C M»(Z) and
the fact that 7 is a proper Og-ideal is equivalent to the fact that ¢ is an
optimal embedding of O,. If we replace the Z-basis («, ) by another basis
(«/,8") then ¢ is replaced by a GL,(Z)-conjugate. Finally if I is replaced
by an ideal in the same class I’ = A\.I, A € K*, then the corresponding
GL,(Z)-conjugacy classes coincide: [¢] = [uf].
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The inverse of the map
] = [ul

is as follows: given an optimal embedding ¢: K — M>(Q) of Oy, let
e; = (1,0) € Z? be the first vector of the standard basis?) of Z2, then
the map
9 K — @
A= e
is an isomorphism of Q-vector spaces; next define the lattice 1 = 0~ (Z?)

in K which is invariant under multiplication by O4. In other words, I is an
O4-ideal and I being proper is equivalent to ¢ being optimal.

2.2.3 THE PICARD GROUP OF THE ORDER ;. We now recall the definition
and basic properties of the Picard group for an order O, in a quadratic field.
The product of two Og4-ideals I and J gives another O;-ideal

- J={\\N:xelLXN eJ};

and clearly this operation respects the equivalence relation introduced above
on Og-ideals. An Oy-ideal I is invertible if there is some Oy-ideal J so that
I-J=04. An Oy-ideal I is locally principal if for any prime p,

I =182 Z, = MO,

where (0g), = 04®zZ, and ), is an element of (K®qQ,)* . Both properties
depend only on the ideal class [/] and not on [ itself.

For general orders O in number fields and O-ideals /, one has the following
implications :

I is locally principal = I is invertible = I is proper.

We shall make use of the following property of orders in quadratic number
fields:

PROPOSITION 2.1.  For the orders O, in quadratic number fields the inverse
implication
I is proper = [ is locally principal

holds for Og-ideals I. In particular, the set of proper ideal classes Cl(Oy),
endowed with the composition law induced by forming the product of two
lattices, has the structure of an abelian group.

2) We could have chosen any primitive vector in Z?2.
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This nice special feature of quadratic orders comes from the fact that in
the quadratic case, orders are always monogenic (i.e. of the form O = Z[x]).

Proof. Recall that Oy = Z[x] for x = %. Assume now that [
is a proper Ogy-ideal and consider the 2-dimensional F,-vector space
1,/pl, ~ 1/pl. The natural map

(od)P/p(Od)P = EndF,,(Ip/plp)
is injective. To see this, suppose that A € (Oy), acts trivially on 1,/pl,. Then
M, C pl, and %I,, C 1, and so % € O, as required. It follows that X the image
of x in Ende(Ip/plp) has a minimal polynomial of degree 2 and that 1,/pl,

is a cyclic F,[x]-module. So there exist A, € I, such that I, = \,(0,), + pl,
which implies that

Ip - )\p(od)p +p()‘p(od)p +p1p) =
= )\p(od)p +p2117 = )\p(od)p +p31p = .= )\p(od)p . U

2.3 INTERPRETATION IN TERMS OF LATTICES

Let us verify that the various descriptions of G, are equivalent:
Given (a,b,c) € Rgisc(d), put

_(b+Vd b—+d (0 -1
ha,b,c—< 2% 2% > and w_<1 O)eSLz(Z).

Then wh,p,. maps {00,0} to _bi‘/‘?. Therefore, the geodesic Y4, ON

PSL,(Z)\H associated to (a,b,c) after Equation (1.3) is:

Ya,b,c] = w”la,b,c'(oa OO) )

where (0, 00) is the geodesic on H joining 0 and oco. Now (0, co) corresponds,
in the realization T'(H), to the A-orbit of the identity in SL,(R); therefore
Yiab,c] corresponds to SLa(Z) - whgp A = SLo(Z) - hyp A, or equivalently the
lattices of the form Z? “hapcar C [,(2') (a; € A). Now one calculates

1 0o 1 1 [(a %
ha c 2 rha c— —~— 2 5
det(hap) " (1 0) > ﬂ(’% c)

which shows that in a particular basis of Z’h,, . the quadratic form
qo(x,y) = xy takes the shape as in (2.4) below.

Since A is the stabilizer subgroup of ¢y, we have verified that 7y p
corresponds to:
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The set of homothety classes of lattices L, such that the restriction of the
quadratic form go(x,y) = xy to L, expressed in terms of a basis «, 3 of L,
takes the form

au® + buv + cv?

(2.4) qo(ua + vB) = vol(L) 172

au? + buv + cv?
Vd
attached to the lattice L because of the different choices of a basis.

Set mg= ((1) _01> and ¢ to be the embedding ¢p: K — Diag,(R) C M>(R)

Note that the particular quadratic form is not canonically

obtained by mapping vVd to d'/?my and 6, be the linear embedding
6o: K — R? given by

Bo(N) = (1, Deo(N),  ice.  Oo(u + vvVd) = (u+ vld|"/?,u — v|d|'/?).

Now let us verify, as asserted in §2.1, that the A-orbit of 6y(/) belongs
to Gy, for any proper Oy-ideal 7. (We do not verify the more precise
assertion that this is exactly the element of G, that corresponds to the class

of I under the bijection CI(Qy) > [Ryisc(d)].) We need to verify (according
to (2.4)) that A\ € I — Zg}fg:é;;\/c_i is a quadratic form of discriminant d.
But go(6o(\)) = Ng/q(A) is the norm; and for any ideal I/ C K we have
vol(Bp(1)) = |d|'/>N(I). Here we have defined the norm N(I) of an ideal

(relative to O4) by the ratio of indexes

(Og: 0401
a-0,00)

N() =

. . N . . .
Now, for any ideal /, the map x € [ — is easily verified to be an

integer quadratic form of discriminant d, as desired.

2.4 A DUALITY PRINCIPLE

Our goal now is to show that the equidistribution statements of Skubenko’s
theorem and of Duke’s theorem are equivalent.

The discussion which follows is valid in great generality; but we will
consider only G = PGL,(R), I' = PGL,(Z), and the diagonal torus A in G.

Since PGL,(R) is identified with SOgi(R), it acts transitively on
Viise,+1(R) (by Witt’s theorem) and equals the PGL,(R)-orbit of (say)
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qo(x,y) = xy; equivalently Vgisc +1(R) is identified with the PGL,(R)-
conjugacy class of the matrix my which has A as its stabilizer subgroup
in G. Hence

Viise+1(R) = PGL,(R).qo ~ PGLy(R).mo ~ PGL,(R) /A .

2.4.1 DUALITY BETWEEN ORBITS. It follows from the previous discussion
that each representation (a,b,c) € Ryisc(d) is identified with some class
JabAJA € GJ/A or what is the same to an orbit g, A C G for some
Jap,c € G such that

Gape-qo = |d| 7@, b, ), qo=(0,1,0).

As we have seen I' acts on Rgisc(d) and the latter decomposes into a finite
disjoint union of I'-orbits, setting

[a7 b7 C] = r\r(av b7 C) e [RdiSC(d)] bl
for the orbit of (a,b,c), one has

Ricd)= || Tda,b0).
la,b,c]€[Raisc(d)]

Hence |d|~'/2 Ryisc(d) is identified with the collection of T-orbits

|| TguscA/ACG/A;
[a,b,c]€[Raisc(d)]

thus the problem of the distribution of |d|~'/2.Ryis(d) inside Vgise +1(R) is a
problem about the distribution of a collection of I'-orbits inside the quotient
space G/A.

There is an almost tautological equivalence between (left) I"-orbits on G/A
and (right) A-orbits on T'\G given by

(2.5) TgA/A +— TgA +— T'\I'gA .

This duality induces a close relationship between the study of the distribution
of |d|~"/% Ryisc(d) inside Vgise,+1(R) and the distribution of the collection of
right A-orbits
Ga = U Xap,0A C T\G
[a,b,c]1E€[Raise(d)]

inside the homogeneous space I'\G, with

(2.6) Xab,el = T\ Gap,c -
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This is the “duality principle” alluded to at the beginning of this section. Let
us make this principle a bit more precise by identifying the orbits in question :
Assuming that (a, b, c) € Ryisc(d) is primitive; one has

x[tlwb»c]A = F\Fga,b,L'A = F\FAa,b,cga,b,c )

where
—1
Aa,b,c . ga,b,cHga,b’L- = Stab(a,b,c)(G)

is the stabilizer of (a,b,c) in G. That group is the group of real points
of a Q-algebraic group, which we will denote by T, ., namely the image
in PGL, of the centralizer Z,, of

b 2c
M=Mabe =\ _oy _p)-

In terms of the embedding ¢ = ¢, , .: K — M»(Q), one has
Z,(Q) = uK™),
and
TQ = uK*)/Q*Id,  Aupe=Tap(R) =uK @R /R*1d,
and (since My(Z) N u(K) = 1(0y)),
Cape =T NAupe = u0])/{£1d}.
Alternatively, let ¢y denote the (real) embedding

K s m®
O utruvd — uld +v.d"%my

obtained by conjugating ¢,, with ga_,;,c, we have
1o(K g R)*/R*1d = A

and
r:t,b.,c = ga_,bl,zfl—‘gﬂyb,c NA= LO(O; )/{:t Id}

so that we have homeomorphisms
2.7 XapaA =T\gapA ~ g5y Tgapec NA\A = 10(K @ R)* /R*10(0)).

By Dirichlet’s unit theorem, (K ® R)*/R*19(0)) is compact hence x4 p, A
is compact and since [Rgisc(d)] is finite we obtain:

THEOREM 2.2. The union of A-orbits G, is compact.
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2.4.2 DUALITY BETWEEN MEASURES. To consider equidistribution prob-
lems, one needs to refine the correspondence (2.5) at the level of measures.
Roughly speaking, the choice of the counting measure pr on I' and of the
left-invariant Haar measure p4 on’) A define a measure-theoretic version of
the correspondence (2.5):

FACT. There exist homeomorphisms between the following spaces of
Radon measures (relative to the weak-* topology):

left T-invariant left I', right A-invariant right A-invariant
(2.8) Radon measures <— Radon measures <— Radon measures
A on G/A ponG v on I'G.

These homeomorphisms are characterized by the identities : for any ¢ € C.(G),
one has

Mpa) = p(p) = v(pr),

where

o) = [ el or(o)= 3 pt0).
A

yer

See for instance [2, §8.1] for a proof of that fact. We work out this

correspondence in specific cases:

— p is a Haar measure pg on G, which is G-biinvariant as G is unimodular.
The correspondence (2.8) yield the quotient measures v = up\g on I'\G,
and \ = HG/A O Hdise,+1 ON G/A. The former measure v is finite (i.e. I’
is a lattice in G) and we may adjust uc so that ur\g is a probability
measure.

— The sum )\, of Dirac measures on G/A given by

Ad = Z OgupcA/A = Z Z Oga/a

(a,b,c)ERqisc(d) [a,b,c] gET . gu b,

= Z Z 5794,./,."A/A-

[a,b,cl vET /T p,e

PROPOSITION.  The measure vy on T\G corresponding to \; under (2.8)
is the sum of the push forwards of the Haar measure s over the set of
A-orbits XiapaA, [a,b,c] € [Ryisc(d)].

3) Note that A is unimodular.
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Indeed, set A p,c = Zwer/r‘,.h_( Oygapoa/a- Then if S denotes a funda-
mental domain in A for I”

a,b,c
Alab,c1(pa) = Z / ©(Vga,b,h)dh = Z / ©(Ygap,ch)dh
YET/Tup.c A ~yer S
- / ot (Gap o) = / or(h)dh,
T \A Xia,b,c}A

hence the measure on I'\G corresponding to A is given by the push
forward of the Haar measure p4 to the periodic A-orbit xp,p A, and the
proposition follows.
Let
vol(Sa) := va(Ga) = Y vol(xiap,1A)
[a,b,c]
denote the total volume of this (finite) collection of (compact) A-orbits.
From (2.7) we see that the various orbits associated to primitive representations
of d have the same volume, namely with the correct normalization of the
Haar measure of A

Vol(xj,p,c14) = VOI(R*19(07)\A) = Reg(0y) ,
where Reg(0,) is the regulator of O,. Therefore,
vol(Gy) = | Pic(Oy)| Reg(Oy) .
If d = disc(Ok) is a fundamental discriminant, the Dirichlet class number

formula gives

vol(Gy) = | Pic(O4)| Reg(Oy) = /\|d\'/2L((£), 1,

where A is some absolute constant, (4) is the Kronecker symbol and L((g),s)

its associated L-function. Then by Siegel’s theorem L((%),1) = [d|*D as
d — oo so that

(2.9) vol(Gy) = |d|'/>+om
If d =d'f?> with d’ a fundamental discriminant
|Pi0(od)| Reg(0q) :fH <1 —p! <d_/>>
| Pic(Oa)| Reg(Oa) 7 -7 p
which shows again that | Pic(0,)| Reg(O,) = |d|'/**D and hence (2.9) holds
in general (cf. e.g. [10, Sect. 9.6]). We let

1
vol(G) ¢

Hd =
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This is an A-invariant probability measure on I'\G and the above discussion
shows that Skubenko’s Theorem 1.2 follows from the following:

THEOREM 2.3. As d — oo amongst the non-square discriminants, the
sequence of measures jiq weak-* converge to the probability measure pr\g,
i.e. for any ¢r € C.(I'\G), one has

1
paler) = oo > / pr(ydh — prg(ger) -

[tl,b,c] Xla,b,c]A

Indeed any continuous compactly supported function on G/A is of the
form ¢4 for ¢ € C.(G), hence by Theorem 2.3

Aa(pa) = va(eer) = vol(Ga)paler)
= vol(Ga) (ur\g(pr) + o(1)) = vol(Ga) (g a(wa) + o(1)).

3. SPACING PROPERTIES OF TORUS ORBITS

In this section, we show that the various distinct orbits x5 1A C Gy are in
a suitable sense well spaced from each other; the main result is Proposition 3.6.
Recall that
Sd = |_| x[a,b,zf]A 3
[a,b,c]E€[Rayisc(d)]

where xp, ¢ is defined in (2.6).

3.1 IDEAL CLASSES ARE CONTROLLING THE TIME SPENT NEAR THE CUSP

The space X is not compact and this is measured through a height function
(normalized to be invariant under scaling) given, for L = Z?.g C R? a lattice,
by

ey — (e )7 miner o) oy
vol(L)!/2 | det(g)| /2 )
where ||.| denote the Euclidean norm. This continuous function is proper.

Indeed, if x € X and (z,v) € 8 any representative, then the height ht(x) and
the imaginary part 3(z) satisfy 3(z) = ht(x)?>. For any H > 1 let X>py denote
the set of all x € X with ht(x) > H.

In this section we evaluate explicitly how big the height of a lattice in G,
could be.
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PROPOSITION 3.1.  Suppose the proper integral ideal J C O4 corresponds
to la,b,c] € Rysc(d) under the bijection of §2.1. Then XyapA N X>p
is nonempty if and only if J~' is equivalent to an ideal 1 C O4 of
norm < SH=2d'/?. Moreover, this defines a bijection between connected
components of S4NX>y and proper Og-ideals I C Oq of norm < YH=2d'/?.

Even though the above does not control escape of mass for py; as d — oo
it does give an upper bound for 1q(X>py), see Proposition 3.3, which we will
use in our proof of Duke’s theorem. Note that Proposition 2.1 guarantees that
there is an inverse J~! to the proper ideal J.

REMARK 3.2. Applying this result to H = d'/* we see that G, N X5 /4
is empty (as there are no ideals of norm < 1). This implies that G, is
pre-compact.

Proof. Note that, if we identify x € X with a lattice L of covolume 1,
then xA N X>p is nonempty if and only if there is some nonzero vector
(u,v) € L with |uv| < %H‘z.

Therefore (using the explicit bijection of §2.1) the A-orbit defined by J
intersects X>p, if and only if J contains an element A\ with

INOV| < %H‘zN(J)d% .

Recall that N(J~!) = N(J)~! by standard properties of the norm. It follows
that the A-orbit defined by J intersects X>y if and only if N(AJ~') < 1H=2d 2
for some A\ € J (so that AJ~! C O,).

Finally, notice that for H > 1 there is, in a lattice L' € X>p, up to
sign, only one primitive nonzero vector of length < H~'vol(L’)'/2 (which is
a simple volume computation). Therefore, fixing J, in the above argument,
a connected component of 6y(J).A N X>y corresponds to a unique primitive
element A € J with |[N()\)| < %H_ZN(J)dfl (up to sign) and we can associate to
this connected component the ideal 7 = \J~' C O, of norm < 1H2d>. [J

PROPOSITION 3.3. There is “not too much mass high in the cusp” in the
sense that
paXzm) < d°H™?
for all e >0 and H > 1.

Note that to make this estimate useful, we will set later H = d° for
some € > 0.
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Proof. 'We note first that in any orbit in G; the maximal height achieved
is < di (see Remark 3.2). This implies that for H > 1 any connected
component of G4y N X>p has length < log(d). Indeed such a component
corresponds (in the upper half-plane model) to the segment of some oriented
geodesic circle (i.e. a half-circle centered on the real line) made of those
points which have imaginary part between H and d'/* : the hyperbolic length
of such a segment is bounded by <« log(d%/H).

Therefore, by Proposition 3.1

vol(S4 N X>p) < log(d)N<p(d),

where N<y(d) is the number of proper ideals / C O4 of norm N(/) < %H‘zd% .
Recall that for any n € N the number of proper ideals in O, of norm equal
to n is bounded by the number of divisors of n and so by <. n®. By
summing over all 1 < n < %H‘zd% we get that Ney(d) <. (H™2d?)'*e.
Together with (2.9) this proves the proposition. [

3.2 LINNIK’S BASIC LEMMA AND REPRESENTING BINARY QUADRATIC FORMS
BY TERNARY FORMS

Following Linnik we will derive the “Basic Lemma” from representation
numbers of quadratic forms: Let g, Q be two integral non-degenerate quadratic
forms on Z™ and Z" respectively. Assuming that m < n, a representation
of ¢ by Q is an isometric embedding of quadratic lattices

v (2%, q) — (2", 0)

in other terms a Z-linear map ¢: Z"™ — Z" such that for x € Z"

O(uUx)) = q(x).

For instance a representation x € Z" of an integer d € Z by a quadratic
form Q on Z" may be viewed as the isometric embedding

(Z,d) — (Z',0)

Ix:
n — nx

Let Rp(g) be the set of such representations: the group I' = SOp(Z) acts
on Rp(q) (for v €T, v.. =yo.) and the quotient I'\Ry(g) is finite.

We are interested here in evaluating [T\Rg(q)| in the codimension one
case (i.e. when n—m = 1). More precisely, we will need to show that, in this
case, |I"'\Rp(g)| is rather small. The simplest evidence comes from the case
m =1, n=2: the representations of an integer by a binary quadratic form.
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For instance it is well known that for d # 0 the number of integral solutions
to xy =d (i.e. the number of divisors of d) is bounded by O.(d®). Similarly
the number of representations of an integer as a sum of two squares satisfies
the same bound; indeed, for any binary integral quadratic form Q one has
[M\Ro(d)| <, |d|* for any € > 0. The following is a version of this claim
for m = 2, n = 3, where in the case of non-fundamental discriminants the
estimate is not as strong.

PROPOSITION 3.4. Let Q be an integral ternary quadratic form, and let
qx,y) = ax’ + bxy + ¢y’

an integral binary quadratic form, both supposed non-degenerate. Assume
that f2|gcd(a,b, ¢) is the greatest common square divisor of a,b,c. Then
the number N of embeddings of (Z*,q) into (Z3,Q), modulo the action
of SOp(Z), is <, fmax(|al, |b|,|c|)*.

When Q = x?> 4+ y?> + 2% is the “sum of three squares” quadratic form
such a bound is a consequence of an explicit formula on the number of
representations due to Venkov [25] (assuming a square-free). This bound was
later generalized by Pall [21, Thm. 5]. We provide a self-contained treatment
in Appendix A. Let

{(a,b,c),(d' b, c"))aisc =disc(a + ', b + b, c + ¢')—disc(a, b, ) —disc(d, b, ¢')
=2bb' — 4ac’ —4d'c

be the polarization inner product associated with the quadratic form disc. We
will apply Proposition 3.4 to the pair

Q=disc,  q(x,y)=dx’ + lxy+dy’,

and note that g(x,y) is non-degenerate if and only if ¢ # 4+2d. Hence we
obtain :

COROLLARY 3.5. Let T = SOyisc(Z). Then for any two integers d,t¢ with
{ # £2d, the number of T -orbits on pairs

{(@,b,0),(d" b/, € 2> < L7
disc(a, b, ¢) = disc(a’,b/,¢') = d, (@, b,¢), (@b, )aise = £}

is <. f(max(|d|,|£])), where f* is the largest square factor of gcd(d,?).
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We now translate the information obtained about quadratic forms above
to Linnik’s Basic Lemma, which we phrase in the geometric context. This
falls short from equidistribution but will suffice as the arithmetic input to the
ergodic arguments later.

PROPOSITION 3.6 (Basic Lemma). We have
pa X pa{(x,y) € X2y : dx(x,y) < 6} <. H*'$*d°

whenever d=% < § < %H*Z and € > 0.

Note that the exponent 3 of §° is optimal, and suggests that g is
3-dimensional in the appropriate scale. The trivial exponent is 1, which
follows from A-invariance of .

Proof. We start by indicating the relationship between J§-close tu-
ples in (G4 N X<u)* and the representation of the binary quadratic form
g(x,y) = dx> + xy + dy* by the discriminant ternary quadratic form disc.

From (1.4), gi1,92 € PSLy(R) are such that x; = I'g; € G4 N X<y for
i=1,2 and dx(x;,x;) < ¢, then we may assume

(3.1) g1 € S, g € 8’, Tg, € XSH and d(g1,9) < 0,

where 8’ is some slightly bigger set containing the fundamental domain 8 in
its interior. For concreteness we take

8 ={zv)eHxS": |Rg <1, [z>1/2}.

This clearly shows that the matrix entries of both g; are controlled, i.e.
llgill < H where

lgll = (g*e)'2.
Moreover, we may associate to g; the primitive integral quadratic form,
qi(x, )= Vdlgi.qol(x,y)=aix’ +bixy+cy’, b} —4aici=d, ged(ai,bi,c)=1.

We have to consider two different possible cases. Either g; = ¢» (i.e.

92 € G1A) or q1 # qa.
The total mass for the first case is easy to estimate by <. d'/>T¢§ before
normalization by the total volume, which gives after the normalization that

pa % pa{(Tg1,Tgih) € X2y : h € A, d(1d, h) < 6} <. sd\2qf < §3af

since d=1/4 < §.
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Henceforth we assume ¢; # ¢,. Since ||g;| < H, we have
(3.2) max(|aj|, |bi|, |ei) < d'/>H>.

Also by assumption g, = gih with d(h,Id) < 6. This shows that ¢, =
Vdgy.(h.qo) where ||h.qo — qo|| < 6. Therefore,

y < d"2H?S .

(3.3) max(|a; — aa|, |by — bal,|c1 — ¢z
We now define
q(u,v) = diSC(M(al,bl,Cl) + v(az, by, Cz)) = du® + fuv + dv*.
From the bound (3.3) on the difference of the vectors we know
lg(1, —1)| = |2d — ¢| < dH*8>.

In order to apply Corollary 3.5 on ¢, we need to check that g is not
degenerate, i.e. that ¢ # +2d. Indeed, if ¢ = £2d then

d@Far)* = qlaz, —a)) = disc(az(ar, by, c1)—ai(az, by, ¢2)) = (azby —arby)?,

which contradicts the assumption that d is not a perfect square. Therefore
¢ # +2d. In this case we may apply Corollary 3.5 to obtain the bound

Nea = |SOuisc @\ {(Z?, dx* + bxy + dy*) < (Z°,disc)}| < f max(|d|, |¢])°
on the number Ny, of inequivalent ways in which the quadratic form
dx* + fxy + dy* can be represented, where f2| gcd(d, £) is the greatest square
divisor. Note that the group SOg;sc is rationally equivalent to PGL,, and so up
to isogeny rationally equivalent to SL,. Therefore, SOgisc(Z) is commensurable
to the image of I' = SL,(Z) and we may also use I' instead of SOgis.(Z) in
the above estimate.

Let
T, 45, T, ¢5")
be a complete list of diagonal I'-orbits of pairs of quadratic forms which can
be written as
4 (x,y) = Vdg? .qo(x,y)
with ¢\, g% satisfying (3.1)
The number k of these diagonal I"-orbits of quadratic forms is bounded by
2d+L

k< > Nea=) Z/ Nea

£=2d—L f2d |2d—e|<L
21, b#£+2d
’ d1+eH452
«Y ¥ o<yt <,
ld |2d—e|<L Fld
F2e, e#£+2d
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where L < dH*$* and Y’ denotes a sum over £ for which (‘;f# is square-

free.

We claim that for q(lj) #* q(zj) we have

(3.4) d(gVa;, ¢A) > d~".

Indeed suppose d(gfj)a,, géj)a,«) < cd™' (for some constant ¢ determined in a
moment). Then we may find some v € I" with 'ygﬁj)a, € §, which also implies
vg;j)a,/ € 8. By Remark 3.2 we have Gy C X<y for H' = d'/*. Hence by
choosing ¢ appropriately the upper bound in (3.3) (applied for H' = d'/*
and § = cd~") is less than one, which gives a contradiction.

Writing g» = g; expv for some v = v~ +v T +vs € sL(R), with v™,vF, v,
eigenvectors of Ad,, with eigenvalues e~ ¢’, 1 respectively, the estimate (3.4)
implies that both [[v=||, [o"| > d~". It follows that for any j the inequality

(3.5) d(g;ar, g5"A) < 1
can hold only for ¢ in some interval I; of length < logd.

CLAM. For each pair (¢\”,¢5") there is an interval [, C R of
length <. d* with the following property :

If (x1,x) € (94 ﬂXSH)2 with d(x;,x;) < § have representatives (g1, g2)
satisfying (3.1) for which the associated forms ¢; = /dgi.qo are different,

then x; = l"g(lj)a, for some j and some ¢ € I;.

Indeed, (v.q1,7.92) = (q(lj),q(zj)) for some v € I' and some j € [1,k] and

SO g1 = 'y_lg,(j)a, resp. g € 'y_lggj)A. By assumption on g;,g>» we have
d(gﬁj)a,,g;j)A) <4.

Using the claim and a fixed Haar measure of A (i.e. before normalization)
we get that the measure of the collection of points (x1,x2) € (Gq4 OXSH)Z,
which can be represented as x; = I'g; with g; as in (3.1) and for which the
associated quadratic forms are different, is

k
<Y |Il6 < dok <. d'TFEHYS.

j=1

Therefore, by dividing the above by the total volume of (G,)?, the claim
(together with the analysis of the case ¢ = ¢») implies the proposition.
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4. AN ERGODIC THEORETIC PROOF OF DUKE’S THEOREM

4.1 ENTROPY AND THE UNIQUE MEASURE OF MAXIMAL ENTROPY

A basic underlying concept in our proof is that of entropy. We recall that
it P is a finite partition of the probability space (X, v), the entropy of P is
defined as

H,(P) =Y —1(S)logu(S).
seP
It is clear that H,(P) = H,(T~'P) if T: X — X preserves v — below we
will use this fact without explicit reference. We note for future reference that
entropy is controlled by an L?-norm

(4.1) H,(P) > —log (Z y(S)2>

seP
as one easily sees from convexity of the logarithm map. Moreover, entropy
has the following basic subadditivity property: if P, P, are two partitions,
then

(4.2) Hy(P1V P2) < Hy(P) + Hy(P2),

where V denotes common refinement.
If T is a measure-preserving transformation of (X, r), then the measure
theoretic entropy of T is defined as:

H,(PVT'PVv...vT-0=Dp)
n b

4.3) hy,(T) = sup lim
P n—oo

where the supremum is taken over all finite partitions of X. We also note
that the limit in the definition exists and is equal to the infimum because the
sequence
ay=H,(PVT'PVv...vT- D)
is subadditive (i.e. apym < an + am).
A key role in our argument is played by the fact that the uniform measure

on T'\ SLy(R) for any lattice " can be distinguished using entropy, as it is
the unique measure of maximal entropy :

THEOREM 4.1. Let X =T'\ SLo(R) be a quotient by a lattice T' < SL,(R),
and let T denote the time-one-map of the geodesic flow, i.e. right translation

e’2 0
T(x)—x( 0 e—l/2>'
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Then for any invariant measure v the entropy satisfies h,(T) < 1 where
equality holds if and only if v = ux is the SLy(R)-invariant probability
measure on X.

The inequality 4,(T) < 1 is not hard and can be proved in many ways.
Identifying the uniform measure as the unique measure where this maximum
is attained is somewhat more delicate. We give a self-contained treatment in
Appendix B.

4.2 PROOF OF DUKE’S THEOREM, AN OUTLINE

Let T: X — X denote the time-one-map of the geodesic flow as in
Theorem 4.1. Recall that

N (R e (O

are the stable, resp. unstable horocycle subgroups. The orbits of these two
subgroups give the foliation into stable and unstable manifolds in the following
sense. If u = u(t) € U™, then the distance between T"(x) and T"(xu)
converges rapidly to zero:

. . n/2 0 n/2 0
(T (X),T(xu))—d<X(eO en/z),xu <e0 em))
1 0\ (e 0 et 0
<o 1) (07 )% 22))
0 1 et
(6 16 )

To give an outline of our argument, it is perhaps preferable to simplify the
situation. In our proof, the noncompact nature of our space X is a significant
complication, so instead of considering the quotient SL,(Z)\ SLo(R) for the
purposes of this outline let us consider a compact quotient X= I'\ SL»(R) on
which we have a sequence of T -invariant probability measures py satisfying
the following simplified version of the conclusion of Proposition 3.6:

O —

(4.4) ta X ua{(x,y) € £ dg(x,y) < 0} <- 83d° for 6 >d~'/*.

Let r > 0 be an injectivity radius of X so that for any x € X the map
BY%(e) — X sending ¢ to xg is injective (with G = SLy(R), and BS denoting
a ball of radius r in G). Also assume 1 < %r is small enough so that Bg(e)
is an injective image under the exponential map of a neighborhood of 0 in
the Lie algebra.



276 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL AND A. VENKATESH

Let P be a finite measurable partition all of whose elements have “diameter
smaller than 7", i.e. if x and y = xg with g € BY belong to the same element
of P, then g € BY. Assume that the same holds as well for T%(x) and T'(y)
for i=—N,...,0,1,...,N. Then d(T(x),T(y)) < n and d(e,a”'ga) < r so
that a='ga € Bg(e). Repeating, this implies that

N 1/2 —n 1/2 n
e e
g€ By = ﬂ ( e‘l/2> BS(E) ( e—1/2> )

n=—N

We define a Bowen N-ball to be the translate xBy for some x € X.

Notice that the set By is “tube-like”: it has width at most e~V along
the stable and unstable directions, but is of length 7 in the direction A of
the geodesic flow. The above shows that every element of the partition

N
(4.5) NN \[ T

n=—N

is contained in a single Bowen N-ball. Together we conclude that

k
U SxScC U{(x,yai):d(x,y)<re_N},

SEPI—N.NI i=1

where k < €V and ay,...,a; € BA(1) are chosen to be §-dense — that is to
say, the union of the §-neighborhoods around a@; cover BA(1).
Together with (4.4) this shows that

Y naSy < e N
SEPI-N:M

whenever § = ne ™V > d=% or equivalently N < %logd + logr. We choose
N = L% logd| (the “extra space” will be useful in suppressing a d°). Using
(4.1) we have

H,, (P7VN) > 2 - 62N

for large enough d.

In this statement we cannot yet let d — oo to get a statement about a
weak* limit p, because N is a function of d, and so the size of P~V
increases with d. Thus let Ny > 1 be any fixed integer: [—N,N] can be
covered by [Nﬂﬂ many translates of [—Np, No]. This in turn shows that PI=N:V]
can be obtained as a refinement of the [Nﬁ“] partitions

—N,—N+2N —N+2Ny,—N+4N,
3)[ + n]’:])[ +2Ny + n]’“.
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(in the obvious generalization of the notation (4.5)). By subadditivity (4.2)
(and invariance) this implies

H,,, (PN > (2 — 72)Ng

for large enough d. By choosing the original partition P such that ©(9S) =0
for all § € P and some weak™ limit p of the sequence py; we can now take
the limit as d — oo to obtain

H,, (PUNoNI) > (2 — 7e)Ny - for all € >0 and No > 1,

i.e. that h,(T) > 1. Theorem 4.1 can now be invoked to show that ;1 must
be the SL,(R)-invariant measure on X.

We remark that the analysis above works only in the cocompact case; for
e.g. I' = SLy(Z), there is no global injectivity radius; and no matter how fine
one takes the partition P, to cover a single atom of the partition P~V one
typically needs exponentially many Bowen N-balls.

4.3 PROOF OF DUKE’S THEOREM, CONTROLLING THE TIME SPENT
NEAR THE CUSP

Passing from the cocompact to the nonuniform case raises two difficulties:

(i) Why is such a weak™® limit a probability measure (indeed, why cannot
such a sequence of measures p; converge to the zero measure) ?

(ii) The proof outline presented in §4.2 used heavily the relation between
Bowen N-balls and atoms of the partition PI=¥M for a finite partition P.
How can we adapt this argument to the nonuniform situation where in general
many Bowen N-balls are needed to cover a partition element § € PI=NN 2

It turns out that these two difficulties are not unrelated, and to handle
them one needs to control the time an orbit spends in the neighborhood of
the cusp, so that this problem is related to controlling the escape of mass.
What is needed is the following finitary version of the uniqueness of measure
of maximal entropy :

THEOREM 4.2. Suppose u; is a sequence of A-invariant measures on X,
and suppose there is a constant r > 0 and a sequence d; — 0 such that for
all sufficiently small € > 0 the “heights” H; = 0; ¢ satisfy

(1) uiX>m) — 0, as i - o00;

(2) i x pi{(x,y) € X<, X X<, : d(x,y) < 6} <o 677,

Then u; — ux, the SLp(R)-invariant measure on X, as i — oo.
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Clearly, this, Proposition 3.3, and Proposition 3.6 with § = d=F are
sufficient to prove Duke’s theorem. Apart from the ideas already discussed in
the last section, the main additional step is:

PROPOSITION 4.3.  Fix a height M > 1. Let N > 1 and consider a subset
V C [-N,N]. Then the set

Z(\V) = {x ET Xy NT VXoy for all n € [N, N] we have
T"(x) € Xsy & n € v}

can be covered by <y N2Vl Bowen N-balls. Moreover; Z(V) is nonempty
2 loglog M

for only <y e wm N different sets V C [—N, N].

In words, Z(V) is the set of points x € X so that the trajectory T Vx,
T—N+lx, ..., TVx between times —N and N begins and ends below height M
and are above height M precisely at the time specified by the set V. So the
content of the proposition is that orbits that spend a lot of time in a neighbor-
hood of the cusp in fact can be covered by relatively few tube-like sets. Later
we will turn this into the statement that those orbits have relatively little mass.

Note that as the size of V grows the number of Bowen N-balls needed to
cover Z(V) decreases, though even if V = [-N—1,N+1] it is still exponential
— indeed = eV, which is essentially the square root of the estimate we get
for V=g .

We defer the proof of Proposition 4.3 to the next section. A purely ergodic
theoretic formulation of this phenomenon is that a lot of mass near the cusp
for an invariant probability measure results in a significantly smaller entropy
for the geodesic flow. We will give such a formulation in Theorem 5.1; it
implies in particular that:

Given a sequence of T-invariant probability measures |i; with entropies
hu(T) > ¢, any weak™ limit p satisfies u(X) > 2c — 1.

We will discuss in Remark 5.2 why ¢ = 1/2 is the critical point for this
phenomenon.

4.4 CONTROLLING ESCAPE OF MASS, AND MAXIMAL ENTROPY

We proceed to the proof of Theorem 4.2, and start by showing that mass
cannot escape, using assumption (2). We will use (1) of that theorem which
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gives a mild control on how fast mass could possibly escape to be able to
apply the covering argument in Proposition 4.3. That (2) can replace entropy
in that argument is not surprising since we have already seen in Section 4.2
a relationship between this assumption and entropy.

LEMMA 4.4. Let u; be a sequence of T-invariant measures as in
Theorem 4.2. Let p be a weak™ limit of any subsequence of ;. Then
2loglogM
X >1-—
WX <pm) = Tog M
for every sufficiently large M, and so p is a probability measure.

2loglog M .
‘]’Oggif’ﬂj. We will show that u(Xy) > 1 — k.

We set N; = [—1logd;] and H; = ;¢ for some € > 0 determined below
(more precisely : before the final displayed equation of this proof) in terms
of x. Notice that a geodesic trajectory of a point x € X<p, will visit X<p in
less than 2log H; — 2logM < 2¢eN; steps either in the future or in the past.
Hence

Proof. Fix some k >

[2eN:]
U 77Xew > X,
n=—|2eN;]
and so this union contains most of the y;-mass according to the assumption (1)
of Theorem 4.2.
Let N/ = N; 4 [2¢N;]. Then TV X<y 0 TN X<y, is contained in the

union of < (eN;)? many sets of the form TV +t"=X_,, N TN+ X_,; where
[n—|, |n4+| < 2eN;. We apply this to the set

N/
’ ’ 1 d
_ N; —N; .
X, = {x €TV Xey NT M Xey, T n:E_N./ Loy (T") > m}

consisting of points that spend an unexpected high portion of [—N/, N/]
above M.
We wish to estimate p;(X,).The set X, is also a union of sets of the form

Z =X NTVN =Xy N TN Xy,
with n_,ny as before. It suffices to estimate u;(Z") for some fixed n_,n, .
Replacing Z' by an appropriate shift Z := T¥Z’ we may consider instead
Z CTVX oy NT VX ) where N € [N;,N; + 4eN;]. Adjusting the condition
on the “average time spent above M ™ appropriately,

N
ZC {x eTVX yNT VX e T n;N L., (T"%) > K — 0(6)}.
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To the right-hand set we apply Proposition 4.3 ; which shows that Z is covered
by

2loglogM 2loglogM
(< e o N 2N = (k= 0N SezNi+ wogir Ni—rNi+O0()N;

many Bowen N-balls. Because N > N;, we may also cover Z by /¢ many
Bowen N;-balls Sy,...,S,.

Since Bowen N;-balls have thickness < eV < §; along stable and unstable
horocycle directions and thickness < 1 along A, we get that

i k
U S; xS; C U {(x,yaj) : d(x,y) < &;},
j=1 j=1
where k < ¢V and aj € B’l‘ are 0;-dense. This remains true if we make the
sets S; disjoint by replacing S, by S, = S>\.S;, S3 by S5 = S3\(S1US>),....
By our assumption (2) we now get
i
ZM!(SJ,)Z <<€ 5?—56]( < e—ZNH-SEN,'.
j=1
Therefore, by Cauchy-Schwarz

¢ ¢ 1/2 .
M[(Z) S Z'ul(sj/) S (Z 'LL(SJ/)2> 61/2 <<6,M el'ﬁylg,g,,—MNi_%NNl"'o(E)Ni .
j=l1 j=l1

Going through all possibilities for n_,n, (of which there are < eV

this implies

many)

log log M X
Hi(Xk) Lem e (S - hrroO),

2loglogM
logM
such that the exponent in the above expression is negative so that the measure

goes to zero for i — oo (since N; — o0). By definition of X,, we have

Given that we assume k > we can choose € > 0 small enough

’

n n 1 i
wiX>m) = / Ix,, dpi = / N+ Z:N/ Ixs, dpi < K+pi(Xo) 201X >m,)

2loglogM

which when i — oo implies that u(X<y) > 1 — k for any « > Tog M

This gives the lemma. [

We indicated in Section 4.2 how the elements of the refinement
\/,,N:_N T7"P are related to Bowen N-balls; but that analysis fails in the
noncompact case, when trajectories visit the cusp. We now discuss the general
case.
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LEMMA 4.5. For every M > 1 there exists a finite partition P of X
such that for every k € (0,1) and every N, “most elements of the refinement
VnN=_N T="P are controlled by Bowen N-balls” in the following sense : there
exists a set X' C X so that

— X' is a union of Sy,...,S¢ € \/__ T"P;
— each such S; is contained in a union of at most 3"*N*D many Bowen
N-balls;
— wX") > 1-2u(X>m)k~" for every invariant probability measure .
For a given i the choice of P can be made such that the boundaries of all
sets of P have zero measure.

Proof. We define P = {Q, Py,...,Px} where Q = X>y and {Py,..., P}
is a measurable partition of X.j, whose elements have diameter less than 7,
where 7 is small enough in comparison to the injectivity radius of Xy (in
the same sense as in the discussion in Section 4.2).

Note that the boundary of Q is a null set for every probability measure x
that is invariant under the geodesic flow. This is because every trajectory hits
the boundary of Q in a countable set. Also, given u we can find for every
point x € X<y an € < n/2 so that the boundary has measure zero. Applying
compactness we construct Py, ..., P, from the algebra generated by finitely
many such balls.

We claim that § € Py = VnN:_N T7"P has the property that any two
points x,y € S satisfy

T"'xeXcy < T'yeXey forne[-N,N] and
d(T"x,T"y) <n  whenever T"x,T"ye€ Xy and ne€[-N,N].

Therefore, the average f(x) = ﬁ ZHNZ_ w1 Xs40(T7) is constant on sets of Py .
We define
X ={xe T VX y:f(x) < rK}.

If 4 is an invariant probability measure, invariance implies [ f(x)du =
u(X>m) and so p({x : f(x) > K}) < w(X>m)x~". Therefore, X' has measure
P > 1 = p(Xs) — pXop)r"

Consider now an element S € Py with § C X’. After taking the image
of S under TV we have for any x,y € S’ = TVS that

2N

1
X — 1 T'x) < d
(4.6) X € XM N+ 1 nz:=o xsy(T"X) <K an

d(T"x,T"y) <n whenever T"x,T"y € X.y and n € [0,2N].
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Let V={ne€[0,2N]: T"S' C X>u}. We can now show inductively that for
every n € [0,2N] the set S is contained in a union of 30"Vl many sets
of the form

n
xBY

SpenBoy 4 where  xe S’

We will refer to these sets as forward Bowen n-balls and to x as its
center. For n = 0 there is nothing to show (for notice that we allowed
a bigger radius in the subgroups U™ and U~A). Suppose the claim holds
for some n and let x € S’ be a center of one of the forward Bowen n-balls.
If T"t'x € X.y then T"H'S’ C P; for i > 1 and it follows easily that any
point y = xutg € § with ut € Bé’nt_,, and g € Béjﬂ“‘ satisfies ut € Bg;_‘,,w
(assuming again that 7 is small enough in comparison with the injectivity
radius). If 7""'x € X5y then we can cover the forward Bowen n-ball by 3
forward Bowen (n + 1)-balls.

Recall that for S C X’ we have |V| < kN and so by taking the preimages
of 8 = TVS and the forward Bowen 2N -balls obtained the lemma follows. [

To prove Theorem 4.2 it remains to establish the following lemma and
combine it with Lemma 4.4 and Theorem 4.1.

LEMMA 4.6. A weak™ limit y of a subsequence of the invariant probability
measures [i; as in Theorem 4.2 has maximal entropy h,(T) = 1.

Proof. Let P be as in Lemma 4.5. Set N; = [—1logd;] and define

N;
Py=\/ T7P.

nsz,'

We wish to show that H,(Py,) is large by using Lemma 4.5 and assump-
tion (2). Let & = u(X>y)'/? for some weak* limit 4 and define X; as in
Lemma 4.5 using N = N;.

For any S € Py, with § C X; there exists a cover of S consisting
of < 3%CNitD many Bowen N;-balls; so there is a partition R(S) of S
into < 3%@NitD gets, each a subset of a Bowen N;-ball. We define the
partition Q; as the partition consisting of all S € Py, with S C X \ X; and
all elements of R(S) for any S C X;. It follows that

A7) Hu(QiPn)= Y p(SH,(Q) < KN + 1)log3.
SePn;, SCX;



DISTRIBUTION OF CLOSED GEODESICS 283

Also since Q; is a finer partition than Py, we have
(4.8) H,(Q) =H,(QiVPy)=H,(Py)+ Hu,(Qi|Pn),

which together with (4.7) indicates that we wish to show that H,,(Q;) is large.
Here we will use the assumption (2) from Theorem 4.2; but the elements
of Q; that lie outside X; can be irregularly shaped, requiring a further estimate :

(4.9) H,,(Qi) > Hy (Qil{Xi, X N Xi}) > pui(Xi)H 1, (Qi) -
Using (4.1) for the restriction p;|x, we see that
2
S
(4.10) H,(Q) > —log > (M> .
S€Q;, SCX; pXi)

By construction of Q; every S € Q; with § C X; is a subset of a Bowen
N;-ball. Proceeding as in Section 4.2 it follows that

k

U sxscly{@ya):dxy <},

S€Q;, SCX; i=1

where k < € and ay,...,a; € BA(1) are chosen to be d;-dense. Together
with assumption (2) of Theorem 4.2 this shows

Z 1i(S)? e 0373%eN & o THTION:,
S€Q;, SCX;
Let Ce be the implicit constant here, that is to say,
2 —2 .
Z 1i(S)? < Cee™ @3N,
S€Q;, SCX;

Then, taking into account (4.9)-(4.10),
H,(Q) > 2ui(X) log pi(X;) — pi(Xi) log Ce + p1i(Xi)(2 — S€)N; .
Here the first two terms are bounded, so for large enough i

H,,(Qi) = p1i(Xi)(2 — 6€)N;
> (1 =267 (XM (2 — 66N;

where we also used the estimate for X; in Lemma 4.5. Combining this with
(4.8) and (4.7) we get

N;
H#,( \ T—"fP> > (1 - 267" 1i(X>m)) (2 — 6€)N; — O(kN;) .

n=—Nj
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Now fix some integer Ny > 1. Using subadditivity of entropy we have for
any large enough i that

No
H, ( \ T—"9>> > (1 - 267" 1i(X>m)) (2 — 66)No — O(kNg) — €N -
n=—Ny
This is now a statement involving only finitely many test functions, namely
the characteristic functions of all elements of \/an_M, T7"P and of X>y.
Since there is no escape of mass by Lemma 4.4 and since we can assume
without loss of generality that all boundaries have zero measure for the weak *
limit ¢ by Lemma 4.5, we get the same estimate for p. Dividing by 2N,
and letting Ny now go to infinity we arrive at

hu(T) > (1 - ZN(XZM)I/Z)(I —3e) — O(/J(XZM)'U) — e

forany M > 1 and € > 0.
Since w(X>py) can be made arbitrarily small, it follows that A,(T) > 1,
i.e. T has maximal entropy. [l

5. TRAJECTORIES SPENDING TIME HIGH IN THE CUSP,
AND A PROOF OF PROPOSITION 4.3

Apart from the characterization of the Haar measure as the unique measure
of maximal entropy in Theorem 4.1, the main technical estimate needed to
prove Theorem 4.2 is Proposition 4.3. We recall that this proposition states
that the set

Z(V) = {x eTVX y NT NXcpy o for all n € [—N,N] we have

T"(x) € Xsyy & n € v}

can be covered by < V=21Vl Bowen N-balls.
In addition to proving this, we shall also prove here the promised purely
ergodic formulation of “high entropy inhibits escape of mass”, namely :

THEOREM 5.1. Let T be the time-one-map for the geodesic flow. There
exists some My with the property that

loglog M - WX >pr)

h,(T)<1
W< 1 logM 2




DISTRIBUTION OF CLOSED GEODESICS 285

for any probability measure p on X = SL(2,Z)\ SL(2,R) invariant under the
geodesic flow and any M > M. In particular, for a sequence of T -invariant
probability measures p; with entropies h,, (T) > ¢, any weak™ limit | satisfies
wX)>2c—1.

REMARK 5.2. Roughly speaking 1/2 is the critical point for Theorem 5.1
because the “upward” and “downward” parts of a trajectory, that goes high in
the cusp, are strongly related to each other. In fact, in the case of a p-adic
flow this phenomenon is easy to explain.

We consider another dynamical system of similar flavor: here the space
will be*)

Y = PGL,y(Z[1/p])\ PGLo(R) x PGLA(Q,)

and the action will be by multiplication on the right of the PGLy(Q))-
component by a, = <p 1> . Let M < PGL,(R) x PGL»(Q,) be the product

of PO,(R) and the group of diagonal matrices in PGLy(Z,). There is a natural
right M -invariant projection 7: ¥ — PSL,(Z)\H, and on this latter space we
have the Hecke correspondence which attaches to a point z € PSLy(Z)\H a
set T,(z) of p+ 1 new points, namely if z € H is a representative of z then

(5.1) T,(2) = PSLo(Z)\ {pz,z/p,z+ 1) /p,...,(z+p — 1)/p}.
The space Y/M can be identified with the set of bi-infinite sequences
C S Y=1,Y0, V1, - . With y; € Tp(yi—1) N {yi—2}, and under this identification
multiplication by a,, in the p-direction becomes simply the shift action. This in
particular shows that multiplication by a, on Y/M (or, with a bit more effort
on Y) has entropy < logp, and just like in our case this maximum is attained
for the Haar measure on Y. From (5.1) it is clear that if y € PSL(2,Z)\H
is high up in the cusp, precisely 1 of its 7,-points will be higher in the
cusp, and p of these points would be lower than y in the cusp. Therefore
if ...y_1,Y0,¥1,... is a sequence of points of PSL(2,Z)\H as above and if
v are high up in the cusp for some contiguous range of k’s, say n < k < m,
then in this range given the value of y; there is only one possible way of
choosing yi4+1 so that it is higher than y. Since by assumption yii2 # i
once yi+; is lower than yi, the point yiy, must be lower than yii;. Hence
if yk+1 is lower than y; for some k in the above range, then y;4; must be
lower then y;s for all k¥ in the range k < k' < m. From the above discussion
it follows that while the trajectory is high up in the cusp, we have a choice of
1

which subsequent point to choose only half of the time, whence the factor 5.

4) For technical reasons, it is preferable to use PGL, here rather than SL,.
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5.1 PROOF OF PROPOSITION 4.3 : THE NUMBER OF POSSIBLE SETS V

The easiest part of Proposition 4.3 is the final assertion, i.e. if we write

N
Oun = \/ T7"{X>m, X<m},

n=—N

.. 2loglog M
then the above partition Qy n has <y e "M i many elements.

We make use of the fundamental domain 8§ C PSL,(R) from §1.3; the
geodesic flow X corresponds to following the geodesic determined by (z,v)
until the boundary of the fundamental region is reached, at which point one

applies either (l i11) to shift the geodesic horizontally or (1 _l) “

reflect on the bottom boundary of the fundamental region.

The basic point in the proof is that if x € X satisfies ht(x) > M, then
ht(T"x) > 1 so long as n < |2logM|, i.e. one needs at least [2logM| steps
to reach points of height less than 1.

Therefore, in a time interval of length 2[2logM]| there can be only
one stretch of times for which the points on the orbit are of height at
least M. In other words, the possible starting and end points of that time
interval completely determine an element of Qy, 210 i) Which therefore has at
most < log® M, say < ¢olog? M, many elements. To obtain the final assertion
of Proposition 4.3, we note that Qy n can be obtained by taking refinements

L2L2120A; IT/IJ1+ : | < 413,/;’ ;;ll many images and pre-images of Qu, |2 10gm|
and at most 2|2logM| many of {X>um,X<m}. We get that Oy y has

. N . . 2loglogM nr .
size <y (colog® M)wem= | which is at most e =¥ " once M is large enough.

5.2 PROOF OF PROPOSITION 4.3: COVERING Z(V) BY BOWEN BALLS

1
802 e95>’ so that T(x) = xa. Since X.j has compact

closure, it suffices to restrict ourselves to a neighborhood O of a point
Xo € X<p. By taking the image under TV it also suffices to study the forward
orbit as follows. We will show that for the set V C [0, N — 1] picked, the set

Write a = (

Z} = {xe ONT Xy :

for all n € [0,N — 1] we have T"(x) € X>y < n € V}
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can be covered by < 2V~2IVl forward Bowen N-balls xBj, where

N—1

BY = ﬂ a_"Bga”.

n=0
We may assume that the neighborhood we will consider is of the form
_ Ut pU™ A

0 — xOBT]/an/Z 5
where B! denotes the r-ball of the identity in a subgroup H < SLy(R),
A denotes the diagonal subgroup, and Ut resp. U~ denote the unstable and
stable horocyclic subgroups as in Section 4.2.

Notice that by applying 7" to O we get a neighborhood of 7"(x) for
which the U™ -part is ¢" times as big while the second part is still contained
in Bf;/fz". By breaking the U™ -part into [e"] sets of the form uﬁBf]//g for
various u;” € UT we can write T5(0) as a union of [e"] sets of the form

T"(xou; BYj,a "BY }\a",

i.e. we obtain neighborhoods of similar shape. If we take the preimage
under 7" of this set, we obtain a set contained in the forward Bowen n-ball
T~(T"(xo)u;" )B}. We will be iterating this procedure, but by using the
information that the orbit has to stay above height M for a long time we will
be able to cut down on the number of uj* € U needed to cover Zj.

In the proof of the claim we will use a partition of [0, N] into subintervals
of two types according to the set V. Notice that as in the proof of §5.1, we
can assume that V itself consists of intervals that are separated by 2|2logM|.
For otherwise the set Z; is empty since no orbit under 7 can leave X> and
return to it in a shorter amount of time. We enlarge every such subinterval
of V by |[2logM| on both sides to obtain the first type of disjoint intervals
Zi,...,Ty. At the end points 0 and N we have required that x, 7V (x) € Xy
for all x € ZJ . For this reason we can assume without loss of generality that
all of these intervals are contained in [0, N]. (If this is not the case, we can
enlarge the interval [0, N] accordingly and absorb the change of the desired
upper estimate in the multiplicative constant that depends on M alone.) The
remainder of [0,N] we collect into the intervals Ji,...,J;.

We will go through the time intervals Z; and J; in their respective order
inside [0,N]. At each stage we will divide any of the sets obtained earlier
into [elZl] — or [el7l] — many sets, and in the case of Z; show that we
do not have to keep all of them. More precisely, we assume inductively that
for some K <N we have [0,K]=Z7,U...UZ;UJU...UJ; and that all
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points in ZJ§ can be covered by

< el T+ H T+ 21og, M+ (1 Th [+ +ITil)

many preimages under TX of sets of the form
+ _ —
(5.2) T3 (xo)u" B ,a B fa".

Note that for K = N this gives the lemma since by construction |Z;| 4+ - -+
|Zk| = 2k|21logM | + |V].

For the inductive step it will be useful to assume a slightly stronger
inductive assumption, namely that the multiplicative factor 2 is only allowed
if [0,K] ends with the interval J;. Therefore, notice that if the next interval
is Jiy1 (.e. [0,K] ends with Z;) then there is not much to show. In that case
we keep all of the [el7+1] < 2¢l7+1l-many Bowen balls constructed above
and obtain the claim.

So assume now that the next time interval is Z;y; = [K + 1, K + S]. Here
we will make use of the geometry of geodesics that visit X>p during that
subinterval. Pick one of the sets (5.2) obtained in the earlier step and denote
it by Y. By definition of Za' we are only interested in points y € Y which
satisfy

T"y) eXom e K+neV,

or equivalently

ht(), ht(T(), ..., ht(TEM () < M,
he(TRPEMIF () (TS 2 M () > p
he(757 e MIF1 ) L ht(T5() < M.

If there is no such point in Y there is nothing to show. So suppose y,y’ € Y
are such points. We will use the above restrictions on the heights to show
that if

(5.3) y=TXxoyuTut(tyw  and v = T (xo)uTut (')’

for ut(@),ut () € Bf}’;; and v,v’ in the conjugate of Bf]//_zA, then
|t — | < 275/2. We can draw the geodesic orbits defined by y and y’
in the upper half model of the hyperbolic plane and relate the conditions
on y,y’ to geometric information about these geodesics. We choose the lift-
ing of the paths in such a way that the time interval for which the height
is above M becomes the part of the geodesic where the imaginary part is

above M?.
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For the translation of the properties we will use the following observation:
For two points z;,zc € H on a geodesic line that are either both on the
upwards part or both on the downwards part of the corresponding semi-circle
their hyperbolic distance satisfies

(5.4) |logIm(z;) — logIm(zy)| < d(z1,22) < |logIm(z;) — logIm(z)| + 1.

The lower bound actually gives the shortest distance between points with
imaginary part Im(z;) and points with imaginary part Im(z;). The upper
bound gives the length of a path that first connects the point lower down,
say 71, to the point 7 immediately above with imaginary part Im(z;) and
then moves horizontally to a point that is Im(zp) far to the left or right of 7’
towards z. For two points z;,z; on the upwards or downwards part of a
semi-circle this path actually goes through z,.
Applying the lower bound in (5.4) to the points corresponding to

y and T2|‘2 logM]+1 )

whose hyperbolic distance is [2logM | + 1 we see that Im(y) > 1 (where in
a slight abuse of notation we identify y with the lifted point in H). Similarly,
we get from the upper bound for y and T2L2 ©2M](y) that Im(y) < 1. Similar
estimates hold for 75(y),y" and T5(y').

We assume that the points y,y’ are lifted in such a way that R(y) €
[—1/2,1/2] and such that y’ is close to y. Denote by a_,ay € R the
backwards and forwards limit points of the geodesic defined by y on the
boundary of H and similarly by o/ ,«/, the endpoints of the geodesic for y’.
Then |a_| <2+ 15 since the lifting of the point y was chosen such that the
times of height > M in X correspond to imaginary part > M?. For y' this
implies for small enough 7 that |o’ | < 3.

Let R = I|ay — a_| be the radius of the half-circle defined by y and
define R’ similarly for y’. Then the above shows R < |a4| < R once M
and so R are large enough to make a_ negligible in comparison to o™ .
Similarly R < [o/,| < R'.

Applying (5.4) twice, once for y and the point z on the same geodesic
with imaginary part R, and once for z and T5(y) we get

(5.5) |S—2logR| < 1 and similarly |S—2logR'| < 1.

Therefore, R < R’ < R and so |ay| < |oy | < oy |.
b

d
sense that the natural action of g maps the upwards vector at i to the vector

Suppose g = <CCI ) € SL(2,R) defines y = TX(xp)utu™(t)v in the
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associated to y for the lifting considered above. Then a4 = g(co) = ‘Ll and

a_ = g(0) = % Similarly, suppose ¢’ defines y' = TX(xo)uTu™(¢)v’ such

that o/, = g'(c0). Using this notation we summarize what we already know
about these matrices

max(|al, b, |c], |d]) < 1,

a
R<ay| = 7| <R,

(5.6) ,
R < |o/| <R, and

b
== l.
o] = 2] <

Here the first estimate follows since we know roughly the position of the
lift corresponding to y which means that g belongs to a compact subset
of SL(2,R). We claim the above implies that

(5.7) 1< |dl, 1<la|, and |c|< |aR7' <R

The first estimate follows since |b| < |d| by the last estimate in (5.6) and
since g € SL(2,R) belongs to a compact subset so that not both b and d are
small. The second claim follows similarly from the second estimate in (5.6).

To simplify the following calculation we would like to remove the
elements v,v’ (as in (5.3)) from our consideration — but to do this we need
to see how this affects the above statements. Recall first that v,v" € BY 4
and so v(oo0) = v’(00) = oo. Therefore, the first three estimates above remain
unaffected when changing g resp. g’ on the right by v—!, (v/)~!. Moreover,
we have [v~!(0)| < 7 and so for small enough 7 that 1 < |d| < |cv™'(0)+d
which implies \gv_'(0)| < 1. In other words, none of the estimates in (5.6)
are affected (apart from possibly the values of the implicit constants) by
the proposed transition from g to gv~! resp. ¢’ to ¢’(v')~' and we can
assume v = v’ = e.

Comparing the definitions of y and y we get ¢’ = gut(@)'ut ().
Therefore,

r’a—t +b b(t' —
oy = ¢'(c0) = (gu (1 =) (00) = 77 = ?idg' — 3

t'—t

Since 1 < |a|, u™ (@), ut () € Bf}’;2 and so |/ — 1| < n we can simplify the
numerator and obtain together with the third estimate in (5.6) that for small

enough 7 > 0

R< | t)|<<R’

a
c+d —
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or equivalently
R'<|c+d{ - <R

Since |¢| < R™! and 1 < [d| by (5.7) this implies the estimate ¢/ —7 < R™'.
Now recall from (5.5) that e/2 < R, so that we get the desired |/ —1| < e=5/2,

Recall next that in the current time interval Z;; we divide B% into [e3]
balls of the form ngsn/T Since all points y’ that belong to YNTX(Z/) satisfy
the estimate | —1| < ¢S/ we see that only < eSe¢=5/2 = ¢5/2 of these balls
can (after the correct thickening along AU~ ) contain an element of YNTX (Zar ).
This implies the inductive claim if we assume M sufficiently large that the
upper bound we got is strictly bounded from above by lel2loeM|+S/2,

This concludes the proof of Proposition 4.3.  []

5.3 ENTROPY AND COVERS; PROOF OF THEOREM 5.1

For the proof of Theorem 5.1 we need to relate entropy and covers via
Bowen balls. For this we need the following (well-known) result, which is
proved in Appendix B below (for cocompact I' it follows from Brin and
A. Katok [5]).

LEMMA 5.3. Let pu be an A-invariant measure on X = I'\ SL(2,R). For
any N > 1 and € > 0 let BC(N,¢€) be the minimal number of Bowen N -balls
needed to cover any subset of X of measure bigger than 1 — €. Then

log BC(N
h,(T) < lim lim inf log BCW, ©)
€e—

N—oo N

where T is the time-one-map of the geodesic flow.

Proof of Theorem 5.1. Note first that it suffices to consider ergodic
measures. For if p is not ergodic, we can write p as an integral of its ergodic
components p = [ p,dr(s) for some probability space (T,7). Therefore,
wWX>u) = [ pu(X>pm)dr(2) but also h,(T) = [ h,(T)dr(r) by [26, Thm. 8.4],
so that the desired estimate follows from the ergodic case.

Suppose p is ergodic. To apply Lemma 5.3 we need to show that most
of X can be covered by not too many Bowen N-balls. Once M > 3 we have
that every T -orbit visits X<y, and so u(X<p) > 0. By the ergodic theorem
there exists for every € > 0 some K > 1 such that

K—1
Y = U T"‘X<M satisfies w(¥Y) > 1 —e.
k=0
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Moreover, also by the ergodic theorem

1

N
YV Ly, (T"(x)) = p(X>pm)
W1 2 e

as N — oo for a.e. x € X. So for large enough N the average on the left
will be bigger than x = p(X>y) — € for any x € X; and some subset X; C X
of measure p(X;) > 1—e. Clearly for any N the set

Z=X,NTNyn1 "Ny

has measure bigger than 1—3e. Recall that we are interested in the asymptotics
of the minimal number of Bowen N-balls needed to cover Z. Here N — oo
while €, and so also K, remains fixed. Since we can decompose Z into K?
many sets of the form

Z =X, NTVMX oy NT VR X oy,

it suffices to cover these, and for simplicity of notation we assume k; = k, = 0.

Next we split Z' into the sets Z(V) as in Proposition 4.3 for the various subsets
2 loglog M

V C [—N,N]. §5.1 shows that we need at most <y, e o N many of these.

Moreover, by our assumption on X; we only need to look at sets V C [—-N, N]

with |V| > k(2N + 1). Therefore, Proposition 4.3 gives that each of those

sets Z(V) can be covered by <y e(“%)w“n}ar&y Bowen N-balls. Together
og log

we see that Z can be covered by <y x e ¥ N+(1=52N Bowen N-balls.
Applying Lemma 5.3 we arrive at

loglogM  u(X>m) —€
logM 2

h(T) < 1+

for any € > 0, which proves the theorem.  []

A. REPRESENTATIONS OF BINARY QUADRATIC FORMS BY TERNARY FORMS
In this section we establish Proposition 3.4 :

PROPOSITION. Let Q be an non-degenerate, integral®) ternary quadratic
form on 23, and let

q(x,y) = a1x* + arxy + azy’

5) Le. Q(Z3) C Z



DISTRIBUTION OF CLOSED GEODESICS 293

be a non-degenerate binary quadratic form on Z*. Let f> be the greatest
square dividing gcd(ay, ay,as). Then the number N(q) of embeddings of (Z?,q)
into (Z*,Q), modulo the action of SOy(Z), is <. f max(|ail,|az|, |az])¢.

We recall that an embedding of (Z?,q) into (Z?,Q) is a linear map
12 Z? — Z? with the property that Q(u(x)) = ¢(x). Such a proposition was
established for the first time by Venkov for Q = x*> 4+ y? + 7> and extended
by Pall to other quadratic forms [25, 21]. The proposition can be deduced
from Siegel’s mass formula; here we present a direct and elementary argument
inspired by the adelic proof of Siegel’s mass formula as outlined by Tamagawa
(cf. Weil’s paper [27]).

REMARK A.1.

— One may wonder what the dependency on Q in the above bound looks
like; this is for instance important to obtain equidistribution results when Q
is allowed to vary (see for instance [14, Thm. 1.8]). In the case where Q is
a multiple of the norm form on a lattice in the space of trace zero elements
of a quaternion algebra whose associated order is an Eichler order, it can be
shown that the dependency is of the shape <. |disc(Q)|'/ e .. It seem
plausible that this holds in general

— The argument provides, in fact, an upper bound for the sum over a set
of representatives Q;, i = 1,...,g of the genus classes of Q, of the number
of embeddings of (Z2,¢) into (Z*,Q;) modulo SOg,(Z).

— Finally it is easy to see that this argument carries over without significant
changes to quadratic forms defined over a general number field.

A.1 REDUCTION TO LOCAL COUNTING PROBLEMS

Fix an embedding ¢: (Z%,q) — (Z*,Q) and let
L:=uZ%

be its image (if no such embedding exists, we are obviously done). Then
any other embedding ¢/ is (by Witt’s theorem; see [22, IV.1.5, Theorem 3])
of the form go ¢, with g € SOp(Q). The stabilizer of ¢ inside SOu(Q) is
trivial, for any isometry fixing L pointwise would need to map L’ to itself
and so must be multiplication by +1 on L ; the condition of determinant 1
forces it to be the identity. The number of embeddings N(L) (up to the action
of SOy(Z)) is therefore precisely the number of cosets § € SOp(Z)\ SOp(Q)
so that gL C Z3.
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Given a rational lattice A C Q3, for any prime p we denote by
Ay =A®zZ,
its closure inside ; Let us recall that the map
A= (Ay)y

is a bijection between the set of lattices in Q® and the set of sequences of
lattices indexed by the primes (Ap),, A, C 13, such that A, = Zf, for a.e. p.

Write K, = SOg(Z,) for the stabilizer of Z} inside SOo(Q,) and let

SOo(Ap) ={gr =(gp)p :  9p € S00(Qp), gp € SOp(Z,) forae. p};

the above bijection induces an action of SOp(Ay) on the set of rational
lattices :

9r- A= gr-(Ap)p := (GpAp)p -

REMARK A.2. The group SOp(Ay) is the group of finite adeéles of SOg.
The SOp(Ay)-orbit of a lattice A € Q? under this action is called the Q-genus
of A. We will not need much of this terminology or discuss further properties
of adelic groups here.

The group SOp(Q) embeds diagonally into SOg(Ayr). Now the stabilizer
of Z3 in SOp(Ay) is Kr = Hp SO¢(Z,) and since Kr N SOp(Q) = SOp(Z),
SOo(Z)\ SOu(Q) injects into Kr\ SOp(Ay).

Consequently, letting L, = L ®z Z, be the closure of L inside Zf,, we
have

N(L) < {gr € Kf\SOg(Ay) : gr.L C Z*}

< [I Hg» € SO0(Z,)\ SOu(Q,) : gp.L, C Z3}
p

= [ Hg» € S00(Qy)/ SOu(Z,) : L, € gyZ3}| = [ N(Ly),
P 4
with

N(Ly) = [{gp € SO(Q)/Kp : L, C gpZy}| = [{A € SO(Q))-Z; : L, C A}

3

P’

being the number of lattices in
contain L,. We have proven that

within the Q-isometry class of Zf, that

NI < [N,
p
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and thus have reduced our counting problem to a collection of local counting
problems (as we will see below N(L,) =1 for a.e. p); a more careful analysis
of what we have said so far is very closely related to the proof of the mass
formula. In the present paper, however, we need only upper bounds.

A.2 THE ANISOTROPIC CASE AND A REDUCTION STEP

We first introduce some notations. We denote by
(x,x') = Q(x +x') — O(x) — O(x')

the bilinear form associated with Q; so (x,x) = 20Q(x). The discriminant
of Q is set to be

disc(Q) = det((x;, X;))i, j<3

for {x1,x2,x3} any basis of Z*. Since Q is integral (Z*,Z3) C Z, so disc(Q)
is a non-zero integer.

We notice first that if Q does not represent 0 nontrivially over Q, (i.e.
is anisotropic over Q), then SOy(Q,) is compact and

(A.1) N(L,) < [SO0(Q,) : SOp(Z,)] <o 1.

This (favorable) situation can occur only if p divides disc(Q).

We suppose now that Q is isotropic over Q, for some prime p | 2 disc(Q),
we will reduce the problem of bounding N(L,) to the case where the integral
quadratic form is given by Q(x,y,2) = xy+2z>. We note that disc(xy+z%) = 2.
This reduction comes with the cost that we also have to replace g by a
different quadratic form ¢’ = up™q with u € Z; and m, > 0. However, we
only have to make this change for p | 2disc(Q) and m, will only depend
on Q. Using these facts we will see in Subsection A.7 that the bound for
the number of representations of ¢’ by xy 4 z> will suffice for the proof of
Proposition 3.4.

We claim that there exists a basis of Q; over Q, so that the quadratic
form Q with respect to the coordinates of this basis has the form up~t(xy+722)
for some u € Z; and £ € {0,1}. Indeed as Q is isotropic, there exists a
hyperbolic plane in Q;. Complementing the basis of the hyperbolic plane with
a vector of the orthogonal complement we arrive at a basis so that Q has the
form xy + up~z> with u € Z; and ¢ € Z. If necessary we may replace the
last basis vector by a multiple and can ensure that ¢ € {0, 1}. Similarly we
may divide the first basis vector by up—¢ and arrive at the claim.

Let A be the Z,-lattice in Q; spanned by the above basis. There exists
some k (depending only on A) so that p*Z3 C A. Let ¢: (Z2,q) — (Z3,Q)
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be an embedding of ¢. Then p*i: (Z2,p*q) — (A, Q) and finally
Pros (20, u™ ' p* g — (A u”'ptQ) ~ (Z), xy + )

are also embeddings of quadratic lattices. We set m, = 2k + ¢ and ¢’ =
u~'p™q and obtain that there is an injection from the set of embeddings
v (Z2,9) = (Z3,Q) to the embeddings /: (Z2,q") — (Z3,xy + 2%).

A.3 THE CASE OF AN UNRAMIFIED LATTICE

The previous section reduces the proof of Proposition 3.4 to the problem
of finding an upper bound for N(L,) where we may assume that either
p 1 2disc(Q) or that O(x,y,z) = xy + z%. This will be done in the following
two local counting lemmas which depend on whether p =2 or p > 2:

Recall that for p > 2 any quadratic form ¢ on some rank two Z,-lattice L
taking value in Z, may be written, in a suitable basis, in the form

(A.2) q(xe; + yep) = up“x2 + vpbyz, u,v € Z;(, 0<a<belZx.

To see this take an element e¢; € L such that the valuation of g(e;) is minimal
and then take the orthogonal complement of ey, cf. [7, Sect. 8.3]. We shall call
the integers a < b the invariants of the quadratic form (e.g. the invariants of
x*>45y* over Zs are (0, 1)). This is a kind of p-adic analogue of the notion of
successive minima. The invariants determine the quadratic form over Z, — up
to isometry — up to O(1) possibilities. We will prove the following lemma.

LEMMA A3. Let p > 2, let Q be an isotropic quadratic form over Q;
so that p 1 disc(Q). Let L C A be a rank two sublattice such that Q|1 has
invariants (a,b), then

N(L; A) := |[{A € SOp(Q,).A : L C A'}| < (b + 1)*ple/?]
where the implied constant is absolute. Moreover, if (a,b) = (0,0),

N(L;A) = 1.

In the 2-adic case, any quadratic form g on some rank two Z,-lattice L
taking value in Z, may be written, in a suitable basis either (cf. [16, Lemma
2.1] and [7, Sect. 8.4]) in the form

(A3)  glxe; +yer) = u2’® + 12y, w,w €2, 0<a<beZs,
or in the form

(A4) q(xe1+ye2)=u2bx2+w2"xy+1)2b 2 uv,wE ZZX, 0<a<beZlyy.
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In both cases we will refer to a < b once more as the invariants of q. We
have the following lemma.

LEMMA A.4. Consider Q(x,y,z) = xy+2* as a quadratic form over Q3,
let A C Q% be a lattice satisfying Q(A) C Z, and which is maximal for
this property. Let L C A be a rank 2-sublattice such that Q|; has invariants
(a,b), then

N(L; A) < (b + 17212

where the implied constant is absolute.

The proof of these two lemmas will use a geometric interpretation of the
quotient SO(Q3)/ SOg(A).

A.4 THE BRUHAT-TITS TREE

Let Q be an isotropic quadratic form such that p t disc(Q) or Q(x,y,z) =
xy +z2. Note that Ag = Z137 has the property that Q(Ag) C Z, and that Ag is
maximal for this property. We set

To = SO0(Q)Ao ~ SO0(Q})/K, -

Even though this will not be used here, let us also mention that 7y is the set
of all lattices A in Q) such that

0N CZ,

and which are maximal for this property (see [15, Cor. 4.17]).

We will need that Ty has the structure of a (p+ 1)-regular tree (see [6]) in
which A, A’ are adjacent if and only if ANA’ has index p in A (or equivalently
in A’). More generally, the distance d(A,A’) between two vertices A, A’
satisfies

PN = [A AN =[N D ANAT,

and the geodesic between A and A’ consists of all A” € 7Ty, satisfying
ANAN CA”.

Let us describe the adjacency structure on 7y more explicitly using the
quadratic structure. Given any lattice A € T, and any primitive v € A (i.e.
v ¢ pA) for which V=v+pA € A/(pA) is isotropic over F, (i.e. p | O(V))
we can define a lattice Ay € 7o, which only depends on the line through V,
as follows. Since

(A.5) Qav +z) = a*Q(v) + Q(z) + a(z,v) € Z,
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and since the linear form (-, ¥) is not zero (even for p = 2), we may modify v
by some element pzy € pA to ensure that p? | Q(v+pzo). Here the element z,
is uniquely determined by v up to {z € A : (z,v) = 0 mod p}. Therefore,
the lattice

1
Ay = [—)Zp(v +pzo)+{z€A:(z,v)=0mod p}

depends only on V, indeed only on the line through v. Using (A.5) we see
quickly that Q(Ay) C Z,. Below we will always assume that p? | O(v) and
set zg = 0.
Under our assumptions on Q this lattice Ay € 7o is a neighbor of A, and
there are exactly p+ 1 = |P!(F,)| such lines, and thus every neighbor arises.
We will use also the following simple facts:

(1) For an isotropic V we have
ANAy=Z,v+{zc A:(v,z)=0mod p}.
(2) For v,V generating distinct isotropic lines the intersection
ANNAy ={ze€A:(v,z)=(v,z) =0mod p} =Z,w+ pA
is the preimage in A of the orthogonal subspace (F,v + FPV’)J‘ C Ff,
(3) Given three isotropic vectors V,V', V" generating distinct lines and assum-

ing p > 2 we have
AV N AV’ n AVN = pA .

One establishes also the following generalization :

PROPOSITION A.5. Let A lie at the mid-point of the geodesic between A’
and A" (i.e. there is n > 1 such that d(A,N) = d(A,N") =n, d(A',A") =
2n). There exists a primitive v € A so that Q(v) = 0(p") and w € A with
O(w) Z0(p) and (v,w) = 0(p") so that

ANN ={zeA: (2,v) =00")} = Z,v + Zw +p'A

and
N NN =Z,w+p'A

is the preimage of the non-isotropic line defined by w under the projection
A — A/p"A. Moreover, for m < n, let A], be the lattice on the segment
[A, A'] at distance m from A, then

ANA,={zeA: (z,v) =0p")} =Z,v+Z,w+p"ADANA.
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A.5 PROOF OF LEMMA A.3

Let p>2 and Q be as in the lemma. Define
R(IL)y:={A€Typ: LCA}CTy, N(L) = |R(L)| .

In the notation of Lemma A.3, N(L) = N(L;A) for any A € Tp.
We start by remarking that R(L) is connected: if A, A’ both contain L,
then L C ANA’ C A” for any A” on the geodesic path between A and A’.
Let g be as in (A.2). Suppose R(L) is non-empty and let ¢: (Z}Z,, q) — (A, Q)
be an isometric embedding with image L = L(le,) and let e; = «(1,0),
e; = 1(0,1) so

Oe)) = up®, Q(ex) =vp’, (e1,e2) =0.

A5.1 THE CASE (a,b) = (0,0). We show R(L) = {A}. If not, L is
also contained in a neighbor Ay of A. However, the induced quadratic form
on the span of ,2, is nondegenerate, so this span cannot be v- for an
isotropic V€ A/pA. So N(L) = 1.

A52 THE CASE a=0, b>1. Suppose that N(L) > 1. Then there is
an isotropic ¥ so that @ belongs to ¥-. This shows that ei is a hyperbolic
plane (first modulo p, and then since p # 2 also on f,).

In other words, ej N A is a rank two lattice generated by two isotropic
vectors v, v’ (which are liftings of isotropic vectors generating ;=) and then,
there are exactly two neighboring lattices containing e;, namely Ay and Ay ;
that there are at most two follows from Fact (A.4). Pursuing this reasoning,
we see that the only lattices that can contain e; are the lattices

Ay :=Zp™"V+ZLpe, + pr”V’, neZ

(which is a geodesic in the tree determined by e;).
Let us now see that for n > b, A4,, does not contain e,, which will
show that N(L) < 4b + 3. Suppose e, € A,, then

e e ANNAy, = Zl,el +p"An
write e; = ey +z, o € Z,, z € p"A, we obtain
(e1,) =0=a (modp"), Qer)=vp’=a*>=0 (modp").

This is a contradiction for n > b.
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A.53 THE CASE a =1. We show N(L) < 2: Suppose that L C Ay for
some V. Since ¢, € A/pA is a non-zero isotropic vector contained in V-
it has to be a multiple of V. By symmetry between A and Ay, this also
shows that A is the only neighbor of Ay which contains L. Since R(L) is
a connected subset of the tree, this shows that N(L) < 2 as claimed.

A.5.4 THE CASE a > 2. Let
1
Ly :=Z,e\ +Z,es, Ly :=Zpe1+Zye,, € =ei/p, i=1,2, Li+L,=-L;
14

these are rank two lattices containing L, on which Q is Z,-valued with
respective invariants (a — 2,b), (a,b —2) and (a —2,b —2). We will show
that either N(L) =1 or

(A.6) R(L) C R(L1) UR(Ly) U U B(A', 1),
NERGGL)

where B(A',d) = {A" € Ty, d(A',A”) < d} is the ball in the tree of radius d

centered at A’; it has cardinality 1+ (p + 1)’;1__11 <(1+ %)pd.

Here is the proof of (A.6). Let A € R(L). If e; € pA or e; € pA, then
A € R(L;) UR(Ly). So suppose now ej,e; € A are both primitive vectors.
By assumption, we have for i = 1,2 (since Q(e;) = 0 (mod p)) that e; is a
non-zero isotropic vector. Since (e, e;) =0, ey and e; have to be co-linear;
otherwise the induced form on the reduction A would be identically zero on

a plane. Now Az contains both L; and L, ; so it belongs to R(zlz[‘)' Thus

A is at distance at most 1 from R([%L).
Let us now see how to conclude the proof of Lemma A.3: for r,s € N,
let
Ls:=Zyp e, +Z,p ’e;.

Q takes integral values on L, for r < |a/2|, s < |b/2]. In this notation
(A.6) states

R(Loo) C RLig) URILo)U | B, 1),
AN ER(L,1)

We can now apply (A.6) again to each of the terms on the right. With each
application r or s or both increase by 1. In the latter case we obtain that the
previous lattice A’ € R(L,;) (to which (A.6) was applied) is at distance 1
from the new lattice A” € R(L,+1,+1). Also note that in the latter case both
a and b are reduced by 2, so that this case can only happen < |a/2] many



DISTRIBUTION OF CLOSED GEODESICS 301

times. Therefore, induction on a + b shows that
R(L) = R(Loo) C | J{BULyaja5: a/20). BLy o2y, a/2]) s 0<r,5< |b/2]}.

Bach L' = Li,/5s tesp. L' = L, |2 has invariants (0,5") or (1,b") with
b’ < b and by the previous sections N(L') = O(b+1) in all cases. Consequently

N <Y Y IBW, a2 < b+ D@L O

L' NeR(L)

A.6  PROOF OF LEMMA A.4

Recall that we assume that Q(x,y,z) = xy+z>. Note that (1,0,0),(0,1,0)
and (—1,1,1) are three isotropic vectors that are linearly independent
modulo 2, which define the neighbors of Z3. For every pair fi, f» of these
vectors we can find a third vector f; € Z3 so that Q(xfi +yfo+z2f3) = xy+2°.
Of the four non-zero non-isotropic vectors modulo 2 the vector k = (0,0, 1) is
special, it is the only element in the kernel of (-, -) modulo 2 and also satisfies
k = f3 modulo 2 for any basis (fi, f>, f3) as above. Below we will always
use the letter k to denote the corresponding element in the lattice A/2A.

A.6.1 THE DIAGONAL CASE (A.3). Suppose that in a suitable basis ¢
takes the form (A.3). This situation is similar to the proof of Lemma A.3.
We only discuss the details where the two proofs differ.

A.6.2 THE CASE (a,b) = (0,0). We claim that A € R(L) has at
most one neighbor in R(L). If one of e or e; is not equal to k, then
we claim that R(L) contains at most one neighbor of A. To see this suppose
21 # k and L C AyN Ay . Then by Fact (2), L is contained modulo 2 in the
common kernel of (-,7) and (-,7'), which is one-dimensional and actually
equal to the span of k — a contradiction. Therefore, L C AN Ay for at most
one neighbor Ay as claimed.

So suppose ¢ =e; =k and w € A is such that Q(xe; + y(e; + 2w)) =
ux> +vy* as in (A.3). Since we also have

Q(xer + y(er +2w)) = xX*Q(e1) + y*Qler + 2w) + xy(20(e1) + 2{e1, w))

and 2 | (e;,w), it follows that Q(xel + y(ey + 2w)) is not as in (A.3). So
we have seen that in all possible cases we have at most one neighbor of A
in R(L). However, this shows N(L) <2 for (a,b) = (0,0).
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A.6.3 THE CASE a =0 AND b > 1. We claim that the main difference
between the case of p =2 and p > 2 lies in this case. Here we will see
that R(L) is only contained in the set of elements at distance one to points
on a geodesic. This is caused by the fact that if ef = k and &, = 0, then
R(L) contains all neighbors of A due to Fact (1) and since k is orthogonal
to all three nonzero isotropic vectors in A/2A.

On the other hand, we have already seen above (in the case a = 0,b = 0)
that if @] # k then only one neighbor of A can be in R(L). To prove that
R(L) consists of points at distance one from a geodesic we only have to
show that if @7 = k, then for at least one neighbor A’ of A we have e # k'
where k' € A’/2A’ is the corresponding special vector for A’. This follows
if we can find some vector w € A’ with (ey,w) # 0.

To see this we simplify the notation and assume without loss of generality
A =173 Let ¢ = (a,f3,7) so that {e1,(1,0,0)) = 3, {e,(0,1,0)) = a,
and (e1,(0,0,1)) = 2v. Since e; # 0, one quickly sees that one of these
inner products is not divisible by 4. Without loss of generality we may as-
sume 4 1 3. Now consider the neighbor A’ = %Zz X 24, x 7, of A. Then
w = (%,0, 0) € A’ satisfies (e, w) = %ﬁ % 0 (mod 2). Hence as claimed,
21 # k' and so only one neighbor of A’, namely A itself, can belong to R(L).

It follows that there exists a line segment I C R(L) in a geodesic in T(Q)
so that R(L) C UAG[ B(A,1). Arguing as in Subsection A.5.2 we can bound
the length of 7 in terms of » and obtain N(L) < 3(4b + 3).

A.64 THE CASE a > 1. The arguments for p > 2 carry over to the
remaining cases.

A.6.5 THE NON-DIAGONAL CASE (A.4). So suppose now ¢ is represented
by the lattice L = Zye, + Zre, C A with

Oe)) =u2", Q) =v2", (e, ) =w2’, wv,weZ}, 0<a<b.

A.6.6 THE CASE a=0. If (a,b) =(0,0), then e; and e; are linearly
independent in A/2A since otherwise w = {(ej,e2) =0 (mod 2). Also note
that the plane generated by e; and e; does not contain any isotropic vector.
However, this implies that e;, e, cannot be both contained in any Ay for then
vt would contain e7,;,V three linearly independent vectors.

If now (a,b) = (0,b > 1), ey and e, are two linearly independent isotropic
vectors and so e; can only be contained in Ag;. Similarly, e, is only contained
in Ag. So L cannot be contained in any neighbor of A.
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In conclusion for a = 0 we have

N(L)=1.

A.6.7 THE CASE a = 1. In that case at least one of the vectors e; and
e; must be a non-zero isotropic vector, for otherwise a > 2. Suppose e; # 0.
Then e; € Ay only for ey = V. Therefore, L can only have one neighbor
in R(L) and so N(L) < 2.

A.6.8 THE CASE a > 2. We consider again the 2 rank two lattices
Ly i=Zoe\ +Zrer, Ly:=17se; +Z1rey, e =e;)2
which contain L and on which Q is Z,-valued:
Q) =u2"2, Qb)) =v2b72, (e}, er) = (e),€h) = w2,

We describe now the type and the invariants of L; — by symmetry L,
behaves the same way.
If a =b we may solve the equation in 3 € Z5

0= (ey + e}, e}) = w2 + Bu2t™!

and so Qy;, is of diagonal form (A.3) in the basis {e,+ e}, €| } . Furthermore,
since
(es + Be), er + Bet) = 20(er + Be}) = v2P T + pw2e™!

it has invariants (a —2,b — 2).

If a < b, take 8 = 2°"%: in the basis {e, + e}, ¢!}, Oy, takes the
non-diagonal form (A.4) with (¢’,b’) = (a—1,b—2). Finally O+, = Q12
takes the form (A.4) with (a”’,b") = (a —2,b —2).

We then conclude exactly as in Subsection A.5.4 by proving that either
N(L) =1 or (A.6) holds. This implies once more the desired bound.

A.7 PROOF OF PROPOSITION 3.4

We now show how the previous subsections combine to the proof of
Proposition 3.4.

Recall that we are bounding the number of representations N(L) of the
quadratic form g(x,y) = a;x> + axy + azy* by the ternary quadratic form Q
up to SOp(Z). For any p let us write a, and b, for the invariants of g
over Z, as in Section A.3. Let f2| gcd(ay, ay,as) be the greatest common
square divisor of the coefficients of g. Then a = v,(f).
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By the discussion in Sections A.1-A.2 we know that

N < ] N
P

Q p-isotropic

Also recall from Section A.2 that for bounding N(L,) for p|disc(Q) we may
replace Q by xy+z> and ¢ by a fixed multiple ¢’ of ¢, where the factor
only depends on Q. From this we see that Lemmas A.3-A.4 also hold for
p|disc(Q) for ¢ and Q, except that the implicit constant depends for those
primes also on Q.

Notice that for any prime p > 2 we have a, + b, = v,(disc(q)) and
a, = vp(ged(ay, az,a3)). For p =2 we have vy(disc(q)) = a+b+2 in the di-
agonal case and v,(disc(g)) = 2a in the non-diagonal case. Also let ¢ > 1 be
the implied constant in Lemma A.3. Together with Lemmas A.3-A.4 this gives

NL < [ elupdiset@) +1)° p) < f max(ar, az, as)°,
p|2 disc(q)

as desired. [

B. ENTROPY, BOWEN BALLS AND
UNIQUENESS OF MEASURE OF MAXIMAL ENTROPY

B.1 STATEMENT OF MAIN RESULTS

We recall some notations: we work in the space X = I'\G with
G = SL,(R), and let T denote the time-one-map of the geodesic flow, i.e.

the map
. e 0
T:x+— xa with  a = ( 0 e_'/z)'

We define a Bowen (N,n)-ball in this space to be any set of the form xBy ,

with x € X and
N

By, = () a"BS(e)a"
n=—N
(in the sections above 7 remained fixed and was omitted from the notations,
but here it will be convenient to be able to use Bowen balls of varying 7).
If T is cocompact, for all n sufficiently small, the Bowen (N,n)-ball
XBy,, coincides with the set

By ={y:d(T"(x), T"(y)) <n forall -N<n<N}.
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This is not true any more for noncompact quotients, where in general the
right-hand side can be significantly bigger than the left-hand side which is
the source of some complications.

The following theorem was proved for compact quotients by Bowen in [4].
It is certainly well known also in the finite volume case, and proofs using
leafwise measures can be found e.g. [20, Prop. 9.6] and the more recent
lecture notes [12, Thm. 7.9].

THEOREM B.1. Let X = T\SLy(R) and T: X — X be as above. Then
for any T -invariant probability measure v the entropy satisfies h,(T) < 1.
Moreover, equality holds if and only if v = ux is the SLy(R)-invariant
probability measure on X.

We give here a direct proof not using leafwise measures, based on
Lemma B.2 (which is identical to Lemma 5.3 and was needed for the proofs
in §4), in the spirit of Bowen’s proof (that in turn was inspired by a proof
by Adler and Weiss [1] of the uniqueness of measure of maximal entropy in
irreducible shifts of finite type).

LEMMA B.2. Let p be an A-invariant measure on X = I'\ SL(2,R). Fix
n >0 and € € (0,1). For any N > 1 we let BC,(N,¢) be the minimal
number of Bowen (N,n)-balls needed to cover any subset of X of measure
bigger than 1 — €. Then

log BC, (N
(B.1) hu(T) < lim lim inf 2EBE -9

—0 N—oo N

It is easy to see that for any 1,7’ > 0 a Bowen (N, n)-ball can be covered
by < 1 Bowen (N,n’)-balls. Therefore,

(B.2) liminflog BC,(N, €)/2N
N—oo

is independent of 7. One can show that if u is ergodic, equality holds
in (B.1), and moreover that the quantity in (B.2) is independent of €. If u is
not ergodic, then in general equality in (B.1) fails: in this case h,(T) is the
average of the entropy of the ergodic components of p and the right-hand
side of (B.1) gives the essential supremum of the entropies of the ergodic
components of . We shall not need either fact (nor will we prove them),
but will use the following related estimates for p ergodic:
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LEMMA B.3. Assume that p is in addition ergodic for T. Then for any
sufficiently small 1 (depending only on X) and for any € € (0,1) and any
large enough N (depending on u,e€), for any € € (0,¢), if k is sufficiently
large (depending on €,€,N, 1,n) then

log BC,)(kN, €1) < k(1 — 2¢)log BC,)(N, €) + 4eNk + gk .

Here q is some absolute constant.

For our proof of Theorem B.1 it is crucial that the second error term (gk)
does not depend on N. Roughly speaking the lemma says, if we manage
to cover some set of measure bigger than 1 — e by relatively few Bowen
(N, n)-balls, then a set of size 1 — €’ can also be covered by relatively few
Bowen (Nk,n)-balls.

The reader may wish to look now at the proof of Theorem B.l in
Subsection B.4 to see how the above two lemmas are used in combination to
imply the uniqueness of the measure of maximal entropy.

B.2 PROOF OF LEMMA B.2

In the proof we will need the notion of relative entropy for partitions:
For two partitions P = {S,...,S;} and Q ={Qy,...,0n} of a probability
space (X, u) the relative entropy of P given Q is defined by

u(S; N Q)
H,(P|Q) =— SiN Q) log ————=,
W(PlQ) %jn( 0plog = 55
and it is easy to see that it gives the following additivity of entropy
(B.3) H,(PV Q) =H,(Q)+ Hu(P|Q).

We should also use the notation P(x) to denote the elements of the finite or
countable partition P containing x.

Proof. Let P ={Q,S,...,S¢} be a finite partition where Q is the only
unbounded set, all boundaries 0S; are null sets which satisfy additionally

u(9S)BS) < Ck
for some constant C > 0 and all x > 0, and finally A,(T,P) > h,(T) —§.

Here

o H@Y)
T P) = Jim =TT
is the expression over which one needs to takes the supremum to define £, (7).

Such a partition exists since (i) by the general theory of entropy 4,,(T) can be
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approximated by &, (T,P) once P is a sufficiently fine partition, and (ii) one
can find for every x € X arbitrary small r > 0 for which 1((9B.(x))BS) < Ck
for all k > 0 (since for every x the function r — u(B,(x)) is monotone
increasing hence differentiable for a.e. r).

We claim that for most points x € X (we shall quantify this presently) it
holds that

(B.4) PENNM(x) D xBy oy for f =N,

hence if y € xBy,y, then yBy, C P"NN(x). To show this, suppose
y = xh ¢ PNN(x) for h € By, . Then for some n with |n| < N the
elements

n

xa and  xhad"

belong to different elements of P. It follows that at least one of the elements
xa" belong to (8P)Ban, for some P € P, |n| < N. Therefore, x belongs to

N
(B.5) U ™ Josss,
n=—N  SeP
which has measure less than 2(2N 4 1)CnN—2 < N~'. This proves the above
claim.
Roughly speaking By, has length 7 in the direction of A and ne~" along
stable and unstable horocycle directions while By, has nN~2 and nN~=2¢=V

instead. From this one can easily deduce that one needs at most < N® many

log BC(N, €)
2N ’

Then for any € > 0, there is some large N > 1 depending on € such that the

measure of the set in (B.5) is less than e, and moreover such that 1 — ¢ of
the space can be covered by less than ¢ many translates of the set By, .

Say yiByy, - -, YiBy,y (with k < &) cover X; C X with u(X;) > 1—e.
If x € X; is not in the union in (B.5). Since x € y;By,, for some j, it follows

from (B.4) that y;By,, C PI=VV(y,). In other words, it follows that 1 — 2¢
ONF

translates of By, to cover By ,. Choose f > lim._o liminfy_,

of the space can be covered by e?™ elements of the partition PL=VN,

Let P be the union of these partition elements and let P = {P,X~\P} C o(P)
be the associated partition. Write up = (u(B))~'u|p for the normalized re-
striction of the measure yu to a Borel set B. It follows now from (B.3)
that

H, (PN = H, (P) + Hy (PVNP)
= H,(P) + p(PYH,, (PN + (X . PYH (P
<log2 + 2Nf + 4eN?
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since the entropy of a partition with K elements is at most log K. For N — oo
this shows that
huy(T) = 6 < hy(T,P) < f +2el,

which implies the lemma since § and e were arbitrary. (Note that ¢ depends
on § but not on €.) [

B.3 PROOF OF LEMMA B.3

We shall say a Bowen ball yBy, is injective if the map g — yg is
injective on By . Let 19 > O be such that 27y is smaller than the length
of any closed geodesic in X. An easy compactness argument shows that if
n < no for any compact F C X there is a Ny so that if N > Ny and y € F the
Bowen ball yBy , is injective. In the proof we shall also make use of shifted
(s,t;m)-Bowen balls — sets of the form yBj ., where B ., :=(),_, a'BSa~!
and (s,7;m) sub-Bowen balls which are simply sets of the form yB for some
B C By 1. A shifted (s,#;m)-Bowen ball yB; ., (respectively, a (s,#;1) sub-
Bowen ball yB) is injective if the map g — yg is injective on By, (or B).
We note the following important properties of shifted Bowen balls:
(Bowen-1) For any s <t < r, the intersection of an injective (s,#;7) sub-
Bowen ball with an injective (z,r;7) sub-Bowen ball can be covered by
at most ¢ injective (s,r;7) sub-Bowen balls;

(Bowen-2) For any s <t < r, an injective (s,#;77) sub-Bowen ball can be
covered by at most ge’~' injective (s, r;n) sub-Bowen balls.

Proof of claims. Both claims can easily be reduced to their special cases
where t = 0 and where we only consider Bowen balls of the form gB; .,
in G instead of injective sub-Bowen balls in X.

For the proof of (Bowen-1) notice that there exists some C > 0 so that

P
(B.6) 91Bs 0 C 91BE,) Bly B,

where B denotes the r-ball around the identity in a subgroup H C SLy(R).
Similarly,

+ _
(B.7) 92Bo,rn C 92Bge*’nBLC/n Bén :

We can now decompose each of the balls appearing on the right-hand side of
(B.6)—(B.7) into < 1 many balls with certain smaller radius and obtain that
91B5,0.n N g2Bo, -y 1s the union of < 1 many sets of the form

+ U + — U~
O = (giui B jguy By ;g1 By 1) 0 (gauy By, sty By jgasB )
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where u; € Bg;, uy € Bg;e_,, uy € B¢, u; € BZ,, ai,a; € By, . If
g € O and 1o is sufficiently small so that conjugation by an element of
distance Cmp does not increase the distance to the identity significantly, it
follows that O C gB, ;) which proves the first claim.

The second claim follows similarly by splitting the set B, as in (B.6)
into < ¢" many sets of the form

_ + pU+ —pU™ A
0 = g1y, Bm),,/guI Bm,_\‘/saan/8

with ut € Bgn and u~ € BY,,, and showing that for g € O we have
O CgBs,y. [

Proof of Lemma B.3. Let n € (0,1n9) where 7o is as defined above, and
let M be sufficiently large so that ;(X<y) > 1 —¢/2 and similarly choose M,
so that p(X<p,) > 1—€;/2. We require that N be sufficiently large so that any
(N,n)-Bowen ball yBy , intersecting X<y is injective, and we choose k; so
that a similar statement holds for any (k;N,n)-Bowen ball intersecting X<y, .

Let = be a collection of (N,n)-Bowen balls of cardinality BC,(N,e¢)
covering a subset of X with p-measure at least 1 — €. Then

E ={B€EZ:BNX<u # 2}

has yt(Upe=B) > 1 — 3. Let ¥ = Upez B. By the pointwise ergodic
theorem, there is a k, > k; and a subset Y| C X<, of y-measure > 1 — %

so that points in Y; spend most of their time in Y in the following sense:

n—1
1
(B.8) — E 1y(T*(y)) > 1 — 2e¢ for all n > kyN and y €Y.
2n

S=—n

To complete the proof of Lemma B.3 we will show that for any k > k3
there is a collection Z; of (kN,n)-Bowen balls covering Y; of cardinality

21| < NQg)*BC, (N, )12 l4ektHN

Let ¢ be the implied multiplicative constant. Then for large enough ¢’ (depend-
ing only on ¢ and some absolute constants above) we have cN(2g)ke* < 7%
for all sufficiently large k (where the bound is allowed to depend on N).
Therefore, the existence of Z; as above will establish the lemma.

Fix k >k, and let y € Y;. We partition the finite orbit

{T"™@),...,TV "' (»)}
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into the 2N finite orbits of the form
{17+ ), TV ), L TEDVH ()}

for £ € {0,...,2N — 1}. By equation (B.8) there must for any y € ¥; exist
some £(y) € {0,...,2N — 1} so that

k—1
% D AT HEEIHO ) > 1 - 2e.
s=0

Let L = [(1 —2e)k]|. It follows that there are 0 < £y < fp--- < fp < k
with TCKH20N+HO)(y) € Y. Furthermore, there exist injective (N, n)-Bowen
balls By,...,B; € E so that

L
ye m T—(k+2N—L0)p.
i=1
Recall that = has BC,(N,¢) many elements. We now apply the properties
(Bowen-1) and (Bowen-2), and we conclude that the set of all y € Y| with a
given value of /(y) and 1;,...,7;, can be covered by

< BC',](N, 6)k(1—2€)+le4Nke+2qu+l

injective (kN,n)-Bowen balls. Since there are at most 2N2F choices of £(y)
and t,...,1;, we are done. [

B.4 PROOF OF THEOREM B.1

We begin with the observation that the SL(2, R)-invariant measure px on X
achieves the upper bounds stated on the entropy, and moreover is ergodic un-
der T. Let v # uyx be another T -invariant probability measure and without loss
of generality we may assume that v is singular with respect to py (which is
the case e.g. if v is also ergodic), and let 7y be as in the proof of Lemma B.3.

Let f be a nonnegative, continuous, compactly supported function so that

1
(B.9) / fdux < / dt / fay)dv,
0

R some real number strictly between the left-hand side and right-hand side

of (B.9) and set
1 T
Yr = {x : —/ f(xaydt > R} .
T Jo

By construction Y7 is compact, and (for € > O arbitrary) by the pointwise
ergodic theorem if T is large enough ux(Yr) < € and v(Yr) > 1 —e€. In fact,



DISTRIBUTION OF CLOSED GEODESICS 311

if T is large enough, for any sufficiently large N it holds that
(B.10) px(YrBy,y,) < 2€.

Fix such a T, and choose N so that (B.10) holds and moreover any (N, np)-
Bowen ball intersecting Y7 is injective.

Now choose a maximal collection of disjoint (N,n9/2)-Bowen balls
intersecting Y7. Each of these balls has py-volume >, =2V (the implicit
constant is independent of ¢ and N). In view of (B.10), it follows that the
cardinality of this collection is <, ee*", and by maximality the corresponding
collection of (N,np)-Bowen balls covers Yr. As v(Yr) > 1 — e we obtain
BCy, (N, €,v) Ky, ee?™ (note that since we are simultaneously discussing two
measures we have added v to the notation BC(-)).

Roughly speaking the above upper bound should lead to 4,(T) < 1 by
using Lemma B.2: most of the space with respect to v is covered by relatively
few, namely < Cee?V, Bowen (N, n)-balls. However, as (B.1) first takes the
limit as N — oo this inequality does not directly imply A,(T) < 1. To
overcome this we introduce an € € (0,¢) and will use Lemma B.3 to obtain
the bound on the covering number for ¢’ and kN. Indeed applying Lemma B.3
we conclude that for any €’ € (0,¢€) if k is sufficiently large

log BCy,(kN, €' ,v) < k(1 — 2€)(2N + log(Ce)) + 4€kN + gk
1 1
< k(1 —2€)2N + Eklog(Ce) + 4ekN + gk = 2Nk + (q + 3 log(Ce))k7
where we also assumed € < 1/4 and Ce < 1. Hence we obtain for any

€ € (0,¢) that
2q + log(Ce)

4N '
However, for sufficiently small e the right-hand side is < 1. Hence by
Lemma B.2 we get h,(T) < 1. Therefore, my is the only probability measure
on X with A, (T) > 1.

o1 /
- <
11kn_1)(1)1;t AN log BCy,(kN,€",v) < 1+
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