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EXEMPLES DE VARIETES PROJECTIVES STRICTEMENT CONVEXES

DE VOLUME FINI EN DIMENSION QUELCONQUE

par Ludovic MARQUIS

Resume Nous construisons des exemples de varietes projectives Q/p proprement
convexes de volume fini, non hyperboliques, non compactes en toute dimension n ^ 2

Ceci nous permet au passage de construire des sous-groupes discrets Zanski-denses T
de SLn+i(R) qui ne sont ni des reseaux de SLn+i(R), ni des groupes de Schottky De
plus, les ouverts proprement convexes Q amsi construits sont stnctement convexes,
meme Gromov-hyperboliques Enfin, on donne une condition süffisante pour que le
recollement de vanetes projectives convexes ä bord totalement geodesique soit une
vanete projective convexe

1. Introduction

Une variete projective proprement convexe est le quotient d'un ouvert

proprement convexe Q de Tespace projectif reel Vn P"(R) par un sous-

groupe discret sans torsion T de SLw+i(R) qui preserve Q. Lorsque le

quotient Q/p est compact, ces varietes ont ete beaucoup etudiees durant

ces dernieres annees. On pourra lire par exemple les articles suivants:

[Ben03a, Ben04a, Ben05, Ben06a, Cra09, Gol90]. Pour un survol de l'etat du

sujet en 2006 ou 2008, on pourra lire [Ben08, Qui 10].

Un ouvert proprement convexe de Tespace projectif reel possede une
distance (dite de Hilbert) et une mesure (dite de Busemann) invariantes par
les transformations projectives qui le preservent. Nous detaillons ces points
au paragraphe 1.1, passons plutöt ä Texemple essentiel.

L'exemple le plus important d'ouvert proprement convexe est Tellipsoide.
On considere la forme quadratique q(xi,... ,xw+i) x\ + • • • + x^ —

sur Rw+1. On note £ la projection du cöne de lumiere de q (i.e. Tensemble
des points {x e Rw+1 | q(x) < 0}) sur Vn. Nous appellerons toute image par
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une transformation projective de l'ouvert £ : un ellipsoide. Muni de sa distance

de Hilbert, un ellipsoide est isometrique ä l'espace hyperbolique reel W. II
s'agit du modele projectif de l'espace hyperbolique, que Ton appele parfois
modele de Beltrami-Klein. En particulier, cet ouvert est homogene, c'est-ä-dire

que le groupe Aut(Q) {7 e SLw+i(R) | 7(Q) Q} agit transitivement

sur Q. La figure 1 montre un pavage par une tuile compacte et un pavage par
une tuile non compacte mais de volume fini du modele projectif de l'espace

hyperbolique.

Figure 1

Modele de Klein-Beltrami de l'espace hyperbolique reel

L'auteur s'est interesse dans sa these ä la description des surfaces projectives
convexes de volume fini ([Mar09, MarlOb]). Le but de cet article est de montrer
le theoreme suivant:

Theoreme. En toute dimension n ^ 2, il existe un couple (Q„,r„)
oil Qn est un ouvert proprement convexe strictement convexe de Vn et Tn un

sous-groupe discret de SLw+i(R) qui preserve Qn et tel que:
1. le quotient Qn/p est de volume fini;
2. le quotient n'est pas compact;
3. le groupe Tn est d'indice fini dans le groupe Aut(Q). En particulier,

Vouvert proprement convexe Qn n'est pas homogene.

De plus, Vouvert Qn est Gromov-hyperbolique et le groupe Tn est Zariski-
dense dans SL„+i(R).
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Remarque. Benoist a montre dans [Ben04a] que tout ouvert proprement
convexe de P" Gromov-hyperbolique est strictement convexe. Karlsson et

Noskov ont montre dans [KN02] que le bord dQ de tout ouvert proprement
convexe Q de Vn Gromov-hyperbolique est C1. Benoist a montre dans

[Ben03b] des proprietes de regularite encore plus fortes mais plus complexes

a enoncer.

La partie 4 a pour but de demontrer le theoreme 4.7. Ce theoreme

donne une condition süffisante pour que le recollement d'un nombre fini
de varietes projectives convexes ä bord totalement geodesique soit encore une

variete projective convexe. II est difficile d'en donner un enonce precis dans

Lintroduction mais son enonce est interessant en soi.

Disons simplement qu'etant donne une famille infinie de tuiles convexes

(ni ouvertes ni fermees), on cherche ä donner un critere pour que la reunion
soit un ouvert convexe. II y a essentiellement 3 conditions, une evidente

et facile ä enoncer: la reunion de deux tuiles adjacentes doit etre convexe.
La deuxieme a ete mise en evidence par Vinberg et consiste ä dire que

lorsque au moins 3 convexes se rencontrent, on est dans une "situation
diedrale" (figure 5). La troisieme condition est une hypothese de convexite

"ä Linfini" qui permet de gerer le fait que nos tuiles de base ne sont pas
fermees.

Plusieurs resultats de convexite sont dejä connus. Vinberg a montre

([Vin71]) que le recollement de polyedres par un groupe de Coxeter donnait une

orbifold projective convexe pour peu que les conditions necessaires evidentes

soient verifiees (on pourra aussi consulter [Ben04b] pour une demonstration

plus simple). Kapovich a donne un critere (plutot complexe) pour recoller
des varietes compactes projectives convexes ä bord totalement geodesique et

obtenir une variete compacte projective convexe dans [Kap07]. Jaejeong Lee

a donne un critere pour recoller des polyedres convexes et obtenir une variete

compacte projective convexe dans [Lee07].

II n'est pas evident de faire la difference entre tous ces resultats.

Remarquons simplement que Vinberg et Lee utilisent pour construire des

varietes convexes des tuiles fermees polyedrales. Alors que Kapovich et le

theoreme 4.7 ne demande pas que les tuiles soient polyedrales. Le theoreme

4.7 est plus general que le theoreme de Kapovich et la demonstration proposee
est inspiree de la demonstration de Vinberg.

Avant de faire quelques rappels historiques nous allons rappeler les

definitions precises de tous ces objets.



6 L MARQUIS

1.1 Geometrie de Hilbert
Cette partie constitue une introduction tres rapide ä la geometrie de Hilbert.

Pour une introduction beaucoup plus complete, on pourra lire [Ver05].

Definition 1.1. Une carte affine A de P" est le complementaire d'un
hyperplan projectif. Une carte affine possede une structure naturelle d'espace
affine. Un ouvert Q de P" different de Vn est convexe lorsqu'il est inclus dans

une carte affine et qu'il est convexe dans cette carte. Un ouvert convexe Q
de Vn est dit proprement convexe lorsqu'il existe une carte affine contenant

son adherence Q. Autrement dit, un ouvert convexe est proprement convexe

lorsqu'il ne contient pas de droite affine. Un ouvert convexe Q de Vn est

dit strictement convexe lorsque son bord dQ ne contient pas de segment non
trivial.

La metrique d'un ouvert proprement convexe. Soit Q un ouvert

proprement convexe de Vn, Hilbert a introduit sur de tels ouverts une distance,
la distance de Hilbert, definie de la fagon suivante:

Soient x/yGQ,on note p,q les points d'intersection de la droite (xy)
et du bord dQ de Q tels que x est entre p et y, et y est entre x et q (voir
figure 2). On pose:

do(x, y) 1 In([p : J : y : g]) 1 In (jj^j] jj^jj) et dQ(x,x) 0.

1. [p : x : y : q] designe le birapport des points p,x,y,q.
2. || • || est une norme euclidienne quelconque sur une carte affine A qui

contient 1'adherence Q de Q.

Figure 2

La distance de Hilbert

Remarque. II est clair que Jq ne depend ni du choix de A, ni du choix
de la norme euclidienne sur A.
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Faits. Soit Q un ouvert proprement convexe de Pn,

1. Jq est une distance sur Q.

2. (Q, Jq) est un espace metrique complet.

3. La topologie induite par d& coincide avec celle induite par Vn.

4. Le groupe Aut(Q) des transformations projectives de SLw+i(R) qui
preservent Q est un sous-groupe ferme de SLw+i(R) qui agit par isometrie

sur (Q, Jq). II agit done proprement sur Q.

La structure finslerienne d'un ouvert proprement convexe.
Soit Q un ouvert proprement convexe de Vn, la metrique de Hilbert Jq
est induite par une structure finslerienne sur Vouvert Q. On identifie le fibre

tangent TQ de Q ä Q x A.
Soient x e Q et v £ A, on note p+ (resp. p~) le point d'intersection de

la demi-droite definie par x et v (resp. —v) avec dQ.

Fait. Soient Q un ouvert proprement convexe de Vn et A une carte

affine qui contient Q,
1. la distance induite par la metrique finslerienne || • || est la distance Jq.
2. Autrement dit on a les formules suivantes:

* IMI* jt\t=odQ(x,x + tv), oü v e A, t e R assez petit.

• d&{x,y) inf \\crf(t)\\a(t)dt, oü l'inf est pris sur les chemins a de

classe C1 tels que cr(0) =i et cr(l) y.

Remarque. La quantite \\v\\x est done independante du choix de A et

p
Figure 3

La metrique de Hilbert

de || •
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Mesure SUR UN OUVERT proprement convexe. Nous allons construire

une mesure borelienne sur Q, de la meme fagon que Ton construit une

mesure borelienne sur une variete riemannienne.

Soit Q un ouvert proprement convexe de Vn, on note:

• Bx( 1) {v e TXQ | ||p||x < 1} ;

• Vol est la mesure de Lebesgue sur A normalisee pour avoir

On peut ä present definir la mesure jiq Pour tout borelien A C Q C A,
on pose:

La mesure /iq est independante du choix de A et de || • ||, car c'est la

mesure de Hausdorff de (Q, Jq).

Definition 1.2. Le quotient d'un ouvert proprement convexe Q par un

sous-groupe discret T herite d'une mesure via la mesure de Busemann de Q.
On dira que Q/p est de volume fini lorsqu'il est de volume fini pour cette

mesure.

1.2 Petit historique autour de la construction d'ouverts propre¬
MENT CONVEXES POSSEDANT "BEAUCOUP DE SYMETRIES"

Le CAS homogene. Une premiere definition d'ouverts proprement con-
vexes possedant "beaucoup de symetries" est un ouvert proprement convexe

homogene, c'est-ä-dire tel que le groupe Aut(Q) agit transitivement sur Q.
Koecher et Vinberg ont classifie ces ouverts dans les annees 50-60 dans les

deux articles suivants: [Vin65, Vin63].
La liste de ces ouverts est assez longue et ne nous interesse pas car un ouvert

proprement convexe homogene Q possede un sous-groupe discret T C Aut(Q)
tel que le quotient Q/p est de volume fini si et seulement si le groupe Aut(Q)
est unimodulaire si et seulement si 1'ouvert Q est un espace symetrique (i.e.
il existe une symetrie centrale centree en n'importe quel point).

Les ouverts proprement convexes qui nous interessent sont ceux des deux

definitions suivantes:

Definition 1.3. Un ouvert proprement convexe Q de P" est dit divisible

lorsqu'il existe un sous-groupe discret T de SLw+i(R) tel que T c Aut(Q)
et Q/p est compact.

Vol({p G A | \\v\\ <1}) 1.
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Definition 1.4. Un ouvert proprement convexe Q de P" est dit
quasi-divisible lorsqu'il existe un sous-groupe discret T de SLw+i(R) tel

que T c Aut(Q) et Q/p est de volume fini.

Les ellipsoides sont les seuls convexes divisibles (resp. quasi-divisibles)
homogenes et strictement convexes.

II existe des convexes divisibles (resp. quasi-divisibles) homogenes et non
strictement convexes. Voici la liste des irreductibles avec n ^ 2 :

1. II„(R) P({les matrices reelles (n+l)x(n+l) symetriques definies posi¬

tives}), il est de dimension m et son groupe d'automorphismes
est SL„+i(R).

2. II„(C) P({les matrices complexes (n + 1) x (n+1) hermitiennes definies

positives}), il est de dimension m n2 — l et son groupe d'automorphismes
est SLw+i(C).

3. II„(H) P({les matrices quarternioniques (w+l)x(w+l) hermitiennes
definies positives}), il est de dimension m (2n+ 1 )(n — 1) et son groupe
d'automorphismes est SL„+i(H).

4. n3(0) un convexe "exceptionnel" de dimension 26 et tel que (l'algebre
de Lie automorphe) Lie(Aut(n3(0))) Ce(-26) •

Le CAS NON-HOMOGENE. Kac et Vinberg ont construit les premiers

exemples de convexe divisible non-homogene dans [VK67] ä l'aide de groupes
de Coxeter. Les resultats joints de Johnson et Millson ([JM87]), Koszul

([Kos68]) et Benoist ([Ben04a]) montrent qu'en toute dimension n ^ 2,
il existe des convexes divisibles non homogenes et strictement convexes.

Kapovich et Benoist ont construit en toute dimension n ^ 4 (Benoist

pour n 4 dans [Ben06b] et Kapovich pour n ^ 4 dans [Kap07])
des convexes divisibles non homogenes, strictement convexes et non quasi-

isometriques ä l'espace hyperbolique H".
Dans [Mar09], l'auteur a montre que tout convexe quasi-divisible de

dimension 2 est strictement convexe. La generalisation de ce resultat en

dimension superieure est fausse. En effet, Benoist a construit des exemples de

convexes divisibles irreductibles, non homogenes et non strictement convexes

en dimension 3, 4, 5 et 6 ([Ben06a]). Cette famille de convexe divisible est

la plus difficile ä construire. Les constructions de l'article [MarlOa] devraient

permettre de construire des exemples de convexes quasi-divisibles irreductibles,
non homogenes et non strictement convexes en dimension 3.
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1.3 ESPACES DES MODULES

On rappelle dans ce paragraphe les definitions de structure projective,
d'espaces des modules de structures projectives, etc. ..pour eviter les am-

biguites.

Definition 1.5. Une structure projective reelle sur une variete M est

la donnee d'un atlas maximal pu'- U —» P" sur M tel que les fonctions
de transitions pu o p~x sont des elements de SL„+i(R), pour tout couple
d'ouverts U et V de 1'atlas de S tel que U fl V / 0.

Remarque 1.6. Pour simplifier la redaction on dira « structure projective »

ä la place de «structure projective reelle».

Definition 1.7. Un isomorphisme entre deux varietes munies de structures

projectives est un homeomorphisme qui, lu dans les cartes, est donne par des

elements de SL„+i(R).

La donnee d'une structure projective sur une variete M est equivalente ä

la donnee:

1. d'un homeomorphisme local Dev: M -A P" appele developpante, oü M
est le revetement universel de M,

2. d'une representation Hoi: SLw+i(R) appelee holonomie telle que
la developpante est tt\(M)-equivariante (i.e. pour tout x E M, et pour
tout 7 G 7Ti(M) on a Dev(7v) Hol(7)Dev(v)).

De plus, deux structures projectives donnees par les couples (Dev, Hol) et
(Dev7, Hol7) sont isomorphes si et seulement s'il existe un element g G SLw+i(R)
tel que Dev7 g o Dev et Hol7 — g o Hol o g~l.

Definition 1.8. Soit M une variete, une structure projective marquee
sur M est la donnee d'un homeomorphisme p\ M —M oü M est une variete

projective. On note P7(M) Vensemble des structures projectives marquees
sur M.

Deux structures projectives marquees sur M, p\: M—^ M\ et p2 • M—M2
sont dites isotopes lorsqu'il existe un isomorphisme h\ M\ M2 tel

que o h o px: M M est un homeomorphisme isotope ä l'identite.
On note P(M) Vensemble des structures projectives marquees sur M modulo

isotopie.
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On peut ä present definir une topologie sur 1' ensemble des structures

projectives marquees sur la variete M. On introduit 1'espace:

Dev: M —» P" est un homeomorphisme local

Hol: 7n(M) - SLW+1(R)

Dev est 7Ti(M)-equivariante

V'(M) { (Dev, Hol)

Les espaces M, Pn, irfiM) et SLw+i(R) sont des espaces topologiques
localement compacts. On munit 1'ensemble des applications continues entre
deux espaces localement compacts de la topologie compact-ouvert. Ainsi,
l'espace V'(M) est munie d'une topologie. Le groupe Homeo^iM) des

homeomorphismes isotopes ä Tidentite agit naturellement sur V(M). Le

groupe SLw+i(R) agit aussi naturellement sur V(M). Ces deux actions

commutent. L'espace quotient est l'espace P(M) des structures projectives

marquees sur M ä isotopie pres. On le munit de la topologie quotient.
On ne s'interesse qu'ä un certain type de structure projective: les structures

projectives proprement convexes.

Definition 1.9. Soit M une variete, une structure projective sur M est

dite proprement convexe lorsque la developpante est un homeomorphisme
sur un ouvert Q proprement convexe de P". On note ß(M) Vensemble des

structures projectives proprement convexes sur M modulo isotopie.

Soit M une variete projective proprement convexe, l'application developpante

permet d'identifier le revetement universel M de M ä un ouvert Q

proprement convexe de Vn qui est naturellement muni d'une mesure p,& invariante

sous Taction du groupe fondamental tti(M) de M On note 7r: Q —» M
le revetement universel de M. II existe une unique mesure pm sur M teile

que pour tout borelien A de Q, si 7r: Q M restreinte ä A est injective
alors pMiiriÄ)) Pq(A)

Definition 1.10. Soit M une variete, on dit qu'une structure projective

proprement convexe M sur M est de volume fini lorsqu'on a pm(-M) < 00 •

On note ß/(M) l'espace des modules des structures projectives marquees
proprement convexes de volume fini sur M.

1.4 Plan

Nous allons ä present expliquer la structure de cet article. Dans la partie 2,

nous rappelons rapidement comment construire une variete hyperbolique qui
possede une hypersurface totalement geodesique.
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Dans la partie 3, nous rappelons comment plier une variete hyper-

bolique M le long d'une hypersurface totalement geodesique Af. Le

pliage est une deformation pt: tt\(M) SLw+i(R) non triviale de la

representation p0: 7ri(M) SO„5i(R) du groupe fondamental de la variete

hyperbolique A4 Ce type de deformation a ete utilisee par Johnson et Millson

dans [JM87], sous le nom de "bending". Le pliage nous permet d'obtenir une
nouvelle structure projective sur M qui n'est plus hyperbolique. La premiere
difficulty consiste ä montrer que cette nouvelle structure est encore proprement

convexe. II faut montrer qu'il existe un ouvert proprement convexe Qt

preserve par pt. Pour cela, nous utiliserons un theoreme de convexite qui sera

presente et demontre dans la partie 4.

Dans la partie 5, nous montrerons que les groupes pt(it\(M)) ainsi construits

sont irreductibles, Zariski-dense dans SLw+i(R) (pour t ^ 0) et que leur action

sur le bord de Qt est minimale. On en profitera pour montrer que le pliage
est bien une deformation non triviale, que les groupes obtenus ne sont pas
des reseaux de SLw+i(R) et que les ouverts proprement convexes obtenus ne

sont pas homogenes.

Dans la partie 6, nous montrons que Paction de sur est de

covolume fini. Ceci nous fournira un argument pour montrer que les groupes
obtenus ne sont pas des groupes de Schottky.

Enfin dans la partie 7, nous montrerons que Pouvert Qt est strictement

convexe et meme Gromov-hyperbolique.

Remerciements. L'auteur tient ä remercier vivement les laboratoires de

PUMPA ä Lyon et de TIFR ä Mumbai pour les extraordinaires conditions de

travail qu'ils offrent. Plus particulierement, Pauteur remercie Venkataramana,
Yves Benoist, Nicolas Bergeron et Constantin Vernicos pour leurs aides ä

distance ou en "live". Et plus particulierement, Mickael Crampon pour son

aide pour les demonstrations de la partie 7.

2. Construction de varietes hyperboliques possedant une
HYPERSURFACE TOTALEMENT GEODESIQUE

La proposition suivante est tres classique. Elle sert par exemple de point de

depart pour construire des varietes hyperboliques non arithmetiques ([GPS88]),
ou avec un premier nombre de Betti arbitrairement grand (voir par exemple
[BerOO]).
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PROPOSITION 2.1. En toute dimension n ^ 2, il existe une variete

hyperbolique de volume fini non compacte Mn et une variete hyperbolique

compacte M'n qui possede une hypersurface totalement geodesique de volume

fini (pour la metrique hyperbolique induite).

L'objet de cette partie est de rappeler les grandes lignes de la demonstration
de cette proposition dans le cas non compact.

2.1 SOUS-VARIETE TOTALEMENT GEODESIQUE IMMERGEE ET PLONGEE DES

VARIETES HYPERBOLIQUES

Nous aurons besoin du theoreme suivant. Ce theoreme a une longue histoire
et de nombreux auteurs, on pourra trouver une preuve de la version qui
nous interesse dans Particle [BerOO] (Theoreme V) de Nicolas Bergeron. Ce

theoreme nous dit que si Ton peut immerger de fagon totalement geodesique

une variete hyperbolique "proprement" alors on peut la plonger quitte ä passer
ä un revetement fini. Voici Penonce precis.

Theoreme 2.2. Soit M une variete hyperbolique de volume fini de

dimension n et N une variete hyperbolique de dimension n — 1 de volume

fini. On suppose qu'il existe une immersion propre totalement geodesique p
de N dans M alors il existe un revetement fini M de M et un revetement

fini N de N tel que le releve p: N —M de p: N -A M soit un plongement
totalement geodesique.

2.2 Construction de la variete hyperbolique Mn

Dans ce paragraphe, on construit la variete Mn de la proposition 2.1.

Pour construire une telle variete, nous allons utiliser le theoreme de Borel et

Harish-Chandra qui permet de construire des reseaux arithmetiques uniformes
et non-uniformes dans les groupes de Lie semi-simples. On donne ici une
version tres simplifiee de ce theoreme dans le cas ou le groupe de Lie
est SOn?i(R) et le reseau est non-uniforme.

THEOREME 2.3 (Borel et Harish-Chandra). Soit q une forme quadratique
sur Rw+1 ä coefficients dans Q, avec n^p 2. On suppose que:
1. la forme quadratique q represente 0 sur Q ;

2. la forme quadratique q est de signature (n, 1).

Alors, le groupe SLw+i(Z)nSO(g) est un reseau non-uniforme de SO(q).
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Nous aurons aussi besoin du lemme de Selberg.

Theoreme 2.4 (Selberg). Tout sous-groupe de type fini de GL„(C) est

virtuellement sans torsion.

Rappellons qu'un groupe T est virtuellement sans torsion s'il contient un

sous-groupe d'indice fini T' qui est sans torsion (c'est-a-dire que tous les

elements de T7 sont d'ordre infini).
On considere la forme quadratique q(xi,... ,x«+i) x\ H bv\ — x^+1 ;

eile verifie les hypotheses du theoreme 2.3. Par consequent, le groupe
Ai SLw+i(Z) D SO(g) est un reseau non-uniforme de SOny(R). Le lemme
de Selberg montre qu'il existe un sous-groupe d'indice fini A2 C Ai sans

torsion.

Le groupe A2 des elements de A2 qui preservent Thyperplan H {xi 0}
est un sous-groupe d'indice fini du groupe SL„(Z) D SO(g'), ou

q'(x2,... x\ H + Vn - x2n+i

c'est done un reseau de SO(g7) (uniforme si n 2 et non-uniforme si n ^ 3).

L'application naturelle p de if/A2 vers W/^ est une immersion
totalement geodesique propre. Le theoreme 2.2 montre qu'il existe un sous-

groupe Ao (resp. Ao) d'indice fini de A2 (resp. A2) tel que le relevement
associe de p est un plongement.

Par consequent, la variete Mn W/^ est une variete hyperbolique de

volume fini qui possede une hypersurface Ao H/ a0 totalement geodesique
de volume fini.

Notations. Tout au long de ce texte, le symbole A0 (resp. Mn) designera
le groupe A0 (resp. la variete topologique Mn) que Ton vient de construire.
On designera par le symbole Mo la structure hyperbolique que Ton vient de

construire sur Mn. On designera par le symbole Ao Thypersurface totalement

geodesique de Al0 que Ton vient de construire.

3. PLIAGE

Nous allons ä present construire une famille continue de structures

projectives sur la variete topologique Mn.
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3.1 Presentation

Definition 3.1. Soit M une variete. Soit A4 une structure projective
sur M. Une deformation projective de A4 est un chemin continu c: R -A P(M)
tel que c(0) A4. Une deformation est dite triviale lorsque le chemin c est

constant.

Johnson et Millson ont montre le theoreme suivant dans [JM87].

Theoreme 3.2 (Johnson-Millson). Soit A4 une variete hyperbolique.
Si A4 possede une hypersurface totalement geodesique Af alors il existe

une deformation projective non triviale de A4.

Comme nous allons utiliser la meme deformation que celle introduite par
Johnson et Millson, nous allons dans le paragraphe 3.2 qui suit reprendre
la construction de cette deformation. Nous ne montrerons pas dans le

paragraphe 3.2 que cette deformation est effectivement non triviale. Nous

le montrerons ä Taide du corollaire 5.7.

Le theoreme 3.7 montrera que la structure projective deformee est encore

proprement convexe. Ceci entrainera en particulier que Tholonomie de la

structure projective deformee est encore fidele et discrete. Nous donnons une

courte demonstration de ce resultat dans la partie 4. Dans la partie 6 nous
montrerons que la structure projective deformee est de volume fini.

3.2 Deformation de structure projective

Soit A4 une variete hyperbolique de volume fini et Af une hypersurface
totalement geodesique de A4 de volume fini. On note Dev0: A4 -a Q C P"

et p0: 7Ti(M) -a SLw+i(R) un couple developpante-holonomie qui definit la

structure projective A4. On note H une composante connexe de la preimage
de Af dans Q. On se donne to un point de H. La variete A4 — J\f possede

une ou deux composantes connexes, nous allons distinguer ces cas dans les

deux paragraphes suivants.

3.2.1 Deformation dans le cas separant. On suppose que la
variete A4 - Af possede deux composantes connexes A4g et Md •

Le theoreme de van Kampen montre que le groupe fondamental de A4

peut s'ecrire comme le produit amalgame suivant:

7Ti(M) 7Ti(Mg) * 7T1 (Md).
TO (AO
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On cherche ä deformer la representation p0, pour cela on peut essayer de

definir une nouvelle representation de la fagon suivante: soit a G SL„+i(R),
on pose:

pa' 7T1 (A4) > SLw+i(R)

| y
f Po(j) si 7 G iri(Mg)

7 \ ap0(-f)a~l si 7 G ni(A4d) •

La representation pa est bien definie si et seulement si V5 G tti(A/")

on a po(S) autrement dit si et seulement si a appartient au
centralisateur de poC^iCA/")) dans SL„+i(R). Uexistence d'un tel element est

assuree par le lemme 3.3.

On note Cg et Cd les adherences des deux composantes connexes
de Q — U7gtti(m)7^ ^es 7^ sont disjoints puisque Af est une hypersurface)
qui bordent H. Le stabilisateur de Cg (resp. Cd) dans tti(M) est le

groupe 7ri(Mg) (resp. tq(Aid)).
La nouvelle developpante est l'unique homeomorphisme local pa-equi-

variant qui prolonge Lapplication Deva: Cg U Cd —) Vn suivante:

1. Si x G Cg alors on pose Deva(v) Devo(v).
2. Si x e Cd alors on pose Deva(v) a • Devo(v).
3. Uexistence et Lunicite du prolongement de Deva ä ß M est evidente.

Le theoreme 3.7 montrera que Deva est un homeomorphisme sur un ouvert

proprement convexe de Q.

3.2.2 Deformation de structure projective dans le cas non
SEPARANT. On suppose que la variete A4 — Af est connexe. On note M.^
la variete ä bord obtenue en decoupant A4 le long de Af, c'est-a-dire en

ajoutant deux copies de Af k A4—Af. Supposons que la variete A4^ possede

deux bords Afg et Afd. On choisit un point io G JV. On a une projection
naturelle p: A4^ A4 qui est un homeomorphisme lorsqu'on la restreint ä

Linterieur de On se donne a un chemin de la variete A4^ qui va du

bord Afg au bord Afd dont la projection p(a) sur A4 est un lacet de A4
base en v0. Le theoreme de Van Kampen montre que le groupe fondamental
de A4 peut s'ecrire comme la HNN-extension suivante:

7ri(A4,xo) Tii(A4\xg) *Q

On note xg (resp. xd) le point de depart (resp. d'arrivee) de a, c'est

I'unique point de Afg (resp. Afd) qui se projette sur v0. Le fait que
7ri(Ai) K\(A4^)*a signifie que it\(A4) est le quotient du produit libre du

groupe 717 (AL1") et du groupe engendre par le lacet a par la relation suivante:

V7geni(Afg,Xg)y'Ydni(Afd,Xd) tel que p*Cyg) p*(Jd) alors ^g a~l^da.
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On peut essayer de definir une nouvelle representation de la fagon suivante:

soit a e SLw+i(R), on pose:

Pa: 7Ti(X,x0) -> SL„+i(R)

| ^
f Poil) si 7 e 7Ti(Xt,xg)

^ \ apo(a) si 7 a.
La representation est bien definie si et seulement si: V7,, e tt 1 (AC,,-7,),

V7d e jrd) tel que /?*(7ff) p*iid) on a:

Pailg) Pa(a~lldOl).

Or,
1- Pailg) Poilg) Po(a)~lPo(ld)Po(a)
2. pa(a~l^da) Paia~l)paild)Paia) p0{a)~la~lp0(id)ap0(a).

Autrement dit pa est bien definie si et seulement si a appartient au

centralisateur de po(ni(Afd,Xd)) PoC^iCA/*,to)) dans SLw+i(R). L'existence
d'un tel element est assuree par le lemme 3.3.

On note C une composante connexe de Q — stabilisateur

de C dans tti(M) est le groupe tti(M^).
La nouvelle developpante Deva est Lunique homeomorphisme local pa-

equivariant qui prolonge Vapplication Deva|c Devo|c-
Le theoreme 3.7 montrera que Deva est un homeomorphisme sur un ouvert

proprement convexe de Q.

3.2.3 Centralisateur du groupe fondamental d'une hypersurface
Le lemme suivant est elementaire.

LEMME 3.3. Soit A un reseau de SO^-i^R), on considere la representation

p de A obtenue ä Vaide de Vinjection qui preserve la premiere
coordonnee de SO„_i?i(R) dans SOw?i(R) puis de Vinjection canonique dans

SLw+i(R). La composante connexe du centralisateur de p(A) dans SLw+i(R)
est le groupe de matrices diagonales suivant (pour t > 0) :

at

0

0

0

0 \

7
En particulier, la composante connexe du centralisateur de p(A) dans SLw+i(R)
est isomorphe ä R+.
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Demonstration. Borel a montre que tout reseau d'un groupe de Lie
algebrique semi-simple sans facteur compact est Zariski-dense ([Bor60]). Par

suite, le centralisateur de p(A) dans SLw+i(R) est egal au centralisateur
de SO„_i?i(R) dans SL„+i(R). D'oü le resultat.

II est temps ä present de donner un nom ä cette deformation.

Definition 3.4. Soient M une variete hyperbolique et M une hyper-
surface totalement geodesique de M de volume fini. On note M la variete

topologique sous-jacente ä M. Le chemin c: R —) P(M) donne par le couple

(Devaf,pflf) s'appelle un pliage de M le long de J\f.

3.3 Le pliage en termes de cartes

Dans ce paragraphe on se propose de donner la definition du pliage en

termes de cartes. Commengons par rappeler comment on recolle deux varietes
ä bord le long d'un bord d'un point de vue topologique.

Soit Mt une variete ä bord (a priori non connexe) avec deux bords

connexes Ng et Nd homeomorphes via un homeomorphisme cp. II existe alors

un voisinage Ug (resp. Ud) de Ng et (resp. Nd) dans Mt homeomorphes via

un homeomorphisme Tp qui prolonge p. Ces voisinages tubulaires permettent
de recoller les bords Ng et Nd de Mt. De fagon precise, il existe alors

une unique variete M qui possede une sous-variete plongee N homeomorphe
ä Ng telle qu'il existe une identification de Mt avec la variete ä bord M \N

obtenue en decoupant M le long N. Enfin, cette identification permet d'ecrire

1'homeomorphisme Tp entre les voisinages tubulaires Ug et Ud comme une

reflexion dans les cartes.

On peut faire la meme chose avec une variete projective ä bord
totalement geodesique. Cette fois-ci, il faut prendre un homeomorphisme Tp

entre Ug et Ud qui, lu dans les cartes, est une application projective. On

obtient ainsi une structure projective sur la variete M.
Plier la structure d'une variete hyperbolique M le long d'une hypersurface

propre totalement geodesique J\f se fait en plusieurs etapes. Tout d'abord, on

decoupe M le long de A/", et on obtient la variete projective ä bord totalement

geodesique Ensuite, on remarque que M est obtenue par le recollage
de la variete projective via un isomorphisme projectif Jpö entre deux

voisinages tubulaires Ug et Ud. Enfin, on recolle la variete projective M,^ via

un isomorphisme projectif Tpt appö, oü at est une application projective
qui est l'identite sur M et, lue dans les cartes, est conjuguee ä la matrice at.
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3.4 Vision geometrique d'un pliage

(a)

(c)

Figure 4

Pliage Dans la figure (a), le convexe est un ellipsoide, nous allons le deformer
Dans la figure (b), 1'ellipsoide a subi une transformation, la partie droite a ete

"gonflee" par une application Ah p t Dans la figure (c), le convexe de la figure (b)
a subi une transformation, la partie a droite de Cld a ete "degonflee" par une
application Ahp -t Dans la figure (d), le convexe de la figure (c) a subi une
transformation la partie a droite de C^ a ete "gonfleee" par une application Ahp t

Soient H un hyperplan projectif, p un point de Vn qui n'est pas dans H
et t un reel. On definit alors la transformation projective AHpP de la fagon
suivante:

1- Ah,pJ E SL„_|_i(R),
2. est l'identite sur H,
3. Ah,pj fixe le point p et la valeur propre associee ä la droite p de Rw+1

Dans une base convenable, la matrice de AH#t est la matrice at.
Soient Q un ouvert proprement convexe et H un hyperplan de P" qui

rencontre Q et p un point ä 1'exterieur de Q et de //. Une des etapes du

pliage d'un ouvert proprement convexe Q revient ä appliquer AHp^t sur une

composante connexe de Q\H et l'identite sur l'autre.
Soit q un point dans l'une des deux composantes connexes de Q\H. On

note Qq Vadherence de la composante connexe de Q\H contenant q et Qq

l'autre adherence. Enfin, on note PliQHp,tq(&) 1'ensemble QqUAHpq(Qq).

est ent.
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II ne semble pas evident a priori que toutes ces transformations vont

preserver la convexite de l'ouvert Q et l'injectivite de la developpante. Mais
c'est le cas. C'est l'objet du theoreme 3.7 demontre dans la partie 4. Pour

comprendre les rouages de cette demonstration, il faut remarquer les trois

points suivants.

On identifie le revetement universel M de la variete hyperbolique M
que l'on veut plier le long de Phypersurface M avec un ellipso'ide Q. Les

releves de M ä Q definissent des hyperplans projectifs Ht et le dual de

l'hyperplan Hl pour la forme quadratique definissant l'ellipsoide Q est un

point pt de P". Le point pt est 1' intersection des hyperplans tangents ä dQ

en un point de Ht n dQ. Nous appelerons une composante connexe de la

preimage de M dans Q un mur, et nous appelerons chambres de Q les

adherences des composantes connexes de Q prive des murs.
Plier la structure projective de M signifie modifier successivement Q en

lui appliquant des conjuguees des transformations AHnPnt ou A^Pit comme
explique precedemment (i.e. en appliquant des conjuguees de PliHnPnt,qi)- Ainsi

apres un nombre denombrable de transformations (suggere par la figure 4) on
obtient une partie Qt de Lespace projectif qui est preserve par pt. L'un des

buts du theoreme 3.7 est de montrer que cette partie est en fait un ouvert

convexe. La remarque no. 1 est que Pimage d'une chambre de Q par toutes

ces transformations est encore convexe, puisque Dev? restreinte ä une chambre

est une application projective.
La remarque no. 2 est que l'image de la reunion de deux chambres

adjacentes de Q par toutes ces transformations est encore convexe. C'est la

consequence du lemme 3.5 ci-apres. Cette remarque nous assure que tout point
possede un voisinage convexe.

La remarque no. 3 est que si v est un point du bord (dans P") de l'un
des HtnQ, alors l'image de la reunion des chambres de Q qui contiennent v
dans leur adherence est encore convexe. On a une sorte de "convexite ä

l'infini". II y a deux types de points v sur le bord de Ht D Q, il y a ceux qui
correspondent ä un cusp de M et qui sont fixes par un groupe parabolique et il
y a les autres. Si v est dans la deuxieme categorie alors il y a seulement deux

chambres de Q qui le contiennent dans leur adherence, on est done ramene
ä la remarque no. 2. Par contre, si v correspond ä un cusp de J\f alors il est

inclus dans une infinite de Hj pour j £ J. Mais ces (Hj)jej ne se rencontrent

pas dans Q par consequent, leur intersection est un sous-espace projectif de

dimension n — 2, et on peut les enumerer avec Z. De plus, la tangente en v
ä dQ est preservee par tous les AHnPnt. Par consequent, on obtient le resultat

annonce en appliquant le lemme 3.5 ä l'aide d'une recurrence.
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LEMME 3.5. Soient Q un ouvert proprement convexe de Vn, H un

hyperplan de Vn qui rencontre Q, p un point de Vn a Vexterieur de H
et de Q. Soit A une carte affine contenant Q et p. On note C\ et les

deux adherences des composantes connexes de Q\H. Supposons que le demi-
cöne C de sommet p et base HDQ contienne Q alors Vensemble CiUA#^(C2)
est convexe.

Demonstration. Soient v un point de C\ et y un point de A#?/V(C2).

Comme le demi-cöne est preserve par AH:PP et contient Q, le point y appartient
ä C. Comme le demi-cöne C est convexe, il contient le segment [x,y]. Ce

segment traverse le mur HDQ en un point z, le segment [v,z] est inclus dans

le convexe C\ et le segment [z,y] est inclus dans le convexe A#5/V(C2)-

3.5 UN THEOREME DE CONVEXITE

La premiere difficulte est de comprendre pourquoi cette deformation donne

une structure projective proprement convexe. Signaions tout de meme que si la
variete M etait compacte alors le theoreme suivant de Koszul ([Kos68]) nous
assurerait que pour t assez petit la deformation de po fournie par l'element at
serait encore convexe.

Theoreme 3.6 (Koszul). Soit M une variete compacte, Vespace ß(M)
est ouvert dans P(M).

Nous allons montrer le theoreme suivant:

Theoreme 3.7. Soit A4 une variete hyperbolique et Af une sous-variete
totalement geodesique de A4. Les structures projectives associees au pliage
de A4 le long de Af sont proprement convexes. De plus, notons Dev?: Qo &t
la developpante de la nouvelle structure projective, alors Vapplication Dev?

se prolonge de fagon unique en un homeomorphisme n\{A4)-equivariant:
Dev?: Qo —^ &t Qui induit un homeomorphisme Dev?: öQo dQt.

La partie 4 est consacree ä la demonstration de ce theoreme.

Remarque 3.8. Dans [Kap07], Kapovich montre une version proche de

ce theoreme. Au lieu de recoller des varietes projectives convexes le long d'une

hypersurface totalement geodesique, il recolle aussi des varietes projectives
convexes compactes ä coins qui verifient certaines conditions de compatibilite.
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Notations. Soit t > 0, on notera At (resp. I3t le groupe (resp. l'ouvert
proprement convexe) obtenu par le pliage de Mo le long de A/o ä Taide de

Telement at. On notera Dev?: Uo —» 131 la nouvelle developpante.

4. Demonstration du theoreme de convexite

Le but de cette partie est de donner une demonstration du theoreme 4.7

dont le theoreme 3.7 est un corollaire.

4.1 Definition

Tout d'abord pour demontrer un resultat de convexite le cadre de Vn n'est

pas le plus approprie. Nous allons done nous placer sur la sphere projective S"

qui est le revetement ä deux feuillets de P" ou encore Tespace des demi-droites
vectorielles de Rw+1. On notera ir la fibration naturelle tt : Rw+1 \ {0} Sn

Definition 4.1. Une partie Q de S" est dite convexe lorsque la
reunion 7r_1(^)U {0} est une partie convexe de Rw+1. Un ouvert convexe Q
de S" est dit proprement convexe lorsque son adherence est incluse dans une
carte affine de S", ce qui est equivalent au fait que son adherence ne contient

pas de points diametralement opposes.

Remarque 4.2. Tout ouvert convexe de S" est ou bien S" tout entier

ou bien inclus dans une carte affine. De plus, soit Q un ouvert convexe
de S", on remarquera que si E\ et E2 sont deux sous-espaces affines inclus
dans Q alors il existe un sous-espace affine £3 inclus dans Q dont la
direction £3 est E\ 0^2 • Tout ouvert convexe de S" possede done une direction
maximale Eq egale au sous-espace vectoriel engendre par Tintersection QH—Q
dans Rw+1. Enfin, la projection de Q dans la sphere projective quotient
S(RW+1/^A) est un ouvert proprement convexe.

Nous allons avoir besoin d'un peu de vocabulaire. Soit M une variete

projective. On peut definir la notion de segment et de convexite sur le

revetement universel M de M.

Definition 4.3. Un segment de M est une application s: [0,1] —^ AW

telle que la composee Dev o 5: [0,1] Sn est une application continue

injective qui definit un segment de S" de longueur inferieure ou egale ä 7r

pour la distance canonique sur S".
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Une partie A de M est dite convexe lorsque tout couple de points de A

peut etre joint par un segment contenu dans A.

Definition 4.4. Soit M une variete projective. On se donne W)*e/
une famille localement finie d'hypersurfaces propres totalement geodesiques
de M. On appelera les (Wt)ieI des murs. On appelera chambre Tadherence

de toutes composantes connexes de .A/f \ |J;G/ VT On dira que deux chambres

sont adjacentes lorsque leur intersection est incluse dans un unique mur.

L'intersection de deux murs W\ et W2 est vide ou une sous-variete propre
totalement geodesique de codimension 2. Lorsqu'elle est non vide, on dira que
Tintersection de deux murs W\ et W2 est incluse dans une situation diedrale

lorsqu'il existe un entier in ^ 2, une suite de m murs {Wt)i=et une
suite de 2m chambres (C;)*=i,...,2m telles que (voir figure 5):

• Tintersection de ces m murs et 2m chambres soit Tintersection W\ (IW2.

• Deux chambres consecutives sont adjacentes.

• Le mur contenant Tintersection des deux chambres consecutives Ct

et Cl+1 est aussi le mur contenant Tintersection des deux chambres

consecutives C;+m et C;+i+m.

Figure 5

Situation diedrale

Remarque 4.5. L'image d'un mur par la developpante de la structure

projective de M est un ouvert convexe d'un hyperplan projectif de S".
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4.2 LE THEOREME

Remarque 4.6. L'application Dev est un homeomorphisme local et

l'espace (Pn,dcan) est un espace metrique, il existe done une unique distance

sur A4 tel que 1'application Dev est une isometrie locale. On note Cl(M)
le complete de A4 pour cette distance. L'espace Cl(M) est compact et

1'application Dev se prolonge en une application continue encore notee Dev
de Cl(M) vers Sn.

Theoreme 4.7. Soit A4 une variete projective. On se donne une famille
finie d'hypersurfaces propres totalement geodesiques (Ht)iei. Cette famille
definit une famille localement finie de murs du revetement universel A4. On

suppose que:
1. Les chambres de A4 sont convexes.

2. La reunion de deux chambres adjacentes est convexe.

3. Toute intersection non vide de deux murs est incluse dans une situation
diedrale.

4. Pour tout mur W, et tout point E dW C C/(A4), la reunion des

chambres contenant Xoo dans leur adherence (dans C/(A4)) est convexe.

Alors, la variete projective A4 est convexe.

4.3 Demonstration du theoreme 4.7

La demonstration de ce theoreme se deroule en plusieurs etapes. La
difficulte est d'obtenir le lemme suivant:

Lemme 4.8. Uensemble A4 est convexe.

Nous allons commencer par montrer comment ce lemme entraine le

theoreme 4.7. Ensuite nous montrerons ce lemme ä l'aide d'un argument
de connexite.

Demonstration du theoreme 4.7 ä l'aide du lemme 4.8. On doit montrer

que Tapplication Dev est un homeomorphisme sur son image Q et que Q

est une partie convexe de P".
L'application Dev est un homeomorphisme local pour montrer que c'est un

homeomorphisme sur son image, il suffit done de montrer qu'elle est injective.
Soient x et y deux points de A4, il existe un segment s qui relie x

ä y dans A4, Tapplication Dev o s est injective done si Dev(x) Dev(y)
alors x y. L'application Dev est done un homeomorphisme sur son image Q.
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Enfin, l'ouvert Q est convexe puisque c'est 1'image de A4, qui est

convexe.

4.4 Demonstration du lemme 4.8

On appelle point singulier de A4 tout point inclus dans l'intersection de

trois murs W\, W2 et W3 tel que \V1P\W2r\W3 est une sous-variete totalement

geodesique de codimension 3. On note Sing l'ensemble des points singuliers
de A4.

Soient a un point de A4 et C une chambre de A4 On definit les ensembles

suivants:

Creg {yGC tel qu'il existe un segment dans A4 — Sing reliant a ä y},
C* {y £ C tel qu'il existe un segment dans A4 reliant a ä y}

Lemme 4.9. Uapplication qui a y E Creg associe le nombre et Vensemble

des murs traverses par le segment [a,y] est localement constante.

Demonstration. C'est l'hypothese "toute intersection non vide de deux

murs est incluse dans une situation diedrale" qui donne ce lemme. II suffit de

regarder la figure 5.

Lemme 4.10. Uensemble Creg est ouvert dans C.

Lemme 4.11. Les composantes connexes de C* sont fermees dans C.

COROLLAIRE 4.12. Si Creg est non vide alors C* C.

Commengons par montrer que ces lemmes entrainent le corollaire 4.12 et

le lemme 4.8.

Demonstration du corollaire 4.12 a Vaide des lemmes 4.10 et 4.11. Nous

allons montrer que C* est dense dans C. Soit y e Creg on note Areg une com-

posante connexe de Creg. Le nombre de murs traverses par les segments [a, y]
pour y e Areg ne depend pas de y (lemme 4.9). On note A* la composante
connexe de C* contenant Areg. Par hypothese, A* est fermee dans C.

Les murs forment une famille localement finie dans A4, par consequent Sing
est une reunion localement finie de sous-varietes totalement geodesiques de

codimension 3.

Comme Vensemble des murs traversees par tout segment [A,y] est constant

pour y e Areg, il existe un ferme S de codimension 2 de C tel que
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Areg n Sc A* n Sc (Sc C\ S). Ainsi, les lemmes 4.10 et 4.11 montrent

que AregC\Sc A*nSc est ouvert et ferme dans Sc. Or, S est de codimension 2

par consequent Sc est connexe puisque C est convexe.

Ensuite, Sc est dense dans C toujours car S est de codimension 2, par
consequent Creg est non vide si et seulement si Creg D Sc est non vide

puisque Creg est ouvert.

II vient done que Areg n Sc A* n Sc C fl Sc. Le lemme 4.11 montre

que A* C, puisque Sc est dense dans C. II vient que si Creg est non vide
alors C* C.

Demonstration du lemme 4.8 ä Vaide du corollaire 4.12. A present, pour
montrer que A4 est convexe, il suffit de choisir un point x de A4. On dira

que deux points x et y sont ä distance combinatoire inferieure ou egale
ä n si et seulement s'il existe une suite de n chambres telle

que v G C\, y E Cn, et Cl et Cl+1 sont adjacentes.

Le corollaire 4.12 montre facilement ä l'aide d'une recurrence que la
reunion des chambres ä distance combinatoire inferieure ou egale ä n de x
est etoile par rapport ä v. Uensemble A4 est done convexe.

4.5 Demonstration du lemme 4.10

Demonstration du lemme 4.10. Soit y G Creg, il existe un segment s

reliant x ä y dans A4\ Sing. Comme 1'image d'un segment est compacte eile

est incluse dans un nombre fini de chambres de A4. On note (xl)i=iv..5# les

points d'intersection du segment [x,y] avec les murs de A4 numerates via la

parametrisation de \x,y]. On pose x° x et v^+1 y.
Comme les chambres sont convexes et A4 \ Sing est ouvert, il existe des

voisinages Vxi de xl (pour i 1,... + 1) dans A4 tels que l'enveloppe
convexe dans chaque chambre des couples (Vx*, V^+i) contienne un voisinage

convexe du segment [x\xl+1] inclus dans la chambre contenant [x\xl+1] et

qui ne rencontre pas Sing. La reunion de ces voisinages contient un voisinage
convexe de [v, y]. II existe done un voisinage ouvert du point y dans Creg

4.6 Demonstration du lemme 4.11

L'enonce du lemme suivant est assez technique.

Lemme 4.13. Soit (sn)nen une suite de segments d'extremites le point x et

un point yn appartenant a une composante connexe de C* fixee. Le segment sn

traverse Nn murs W",..., W^n de A4 (ordonnes par la parametrisation de sn).
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On note {xln)l=\^^^n les points d'intersection de sn avec les murs de A4 (or-
donnes via la parametrisation de sn). Si la suite (v*)wGn diverge dans A4

et converge dans Cl(A4) vers x1^, alors, si n est assez grand, la suite Nn

est constante egale ä un certain N, les suites W",..., WJJr sont constantes

et les suites (xln)ne^ pour i 2,..., N divergent dans A4 et convergent
dans Cl(A4) vers x.

Demonstration du lemme 4.13. Comme toutes les intersections de murs
sont incluses dans une situation diedrale, le lemme 4.9 montre que l'ensemble
des murs traverses est constant et done fini. Par consequent, on peut supposer

que les segments sn traversent N murs A4 et que la suite est

constante. La suite de segments est incluse dans la reunion de deux

chambres adjacentes: C\ et C adjacentes au mur W\. La reunion de ces

deux chambres est convexe et la suite x\ converge vers le point x\ de Cl(M).
Par suite, la suite v\ diverge dans A4 et converge dans Cl(A4) vers x1^.

On itere ce raisonnement pour obtenir la conclusion pour toutes les

suites (xln)neN pour z 2, ...,A/\

Demonstration du lemme 4.11. Soit yn une suite de points d'une com-

posante connexe de C*. Supposons que la suite (yn)nen converge dans A4

vers un point Nous allons montrer qu'il existe un segment entre v et

II existe un segment sn reliant x ä yn dans A4. Les segments sn traversent Nn

murs.

On note (xln)l=i^^^n les points d'intersections du segment sn avec les murs
de A4 numerates via la parametrisation de sn. On pose x°n v et x^n+1 yn.

On a trois cas ä distinguer:

• Toutes les suites (xln)ne^ divergent. En particulier, la suite diverge
dans X, quitte ä extraire, on peut supposer qu'elle converge dans C/(A4).

• II existe un i0 2,... ,Nn tel que la suite (v52°)wGN diverge dans A4 mais

sous-converge dans Cl(M) et la suite (x1^1)^ converge dans A4.
• Toutes les suites (xln)nEs convergent dans A4.

Nous allons montrer que les deux premiers cas sont absurdes. Le lemme 4.13

montre que dans le premier cas la suite (Nn)neN est constante (egale ä AO ä

partir d'un certain rang et que les suites (xln)nE^ pour i 1,... ,N convergent
vers un point x1^ de Cl(M) — A4.

La quatrieme hypothese du theoreme 4.7 affirme que la reunion des chambres

contenant le point x^ dans leur adherence dans Cl(A4) est convexe. Par

consequent la suite yn converge x1^ qui n'est pas dans A4 Ce qui est absurde.
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L'absurdite du second cas se demontre exactement de la meme maniere.

Par suite, toutes les suites (xln)ne^ convergent dans A4. Par consequent,
la suite Nn est constante ä partir d'un certain rang, puisque les murs forment

une famille localement finie dans A4. II vient que les points v et Too sont

relies par une reunion finie de segments qui verifie de plus que sa restriction
ä la reunion de deux chambres adjacentes est un segment. Ce chemin est done

un segment.

Demonstration du theoreme 3.7. Pour terminer la demonstration du

theoreme 3.7, il faut montrer que dans le cas qui nous interesse la structure

projective convexe est proprement convexe. Ce n'est pas tres difficile. C'est

une consequence de la proposition suivante et du fait que les representations pt
sont irreductibles.

PROPOSITION 4.14. L'holonomie d'une structure projective convexe non

proprement convexe n'est pas irreductible.

Demonstration. La remarque 4.2 montre que l'holonomie d'une structure

projective convexe doit preserver l'espace vectoriel engendre par
1'intersection Qfl—Q. Une structure projective convexe est non proprement convexe
si et seulement si cette intersection est non vide.

Demonstration du theoreme 3.7. II nous reste ä montrer que 1'application
Dev?: Q0 se prolonge de fagon unique en un homeomorphisme
TTiCA/D-equivariant: Dev?: Q0 Q? qui induit un homeomorphisme
Dev?: dQo dQt.

Pour cela, on identifie A4 avec Q0, et il faut montrer que l'on peut
identifier C/(A4) et Qo- L'espace C/(A4) est le complete de A4 muni de

la distance qui fait de l'application Dev?: A4 Sn une isometrie locale.
Les chambres de A4 forment une partition de A4 en partie convexe.

L'application Dev? restreinte aux chambres de A4 est une application
projective. L'adherence d'une chambre de A4 pour la metrique induite par Dev?

correspond done ä l'adherence d'une chambre de Q0 dans S".

La remarque 4.6 montre que l'application Dev? se prolonge en une

application continue de Cl(A4) Qo vers S". Cette application restreinte
ä Qo est un homeomorphisme sur son image et son image est le convexe Qt

par le theoreme 4.7.

Le prolongement de Dev? est done un homeomorphisme Qo

7Ti(Af)-equivariant qui induit un homeomorphisme Dev?: 9Qo dQt.
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5. Irreductibilite Zariski-densite et minimalite

5.1 Irreductibilite

Definition 5.1. Soit r un sous-groupe de SL„+i(R). On dira que r est

irreductible ou que T agit de fagon irreductible sur Rw+1 lorsque les seuls

sous-espaces vectoriels de Rw+1 invariants par T sont {0} et Rw+1.

Definition 5.2. Soit r un sous-groupe discret et infini de SO„5i(R). On

se donne To un point de H et on definit 1'ensemble:

Li? {xoo e 9H tel qu'il existe une suite 7„ET tel que 7« • x0 Xoo}
H—>• OO

Cet ensemble ne depend pas du point x0. On l'appele Vensemble limite
de T et on le note Lr. Lorsque T n'est pas virtuellement abelien c'est le plus

petit ferme non vide invariant par T et c'est 1'adherence des points attractifs
des elements de T. On pourra consulter le livre ([Rat06]) pour avoir des

details.

Lemme 5.3. Soit T un sous-groupe de SO„5i(R). Si T n'est pas
irreductible alors Vensemble limite de T est inclus dans un hyperplan de 9H.

Demonstration. Si T est virtuellement abelien alors 1'ensemble limite de

T contient au plus deux points, il est done inclus dans un hyperplan de 9H.
Si T n'est pas virtuellement abelien alors 1'ensemble limite de T est le plus

petit ferme non vide T -invariant de 9H. Nous allons montrer que T preserve
un ferme non vide de 9H de la forme F H 9H, oü F est un sous-espace
vectoriel de Rw+1.

Comme le groupe T n'est pas irreductible, il preserve un sous-espace
vectoriel E de Rw+1 de dimension p. Notons C {x e Rw+1 | q(x) < 0} le

cone de lumiere de q.
La forme quadratique q restreinte ä E possede trois signatures possibles:

1) (/?, 0) ou de fagon äquivalente E D C 0
2) (p-1,1) " LnC/0,
3) (p- 1,0) " Enc 0 et Ende ± 0.

Dans les deux derniers cas, l'intersection EndH est non vide et preservee

par T, dans le premier cas l'intersection de E±fl9H est non vide et preservee

par T. Par consequent, 1'ensemble limite de T est inclus dans un hyperplan
de 9H.
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5.2 Ensemble limite

La definition d'ensemble limite pour un sous-groupe discret T de SLw+i(R)
n'est pas aussi simple que pour un sous-groupe de SO„5i(R), meme s'il
preserve un ouvert proprement convexe. En effet, on ne peut pas definir
l'ensemble limite ä l'aide d'un point base xo, car c'est la convexite stricte de

Eellipsoide qui donne l'independance en vo de l'ensemble limite Lxf

Mais Benoist a montre le theoreme suivant qui nous permet de definir
l'ensemble limite dans un cadre plus general (lemme 2.5 de [BenOO] ou
lemme 3.6 [Ben97]).

Theoreme 5.4 (Benoist). Soit T un sous-groupe discret de SLw+i(R) qui

preserve un ouvert proprement convexe Q de P" Si T est irreductible alors il
existe un unique ferme non vide T-invariant Lr tel que si F C P" est un ferme
non vide T-invariant alors Lr C F. On appelle ce ferme l'ensemble limite
de T, on le note Lr, c'est Vadherence des points attractifs des elements de T.

PROPOSITION 5.5. Le groupe At que Von a construit est irreductible. Par

consequent son ensemble limite est bien defini. Uaction du groupe At sur le

bord düt du convexe üt est minimale (i.e. il n'existe pas de ferme non trivial
invariant par T), autrement dit Vensemble limite du groupe At est egal ä dl3t.

Demonstration. La variete projective Mt a ete construite ä l'aide d'un
pliage de la variete hyperbolique Mq le long de l'hypersurface A/o. On

note H un releve de A/o ä I3t pour tout t E R.
Les composantes connexes de W 131 \ U7GAf sont ^es convexes

inclus dans I3t. Si M\Af possede deux composantes connexes alors on
note C) et Cf les deux composantes connexes de 13' qui bordent H. Si M\N
est connexe alors on note C* Tune des deux composantes connexes de 13'

qui bordent H.
Les arguments qui suivent ne dependent pas du cas dans lequel on est. On

se place done dans Tun des deux cas, on note Ct le convexe C}, Cf ou C*.

Le stabilisateur Nfor de Ct est conjugue ä un sous-groupe discret
de SO„,i(R) et la variete Ctj^mor est une variete hyperbolique non complete.

De plus, le volume de tout ferme inclus dans Ctjj^mor est fini. L'ensemble

limite de Nfor est done dCt \ U7GAf 7^-
Par consequent, Taction de Nfor sur Rw+1 est irreductible (lemme 5.3).

II vient que le groupe At est aussi irreductible. En particulier, son ensemble

limite est bien defini (theoreme 5.4).
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De plus, l'ensemble limite de At contient les ensembles limites de tous
les stabilisateurs des composantes connexes de I3t \ U7eÄf ^ar suite>

l'ensemble limite de At est dl3t (i.e. Taction de At sur dl3t est minimale).

5.3 Zariski-densite

Le theoreme suivant est dü ä Benoist dans [BenOO].

Theoreme 5.6 (Benoist). Soit T un sous-groupe discret de SLw+i(R)
qui preserve un ouvert proprement convexe Q de Vn. Si Vaction de T sur
le bord de Q est minimale alors Vadherence de Zariski de T est conjuguee
a SOn?i(R) ou SLw+i(R).

COROLLAIRE 5.7. Les groupes At que Von a construit sont Zariski-denses
dans SL„_|_i(R).

Demonstration. II ne nous reste plus qu'ä montrer que Tadherence de

Zariski G de At ne peut pas etre conjuguee ä SOw?i(R).
On reprend les notations de la demonstration de la proposition 5.5. Les

stabilisateurs des composantes connexes de 131 \ U7eÄf 7^ sont ^es sous_

groupes discrets irreductibles de differents conjugues de SOw?i(R).

Or, le lemme 5.8 montre que ces groupes sont Zariski-denses dans le

conjugue de SOn?i(R) qui le contient. Par consequent, le groupe G ne peut
etre conjugue ä SO„5i(R).

LEMME 5.8. Tout sous-groupe discret et irreductible de SOn?i(R) est

Zariski-dense dans SOw?i(R).

On pourra trouver une demonstration de ce lemme dans [BdlH04].

5.4 Quelques consequences

5.4.1 Un pliage est une deformation non triviale

COROLLAIRE 5.9. Le pliage d'une variete hyperbolique de volume fini le

long d'une hypersurface totalement geodesique definit une deformation non
triviale de la structure projective.

Demonstration. Supposons que les representations pt et ptt sont con-

juguees par un element g £ SL„+i(R). On ne fait que le cas oü M \ M
possede deux composantes connexes. L'autre cas est analogue.
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Les representations pt et ptr sont egales sur K\(Mg). L'adherence de

Zariski de pti^i{Mg)) est SO„5i(R) (lemme 5.8), par suite, g appartient au
centralisateur de SO„5i(R) dans SLw+i(R), c'est-a-dire au centre de SL„+i(R).
Par suite pt p? ce qui est absurde.

5.4.2 LE GROUPE At N'EST PAS UN RESEAU DE SLw+i(R)

Remarque 5.10. Le groupe At n'est pas un reseau de SL„+i(R), car
Paction d'un reseau de SLw+i(R) sur l'espace SLw+i(R)-homogene P" est

ergodique. C'est une consequence du theoreme d'ergodicite de Moore et

du theoreme de dualite, on pourra consulter le livre [BM00] (notamment

Pexemple 2.9 page 92).

5.4.3 L'OUVERT I3t N'EST PAS HOMOGENE

Proposition 5.11. Le groupe Aut(G?) est discret par consequent, le

groupe At est d'indice fini dans le groupe Aut(G?).

Demonstration. Cette proposition est une consequence directe de la

proposition 5.12 ci-dessous et du corollaire 5.7 ci-dessus.

La proposition suivante est connue depuis longtemps.

Proposition 5.12. Tout sous-groupe T Zariski-dense d'un groupe de Lie
quasi-simple G est discret ou dense.

Demonstration. Soit H Padherence de T pour la topologie separee de G,
on note Ho la composante neutre de H. Le groupe Ho est normalise par un

sous-groupe d'indice fini de T car H possede un nombre fini de composantes
connexes puisque c'est un groupe algebrique. Par suite, H0 est normalise

par G puisque T est Zariski-dense. Comme G est quasi-simple, H0 est egale
ä G ou {1}. Par suite, T est discret ou dense.

6. Conservation de la finitude du volume

6.1 Les theoremes de Dirichlet et de Lee

Le celebre theoreme qui suit nous sera utile pour montrer que le phage

conserve la finitude du volume de la structure projective proprement convexe.



VARIETES PROJECTIVES STRICTEMENT CONVEXES 33

Theoreme 6.1 (Dirichlet). Soit T un sous-groupe discret de SOW)i(R). II
existe un domaine fondamental convexe et localement fini pour Vaction de T

sur H.

Si besoin, on rappeile la definition d'un domaine fondamental.

Definition 6.2. Soient X un espace topologique et T un groupe qui
agit sur X par homeomorphismes, on dit qu'une partie fermee D c X est un
domaine fondamental pour Vaction de T sur X lorsque:

• U7£r7D X.

• V7 ^ 1, 7D Pl D 0.
De plus, un domaine fondamental D pour Taction de T sur X est dit
localement fini lorsque:

• VK compact de X, {7 <E T | yD D K 7^ 0} est fini.

Rappeions aussi tres rapidement la demonstration de ce theoreme. Pour

construire un domaine fondamental, Dirichlet choisit un point To dont le

stabilisateur dans T est trivial. II construit ensuite les hyperplans mediateurs H1
des segments [x0,7 • x0], pour 7 e T, ce sont des hyperplans de H. Ensuite,
il montre que Tadherence de la composante connexe contenant x0 de H prive
de ses hyperplans mediateurs H1 est un domaine fondamental, on Tappelle
le domaine de Dirichlet pour Vaction de T sur H base en To.

Le theoreme de Dirichlet possede un analogue dans le monde projectif
convexe.

Theoreme 6.3 (Jaejeong Lee [Lee]). Soient Q un ouvert proprement
convexe et T un sous-groupe discret de SLw+i(R) qui preserve Q. II existe

un domaine fondamental convexe et localement fini pour Vaction de T sur Q.

On pourra trouver une courte demonstration de ce theoreme dans [Mar09].

6.2 Les ellipsoides de protection
LEMME 6.4. Soit T un sous-groupe discret sans torsion et de covolume

fini de SOw?i(R). On suppose qu'il existe un hyperplan H de H tel que
A Stabr(H) agisse sur H avec un covolume fini et que Vapplication

H/a -A H/p est un plongement propre.
On se donne To un point de H dont le stabilisateur dans T est trivial et on

construit alors le domaine de Dirichlet D pour Vaction de T sur H base en To.
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Le domaine fondamental D rencontre un nombre fini d'hyperplans 7(H)
pour 7 G T.

De plus, pour tout point p G dD, s'il n'existe pas d'element 7 G T tel

que p G 7(H) alors il existe une horoboule centree en p qui ne rencontre

pas les hyperplans 7(H) pour 7 G T.

Demonstration. Comme 1'application H/ ^ H/p est un plongement

propre, les hyperplans (7sont disjoints et forment une famille
localement finie dans H. De plus, Taction de T sur H est de covolume
fini par consequent, Tensemble dD est fini (on pourra consulter [Bow93]). II
suffit done de regarder ce qu'il se passe pres des points p G dD.

Soit p G dD. Comme Taction de T sur H est de covolume fini, le

point p est un point parabolique borne, e'est-a-dire que le groupe StabrO?)

agit cocompactement sur <9H - {p}. On note I {7 G T | p G 7(//)}.
Nous allons nous placer dans le modele du demi-espace de Poincare.

Supposons que p 00, une horoboule centree en Tinfini dans le modele du

demi-espace de Poincare est Tensemble des points d'altitudes superieures ä une

constante. On peut trouver une horoboule centree en p et qui ne rencontre

pas les hyperplans 7(H) pour 7 ^ I si et seulement si les altitudes des

hyperplans 7(H) pour 7 ^ I sont bornees. Ualtitude d'un hyperplan ne passant

Pi

Figure 6

Domaine fondamental
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pas par l'infini dans le modele du demi-espace de Poincare est egale au rayon
de la sphere qu'il definit sur 9H — {00} Rw_1 x {0}. Le groupe Stabr(p)
agit par isometrie (euclidienne) et cocompactement sur 9H—{00} les altitudes

sont done bornees. II existe done une horoboule £ centree en p 00 teile

que si 7(H) n £ / 0 alors p G 7(H).
En particulier, si le point p ne rencontre pas les hyperplans 7(H)

pour 7 G T alors il existe une horoboule centree en p qui ne rencontre

pas les hyperplans 7(H) pour 7 G T.
De plus, les hyperplans 7(H) pour 7 G T ne se rencontrent pas, par

consequent les hyperplans 7(H) pour 7 G I sont paralleles. Le groupe StabrO?)

preserve ces hyperplans et agit par isometrie (euclidienne) de fagon cocompacte
sur 9H — {p}. Le domaine fondamental D est done inclus dans un cöne £ de

sommet p et de base un compact de <9H - {p}. Comme les 7(H) pour 7 G I
sont paralleles et ä distance minoree, le cöne £ et done D ne rencontre qu'un
nombre fini d'hyperplans 7(H) pour 7 G I.

Definition 6.5. Une ellisphere est le bord d'un ellipsoide.

Remarque 6.6. Soient £ un ellipsoide de Vn et p un point de d£. Soit P'
le stabilisateur de p dans Aut(£). Le groupe P' est isomorphe au groupe
des similitudes Sim+(RW_1). II possede done un sous-groupe distingue P

isomorphe ä Isom+(Rw_1). II s'agit du sous-groupe des elements paraboliques

qui fixent p. Les orbites de P agissant sur P" sont les ellispheres (privees
de p) du faisceau d'ellispheres engendre par d£ et Tp£. Les orbites de P

agissant sur £ sont les horospheres de centre p du modele projectif de

l'espace hyperbolique. II vient done que toute horosphere d'un ellipsoide est

une ellisphere prive d'un point. La reciproque est par contre fausse. Toute

ellisphere incluse avec tangence en un point dans un ellipsoide n'est pas
necessairement une horosphere de celle-ci.

Definition 6.7. Soient Q et Q7 deux ouverts proprement convexes de P",
on dira que Q est ä Vinterieur (resp. Vexterieur) de Qf lorsque Q C Qf

(resp. Q' c Q).

LEMME 6.8. Soit Q un ouvert proprement convexe et T un sous-groupe
discret de Aut(Q) qui fixe un point p G ÖQ. Supposons que T preserve
un ellipsoide £ tangent a Q en p et que Vaction de T sur dQ \ {p} est

cocompacte. Alors, il existe un ellipsoide £int (resp. £ext) a Vinterieur (resp.

Vexterieur) de Q. De plus, £int est une horoboule de £ext.
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Demonstration. Soit A une carte affine contenant T adherence de Touvert

proprement convexe Q. Soit D un domaine fondamental pour Taction de T

sur Q (theoreme 6.3). L'ensemble dD n dQ est compose de {p} et d'un

compact de dQ \ {p}. On considere £ le demi-cöne de A de sommet p
engendre par D.

Les ellispheres du faisceau d'ellispheres engendre par Tellisphere d£ et

Thyperplan tangent TpdQ sont preservees par T. Le groupe Aut(£) est

conjugue au groupe SO„5i(R). Le groupe T est un sous-groupe de Aut(£)
compose uniquement d'elements paraboliques qui fixent p.

Par consequent, pour trouver un ellipsoide £int (resp. £ext) ä Tinterieur

(resp. Texterieur) de Q, il suffit de voir que si Tellisphere d£' du faisceau

est suffisamment proche (resp. eloignee) de p alors £' H £ est inclus dans D
(resp. d£fn£DQ 0 On peut done trouver un ellipsoide £int (resp. £ext),

en prenant un ellipsoide suffisamment proche (resp. eloigne) de p.

PROPOSITION 6.9. II existe un domaine fondamental Dt pour Vaction de At
sur I3t tel que pour tout point p G dDt H I3t il existe deux ellipsoides Tp
et T'p et les points suivants sont verifies:
1. Dt est connexe et e'est une reunion finie de convexes;

2. dDt est fini;
3. TpcUtC T'p;
4. dTp n düt dFp n dUt {p} ;

5. Tp est une horoboule de Tp.

Demonstration. Uimage Dt de D par Dev? est un domaine fondamental

pour Taction de At sur üt. II verifie les deux premiers points car D ne

rencontre qu'un nombre fini d'hyperplans 7(H) pour 7 G T et Tapplication Dev?

restreinte ä n'importe quelle composante connexe de öo \ U7ga0 ^ est une

application projective.
Si le point p G dDt n düt et p^[J7eAtjH, alors Tellipsoide £p

fourni par le lemme 6.4 est inclus dans Tune des composantes con-
nexes de 130 \ U7ga0 7^ • Meds Tapplication Dev? restreinte ä n'importe
quelle composante connexe de T?o \ U7ga0 7^ est une application projective.
L'ellipsoide Tp Devt(£p) convient. Comme Tellipsoide Tp est preserve

par StabAf(p)> le lemme 6.8 montre qu'il existe un ellipsoide T'p ä Texterieur
de Q et tel que Tp est une horoboule de centre p de T'p.

Si le point p G dDt n düt et p G U7GAf 7^' a^ors situation est un peu
plus complexe car Tellipsoide £p fourni par le lemme 6.4 est inclus dans une
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infinite de composantes connexes de 130 \ U7ga0 ^' L'image de Sp par Dev?

n'est done pas un ellipsoide, c'est un ellipsoide par morceaux.

Nous allons montrer que le groupe StabAf(/?) preserve un ellipsoide, ainsi
le lemme 6.8 montrera qu'il existe deux ellipsoides Tp et Tp qui solutionnent

notre probleme. Montrer que le groupe StabAf(/?) preserve un ellipsoide revient
ä montrer qu'il preserve une forme quadratique de signature (n, 1).

Le groupe Ap StabAf(/?) est virtuellement isomorphe ä Zn~l, c'est le

groupe fondamental du cusp de Mn associe ä p. On note A* H le sous-groupe
de Ap des elements qui preservent H. II est virtuellement isomorphe ä Zn~2.

Le groupe Af H n'est pas modifie pendant le phage, c'est un sous-groupe
de 7Ti(A/Ö).

On souhaite trouver un ellipsoide ä l'exterieur et un ellipsoide ä l'interieur
de I3t tels que les hyperplans tangents en p aux bords de ces trois convexes
coincident. Pour cela, il suffit (lemme 6.8) de trouver un ellipsoide preserve par
un sous-groupe d'indice fini de Stabat(p). On peut done supposer que Stabat(p)
est isomorphe ä Zn~l.

Le groupe Ap preserve le point p, il agit done sur l'espace projec-
tif Pp~l des droites projectives de P" passant par p. II s'agit de l'espace

projectif des droites de l'espace vectoriel quotient Rn+l/p. II preserve aussi

l'hyperplan Tpdl30, par consequent il agit par transformations affines sur

l'espace affine Ap~l Vp~l \(PJ5_1 P\Tpdl5o). Cet espace affine est dirige par

l'espace vectoriel quotient Tpdüo/p, oü Tpdl3o est le releve de Tpdl3o ä Rw+1.

Montrer que le groupe Ap preserve un ellipsoide tangent ä dQ en p
revient ä montrer que Taction de Ap preserve un produit scalaire sur Ap~l.
Le lemme 6.10 ci-dessous montre qu'il suffit de montrer que le groupe Ap

agit par transformations affines de determinant 1.

Comme les elements de Ap viennent d'un sous-groupe de SL„+i(R), il
s'agit de montrer que p est un vecteur propre dont la valeur propre associee

est 1. Comme p est Tunique point fixe des elements de A£, le lemme 6.11

ci-dessous montre que la valeur propre associee ä p est 1.

LEMME 6.10. Soit T un sous-groupe discret agissant proprement et co-

compactement sur Rm par transformation affine de determinant 1. Supposons

que T est virtuellement isomorphe a Zm et possede un sous-groupe V
distingue virtuellement isomorphe a Zm~l qui agit proprement et cocom-

pactement sur un hyperplan H par transformations euclidiennes. Alors, il
existe un produit scalaire sur Rm preserve par T, autrement dit T agit par
transformations euclidiennes sur Rm.
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Demonstration. On peut supposer que T est isomorphe ä Zm, que T' est

isomorphe ä Zm_1 et qu'il existe un element 6 G T tel que T r'0 < 5 >.
L'adherence de Zariski du groupe Tf est le groupe des translations preservant

l'hyperplan H. Un calcul facile montre que \/u G ~^,5tu5~l

L'element S commute avec les elements de Ff par consequent la partie
lineaire de S sur la direction est l'identite.

La valeur propre 1 est done de multiplicity m— 1 mais l'element ö est

de determinant 1 par consequent 1 est une valeur propre de multiplicity m,
autrement dit 5 est une translation. Ceci montre que T preserve un produit
scalaire sur Rm.

LEMME 6.11. Soit 7 G SLw+i(R). Supposons que 7 preserve un ouvert

proprement convexe Q de Vn alors le rayon spectral p(7) de 7 est valeur

propre de 7 .De plus, si p(7) 7^ 1 alors il existe deux points distincts fixes

par 7 sur le bord dQ de Q.

Demonstration. Le premier point est le contenu du lemme 3.2 de [Ben05].
Pour montrer le second point, supposons que p(7) > 1. On se donne x e Q,
la suite 7" • v converge vers un point v+ G dQ et le point v+ est une droite

propre associee ä la valeur propre p(7) pour 7. De plus, on a p(y~l) < 1,

on obtient done un autre point G dQ par le meme procede. Clairement

ces deux points sont distincts.

6.3 Conservation de la finitude du volume

Nous pouvons presque montrer les deux corollaires suivants.

COROLLAIRE 6.12. Le pliage d'une variete hyperbolique de volume fini
le long d'une hypersurface totalement geodesique definit une deformation de

structure projective proprement convexe de volume fini.

COROLLAIRE 6.13. L'action du groupe At sur Vouvert proprement convexe

Ut est de covolume fini.

Pour montrer ce resultat nous aurons besoin d'un theoreme de comparaison
des volumes en geometrie de Hilbert. Ce resultat de geometrie de Hilbert est

tres classique, c'est une consequence directe de la definition de la distance

de Hilbert et de la mesure de Busemann. Pour plus de details, on pourra
consulter [Ver05].
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Proposition 6.14. Soient Qi et Q2 deux ouverts proprement convexes
de Vn tels que Qi C Q2, alors, pour tout borelien A de Q\, on a

^ (A).

Demonstration des deux corollaires. Comme dDt est fini (6.9), il est

clair que Dt est de volume fini si et seulement si pour tout p £ düt D Dt,
il existe un voisinage Vp de p dans Q tel que put(Vp LA) < 00 • Mais, le

lemme 6.9 montre que si Vp est assez petit alors VpnDt c Tp. Le convexe Tp
est un ellipsoide (done c'est Lespace hyperbolique), par consequent, il est

bien connu que PFp(Vp n Dt) < 00. Enfin, la proposition 6.14 montre

que ßut(yp H A) ^ ßtFp^Vp Li A) < 00.

6.4 Le GROUPE At N'EST PAS un groupe de Schottky

Remarque 6.15. Le groupe At n'est pas un groupe de Schottky. La
definition de groupe de Schottky ne fait pas Lunanimite, rappelons done deux

definitions pour fixer notre propos.

Definition 6.16. Un element 7 de SLw+i(R) est dit loxodromique lorsque
les valeurs propres de 72 sont simples et positives.

Definition 6.17. Un sous-groupe r de SLw+i(R) est un groupe de

Schottky lorsque c'est un groupe fibre discret dont tous les elements sont

loxodromiques.

Le groupe At n'est pas un groupe de Schottky car il contient des elements

unipotents (i.e. 1 est l'unique valeur propre). Par exemple, les stabilisateurs
des points p £ dDt.

7. Gromov-hyperbolicite

7.1 Point de concentration faible

Definition 7.1. Soient Q un ouvert proprement convexe de Vn et T

un sous-groupe discret et irreductible de SLw+i(R) qui preserve Q. Un

point v G dQ est un point parabolique borne si Paction du groupe Stabr(v)
sur Lr — {x} est cocompacte.
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Definition 7 2 Soient Q un ouvert proprement convexe de P" et r un

sous-groupe discret de SLw+i(R) qui preserve Q On dit qu'un point v G dQ
est un point limite conique lorsqu'il existe une suite d'elements ((5„)wGn de T,
un point xo G Q, une demi-droite [.x\, x[, et un reel C > 0 tel que

1 Sn To > X
«—>•00

2 da(S„ *0,[*i,4) < C

Definition 7 3 Soient Q un ouvert proprement convexe de P" et r un

sous-groupe discret de SLw+i(R) qui preserve Q On dit qu'un point x G dQ
est un point de concentration faible lorsqu'il existe un voisinage connexe U
de v dans dQ tel que pour tout voisinage V de x dans dQ, ll existe un
element 7 G T tel que x G t(Z7) et 7(U) C V

Theoreme 7 4 (Hong, Jeong, SaKong [HJS96]) Soient £ un ellipsoide
de Vn et T un sous-groupe discret de SLw+i(R) qui preserve £ Tout point
limite conique est un point de concentration faible

Le theoreme suivant a de nombreuses versions et de nos nombreux auteurs,

on pourra trouver une demonstration dans l'article [Bow93] de Bowditch

Theoreme 7 5 Soient £ un ellipsoide de Vn et T un sous-groupe discret
de SLw+i(R) qui preserve £ Uaction de T sur £ est de covolume fini si

et seulement si tout point de d£ est un point parabolique borne ou un point
limite conique

On obtient done la proposition suivante

PROPOSITION 7 6 Tout point de dl3t est un point de concentration faible
ou un point parabolique borne pour Taction de At

Demonstration Le theoreme 7 5 montre que tout point de öo est un

point parabolique borne ou un point limite conique Le theoreme 7 4 montre

tout point de üo est un point parabolique borne ou un point de concentration
faible Ces deux notions ne font intervenir que les propnetes topologiques de

Taction de A0 par homeomorphismes sur dl30

L'application Dev? est un homeomorphisme equivanant entre les deux

convexes öo et 131 de Vn Le theoreme 3 7 montre que cet homeomorphisme
se prolonge en un homeomorphisme equivanant Dev? dl3o dl3t Par
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consequent, tout point de üt est un point parabolique borne ou un point de

concentration faible pour Taction de At.

7.2 CONVEXITE STRICTE

Proposition 7.7. Soit Q un ouvert proprement convexe de Vn, sup-

posons qu'il existe un sous-espace projectif maximal E de Vn de dimension
1 ^ m /?1 tel que Vintersection dQ fl E soit d'interieur dans E non
vide. On note S Vinterieur dans E de dQDE, c'est un ouvert proprement
convexe de E.

Pour toute suite de points xn £ Q, pour tout point £ dQ, et tout
reel R > 0, si la suite xn alors la suite Bf{R) converge vers

n—t oo n

la boule Bsx^ (R) pour la distance de Hausdorff induite par la distance

canonique dcan de Vn.

Demonstration. II faut montrer deux choses pour montrer cette proposition.
Si X est un ensemble, on notera Xs {y £ Vn \ dcan(y,X) ^ s}. On doit
montrer que pour tout e > 0, il existe N > 0 tel que pour tout n ^ N, on
a B^iR) c Bf (R)£ et Bf(R) c B^iRY. Avec des quantificateurs cela se

traduit par:

Ve > 0, 3N > 0, Vn ^ N, VzootB^iR), 3yneBfn(R) tel que dcan(yn,Zoo) < £

et

Ve > 0, 3N > 0, V« ^ N, VyneB°(R), eB^(R) tel que dcan(yn,Zoo) < £
II s'agit done de montrer que Ton peut trouver une "tranche" de Bf (R) qui

converge "uniformement" vers B^iR) et que Bf (R) est proche de B^iR)
si n est assez grand.

Pour montrer le premier point, on commence par choisir une carte

affine A qui contient Q. Considerons En, le sous-espace affine parallele
ä Tespace affine engendre par S passant par xn dans la carte A. Tout point
de Tintersection Cn En C\Bf (R) converge vers un point de B^iR), et

inversement pour tout point Zoo de B^iR), il existe une suite de points
de Cn qui converge vers Zoo.

Le sous-espace affine En converge dans E pour la distance de Hausdorff
dans A. Par suite, pour tout £ > 0, il existe un N > 0, tel que pour
tout OiV,ona BsXqo(R) c Bfn(R)£

Pour montrer le second point, il faut remarquer que si Dn est la droite

passant par xn parallele ä une direction fixee qui n'est pas incluse dans E alors

le diametre pour dcan de Dnr\B®(R) tend vers 0 lorsque n tend vers Tinfini.
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Par suite, pour tout e > 0, il existe un N > 0, tel que pour tout n ^ N, on
ail B?a(R) C BijRY

Proposition 7.8. Soient Q un ouvert proprement convexe de Vn et T

un sous-groupe discret et irreductible de SLw+i(R) qui preserve Q. Sup-

posons qu'il existe un sous-espace projectif maximal E de Vn de dimension

I ^ m ^ n — 2 tel que Vintersection dQ fl E soit d'interieur dans E non
vide. Soit x un point dans l'interieur relatif de dQHE, le point x ne peut
etre un point de concentation faible.

Demonstration. Supposons que v soit un point de concentration faible.
II existe alors un voisinage U de i et une suite d'elements (7„)„gn de T

tel que ~fn(U) {p}. On note K, Penveloppe convexe de U dans Q,
n—^ oo

les 7„ sont des applications projectives par consequent, on a 7n(K) -a {p}
n—± 00

Comme la dimension de dQDE est strictement inferieure ä n— 1 et que E est

maximal, le compact K est d'interieur non vide, il existe done une boule B
de (Q, do) incluse dans K. Toute boule B de (Q, Jq) incluse dans K verifie

que jn(B) {p}. Mais la proposition 7.7 montre que la suite (7w(#))«eN
n—>-oo

ne peut converger vers le point p. Le point p n'est done pas un point de

concentration faible.

COROLLAIRE 7.9. Uouvert proprement convexe 131 est strictement convexe.

Demonstration. Tout segment du bord de 131 est inclus dans un sous-

espace projectif maximal E. L'intersection R dl3t HE est alors d'interieur
dans E non vide. On note m la dimension de E.

On commence par traiter le cas oü m verifie 1 ^ m ^ n — 2.
Le theoreme 7.5 montre que tout point de I3t est un point parabolique

borne ou un point de concentration faible. La proposition 7.8 montre que tout

point p dans l'interieur relatif de R est un point parabolique borne. Mais, la

proposition 6.9 montre que si p est un point parabolique borne pour Taction
de At sur I3t alors il existe un ellipsoide £' tel que:

Q C £p et d£'p DdQ {p}
Un tel point p ne peut etre dans l'interieur de R.

Enfin, si m n — I alors les points dans l'interieur de R ne peuvent etre

paraboliques bornes pour la meme raison que precedemment. Par consequent,
les points paraboliques bornes ne peuvent etre dense dans dl3t. Ce qui est

absurde puisque Taction de At sur I3t est minimale (proposition 5.5). Par

consequent, Touvert proprement convexe I3t est strictement convexe.
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7 3 Gromov-hyperbolicite

LEMME 7 10 Soit r un sous-groupe discret de SLw+i(R) qui preserve
un ouvert proprement convexe Q de Vn Soit D un domaine fondamental
connexe et localement fini pour Vaction de T sur Q On suppose que

1 D est une reunion finie de convexes,

2 dD est un ensemble fini,
3 Vp G 3D n 3Q, il existe deux ellipsoides ouverts Sp et Sp tels que

• Sp c Q c £'p

• 3Sp n 3Q d£p fl 3Q {p}
4 Le convexe Q est strictement convexe

Alors, Vespace metrique (Q, do) est Gromov-hyperbolique

Demonstration Supposons que l'espace (Q,£/q) n'est pas Gromov-

hyperbolique II existe alors une suite (rw)wGN de triangles dont la taille
tend vers l'mfini lorsque n -A oo

II existe done 4 suites de points de Q (xn)ne^, (yn)nen (zn)nen OOwgn
tels que

1 Le triangle Tn a pour sommet les points xn,yn,zn
2 Le point un appartient au segment [xn,yn]
3 On a dQ(un, [xn,Zn\ U [z«,y«]) -a oo

n—Yoo

Quitte ä appliquer un element de T, on peut supposer que un G D Quitte
ä extraire de nouveau, on peut supposer que la suite (w„)wGN converge vers

Woo G D c Q C P" Nous allons distinguer les deux cas suivants

1 Le point Woo G Q

2 Le point Woo £ 9D Gl 3Q

Commengons par supposer que le point Woo G Q Quitte ä extraire, on

peut supposer que les suites (xn)ne^, (yn)nen> (zn)nen convergent dans Q

vers les points Too, Joo, Zoo

Les quantites d&(un,xn), d^{un^yn) et Jq(w„,z„) tendent vers l'infini
lorsque n -A oc Par consequent les points Too, yoo, Zoo sont sur le bord
de Q

II est clair que Too 7^ yoo puisque Woo £ Q Si Too 7^ Zoo alors la

convexite stricte de Q entraine que Jq(Woo, [Too,Zoo] U [Zoo^oc]) < 00, ce

qui est absurde Done Too Zoo Pour la meme raison Zoo Mais c'est
absurde puisque Too 7^ yoo

Supposons ä present que le point w^ G 3D n 3Q La figure 7 peut aider
ä suivre cette partie de la demonstration II existe alors deux ellipsoides £p
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et £' tels que:
1. Sp C Q C £'p\

2. d£p n dQ dSp n dQ {p} ;

3. Sp est une horoboule de centre p du convexe Sp.

On se donne p+ un point sur le bord de l'ellipsoide £' qui n'est pas p
et tel que le segment [p,p+] rencontre D dans son interieur. On se donne un
element hyperbolique g E Aut(Sp) dont le point attractif est p+ et le point
repulsif est p. La suite de convexe gk -Sp tend vers S'p car Sp est Vhoroboule
de centre p de Lespace hyperbolique Sp.

Nous allons utiliser g pour obliger la "bisuite" (gk • un\k^e^2 ä sous-

converger dans Sp. La suite (un)ngn converge vers p et 1'element g est

hyperbolique de point attractif p+ Le supremum tmax des quantites dg>(x, g-x)
sur la reunion des gk(D) est fini car le segment rencontre D dans son

interieur, D est une reunion finie de convexe et dD est un ensemble fini.

Choisissons un hyperplan H\ qui coupe Q le long d'un ouvert proprement
convexe de codimension 1. Uouvert S'p\Hi est compose de deux composantes

connexes, Celles "en-dessous" de H\ qui contient p dans son adherence et

celle "au-dessus" de H\ qui contient p+ dans son adherence. On choisit un
second hyperplan H2 parallele dans £', ä distance h 10 x tmax de H\ et

au-dessus de H\.

P
Figure 7

Demonstration de la Gromov-hyperbolicite de Q
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Apres on observe la suite (un)nen II existe un entier no tel que

pour tout n ^ n0, la suite un est sous H\. Ensuite, on applique g, la
suite (gk • uno)ke^ converge vers p+. La distance entre les hyperplans Hi
et H2 est suffisamment grande pour qu'il existe un entier k0 tel que gko • uno

soit entre les deux hyperplans.

Ensuite, il existe un entier n\ tel que pour tout n ^ n\, la suite gk° -un est

sous Hi. La distance entre les hyperplans Hi et H2 est suffisamment grande

pour qu'il existe un entier k\ tel que gkl • unx soit entre les deux hyperplans.
Ce procede montre qu'il existe deux extractrices (kt)ien et (nt)ie^

telles que:
1. gkl - Q -A £'\

i—>00 ^

2. gkl • uUi -A e £p
1—>00 r

Mais la suite (un)ngn est incluse dans le domaine fondamental D, par
consequent, E £'p. On peut bien entendu quitte ä extraire encore une fois

supposer que l'on a aussi les convergences suivantes:

1. gki • xUi -a x'qq E £p ;
1—>00 r

2. gkl - yni y'oo ^ £'P »

1—>oc r
3. gK -Zn, z'oc e £p.

1—>oc r
Les triangles gk • Tn de gk(Q) sont isometriques au triangle Tn de Q.

Par consequent, on a dg^u'^, [x'00,z,00i U [z'oc>/oo]) 00 • Mais un ellipsoi'de
muni de sa distance hyperbolique est un espace Gromov-hyperbolique (c'est
l'espace hyperbolique reel) done ceci entraine que x'^ z'^ ou y'^ z'^
et par suite xf00 y^. II vient done que u'^ xf00 y^, ce qui est

absurde.

COROLLAIRE 7.11. L'ouvert proprement convexe (I5t,diit) est Gromov-

hyperbolique.

Demonstration. La proposition 6.9 montre que Paction de At sur 131

verifie tous les points du lemme precedent.

BIBLIOGRAPHIE

[BMOO] Bekka, M. B. and M. MAYER. Ergodic Theory and Topological Dynamics
of Group Actions on Homogeneous Spaces. London Mathematical
Society Lecture Note Series 269. Cambridge University Press,
Cambridge, 2000.



46

[BdlH04]

[Ben97]

[BenOO]

[Ben03a]

[Ben03b]

[Ben04a]

[Ben04b]

[Ben05]

[Ben06a]

[Ben06b]

[Ben08]

[BerOO]

[Bor60]

[Bow93]

[Cra09]

[Gol90]

[GPS88]

[HJS96]

[JM87]

[Kap07]

L MARQUIS

Benoist, Y et P de LA Harpe Adherence de Zanski des groupes de

Coxeter Compos Math 140 (2004), 1357-1366

BENOIST, Y Propnetes asymptotiques des groupes lmeaires Geom Funct
Anal 7 (1997), 1^7
Automorphismes des cones convexes Invent Math 141 (2000),
149-193

Convexes divisibles II Duke Math J 120 (2003), 97-120
Convexes hyperboliques et fonctions quasisymetnques Publ Math
Inst Hautes Etudes Sei 97 (2003), 181-237

Convexes divisibles I In Algebraic Groups and Arithmetic, 339-
374 Tata Inst Fund Res Mumbai, 2004

Five lectures on lattices m semi simple Lie groups Summer school
m Grenoble, 2004

Convexes divisibles III Ann Sei Ecole Norm Sup (4) 38 (2005),
793-832
Convexes divisibles IV Structure du bord en dimension 3 Invent
Math 164 (2006), 249-278
Convexes hyperboliques et quasnsometries Geom Dedicata 122
(2006), 109-134

A survey on divisible convex sets In Geometry Analysis and
Topology of Discrete Groups, 1-18 Adv Lect Math (ALM) 6
Int Press, Somerville, MA, 2008

BERGERON, N Premier nombre de Betti et spectre du laplacien de

certames varietes hyperboliques L'Enseignement Math (2) 46
(2000), 109-137

BOREL, A Density properties for certain subgroups of semi simple groups
without compact components Ann of Math (2) 72 (1960), 179-
188

BOWDITCH, B H Geometrical finiteness for hyperbolic groups J Funct
Anal 113 (1993), 245-317

CRAMPON, M Entropies of strictly convex projective manifolds J Mod
Dyn 3 (2009), 511-547

Goldman, W M Convex real projective structures on compact surfaces
J Differential Geom 31 (1990), 791-845

Gromov, M and I PlATETSKl SHAPIRO Nonanthmetic groups m
Lobachevsky spaces Inst Hautes Etudes Sei Publ Math 66
(1988), 93-103

HONG, S M H Jeong and J S SAKONG Characterizations of conical
limit points for Klemian groups Commun Korean Math Soc 11

(1996), 253-258

JOHNSON, D and J J Millson Deformation spaces associated to
compact hyperbolic manifolds In Discrete Groups in Geometry
and Analysis (New Haven Conn 1984), 48-106 Progress m
Mathematics 67 Birkhauser Boston, Boston, MA, 1987

KAPOVICH, M Convex projective structures on Gromov Thurston mam
folds Geom Topol 11 (2007), 1777-1830



VARIETES PROJECTIVES STRICTEMENT CONVEXES 47

[KN02] KäRLSSON, A and G A NOSKOV The Hilbert metric and Gromov
hyperbolicity UEnseignement Math (2) 48 (2002), 73-89

[Kos68] KOSZUL, J L Deformations de connexions localement plates Ann Inst
Fourier (Grenoble) 18 (1968), 103-114

[Lee] Lee, J Convex fundamental domains for properly convex real projective
structures Preprint, 2009

[Lee07] A convexity theorem for real projective structures Preprint arXiv
math GT/0705 3920 (2007)

[Mar09] MARQUIS, L Surface projective convexe de volume fini Preprint arXiv
math GT/0902 3143 (2009)

[MarlOa] Espace des modules de certams polyedres projectifs miroirs Geom
Dedicata 147 (2010), 47-86

[Mar 10b] Espace des modules marques des surfaces projectives convexes de
volume fini Geom Topol 14 (2010), 2103-2149

[Qui 10] QUINT, J F Convexes divisibles (d'apres Yves Benoist) In Seminaire
Bourbaki Vol 2008/2009 Exposes 997-1011 Astensque 332
(2010), Exp No 999, vn, 45-73

[Rat06] RATCLIFFE, J G Foundations of Hyperbolic Manifolds Second edition
Graduate Texts m Mathematics 149 Springer, New York, 2006

[Ver05] VERNICOS, C Introduction aux geometries de Hilbert In Actes de
Seminaire de Theorie Spectrale et Geometrie 23, 2004—2005, 145-
168 Umv Grenoble I, Samt Martin d'Heres, 2005

[Vm63] VlNBERG, E B The theory of homogeneous convex cones Trudy Moskov
Mat Obsc 12 (1963), 303-358

[Vm65] Structure of the group of automorphisms of a homogeneous convex
cone Trudy Moskov Mat Obsc 13 (1965), 56-83

[Vm71] Discrete linear groups that are generated by reflections Izv Akad
Nauk SSSR Ser Mat 35 (1971), 1072-1112

[VK67] VlNBERG, E B and V G KAC Quasi homogeneous cones Mat Zametki
1 (1967), 347-354

(Regu le 13 avnl 2010)

Ludovic Marquis

Universite de Rennes I
Institut de recherche mathematique de Rennes (IRMAR)
Bat 22 Campus de Beaulieu, UMR CNRS 6625
263, avenue du General Leclerc
F 35042 Rennes Cedex
France
e-mail ludovic marquis@univ rennes 1 fr


	Exemples des variétés projectives strictement convexes de volume fini en dimension quelconque

