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L’Enseignement Mathématique (2) 58 (2012), 223-248

ROOTS OF COMPLEX POLYNOMIALS
AND FOCI OF REAL ALGEBRAIC CURVES

by Eduardo CASAS-ALVERO *)

ABSTRACT. We give a new proof of results of B.Z. Linfield presenting the roots
of the derivative of a complex polynomial as the foci of a certain real algebraic curve
in the complex plane C.

1. INTRODUCTION

A nice and old theorem due to J. Siebeck ([12]), also ascribed to F.J. van
den Berg ([13]), asserts that if f € C[z] is a polynomial of the third degree
whose roots z;, 22,23, viewed as points in the complex plane, are not aligned,
then the roots of its derivative df /dz are the foci of the unique conic C (an
ellipse in fact) which is tangent to the sides of the triangle z;zpz3 at their
midpoints. For a nice geometric proof based on the focal properties of conics,
see [1]. Other proofs may be found in [10], 1.2.2.

Many generalizations and other proofs of Siebeck’s theorem appeared in
the first quarter of the 20" century, the reader may see M. Marden’s paper [8]
and references therein!). Among them, Linfield’s paper [7] is worth noting,
not only because it deals with polynomials of arbitrary degree (and even
rational functions), but especially because it obtains the real algebraic curve
playing the role of the conic C in Siebeck’s result (Siebeck curve) as the
curve enveloped by part of a certain polar curve in the dual plane. This gives
a far clearer insight into the problem and allows one to cover the cases of
particular positions of the roots.

*) Partially supported by MTM-2009-14163-C02-01.

1) The original result of Siebeck has recently been named after Marden, which, in view of
the careful historic quotations by Marden himself, makes no sense.
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The present paper gives a precise statement and a new proof of Siebeck’s
theorem for polynomials of arbitrary degree following Linfield’s approach
in [7], written according to modern standards. We have in particular addressed a
number of points, such as the zero-dimensional components and the uniqueness
of the Siebeck curve, which received no mention in Linfield’s paper. For the
convenience of the reader, the easier case of non-aligned roots is presented
first, in Section 6, while the somewhat more technical general case is dealt
with in Section 7. Further properties of the Siebeck curve and its application
to the location of the roots of the derivative, refining the Gauss-Lucas theorem,
will appear in [2].

ACKNOWLEDGEMENTS. I am indebted to S. del Bafio for calling my
attention on the present subject. I also wish to thank J. C. Naranjo and J. Roé
for their encouragements and useful discussions.

2. PRELIMINARIES

We will deal with abstract, real or complex, projective planes with an
already fixed system of homogeneous coordinates, and with algebraic curves
C (in the sequel simply called curves) in them, defined by equations F = 0,
F an homogeneous polynomial in the projective coordinates. The point with
homogeneous coordinates (xg, x;,x2) will be denoted [xg,x;,x,] and we will
usually write C: F = 0 to indicate that the curve C has equation F = 0.
A line ¢ is said to be tangent to the curve C at a point p € C if and only if
the intersection multiplicity of 7 and C at p is higher than the multiplicity
of p on C. The point p is then called a contact point of t and C, many
contact points being possible for the same tangent. The curve composed of
(possibly repeated) curves Cj: F; =0, j=1,...,r, which by definition has
equation [[;_, F; = 0, will be denoted by Cy +--- +C,.

Any real projective plane P, will be viewed as embedded in its complex
extension CP,, which is obtained by just allowing the homogeneous coor-
dinates to take arbitrary complex values, not all zero. In this situation, the
points of P, are those which have real coordinates and will be called real
points, while, as usual, the points in CP, — P, are called imaginary points.
The (complex) conjugate of [xp,x1,x2] € CP, is [Xo,X,X2], the bar mean-
ing complex conjugation. The fact that complex conjugation is an involutive
automorphism of C over R, and therefore preserves any type of algebraic
relation, will be used without further mention in what follows.
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Groups of points will be taken to be finite unordered lists of possibly
repeated points G = {p;}j=1,...», the number of times that a point is repeated
being the multiplicity of the point in the group. Groups of points will be
represented as formal sums G = Z,Lo p; or, showing the multiplicities, after
a suitable renumbering, G = >°°_owpj, pj # ps if j # s, D = n.
The integer n is called the degree, and also the number of points (counted
according to multiplicities) of G. If C and C’ are curves of a projective
plane with no common component, then

C.C'= > [C-Chp,

pecnc’
[ - ], meaning the intersection multiplicity at p, will be called the inter-
section group of C and C’. If the points of a group G belong to a
projective line and have there homogeneous coordinates p; = [a;, b;], then
G = H;'z (bjxg — ajx;) = 0 will be taken as an equation for G. Conversely,
any homogeneous polynomial G € R[xg,x;], of degree n, is a product of n
linear factors in C[xg,x;], and hence any equation G = 0 is the equation of
a group of n, possibly imaginary, points.

We will consider objects composed of a curve C and a group of points
G in the same plane, represented as G + C: they will be called augmented
curves. A useful convention is to consider both curves and groups of points
as augmented curves (with empty zero-dimensional or one-dimensional part,
respectively).

We will think of the field of complex numbers C as a (real) Euclidean
plane, its metric structure being the one defined by the usual absolute value
|z| = V/zZ of complex numbers. To avoid confusions, this Euclidean plane
will be denoted by E. Thus, as sets, C = E. If f € C[z] is a polynomial,
its roots, repeated according to their multiplicities, compose a group of points
in E that will be denoted by Z(f).

Taking, as usual, (x,y) as the coordinates of the complex number x + yi
defines orthonormal coordinates on E. We will denote by P(E) the projective
closure of E, namely the result of adding to E a line of improper points,
each corresponding to a direction on E. Thus P(E) is a real projective
plane and we take on it the homogeneous coordinates associated to the
above orthonormal coordinates x,y, so that the complex number x + yi has
homogeneous coordinates (1,x,y) in P(E); equivalently, x + yi = [1,x,y].
We will also consider the complex extension of P(E), a further enlargement
of the complex plane according to the sequence

C=ECP®E)CCPE).
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In particular we will deal with the cyclic (or circular) points of the Euclidean
plane E : they are the (improper, imaginary and mutually conjugate) points
I =1[0,1,i] and J = [0, 1, —{], which determine the metric structure of the
Euclidean plane up to the choice of the unit of length.

We will not distinguish between an algebraic curve C in E, defined by a
non-homogeneous equation g(x,y) = 0, g € R[x,y], and its projective closure
in P(E), defined by the homogeneous equation G = x4 g(x; /x0,%2/x0) = 0,
d = degg. Augmented curves of E will be those composed of a curve in E
and a group of points all belonging to E.

In the sequel we will write simply P for P(E) ; this will cause no confusion.
As for any projective plane, the lines of P are the points of another projective
plane PV, the dual plane of P; coordinates in PV may be taken so that the
line of equation wxg + ux; +vx, = 0 in P has coordinates (w,u,v) in PV.
Since the condition for the line of coordinates (w,u,v) to belong to the pencil
p*, of the lines through a fixed point p = [c,a, b], is

we +ua+vb =0,

we see that in turn the lines of PV are the pencils of lines of P. Any inclusion
p € /£, between a point and a line of P, appears reversed, /£ € p*, in PV.
Mapping p* ~ p is a projectivity through which the bidual space (PV)V is
usually identified with P.

The same is done with the lines of CP, which are the points of the dual
plane CPV of CP. Each line of P being identified to the line of CP with the
same equation, we see that PV C CPV, and the latter appears as the complex
extension of the former. In particular the improper line of P, Lo : xo = 0,
appears as the point of PV with coordinates (1,0,0), the pencils of lines
through the cyclic points, I*, J*, are the lines of CPY that have equations
u+iv =0 and u—iv = 0, and their intersection is L., their only real point.

There is a one-to-one correspondence between curves of CP containing
no lines and curves of CPY containing no lines, so that the points of the
curve C* corresponding to a curve C of CP are the lines tangent to C and,
conversely, the tangent lines to C* are the pencils p*, p € C. The curve C*
is called the envelope of C, and C the curve enveloped by C*. Also, C and
C* are said to be dual to each other. The degree of C* is called the class
of C: it may be viewed as the number of tangent lines to C going through
any already fixed point p, counted with the multiplicities they have in the
group C*-p*. The latter is a group of lines in p*, usually called the group
of tangents to C from p. The reader may see [14], V.8.1 or [5], 5.1. In our
case it is easy to see that if C has a real equation, then also C* has a real
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equation, and conversely. Thus the bijection C <> C* restricts to a bijection
between curves of P and curves of PV containing no (real or imaginary)
lines.

We define the envelope of a group of points G = p; + - - - +py,, of CP, to
be the curve G* of CPY composed of the pencils of lines through the points
of G taken with the same multiplicities, G* = p{ +---+p;,. Then we extend
the above bijection between curve and envelope to a bijection between the set
of augmented curves of CP containing no line and the set of all curves of
CPV, by taking as the envelope of an augmented curve C = G + C the curve
C* = G*+C*, composed of the envelopes of G and C. The augmented curve
C will be referred to as the augmented curve enveloped by CV. Obviously
the degree of C* equals the class of C plus the number of points of G : we
will call it the class of the augmented curve C.

An augmented curve as above, C = G+ C, is called real if and only if the
curve C is real and for each point p belonging to G, its complex conjugate
also belongs to G and has the same multiplicity as p. The second condition
is obviously satisfied if p is real. It is easy to check that real augmented
curves have real envelopes and, conversely, each real curve of PV envelops a
real augmented curve of P.

As defined above, a line / is tangent to an augmented curve C = G + C
if and only if either ¢ is tangent to the curve C at a point ¢ or ¢ contains
a point g of G. In both cases g will be called a contact point of ¢ and we
will say that ¢ is tangent to C at g. Assume that p € P does not belong
to G ; then the group of tangents to C from p is defined to be C* - p*. It is
well defined because in no case is p* C C*, and its elements are the tangents
to C going through p.

3. FOCI OF ALGEBRAIC CURVES

The aim of this section is to recall and reformulate the definition and some
properties of the foci of algebraic curves, which belong to the today almost
forgotten metric theory of algebraic curves; for more details, the reader may
see Chapter X of [4], as well as the historical notes and references in [6].
We will continue to deal with the Euclidean plane E, but of course, since
any two Euclidean planes are isometric, the content of this section applies
without changes to any Euclidean plane. Let C be a curve of E containing
no real or imaginary line. For simplicity we will assume from now on that
C is not tangent to the improper line, this being enough for our purposes.
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The classical definition (due to Pliicker) extends the usual one for central conics
(see [11], V.9, for instance) by taking the foci of C to be the intersection
points of the pairs of conjugate tangents to C from [ and J. Equivalently,
a point ¢ € P is a focus of C if and only if, in the dual plane, the line g*
joins two conjugate intersections of C* with I* and J*. We will complete
this definition by assigning multiplicities to the foci. Assume that the class
of C is m, place ourselves in CPV and write C*-I* = {; + -+ + {,. The
lines ¢,...,¢, are thus the tangent lines to C from I, repeated according
to their multiplicities in C* - I*. Since the equation of C* may be taken real
and those of the lines I*, J* mutually conjugate, the conjugates 7y, ..., 70,
of the above ¢; are the intersections of C* and J*, that is, the tangents to
C from J (repeated according to their multiplicities in C* - J*). Since C is
assumed to be not tangent to Lo, , we have Lo, = I*NJ* ¢ C* and therefore
6 # 0, j=1,...,m. Thus each pair £;,/; spans a real line of CP" that
does not contain L, that is, a pencil of lines g}, ¢; € E. Each g; is a focus
according to the definition recalled above and we define ®(C) = g1+ - -+ g
to be the focal group of C.

The above definition applies without changes to any real augmented curve
C = G+ C for which C is a curve of P containing no real or imaginary line
and not tangent to L., these augmented curves being called non-parabolic
in the sequel. As the reader may easily check, the real points of G belong
to the focal group of C with the same multiplicity they have in G. In case
all points of G are real, we have ®(G + C) = G + ®(C). In particular the
focal group of a group of real points is the group itself.

Most of the properties of foci follow from the next proposition, which is
well known and widely used in the case of conics.

PROPOSITION 3.1.  Assume that C = G+ C is a non-parabolic augmented
curve of class m and let F = 0 be a real homogeneous equation of the
envelope of C. Assume that H is a group of m points of E and that H =0
is a real equation of the envelope of H. Then H is the focal group of C if and
only if there exist A € R—{0} and a homogeneous polynomial P € Rlw, u,v],
of degree m — 2, for which

F = MH + (> + v*)P.
Proof. We place ourselves in CP. Assume that H = ®(C). Then neither

H* nor G* contains 7*, because both H and G are composed of proper
points. By the definition of ®(C), we have

H-I"=C"-TI".
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Take A = F(1,0,0)/H(1,0,0), which is finite and non-zero because
[1,0,0] = Lo, does not belong to C* or H*, and is obviously real. Then the
curve D: F — AH = 0 of CPVhas degree m, intersects [* at the points of
C*-I* = H* - I* with at least the multiplicities they have in the group and
furthermore contains L., . By Bézout’s theorem, D contains I*. Therefore,
since D is a real curve (or just repeating the above argument for J*), D also
contains J* and hence contains the pair of lines /* + J*. Since I* + J* has
equation u? +v2 =0, we have

F—\H = (u*> + )P,

P € Clw,u,v], homogeneous and of degree m — 2. By taking conjugates
in the former equality, one sees that P must be real, which proves that the
condition is necessary.

Conversely, since u”> + v> vanishes identically on I*,

(3.1) H - I"=C*"-TI",
and so, in particular,
(3.2) H'NI*=Cc*nr*.

Take g € H and ¢ = ¢g*NI*. By Equation (3.2), ¢/ € C* and so / is a tangent
to C from I. Since ¢ is a proper point, ¢ # L., . The latter being the only
real line in I*, ¢ is imaginary and therefore different from its conjugate 7,
which in turn obviously belongs to both ¢*, C* and J*. Thus 7 is a tangent
to C from J and ¢ =¢N7{ is a focus of C.

Call v the multiplicity of ¢ in H, which by definition is the multiplicity
of ¢* as an irreducible component of H*. Note first that no other g; C H*
contains ¢, as the same arguments used above would apply to ¢;, giving
g1 = £N{ = q. Then, using Equation (3.1),

(C*-I"le=[H"-I"l;=vIg" - I"le=v,

and so the multiplicities of ¢ in H and ®(C) are the same. We have seen
thus that all the points g of H belong to ®(C) with the same multiplicities.
Since both groups of points have the same degree, their equality follows. []

The reader may note that if A and P, taken as in the above statement,
are allowed to vary, then A\H + (u?> + v*)P = 0 describes the equations of the
envelopes of all non-parabolic augmented curves with focal group H.
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We close this section by showing a nice property of the foci of algebraic
curves, due to Laguerre, that follows easily from Proposition 3.1. Its version
for conics is better known (see [11], VILS, for instance). We shall not use it
in the sequel.

THEOREM 3.2 (Laguerre). Assume that C is a non-parabolic algebraic
curve of class m, p a point other than the foci of C and i, ..., the lines
Jjoining p to the foci of C, repeated according to the multiplicities of the foci
in the focal group. If t| + ---+1t,, is the group of tangents to C from p and
we assume that all tangents t; are real, then

j=1

where (jt; is the angle between the lines (;,t; (in whatever manner the foci
and the tangent lines are numbered).

Before proving Theorem 3.2 we introduce an auxiliary result concerning
groups of points on a line:

LEMMA 3.3. Suppose we have three different groups of m points of a
complex projective line Py, say A =a;+---+ay, B=by +---+ b, and
C = ¢+ +cy with linearly dependent equations. Assume also that ¢, # ¢,
and that neither ¢, nor ¢, belongs to A or B. Then

m
H(aj,bj,cl,cz) =1,

j=1
where (aj, bj, c1,c2) stands for the cross-ratio of aj, bj,cy,ca.

Proof. Take homogeneous coordinates on P; such that ¢; = [1,0]
and ¢, = [0,1]. Then any equation of C, H = Y " hyxy ‘x] = 0, has
hy = h,, = 0.

As no point a; is equal to ¢; or ¢z, these points may be written a; = [¢y, 1],
a; # 0, and so we take

P= H(X() — ajxl) =0

j=1

as an equation for A. Similarly, write b; = [5;, 1], B; # 0, and take
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0= H(XO —Bx1)=0

j=1

as an equation for B. Then we have

Bi
s b'v ) =—-
(a/ s C1 c2) o
By hypothesis, there is a relation H = AP + uQ, from which, by equating
the coefficients of xj' and x{* on both sides, we get:

A4+u=0 and AIoj...am+upbi...0n=0

and so

i B

(e7] Qi

=1
as claimed. [

Proof of Theorem 3.2. 1In the pencil p*, of real and imaginary lines
through p, we take A = C* - p*, the group of tangents to C from p and
B = ®(O)* - p*, the group of lines projecting the foci from p. In case A =B
the claim is obviously satisfied, as the reader can see. Otherwise, notations
being as in Proposition 3.1, take D to be the curve of PV which has equation
(u* + v*)P = 0. The inclusion p* C D would imply, by Proposition 3.1,
that A = B, which has been excluded. So we take C = D - p* and, by
Proposition 3.1 again, the groups A, B, C satisty the hypothesis of Lemma 3.3.
In view of the definition of C we are allowed to take as cy, c; the lines pl, pJ
joining p to the cyclic points. Since these lines are imaginary, they do not
belong to A or B, and so we may apply Lemma 3.3. Laguerre’s formula (see
[11], IV.8, for instance) gives

]
bt = 5; 10t 4, pl, pJ)

and the assertion follows. ]

4. POLAR CURVES AND POLAR GROUPS

We recall the basic definitions and some easy facts relative to polar curves
and polar groups of points. In order to deal with both cases together, the
definition and first properties will be given in the n-dimensional case; the
reader may assume that n = 1,2.
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Take a real n-dimensional projective space P,, with fixed homogeneous

coordinates xo,...,X,. Assume given in P, a point p = [ay,...,a,] and a
hypersurface V, with equation F = 0, F € Rlxp,...,x,], homogeneous and
of degree d > 1. An easy computation shows that the equation
OF OF
aoa—xo—l—~~-+ana—xn =0

is an identity if and only if p is a d-fold point of V (i.e., V is a cone with
vertex p). Otherwise it defines a hypersurface of degree d —1 which is called
the polar of V relative to p (and also the polar of p with respect to V); it
will be denoted in the sequel by P,(V).

It is straightforward to verify that the above definition does not depend
on the coordinates and therefore the relationship between V, p and P,(V) is
invariant under projectivities. The following results on polars will be used in
the forthcoming sections.

LEMMA 4.1. p ¢V if and only if P,(V) is defined and p ¢ P,(V).

Proof. Simply use Euler’s formula

"\ OF
dF(ao,...,an)zZaj?(ao,...,an). Ol
=0 Y

REMARK 4.2. If p is the last vertex of the projective frame of reference,
p =10,...,0,1], then the polar has equation JF/0x, = 0. One may always
assume this to be the case after a suitable choice of projective coordinates.

LEMMA 4.3. If W: F, =0 is an irreducible component of multiplicity
w>0 of Vi F =0 (that is, Fy is an irreducible factor of multiplicity p
of F)and p ¢ V, then W is an irreducible component of multiplicity pu — 1
of Py(V).

Proof. Assume that F = F{‘ G, with F irreducible and not dividing G.

By Remark 4.2 we may assume an equation of the polar to be

OF _( OF, oG

axn:F{L (/Laan+Flaxn>—O.
Since p ¢ V, it does not belong to W either. Then, by Lemma 4.1, Py(W) is
defined and so OF;/0x, does not vanish identically. In the equality displayed
above, F; does not divide 0F,/0x, or G, because of its degree and the
hypothesis. Thus F; is an irreducible factor of multiplicity pu — 1 of the
equation of P,(V), as claimed. [
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Assume that p, ¢ and C are, respectively a point, a line and a curve of
P, with p€ ¢, p¢ C. Then £ ¢ C, C-{ is a group of points of ¢ and
we may consider its polar P,(C - ¢), which is defined by Lemma 4.1. Also
Py(C) is defined, for the same reason, and we have:

LEMMA 4.4. Hypothesis and notations being as above, we have
Pp(C) - £ =Py (C-0).

Proof. Take coordinates with p = [0,0,1] and ¢: x; = 0. Then xo, x;
may be taken as coordinates on ¢ and, relative to them, C - /¢ has equation
F(xo,0,x2) = 0. Then the assertion follows from Remark 4.2 and the obvious
equality

OF 8F(xo, 0, XQ)
75— (%0,0,x0) = ————.

Ox, 0x» =

In the sequel we denote by TC,(C) the tangent cone to a plane curve
C at one of its points g. The pencil ¢* of the lines through ¢ is a line
of the dual plane Py and in particular a one-dimensional projective space.
Since the tangent cone TC,(C) is composed of lines through g counted
with multiplicities, it is a group of points of the one-dimensional projective
space ¢*. It thus makes sense to consider, in ¢*, the polar group of TC,(C)
relative to any line through g. We have:

LEMMA 4.5. Let C be a curve of P, and q an e-fold point of C, e > 1.
Assume that p # q is a point of P, such that the line gp does not belong to
TC,(C). Then the polar P,(C) is defined, q is a point of multiplicity e — 1
of P,(C) and

Pp(TCy(C)) = TCy(Py(0)).

Proof. Take projective coordinates so that ¢ = [1,0,0] and p = [0,0, 1].
Assume that C has degree d and equation

F:FEA;()I78+~~~—I—F(1:0,

each F; being a homogeneous polynomial in x;,x,. Then the tangent cone
TC,(C) has equation F, = 0. If F, is written as a product of powers of
distinct linear factors,

Fo(xi,x) = [ [l + vy,
j=1
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then TC,(C) is composed of the lines ¢ = [0,u;,v;], j = 1,...,r, with
multiplicities f;. Then each ¢; has coordinates uj,v; in ¢* and so

Fo(v, —u) = | [ (v — vjuy =0
j=1
is an equation of TC,(C) as a group of points in ¢*. The line gp has equation
x1 = 0, hence coordinates (0,1,0) in P} and thus coordinates (1,0) in g*.
The polar group P,,(TC,(C)), which is well defined by Lemma 4.1, thus has
equation

OF (v, —u) OF,

4.1 on = - o (v, —u).

On the other hand, since we know from the above that OF,/0x, is not
identically zero, neither is
OF  OF, , OF,

o om0 Ty 70

identically. This expression can therefore be taken as an equation for P,(C).
Still using that OF,/0x, is not identically zero, since it has degree e — 1,
g has multiplicity e — 1 in P,(C). Furthermore, an equation of TC,(P,(C))
is

OF, —0

8XQ
As argued for TC,(C), substituting (v, —u) for (x;,x2) in the above equation
yields an equation of TC,(P,(C)) as a group of points of g*. The result of
the substitution is

OF,
sz
comparing with Equation (4.1) concludes the proof.  []

(v, —u) =0;

LEMMA 4.6. Suppose we have a group G = pip + popa, of two different
points of an daffine line A;, and let ps, be the improper point of A;. Then
Pp..(G) = (1 — Dpy + (u2 — Dpa + p where p is the point dividing the
segment p\py in the ratio /.

Proof. Take an affine coordinate x on A; and the homogeneous coor-
dinates xo,x; associated to it (x = x;/xo). If p1,p, have affine coordinates
ap,ap, take

(1 — aqxp)* (x] — anxp)? =0

as an equation of G. Since p, = [0,1], P,_(G) has equation
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(1 — onx0) 1y — axo) T ( (k1 — aaxo) + pa(x) — arxg)) =0,
which, using the affine coordinate, is
= ap M — ) (= a) + pa(x — o)) = 0.
Then there is in P, _(G) a single point p other than py,p,, and its affine
coordinate « satisfies
(e — o) + po(a— o) =0,
as stated. [J

5. LINFIELD’S THEOREM

THEOREM 5.1 (Linfield). Assume that D is a non-parabolic augmented
curve whose focal group is the group of roots of a polynomial f € Clz],
d =deg f > 1. Then the polar relative to the improper line of the envelope
of D envelops a non-parabolic augmented curve C, of class d — 1, whose
focal group is the group of roots of df /dz.

In particular, if D is simply a group of points, we have:

COROLLARY 5.2. Assume that G is the group of roots of a polynomial
f €Clzl, d =degf > 1. Then the polar relative to the improper line of the
envelope of G envelops a non-parabolic augmented curve C, of class d — 1,
whose focal group is the group of roots of df /dz.

Proof of Theorem 5.1. Denote, as before, by w,u,v the coordinates
on PV, consider the ring homomorphism
¥ Rlw, u,v] — CJz]
Fw,u,v) — F(z,—1,—1i)
and note the following easy facts:
(1) For any F € R[w, u,v], it clearly follows from the definition that

d OF
—P(F) =y — |.
Foer=v(5e)

(2) Y@@® + v?*) = 0; therefore if F = 0 is an equation of the envelope
of a non-parabolic augmented curve C, and H = 0 an equation of the
envelope of the focal group of C, then by Proposition 3.1, {(F) = Ap(H),
A€ R—{0}.
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(3) If zj,...,z4 are complex numbers and F = 0 is an equation of the
envelope of the group of points of E which they compose, then %(F)
has roots zj,...,z4. For, in case d = 1, if z; = a + bi, then, up to a

non-zero real factor, F = w + av + bu and so (F) = z — (a + bi). The
case d > 1 follows because v is a ring homomorphism.

To conclude the proof, assume that F = 0 is an equation for the envelope
of D. By (2) and (3) above, ¥(F) = cf for a suitable ¢ € C — {0}.
Since D is assumed to be non-parabolic, Lo, ¢ D* ; as seen in Lemma 4.1,
Loo ¢ Pr__(D*), hence C is also non-parabolic. An equation of P, (D*)
being OF /0w = 0, on the one hand (9F /0w) = cdf/dz, by (2), while on
the other hand, by (1), ¥(0F/0w) = ¢(H) where H is a suitable equation
of the envelope of the focal group of C. Since, by (3), ¥/(H) has the focal
group as group of roots, the claim follows.  []

REMARK 5.3. It follows from Theorem 5.1 that for 1 <r <d — 1, the
r-th order iterated polar, relative to the improper line, of the envelope of D
in Theorem 5.1 (or G in Corollary 5.2) envelops a non-parabolic augmented
curve, of class d — r, whose focal group is the group of roots of d'f/dz".

6. THE NICEST CASE

The envelope of the augmented curve C of Corollary 5.2 is the polar,
relative to the improper line, of a curve composed of real lines. Due to this,
C has a number of special properties that provide an alternative presentation
of C. Since for each multiple root z; of f, say of multiplicity 4, the pencil z;
appears as a component of multiplicity p; — 1 of C* (by Lemma 4.3), in the
sequel we will discard these obvious components of C* and focus our attention
on the remaining curve S* and its enveloped augmented curve S. In this
section we will deal with the case of non-aligned roots. The next theorem is
a direct generalization of Siebeck’s result quoted in the introduction:

THEOREM 6.1. Assume that f(z) € Clz] has distinct roots zi,...,Zm,
m > 1, with respective multiplicities iy, ..., Uy, no three of the z; being (as
points of the complex plane) aligned. For each pair j,s, 1 <j<s < m, let
pj,s be the point which divides the segment with extremities zj,z; in the ratio
pis/ i (i€, pj.szj/Pjszs = s/ pj)- Then.:
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(1) In the complex plane there is a unique augmented curve S, of class
m—1, tangent to each of the lines zjz;, 1 <j < s < m, at the point p;.

(2) S is non-parabolic and its foci agree, multiplicities included, with the
roots of the derivative df /dz other than zy,...,zy. In other words,

Z(df [dz) = D(S) + > _(u; — Dy

j=1

Proof. Take C* = Pr__(11zi+- - -+ umz,,). By Corollary 5.2, the enveloped
augmented curve C is non-parabolic and its focal group is the group of roots
of df/dz. On the one hand, the roots z;, j = 1,...,m, of f appear with
multiplicities y; — 1 in the group of roots of df /dz. On the other hand, by
Lemma 4.3, each pencil z;' appears as a component of multiplicity ; — 1
of C*. Then we write

C*=(u — Dy +- 4+ (m— Dz, + S™

and take S to be the augmented curve enveloped by S*. Then S is non-
parabolic too and the focal group ®(C) is composed of the points z;, with
multiplicities p; — 1, j = 1,...,m, plus the focal group of &: the latter is
thus the group of roots of df /dz other than the z;, j = 1,...,m, and assertion
(2) is established.

Regarding assertion (1), denote by ¢;, the line of E joining gzj,z,
1 <j<s < m, and call its improper point gj,. Since no three z; are
aligned, the ¢;; are all different and so each /;; is a singular point of
mzy + -+ pumz,, at which the latter has tangent cone

TCq (1} + -+ pmZy) = 2] + 2y -

The line (of PY) joining ¢, and Lo, is qi's # 7+ 25 - Then, by Lemmas 4.5
and 4.3, the tangent cone to the polar C* at ¢ is

6.1) Py () + 1) = Gty — Dz + (e — D+

where #; ; is a line of PV through ¢, t; ; # i, z; - By omitting the components
(wj — Dz and (us — 1)zg, it follows that

TC@/’.,((S*) = [j,s )

and so /; is a simple point of S* at which the tangent line is #; ;. Dualizing,
l;s is tangent to S as claimed and, its contact point being already named
Dj,s» We have tj; = p;"s.
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Equality (6.1) may thus be rewritten
Pyr, (wizf + pszy) = (y — Dz + (s — Dzf +pjs,

or, equivalently, by biduality and the projective invariance of the polarity
relationship,

’qu“\.(l/szj + ,LLSZS) = (,Uy - l)Zj + (,us — Dz + Pj,s -

The last equality and Lemma 4.6 guarantee that p;, belongs to the segment
with endpoints z;,z, and divides it in the ratio fu/p;.

Lastly, to prove the uniqueness of an augmented curve subjected to the
conditions of assertion (1), it is enough to prove the uniqueness of its envelope,
which in turn follows directly from Lemma 6.2 below. [

LEMMA 6.2. Assume there are given, in a real projective plane P,, lines
Ly,...,L,, m > 2, no three concurrent. For each pair s,j (j < s), write
Pjs = LiNLg and assume we have fixed a line T;g through Pjg, T; # L;, Ls.
Then there is at most one curve C of Py, of degree m — 1, going through
all the Pjs and having tangent T; at each Pj;.

Proof. Let C be a curve satisfying the above conditions. We begin by
showing that C cannot contain any of the lines L;. Indeed, up to renumbering
the lines, assume that C = rL; + C;, degC; <m — 1 and C; A L. Then
C, has to be tangent to each T; at Py, s = 2,...m, because L; is not.

In particular L; N C; contains Py ,...,P;,, in contradiction to the Bézout
theorem.
Once we know that C contains no L;, note that, for j = 1,...,m and

again by Bézout’s theorem, there are no intersections of C and L; other than
the m — 1 points Py, lying on L;, the latter are simple intersections of C
and L; and so, in particular, non-singular points of C.

Assume now that two different curves C: F =0 and C': F/ = 0 satisfy
the above conditions. Call © the pencil of curves spanned by C and C’,
namely the family of the curves with equations

AN+ NF =0, A\, \) € R? —{0,0}.

It is clear from these equations that any curve in © goes through any point
shared by C and C’, and so in particular through all the points P;,, and
has at P;; intersection multiplicity higher than one with T; ;, because both
C and C’' have. It is also clear that for any point P € P, there is at least
one curve in © going through P. If P is taken on L; and different from all
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the Py, we get a curve C; € © sharing more than m — 1 points with L;
and hence (once again by Bézout’s theorem) containing it. If Py, € L;, then
both lines L; and Ty, have intersection multiplicity with C; higher than one,
hence such a Py, is a singular point of C;. Assume now that two of the
curves Cj, say, up to renumbering, C; and C, are different. Then C, and
C, span © and both have P;, as a singular point. It follows that all curves
in O, in particular C, have P;, as a singular point, in contradiction to what
we have already proved for C. Thus C; = --- = C,,, which would be a curve
of degree m — 1 containing m different lines, a contradiction which proves
the uniqueness of C. [

REMARK 6.3. If all roots of f are simple, then each p;, is the midpoint
of zj,z;s.

REMARK 6.4. The number of conditions imposed on S in Theorem 6.1 (1)
is m(m — 1), always larger than the number m(m + 1)/2 — 1 of parameters
(the ratios between the coefficients of the equation of its envelope) on which
a general curve of class m — 1 depends. Thus, the existence of S is a priori
not clear.

REMARK 6.5. The augmented curve S of Theorem 6.1 will be called the
Siebeck curve of f. It is important to retain that, besides its characterization
in Theorem 6.1, the Siebeck curve of f is the augmented curve enveloped by

Pr.(zy + -+ pmzy) — (1 — D — -+ — (e — Dz, -

EXAMPLE 6.6. Take f = z* — 1, whose roots 1, —1,i, —i, all simple, are
the vertices of a square. The envelope of the group of roots has equation

(w+ uw)(w —u)(w+v)(w—v)= w* — wh® — wr +ut? =0.
Its polar relative to Lo, = [1,0,0] thus has equation
4w? — 2w — 2w =0

and so splits into w = 0, the pencil of lines through the origin O = 0
of the complex plane, and the envelope 2w? — u> — v> = 0 of the circle
C: x> +y> —1/2 = 0. The Siebeck curve of f is thus S =0+ C: C is
tangent to the four sides of the square at their midpoints, while O is the
midpoint of the two diagonals, according to the conditions of Theorem 6.1 (1).
Since the focal group of C is 20, the focal group of S is 30 in accordance
with df /dz = 47°.
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The next example was given a direct proof in [9]:

EXAMPLE 6.7. Let f be a polynomial with only simple roots zj,...,Zsy.
Assume that zj,...,z, are the images by an affine map of the vertices of
a regular m-gon. Take i = 1,...,m and read the indices mod m. Then, for

each s fixed, 1 <s < m/2, all the segments z;z;+; are tangent to an ellipse
C; at their midpoints and, furthermore, if m is even, all segments ZiZitm/2
have the same midpoint, called O in the sequel. Indeed, both properties are
affine-invariant and obvious in the case of a regular polygon. It follows from
Theorem 6.1 that the Siebeck curve of f is either S = Cy + -+ Ci_y))2, if
m is odd, or § = O+ Cy + -+ + Cyy_2)/» if m is even. The group of roots
of df/dz is then

el

d(C e D(Cpppp if m is odd,
d—):dD(S):{ (CD) + -+ D(Cu1y/2) if m is o

Z O+ D(C)) + -+ D(Ciu—nyn) if mis even.

EXAMPLE 6.8. Assume that f has simple roots 0, 1,2i,5+ 3i. Since the
roots are simple, the polar of the envelope of the group of roots is the envelope
of the Siebeck curve S of f. A direct computation gives

S*: 4w + 18wu + 15w?v + 10wu® + 12wv? + 30wuv + 10u*v + 6ur* =0,

which is a non-singular cubic of PV. Then § is a sextic of P with 9 cusps,
three of which are real, see Figure 1.

7. THE GENERAL CASE

From now on, we will no longer assume that no three roots of f are
aligned. If three or more distinct roots of f lie on a line /, there is still an
augmented curve S, determined by the roots of f, whose foci are the roots
of df/dz other than the roots of f. The main difference with the case of
Theorem 6.1 is that the lines containing three or more roots appear as multiple
tangents to S ; their contact points are still determined by the roots of f lying
on the line, but the determination is less explicit than in Theorem 6.1. The
next definition will help to locate these contact points.
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FIGURE 1

The lines joining the roots of f in Example 6.8,
the Siebeck curve S and its three foci

Assume that G = Y5, wq;, with g; # g5 if j # s, is a group of points
of a real affine line A!. If g, is the improper point of A;, we call

H(G) =P, (G) — > (1 — 1)y

j=1

the harmonic group of G ; this makes sense by Lemma 4.3.
EXAMPLE 7.1. In Lemma 4.6, the point p is a single-point harmonic group.

LEMMA 7.2. The harmonic group of a group of points G = Z;=1 iq;,
q1,- - -, q, distinct points of a real affine line, consists of r— 1 distinct points,
all real and of multiplicity one. Furthermore, any two consecutive points of
G have just one of the points of the harmonic group between them.

Proof. If x is an affine coordinate on A; and xp,x; its corresponding
homogeneous coordinates (x = x1/xg), then go, has homogeneous coordinates
(0, 1). If G(xp,x;) = 0 is an homogeneous equation of G, then g = G(1,x) is
a polynomial of degree d = p;+- - -+, whose roots are the affine coordinates
a; of the gj, each root «; having multiplicity ;. Since the polar group has
equation 0G/0x; = 0, similarly the roots of (9G/0x;)(1,x) = dg/dx are the
o;j with multiplicities p;—1, j = 1,...,r, together with the affine coordinates
of the points of the harmonic group, the multiplicity of each root equal to the
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multiplicity of the corresponding point in the harmonic group. Then Rolle’s
theorem ensures that there is at least one point of the harmonic group between
any two consecutive points of G. Since, by its definition, the harmonic group
contains at most d — 1 — Z;zl(uj — 1) =r—1 points, there is just one point
of the harmonic group between any two consecutive points of G, there are no
further (real or imaginary) points in the harmonic group, and all multiplicities

are one, as required. [

THEOREM 7.3. Assume that f(z) € Cl[z] has m > 1 distinct roots
2y .-+ 2m, With respective multiplicities iy, ..., 4. For each line ¢ joining
two different roots of f, let Gy be the group of the roots of f lying on ¢,
counted with their multiplicities as roots. Then:

(1) In the complex plane there is a unique augmented curve S, of class
m — 1 and tangent to each line { joining two roots of f at each of the
points of the harmonic group of Gy.

(2) S is non-parabolic and Z(df /dz) = O(S) + Zj:l(,uj — Dyz;.

Proof. As in the proof of Theorem 6.1, take
C* =P (zf + -+ pmzy) = (1 — Dz} + -+ (um — Dz + S*.

The arguments used there prove that the augmented curve S, enveloped by S*,
satisfies assertion (2).

Assume that 7 is a line joining two roots of f and that, after a suitable
renumbering, the roots of f on ¢ are zj,...,z.. Denote by g, the improper
point of £. We will work in PV for a while. Clearly, the tangent cone to
mzy 44wz, at £is Gy = iz + -+ w2y and Lo, does not belong
to it. Then, by Lemma 4.5, the tangent cone to C* at ¢ is the polar (in the
pencil of lines of PY through /) of Gj relative to the line ¢, joining ¢
to Lo . By Lemma 4.3,

Py (Gp) = (uy — Dzi + -+ (uy — Dzg + 01+ + 11,

where t1,...,t,_; are lines of PV through £, ti#z, for j=1,...,r—1
and s =1,...,r. Hence t; +---+t,_; is the tangent cone to S* at ¢ and
therefore t; = pj‘ where py,...,p,—1 are the contact points of ¢ and S.

The above equality thus reads
Py (G) = (1 — Dy + -+ (ur — DzF +pi 4+ +p)_y,

which, returning to P by identifying lines of PV to points of P by biduality,
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gives

Pyoe(Ge) = (1 = Dza + -+ 4 (r = Dz +p1 + -+ pr .
This shows that the contact points py,...,p,—1 are the points of the harmonic
group of Gy.

As in the proof of Theorem 6.1, the uniqueness of S follows from the
next lemma, which is just a more general version of Lemma 6.2.  []

LEMMA 7.4. Let A be a set of m distinct lines of a real projective
plane P,. Denote by T1 the set of points belonging to at least two lines in A
and, for each P € I1, by Ap the set of lines in A going through P. For each
P €11, denote by vp the number of lines in Ap and assume given vp — 1
different lines through P, Tp1,...,Tp 1, none in A. Then there is at most
one curve C, of degree m — 1, which, for all P € I1, goes through P and
has tangents Tp,...,Tp,,—1 at P.

Proof. For each L € A, the lines other than L in A being m — 1 in
number,

(7.1) m—1=>Y (p—1),
PEL

which is the number of prescribed tangents at the points on L.

Assume that C satisfies the conditions stated in the conclusion, and fix
L € A. As in the proof of Lemma 6.2, L ¢ C, since if not, C = rL + C’,
degC' <m—1, L ¢ C’, by Equation (7.1), C' would have at least m — 1
different tangents at points on L, contradicting Bézout’s theorem.

The prescribed tangents at P € Il are vp — 1 in number, hence the
multiplicity ep(C), of C at P, is ep(C) > vp — 1. Then for any line L € A,
by Bézout and Equation (7.1),

m—1> > ep(C)> > (wp—1)=m—1.
PeLNIl PELTI
This ensures that ep(C) = vp — 1 for all P € LNII and, since L is arbitrary,
also for all P € II.

Assume that there are two curves C,C’ satisfying the stated conditions.
Arguing as in the proof of Lemma 6.2, C,C’ span a pencil © of curves of
degree m—1 in which, for each L € A, there is a curve Cj, containing L. For
any Pe L, L and Tp,...,Tp,,—1 have with C, intersection multiplicity at
P higher than vp — 1. This forces ep(Cr) > vp — 1. If Cp # Cp/ then they
span © and both have multiplicity higher than vp—1 at P = LNL'. Therefore
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all curves in O, in particular C, have multiplicity higher than vp — 1 at P,
contradicting what we have seen above.

Lastly, if all the C; agree, a curve of degree m — 1 would contain all of
the m distinct lines in A, which is absurd. [

REMARK 7.5. Theorem 7.3 is simply a more general version of Theo-
rem 6.1, just note Example 7.1 and Lemma 4.6.

REMARK 7.6. Still in the more general case of Theorem 7.3 we have
S =Pr iz + -+ pmzy) — (1 — D2 — = (= Dz,

and the augmented curve S will be called the Siebeck curve of f.

COROLLARY 7.7 (of the proof of Theorem 7.3). A line ¢ containing exactly
r > 1 distinct roots of f is an ordinary singularity of multiplicity r — 1 of
S* (a non-singular point if r = 2) with real tangents.

Proof. The smooth and the ordinary singular points of a curve are those
at which the number of tangents to the curve is equal to the multiplicity of
the point. In the proof of Theorem 7.3 we have seen that, using the notation
introduced there, the tangent cone to S* at ¢ is pj +---+p’_, and also that
p1+---+p,—1 is a harmonic group, so the claim follows from Lemma 7.2. []

The singularities of a curve C* in the dual plane are called tangential
singularities of the enveloped (possibly augmented) curve C. The ordinary
singularities of C* are called ordinary multiple tangents of C : the number of
contact points of an ordinary multiple tangent is equal to its multiplicity (as a
point of C*). In our case, a line ¢ containing exactly r > 1 distinct roots of
f is either a non-singular tangent to S, if r =2, or an ordinary (r — 1)-fold
tangent with all its contact points real, if » > 2. Next is an example with a
three-fold tangent.

EXAMPLE 7.8. Take f = z(z+ 1)(z—2)(z+3)(z— 1 —i). Then the envelope
of the roots is

w(u —w)QRu + w)Bu —w)u+v+w)=0
and so

S*: 6ut + 61Pv + 23w — 106’ vw — 21’ w? — 6uvw? — 4uw’ +4vw® +5u0* = 0,
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which is a quartic of PV with an ordinary triple point at [0,0, 1], hence
rational. The Siebeck curve S is then a rational sextic of class four. See
Figure 2.

FIGURE 2

The lines joining the roots of f in Example 7.8,
the Siebeck curve of f and its four foci

8. FURTHER PROPERTIES OF THE SIEBECK CURVE

A pencil of parallel lines p*, p a (real) improper point of E, is a one-
dimensional projective space in which L., is a distinguished element: taking
Lo as the improper element defines on p* a structure of an affine line. In
what follows we will take all pencils of parallel lines endowed with this affine
structure and use, in particular, the betweenness relation on parallel lines. The
reader may note that if ¢ is any line of E transverse to p* (that is, with
p ¢ £), then mapping each line of p* to its intersection with £ is a projectivity
which maps the improper line to the improper point, hence an affine map. In
particular, regarding betweenness, L lies between L; and L, if and only if
LN ¢ lies between Ly N ¢ and Ly N/, for any L,L,L; € p* — {Lo}-
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Fix a pencil of parallel lines p*, p € Ly, of E, and consider in it the
group of lines L, = ij=1 wzip, composed of the lines through the roots of
f in the direction of p, each counted with multiplicity equal to the sum of
multiplicities of the roots of f lying on it. For each line L in L,, take rf
to be the number of different roots of f on L. Note that r, = 1 for all L
except in the case in which p is the improper point of a line joining two
different roots of f. The main result in this section is:

PROPOSITION 8.1. With the above notation, the group of tangents to S
from an improper (real) point p is
H(L,) + Y (. — DL,
LEL,
where H(L,) denotes the harmonic group of Lj.

Proof. For each line L joining p to one of the roots of f, we write
21, ---,2L,, for the roots of f lying on L. By Lemma 4.4,
Pro(mzi + -+ pmzy) - p* = Pr ((zf + -+ pmzy) - p*) = Pr.(Lyp).
On the one hand, by Remark 7.6,
Pr.(uzf + ...+ wmzy) - p*
=8 p 4+ (= Dzf - p* 4+ (m — Dz, - P°
=8 p"+(u —Dap+ -+ (m — Dzmp

=8 p*+ Z(HL,] + o4 pry, — 1)L
LeL,

On the other hand,

Pr.. (Ly) = H(Ly) + Z(ﬂL,l + o4y, — DL
LEL,

and the conclusion follows. O

COROLLARY 8.2. The Siebeck curve of f has no real tangential singularity
other than the lines joining three or more distinct roots of f and so, in
particular, no real tangential singularity at all if no three distinct roots of f
are aligned.

Proof. 1f a real line ¢ is a singular point of S*, then it appears with
multiplicity higher than one in any group S*-p* for any p € £. The point p
can be taken improper (and real), in which case Proposition 8.1 applies and
shows that ¢ must be a line joining at least three roots of f. [



ROOTS OF POLYNOMIALS AND FOCI OF REAL CURVES 247

REMARK 8.3. Besides the multiple tangents of Corollary 8.2, S may have
imaginary tangential singularities, for instance the tangents from O to C in
Example 6.6.

From Corollaries 8.2 and 7.7 there follows:

COROLLARY 8.4. All real tangential singularities of the Siebeck curve S
of f are ordinary multiple tangents with the property that all their contact
points are real.

The tangents at the inflection points of a curve are non-ordinary tangential
singularities ([14], V.8.1 or [5], 5.5), hence by Corollary 8.4:

COROLLARY 8.5. A Siebeck curve has no real inflection points.

The reader used to dealing with singularities and duality for plane curves
will encounter no difficulty in deducing from Corollary 8.2 that all real
branches of a Siebeck curve have class one (see for instance [3], Exercise
5.2), no two different branches having the same tangent, except for those
tangent to one of the multiple tangents described in Corollary 7.7.

To conclude, the next corollary ensures that a Siebeck curve is bounded:

COROLLARY 8.6. A Siebeck curve has no real improper points.

Proof. If p is a real improper point of S, then p* is a line of PV tangent
to §*, and so either p* C §* or §*-p* contains at least one point (line of P)
with multiplicity higher than its multiplicity in S*. Proposition 8.1 shows that
neither of these possibilities can occur. [
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