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L’Enseignement Mathématique (2) 58 (2012), 3-47

EXEMPLES DE VARIETES PROJECTIVES STRICTEMENT CONVEXES
DE VOLUME FINI EN DIMENSION QUELCONQUE

par Ludovic MARQUIS

RESUME. Nous construisons des exemples de variétés projectives Q/ T proprement
convexes de volume fini, non hyperboliques, non compactes en toute dimension n > 2.
Ceci nous permet au passage de construire des sous-groupes discrets Zariski-denses I'
de SL,4+1(R) qui ne sont ni des réseaux de SL,;(R), ni des groupes de Schottky. De
plus, les ouverts proprement convexes Q ainsi construits sont strictement convexes,
méme Gromov-hyperboliques. Enfin, on donne une condition suffisante pour que le
recollement de variétés projectives convexes a bord totalement géodésique soit une
variété projective convexe.

1. INTRODUCTION

Une variété projective proprement convexe est le quotient d’un ouvert
proprement convexe & de I’espace projectif réel P* = P"(R) par un sous-
groupe discret sans torsion I' de SL,;;(R) qui préserve Q. Lorsque le
quotient Q/p est compact, ces variétés ont été beaucoup étudiées durant
ces dernieres années. On pourra lire par exemple les articles suivants:
|Ben03a, BenO4a, Ben05, Ben06a, Cra09, Gol90]. Pour un survol de 1’état du
sujet en 2006 ou 2008, on pourra lire [Ben08, Quil0].

Un ouvert proprement convexe de I’espace projectif réel posséde une
distance (dite de Hilbert) et une mesure (dite de Busemann) invariantes par
les transformations projectives qui le préservent. Nous détaillons ces points
au paragraphe 1.1, passons plutdt a I’exemple essentiel.

[’exemple le plus important d’ouvert proprement convexe est 1’ellipsoide.
On considere la forme quadratique g(xi,...,X,41) = X3 + -+ 4+ 22 — x2,,
sur R**'. On note & la projection du céne de lumicre de g (i.e. I’ensemble
des points {x € R""! | g(x) < 0}) sur P". Nous appellerons toute image par
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une transformation projective de 1’ouvert £ : un ellipsoide. Muni de sa distance
de Hilbert, un ellipsoide est isométrique a I’espace hyperbolique réel H". Il
s’agit du modele projectif de 1’espace hyperbolique, que 1’on appele parfois
modele de Beltrami-Klein. En particulier, cet ouvert est homogene, c’est-a-dire
que le groupe Aut(Q) = {y € SL,+1(R) | 7(Q) = Q} agit transitivement
sur Q. La figure 1 montre un pavage par une tuile compacte et un pavage par
une tuile non compacte mais de volume fini du modele projectif de 1’espace
hyperbolique.

FIGURE 1
Modele de Klein-Beltrami de I’espace hyperbolique réel

L’auteur s’est intéressé dans sa these a la description des surfaces projectives
convexes de volume fini ([Mar09, Mar10b]). Le but de cet article est de montrer
le théoreme suivant:

THEOREME. En toute dimension n > 2, il existe un couple (2,,T,)
ou Q, est un ouvert proprement convexe strictement convexe de P" et Iy, un
sous-groupe discret de SL,11(R) qui préserve Q, et tel que:

1. le quotient Q"/Fn est de volume fini;

2. le quotient Q, /rn n’est pas compact;

3. le groupe T, est d’indice fini dans le groupe Aut(Q). En particulier,
I’ouvert proprement convexe Q, n’est pas homogene.

De plus, 'ouvert Q, est Gromov-hyperbolique et le groupe T, est Zariski-
dense dans SL,+1(R).
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REMARQUE. Benoist a montré dans [Ben0O4a| que tout ouvert proprement
convexe de P" Gromov-hyperbolique est strictement convexe. Karlsson et
Noskov ont montré dans [KNO2] que le bord 0Q2 de tout ouvert proprement
convexe Q de P" Gromov-hyperbolique est C'. Benoist a montré dans
[Ben03b] des propriétés de régularité encore plus fortes mais plus complexes
a énoncer.

La partie 4 a pour but de démontrer le théoreme 4.7. Ce théoreme
donne une condition suffisante pour que le recollement d’un nombre fini
de variétés projectives convexes a bord totalement géodésique soit encore une
variété projective convexe. Il est difficile d’en donner un énoncé précis dans
I’introduction mais son énoncé est intéressant en soi.

Disons simplement qu’étant donné une famille infinie de tuiles convexes
(ni ouvertes ni fermées), on cherche a donner un critere pour que la réunion
soit un ouvert convexe. Il y a essentiellement 3 conditions, une évidente
et facile a énoncer: la réunion de deux tuiles adjacentes doit étre convexe.
La deuxieme a été mise en évidence par Vinberg et consiste a dire que
lorsque au moins 3 convexes se rencontrent, on est dans une “situation
diédrale” (figure 5). La troisiéme condition est une hypothese de convexité
“a 'infini” qui permet de gérer le fait que nos tuiles de base ne sont pas
fermées.

Plusieurs résultats de convexité sont déja connus. Vinberg a montré
([Vin71]) que le recollement de polyedres par un groupe de Coxeter donnait une
orbifold projective convexe pour peu que les conditions nécessaires évidentes
soient vérifiées (on pourra aussi consulter [Ben04b| pour une démonstration
plus simple). Kapovich a donné un criteére (plutdt complexe) pour recoller
des variétés compactes projectives convexes a bord totalement géodésique et
obtenir une variété compacte projective convexe dans [Kap07]. Jaejeong Lee
a donné un critere pour recoller des polyédres convexes et obtenir une variété
compacte projective convexe dans [LeeQ7].

Il nest pas évident de faire la différence entre tous ces résultats.
Remarquons simplement que Vinberg et Lee utilisent pour construire des
variétés convexes des tuiles fermées polyédrales. Alors que Kapovich et le
théoréme 4.7 ne demande pas que les tuiles soient polyédrales. Le théoreme
4.7 est plus général que le théoreme de Kapovich et la démonstration proposée
est inspirée de la démonstration de Vinberg.

Avant de faire quelques rappels historiques nous allons rappeler les
définitions précises de tous ces objets.
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1.1 GEOMETRIE DE HILBERT

Cette partie constitue une introduction tres rapide a la géométrie de Hilbert.
Pour une introduction beaucoup plus complete, on pourra lire [Ver05].

DEFINITION 1.1. Une carte affine A de P" est le complémentaire d’un
hyperplan projectif. Une carte affine possede une structure naturelle d’espace
affine. Un ouvert Q de P" différent de P est convexe lorsqu’il est inclus dans
une carte affine et qu’il est convexe dans cette carte. Un ouvert convexe
de P" est dit proprement convexe lorsqu’il existe une carte affine contenant
son adhérence Q. Autrement dit, un ouvert convexe est proprement convexe
lorsqu’il ne contient pas de droite affine. Un ouvert convexe © de P" est
dit strictement convexe lorsque son bord 9Q ne contient pas de segment non
trivial.

LA METRIQUE D’UN OUVERT PROPREMENT CONVEXE. Soit Q un ouvert
proprement convexe de P”, Hilbert a introduit sur de tels ouverts une distance,
la distance de Hilbert, définie de la facon suivante:

Soient x # y € Q, on note p,q les points d’intersection de la droite (xy)
et du bord 0Q de Q tels que x est entre p et y, et y est entre x et ¢ (voir
figure 2). On pose:

do(x,y)=Lin([p:x:y:qh)=1LIn (%) et do(x,x) =0.

1. [p:x:y:q] désigne le birapport des points p,x,y,q.
2. || - || est une norme euclidienne quelconque sur une carte affine A qui

contient I’adhérence Q de Q.

FIGURE 2
La distance de Hilbert

REMARQUE. Il est clair que do ne dépend ni du choix de A, ni du choix
de la norme euclidienne sur A.
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FAITS. Soit Q un ouvert proprement convexe de P",
do est une distance sur Q.

(Q,dg) est un espace métrique complet.

w N =

La topologie induite par dg coincide avec celle induite par P".

=

Le groupe Aut(2) des transformations projectives de SL,;(R) qui
préservent € est un sous-groupe fermé de SL,1(R) qui agit par isométrie
sur (2,dg). Il agit donc proprement sur €.

LA STRUCTURE FINSLERIENNE D’UN OUVERT PROPREMENT CONVEXE.
Soit © un ouvert proprement convexe de P, la métrique de Hilbert dg
est induite par une structure finslérienne sur I’ouvert €. On identifie le fibré
tangent 7Q2 de Q a Q X A.

Soient x € Q et v € A, on note p* (resp. p~) le point d’intersection de
la demi-droite définie par x et v (resp. —v) avec 0Q.

On pose: lolls = & (=g + ey Il

ot

FIGURE 3
La métrique de Hilbert

FAIT. Soient € un ouvert proprement convexe de P" et A une carte

affine qui contient €,
1. la distance induite par la métrique finslérienne || -||. est la distance dg .
2. Autrement dit on a les formules suivantes:
¢ |lvlly = 4|—odalx,x + 1), ol v € A, 1 € R assez petit.
e dg(x,y) = inf fol l|o’(®)]|odt, ot I’inf est pris sur les chemins o de
classe C' tels que o(0) = x et o(l) =y.

REMARQUE. La quantité
de |-

|v||. est donc indépendante du choix de A et
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MESURE SUR UN OUVERT PROPREMENT CONVEXE. Nous allons construire
une mesure borélienne pg sur Q, de la méme facon que ’on construit une
mesure borélienne sur une variété riemannienne.

Soit  un ouvert proprement convexe de P, on note:

e B()={veT Q||| <1};
* Vol est la mesure de Lebesgue sur A normalisée pour avoir

Vol({v € Al |v] < 1}) =1.

On peut a présent définir la mesure ug. Pour tout borélien A C Q C A,
on pose:

dVol(x)
pa(A) = Vol B.(1)
A Vol(B(1))
La mesure pugq est indépendante du choix de A et de || - ||, car c’est la

mesure de Hausdorff de (Q,dg).

DEFINITION 1.2. Le quotient d’un ouvert proprement convexe € par un
sous-groupe discret I' hérite d’une mesure via la mesure de Busemann de Q.
On dira que Q/ est de volume fini lorsqu’il est de volume fini pour cette
mesure.

1.2 PETIT HISTORIQUE AUTOUR DE LA CONSTRUCTION D’OUVERTS PROPRE-
MENT CONVEXES POSSEDANT “BEAUCOUP DE SYMETRIES™

LE CAS HOMOGENE. Une premiere définition d’ouverts proprement con-
vexes possédant “beaucoup de symétries” est un ouvert proprement convexe
homogene, c’est-a-dire tel que le groupe Aut(€2) agit transitivement sur €.
Koecher et Vinberg ont classifié ces ouverts dans les années 50-60 dans les
deux articles suivants: [Vin65, Vin63].

La liste de ces ouverts est assez longue et ne nous intéresse pas car un ouvert
proprement convexe homogene € posseéde un sous-groupe discret I' C Aut(£2)
tel que le quotient Q/ - est de volume fini si et seulement si le groupe Aut(Q)
est unimodulaire si et seulement si I"ouvert Q est un espace symétrique (i.e.
il existe une symétrie centrale centrée en n’importe quel point).

Les ouverts proprement convexes qui nous intéressent sont ceux des deux
définitions suivantes :

DEFINITION 1.3. Un ouvert proprement convexe Q de P" est dit divisible
lorsqu’il existe un sous-groupe discret I' de SL,;(R) tel que T' C Aut(2)
et Q/ est compact.
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DEFINITION 1.4. Un ouvert proprement convexe Q de P" est dit
quasi-divisible lorsqu’il existe un sous-groupe discret I' de SL,t;(R) tel
que T C Auy(R2) et Q/ est de volume fini.

Les ellipsoides sont les seuls convexes divisibles (resp. quasi-divisibles)
homogenes et strictement convexes.

Il existe des convexes divisibles (resp. quasi-divisibles) homogenes et non
strictement convexes. Voici la liste des irréductibles avec n > 2 :

1. II,(R) = P({les matrices réelles (n+ 1) x(n+1) symétriques définies posi-
tives}), il est de dimension m = W et son groupe d’automorphismes
est SL,+1(R).

2. I1,(C) = P({les matrices complexes (n+ 1) x (n+ 1) hermitiennes définies
positives}), il est de dimension m = n?>—1 et son groupe d’automorphismes
est SL,+1(C).

3. II,(H) = P({les matrices quarternioniques (n+ 1) x (n+ 1) hermitiennes
définies positives}), il est de dimension m = (2n+ 1)(n— 1) et son groupe
d’automorphismes est SL,(H).

4. TI3(0) un convexe “exceptionnel” de dimension 26 et tel que (I’algebre
de Lie automorphe) Lie(Aut(IT3(0))) = es—26) -

LE CAS NON-HOMOGENE. Kac et Vinberg ont construit les premiers
exemples de convexe divisible non-homogene dans [VK67] a 1’aide de groupes
de Coxeter. Les résultats joints de Johnson et Millson ([JM87]), Koszul
([Kos68]) et Benoist ([BenO4a]) montrent qu’en toute dimension n > 2,
il existe des convexes divisibles non homogenes et strictement convexes.

Kapovich et Benoist ont construit en toute dimension n > 4 (Benoist
pour n = 4 dans [Ben06b] et Kapovich pour n > 4 dans [KapO7])
des convexes divisibles non homogenes, strictement convexes et non quasi-
isométriques a I’espace hyperbolique H”".

Dans [Mar09], I"auteur a montré que tout convexe quasi-divisible de
dimension 2 est strictement convexe. La généralisation de ce résultat en
dimension supérieure est fausse. En effet, Benoist a construit des exemples de
convexes divisibles irréductibles, non homogenes et non strictement convexes
en dimension 3, 4, 5 et 6 (|[Ben06a]). Cette famille de convexe divisible est
la plus difficile a construire. Les constructions de I’article [Marl0a] devraient
permettre de construire des exemples de convexes quasi-divisibles irréductibles,
non homogenes et non strictement convexes en dimension 3.
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1.3 ESPACES DES MODULES

On rappelle dans ce paragraphe les définitions de structure projective,
d’espaces des modules de structures projectives, etc...pour éviter les am-
biguités.

DEFINITION 1.5. Une structure projective réelle sur une variété M est
la donnée d’un atlas maximal ¢z : U — P" sur M tel que les fonctions
de transitions ¢y o ap;‘ sont des éléments de SL,.;(R), pour tout couple
d’ouverts U et V de l’atlas de S tel que U NV # .

REMARQUE 1.6. Pour simplifier la rédaction on dira « structure projective »
a la place de «structure projective réelle ».

DEFINITION 1.7.  Un isomorphisme entre deux variétés munies de structures
projectives est un homéomorphisme qui, lu dans les cartes, est donné par des
éléments de SL,;+1(R).

La donnée d’une structure projective sur une variété M est équivalente a
la donnée:

1. d’un homéomorphisme local Dev: M — P" appelé développante, ol M
est le revétement universel de M,

2. d’une représentation Hol: m1(M) — SL,4+1(R) appelée holonomie telle que
la développante est (M)-équivariante (i.e. pour tout x € M, et pour
tout v € (M) on a Dev(yx) = Hol(y)Dev(x)).

De plus, deux structures projectives données par les couples (Dev,Hol) et

(Dev’, Hol") sont isomorphes si et seulement s’il existe un élément g € SL,; 1 (R)

tel que Dev’ = goDev et Hol' = goHolog™!.

DEFINITION 1.8. Soit M une variété, une structure projective marquée
sur M est la donnée d’un homéomorphisme ¢: M — M ou M est une variété
projective. On note P'(M) [l’ensemble des structures projectives marquées
sur M.

Deux structures projectives marquées sur M, o1: M — My et p: M— M,
sont dites isoropes lorsqu’il existe un isomorphisme h: M; — M, tel
que ¢, Yohow: M — M est un homéomorphisme isotope a I’identité.
On note P(M) I’ensemble des structures projectives marquées sur M modulo
isotopie.
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On peut a présent définir une topologie sur I’ensemble des structures
projectives marquées sur la variété M. On introduit I’espace:

Dev: M — P" est un homéomorphisme local
D'(M)={ (Dev,Hol) | Hol: 7;(M) — SL,.41(R)
Dev est m(M)-équivariante

Les espaces Mv , P, m(M) et SL,1(R) sont des espaces topologiques
localement compacts. On munit 1’ensemble des applications continues entre
deux espaces localement compacts de la topologie compact-ouvert. Ainsi,
’espace D’'(M) est munie d’une topologie. Le groupe Homeoo(M) des
homéomorphismes isotopes a I’identité agit naturellement sur D’(M). Le
groupe SL,(R) agit aussi naturellement sur D’(M). Ces deux actions
commutent. [’espace quotient est I’espace P(M) des structures projectives
marquées sur M a isotopie pres. On le munit de la topologie quotient.

On ne s’intéresse qu’a un certain type de structure projective: les structures
projectives proprement convexes.

DEFINITION 1.9. Soit M une variété, une structure projective sur M est
dite proprement convexe lorsque la développante est un homéomorphisme
sur un ouvert Q proprement convexe de P". On note [F(M) [’ensemble des
structures projectives proprement convexes sur M modulo isotopie.

Soit M une variété projective proprement convexe, I’application dévelop-
pante permet d’identifier le revétement universel M de M a un ouvert Q
proprement convexe de P" qui est naturellement muni d’une mesure po invari-
ante sous 1’action du groupe fondamental (M) de M. On note 7: Q — M
le revétement universel de M. Il existe une unique mesure paq sur M telle
que pour tout borélien A de Q, si w: Q@ — M restreinte a A est injective
alors pa(m(A) = pa(A).

DEFINITION 1.10. Soit M une variété, on dit qu’une structure projective
proprement convexe M sur M est de volume fini lorsqu’on a pa (M) < co.
On note (B¢(M) [’espace des modules des structures projectives marquées
proprement convexes de volume fini sur M.

14 PLAN

Nous allons a présent expliquer la structure de cet article. Dans la partie 2,
nous rappelons rapidement comment construire une variété hyperbolique qui
posséde une hypersurface totalement géodésique.
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Dans la partie 3, nous rappelons comment plier une variété hyper-
bolique M le long d’une hypersurface totalement géodésique N . Le
pliage est une déformation p,: m(M) — SL,11(R) non triviale de Ia
représentation po: m (M) — SO, 1(R) du groupe fondamental de la variété
hyperbolique M. Ce type de déformation a été utilisée par Johnson et Millson
dans [JM87], sous le nom de “bending”. Le pliage nous permet d’obtenir une
nouvelle structure projective sur M qui n’est plus hyperbolique. La premiere
difficulté consiste a montrer que cette nouvelle structure est encore propre-
ment convexe. Il faut montrer qu’il existe un ouvert proprement convexe £2;
préservé par p,. Pour cela, nous utiliserons un théor¢me de convexité qui sera
présenté et démontré dans la partie 4.

Dans la partie 5, nous montrerons que les groupes p,(m;(M)) ainsi construits
sont irréductibles, Zariski-dense dans SL,;(R) (pour 7 # 0) et que leur action
sur le bord de €, est minimale. On en profitera pour montrer que le pliage
est bien une déformation non triviale, que les groupes obtenus ne sont pas
des réseaux de SL,;(R) et que les ouverts proprement convexes obtenus ne
sont pas homogenes.

Dans la partie 6, nous montrons que I’action de p,(m(M)) sur L, est de
covolume fini. Ceci nous fournira un argument pour montrer que les groupes
obtenus ne sont pas des groupes de Schottky.

Enfin dans la partie 7, nous montrerons que I’ouvert €, est strictement
convexe et méme Gromov-hyperbolique.

REMERCIEMENTS. L’auteur tient a remercier vivement les laboratoires de
I’UMPA a Lyon et de TIFR a Mumbai pour les extraordinaires conditions de
travail qu’ils offrent. Plus particulierement, I’auteur remercie Venkataramana,
Yves Benoist, Nicolas Bergeron et Constantin Vernicos pour leurs aides a
distance ou en “live”. Et plus particulicrement, Mickaél Crampon pour son
aide pour les démonstrations de la partie 7.

2. CONSTRUCTION DE VARIETES HYPERBOLIQUES POSSEDANT UNE
HYPERSURFACE TOTALEMENT GEODESIQUE

La proposition suivante est tres classique. Elle sert par exemple de point de
départ pour construire des variétés hyperboliques non arithmétiques ([GPS88]),
ou avec un premier nombre de Betti arbitrairement grand (voir par exemple
[Ber00]).
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PROPOSITION 2.1. En toute dimension n > 2, il existe une variété
hyperbolique de volume fini non compacte M, et une variété hyperbolique
compacte M), qui posséde une hypersurface totalement géodésique de volume
fini (pour la métrique hyperbolique induite).

L’objet de cette partie est de rappeler les grandes lignes de la démonstration
de cette proposition dans le cas non compact.

2.1 SOUS-VARIETE TOTALEMENT GEODESIQUE IMMERGEE ET PLONGEE DES
VARIETES HYPERBOLIQUES

Nous aurons besoin du théoreme suivant. Ce théoreme a une longue histoire
et de nombreux auteurs, on pourra trouver une preuve de la version qui
nous intéresse dans I’article [Ber00] (Théoréme 1’) de Nicolas Bergeron. Ce
théoréme nous dit que si I’on peut immerger de facon totalement géodésique
une variété hyperbolique “proprement” alors on peut la plonger quitte a passer
a un revétement fini. Voici 1’énoncé précis.

THEOREME 2.2. Soit M une variété hyperbolique de volume fini de
dimension n et N une variété hyperbolique de dimension n — 1 de volume
fini. On suppose qu’il existe une immersion propre totalement géodésique ¢
de N dans M alors il existe un revétement fini M de M et un revétement
fini N de N tel que le relevé @ N — M de @: N — M soit un plongement
totalement géodésique.

2.2 CONSTRUCTION DE LA VARIETE HYPERBOLIQUE M,

Dans ce paragraphe, on construit la variété M, de la proposition 2.1.
Pour construire une telle variété, nous allons utiliser le théoreme de Borel et
Harish-Chandra qui permet de construire des réseaux arithmétiques uniformes
et non-uniformes dans les groupes de Lie semi-simples. On donne ici une
version tres simplifiée de ce théoréme dans le cas ou le groupe de Lie
est SO, 1(R) et le réseau est non-uniforme.

THEOREME 2.3 (Borel et Harish-Chandra). Soit q une forme quadratique
sur R" 4 coefficients dans Q, avec n > 2. On suppose que :

1. la forme quadratique q représente O sur Q;
2. la forme quadratique q est de signature (n,1).

Alors, le groupe SL,+1(Z)NSO(q) est un réseau non-uniforme de SO(q) .
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Nous aurons aussi besoin du lemme de Selberg.

THEOREME 2.4 (Selberg). Tout sous-groupe de type fini de GL,(C) est
virtuellement sans torsion.

Rappellons qu’un groupe I' est virtuellement sans torsion s’il contient un
sous-groupe d’indice fini I’ qui est sans torsion (c’est-a-dire que tous les
éléments de I sont d’ordre infini).

On considere la forme quadratique g(xy, ..., X,41) =X+ +x3 — X2,
elle vérifie les hypotheses du théoreme 2.3. Par conséquent, le groupe
A1 = SL,11(Z) N SO(gq) est un réseau non-uniforme de SO, (R). Le lemme
de Selberg montre qu’il existe un sous-groupe d’indice fini A, C A; sans
torsion.

Le groupe A, des éléments de A, qui préservent I’hyperplan H = {x; = 0}
est un sous-groupe d’indice fini du groupe SL,(Z) N SO(g’), ou

q/(xz,...,x,,+1):x§+...+x§7x%+l’

c’est donc un réseau de SO(q’) (uniforme si n = 2 et non-uniforme si n > 3).

L’application naturelle ¢ de H/A, vers H"/ A, ©st une immersion
totalement géodésique propre. Le théoréeme 2.2 montre qu’il existe un sous-
groupe A (resp. Ag) d’indice fini de A, (resp. Az) tel que le relevement
associé de ¢ est un plongement.

Par conséquent, la variété M, = H"/ Ao ©St une variété hyperbolique de
volume fini qui posséde une hypersurface Ny = H/ Ao totalement géodésique
de volume fini.

NOTATIONS. Tout au long de ce texte, le symbole Ay (resp. M, ) désignera
le groupe Ag (resp. la variété topologique M, ) que I’on vient de construire.
On désignera par le symbole M, la structure hyperbolique que I’on vient de
construire sur M, . On désignera par le symbole Ny I’hypersurface totalement
géodésique de My que I’on vient de construire.

3. PLIAGE

Nous allons a présent construire une famille continue de structures
projectives sur la variété topologique M,, .
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3.1 PRESENTATION

DEFINITION 3.1. Soit M une variété. Soit M une structure projective
sur M . Une déformation projective de M est un chemin continu ¢: R — P(M)
tel que ¢(0) = M. Une déformation est dite triviale lorsque le chemin ¢ est
constant.

Johnson et Millson ont montré le théor¢me suivant dans [JM87].

THEOREME 3.2 (Johnson-Millson). Soit M une variété hyperbolique.
Si M possede une hypersurface totalement géodésique N alors il existe
une déformation projective non triviale de M.

Comme nous allons utiliser la méme déformation que celle introduite par
Johnson et Millson, nous allons dans le paragraphe 3.2 qui suit reprendre
la construction de cette déformation. Nous ne montrerons pas dans le
paragraphe 3.2 que cette déformation est effectivement non triviale. Nous
le montrerons a I’aide du corollaire 5.7.

Le théoreme 3.7 montrera que la structure projective déformée est encore
proprement convexe. Ceci entrainera en particulier que I’holonomie de la
structure projective déformée est encore fidele et discrete. Nous donnons une
courte démonstration de ce résultat dans la partie 4. Dans la partiec 6 nous
montrerons que la structure projective déformée est de volume fini.

3.2 DEFORMATION DE STRUCTURE PROJECTIVE

Soit M une variété hyperbolique de volume fini et A/ une hypersurface
totalement géodésique de M de volume fini. On note Devy: M= QcCPr
et po: m (M) — SL,+1(R) un couple développante-holonomie qui définit la
structure projective M. On note H une composante connexe de la préimage
de N dans Q. On se donne xo un point de H. La variété M — N possede
une ou deux composantes connexes, nous allons distinguer ces cas dans les
deux paragraphes suivants.

3.2.1 DEFORMATION DANS LE CAS SEPARANT. On suppose que la
variété M — N possede deux composantes connexes M, et M,.

Le théoreme de van Kampen montre que le groupe fondamental de M
peut s’écrire comme le produit amalgamé suivant:

M) = m(My) * m(My).
m(N)

1(
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On cherche a déformer la représentation po, pour cela on peut essayer de
définir une nouvelle représentation de la facon suivante: soit a € SL,11(R),
on pose:

pa: (M) — SL,11(R)
A — { po(Y) B 5? v € m(My)
apo(y)a si v € m(My).

La représentation p, est bien définie si et seulement si V§ € m(N),
on a po(d) = ap0(5)a_' , autrement dit si et seulement si a appartient au
centralisateur de po(m(N)) dans SL,.1(R). L’existence d’un tel élément est
assurée par le lemme 3.3.

On note C; et Cq les adhérences des deux composantes connexes
de Q— Uwem(M)wH (les vH sont disjoints puisque N est une hypersurface)
qui bordent H. Le stabilisateur de C, (resp. C;) dans m (M) est le
groupe (M) (resp. m(My)).

La nouvelle développante est I'unique homéomorphisme local p,-équi-
variant qui prolonge I’application Dev,: C; U Cy — P" suivante:

1. Si x € Cy alors on pose Dev,(x) = Devg(x).
2. Si x € C; alors on pose Dev,(x) = a - Devy(x).
3. L’existence et ’unicité du prolongement de Dev, a Q = M est évidente.

Le théoreme 3.7 montrera que Dev, est un homéomorphisme sur un ouvert
proprement convexe de €.

3.22 DEFORMATION DE STRUCTURE PROJECTIVE DANS LE CAS NON
SEPARANT. On suppose que la variété M — A est connexe. On note M
la variété a bord obtenue en découpant M le long de N, c’est-a-dire en
ajoutant deux copies de A" a M — A . Supposons que la variété M possede
deux bords N, et N;. On choisit un point xo € A'. On a une projection
naturelle p: M — M qui est un homéomorphisme lorsqu’on la restreint a
’intérieur de M. On se donne o un chemin de la variété M qui va du
bord A, au bord N, dont la projection p(a) sur M est un lacet de M
basé en xo. Le théoreme de Van Kampen montre que le groupe fondamental
de M peut s’écrire comme la HNN-extension suivante :

T(M, x0) = m(MT,x9) *q .
On note x, (resp. x4) le point de départ (resp. d’arrivée) de «, C’est
I’unique point de N (resp. Ny) qui se projette sur xo. Le fait que
T (M) = m(MP)x, signifie que 7 (M) est le quotient du produit libre du
groupe (M) et du groupe engendré par le lacet o par la relation suivante :
Vg €mi(Ny, Xg) Vya €m1(Na, xa) tel que p* () = p*(ya) alors vy =a 'y
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On peut essayer de définir une nouvelle représentation de la fagon suivante :
soit a € SL,+1(R), on pose:

Pa: m1(M,x0) = SL,41(R)

i T

¥ —3 po(y) sty €m(MT,xg)
apo(a) siy=a.

La représentation p, est bien définie si et seulement si: Vv, € (N, x4),

V4 € m(Na,xa) tel que p*(v4) = p*(74) on a:
pa('Vg) = Pa(Oé_I’YdOZ)~
Or,

L. pa(y9) = po(7g) = po(@) ™" po(Ya)po(ev) ,
2. pala™v40) = pala™"pa(ya)pal) = po(@)~'a™" po(radapo().

Autrement dit p, est bien définie si et seulement si a appartient au
centralisateur de po(m1(Ny,x4)) = po(m1 (N, x0)) dans SL,.(R). Lexistence
d’un tel élément est assurée par le lemme 3.3.

On note C une composante connexe de Q—J, ., v 7H - Le stabilisateur
de C dans m (M) est le groupe m (M),

La nouvelle développante Dev, est I’unique homéomorphisme local p,-
équivariant qui prolonge I’application Dev,|c = Devolc .

Le théoreme 3.7 montrera que Dev, est un homéomorphisme sur un ouvert
proprement convexe de €2.

3.2.3 CENTRALISATEUR DU GROUPE FONDAMENTAL D’UNE HYPERSURFACE
Le lemme suivant est élémentaire.

LEMME 3.3. Soit A un réseau de SO,_; 1(R), on considere la représen-
tation p de A obtenue a ['aide de [linjection qui préserve la premiere
coordonnée de SO,_1,1(R) dans SO, 1(R) puis de I’injection canonique dans
SL,+1(R). La composante connexe du centralisateur de p(A) dans SL,;(R)
est le groupe de matrices diagonales suivant (pour t > 0):

ent 0 e O
0 e!
a; =
.0
0 0 e!

En particulier, la composante connexe du centralisateur de p(A) dans SL,+1(R)
est isomorphe a R .
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Démonstration. Borel a montré que tout réseau d’un groupe de Lie
algébrique semi-simple sans facteur compact est Zariski-dense ([Bor60]). Par
suite, le centralisateur de p(A) dans SL,y;(R) est égal au centralisateur
de SO,_1,1(R) dans SL,;;(R). Dot le résultat. [

Il est temps a présent de donner un nom a cette déformation.

DEFINITION 3.4. Soient M une variété hyperbolique et N une hyper-
surface totalement géodésique de M de volume fini. On note M la variété
topologique sous-jacente a M. Le chemin c¢: R — P(M) donné par le couple
(Devy,, pa,) S’appelle un pliage de M le long de N .

3.3 LE PLIAGE EN TERMES DE CARTES

Dans ce paragraphe on se propose de donner la définition du pliage en
termes de cartes. Commengons par rappeler comment on recolle deux variétés
a bord le long d’un bord d’un point de vue topologique.

Soit M une variété a bord (a priori non connexe) avec deux bords
connexes N, et N; homéomorphes via un homéomorphisme ¢ . Il existe alors
un voisinage U, (resp. Uy) de Ny et (resp. Ny) dans MT homéomorphes via
un homéomorphisme @ qui prolonge ¢ . Ces voisinages tubulaires permettent
de recoller les bords N, et Ny de M. De fagon précise, il existe alors
une unique variété M qui possede une sous-variété plongée N homéomorphe
a N, telle qu’il existe une identification de M avec la variété a bord M |y
obtenue en découpant M le long N. Enfin, cette identification permet d’écrire
I’homéomorphisme @ entre les voisinages tubulaires U/, et U; comme une
réflexion dans les cartes.

On peut faire la méme chose avec une variété projective MT a bord
totalement géodésique. Cette fois-ci, il faut prendre un homéomorphisme @
entre U, et Uy qui, lu dans les cartes, est une application projective. On
obtient ainsi une structure projective sur la variété M.

Plier la structure d’une variété hyperbolique M le long d’une hypersurface
propre totalement géodésique N se fait en plusieurs étapes. Tout d’abord, on
découpe M le long de N, et on obtient la variété projective a bord totalement
géodésique M. Ensuite, on remarque que M est obtenue par le recollage
de la variété projective MT via un isomorphisme projectif o entre deux
voisinages tubulaires U, et Uy. Enfin, on recolle la variété projective MT via
un isomorphisme projectif @, = «,pg, ol «, est une application projective
qui est ’identité sur N et, lue dans les cartes, est conjuguée a la matrice q, .
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3.4 VISION GEOMETRIQUE D’UN PLIAGE

(a) (b)
¢y e G c

© @
¢y | € Q &

FIGURE 4

Pliage: Dans la figure (a), le convexe est un ellipsoide, nous allons le déformer.
Dans la figure (b), I'ellipsoide a subi une transformation, la partie droite a été
“gonflée” par une application App . Dans la figure (c), le convexe de la figure (b)

a subi une transformation, la partie a droite de C}, a été “dégonflée” par une
application App —,. Dans la figure (d), le convexe de la figure (c) a subi une

transformation : la partie a droite de Cg a été “gonfléee” par une application Ap, ;.

Soient H un hyperplan projectif, p un point de P" qui n’est pas dans H
et ¢ un réel. On définit alors la transformation projective Ap,, de la fagon
suivante :

1. App: € SL41(R),
App, est identité sur H,

w N

Anp, fixe le point p et la valeur propre associée a la droite p de R"T!
est e".
Dans une base convenable, la matrice de Apy,, est la matrice «,.
Soient € un ouvert proprement convexe et H un hyperplan de P" qui
rencontre et p un point a 'extérieur de Q et de H. Une des étapes du
pliage d’un ouvert proprement convexe €2 revient a appliquer Ay, , sur une
composante connexe de Q\ H et Iidentité sur ’autre.

Soit ¢ un point dans ’'une des deux composantes connexes de Q\ H. On
note Q, I’adhérence de la composante connexe de Q\ H contenant g et Qz
I’autre adhérence. Enfin, on note Plig g, 4(€2) I'ensemble Q,UAp ), (7).
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Il ne semble pas évident a priori que toutes ces transformations vont
préserver la convexité de I’ouvert Q et I'injectivité de la développante. Mais
c’est le cas. C’est I'objet du théoreme 3.7 démontré dans la partie 4. Pour
comprendre les rouages de cette démonstration, il faut remarquer les trois
points suivants.

On identifie le revétement universel M de la variété hyperbolique M
que I’on veut plier le long de I’hypersurface N avec un ellipsoide Q. Les
relevés de N a Q définissent des hyperplans projectifs H; et le dual de
I’hyperplan H; pour la forme quadratique définissant I’ellipsoide €2 est un
point p; de P". Le point p; est I’intersection des hyperplans tangents a 0Q
en un point de H; N 9. Nous appelerons une composante connexe de la
préimage de A dans Q un mur, et nous appelerons chambres de Q les
adhérences des composantes connexes de Q privé des murs.

Plier la structure projective de M signifie modifier successivement Q en
lui appliquant des conjuguées des transformations Agy, ,,; ou A;ilyph, comme
expliqué précédemment (i.e. en appliquant des conjuguées de Plig, p, ;4 ). Ainsi
apres un nombre dénombrable de transformations (suggéré par la figure 4) on
obtient une partie 2, de I’espace projectif qui est préservé par p,. L'un des
buts du théoreme 3.7 est de montrer que cette partie est en fait un ouvert
convexe. La remarque no. 1 est que I’'image d’une chambre de € par toutes
ces transformations est encore convexe, puisque Dev, restreinte a une chambre
est une application projective.

La remarque no. 2 est que I'image de la réunion de deux chambres
adjacentes de Q par toutes ces transformations est encore convexe. C’est la
conséquence du lemme 3.5 ci-apres. Cette remarque nous assure que tout point
possede un voisinage convexe.

La remarque no. 3 est que si x est un point du bord (dans P") de 'un
des H;N, alors I'image de la réunion des chambres de € qui contiennent x
dans leur adhérence est encore convexe. On a une sorte de “convexité a
I’infini”. Il y a deux types de points x sur le bord de H;NQ, il y a ceux qui
correspondent & un cusp de N et qui sont fixés par un groupe parabolique et il
y a les autres. Si x est dans la deuxieme catégorie alors il y a seulement deux
chambres de Q qui le contiennent dans leur adhérence, on est donc ramené
a la remarque no. 2. Par contre, si x correspond a un cusp de N alors il est
inclus dans une infinit€ de H; pour j € J. Mais ces (H;)jc; ne se rencontrent
pas dans Q par conséquent, leur intersection est un sous-espace projectif de
dimension n — 2, et on peut les énumérer avec Z. De plus, la tangente en x
a 0% est préservée par tous les Ay, .. Par conséquent, on obtient le résultat
annoncé en appliquant le lemme 3.5 a 1’aide d’une récurrence.
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LEMME 3.5. Soient Q un ouvert proprement convexe de P", H un
hyperplan de P" qui rencontre Q, p un point de P" a ['extérieur de H
et de Q. Soit A une carte affine contenant Q et p. On note C, et Cp les
deux adhérences des composantes connexes de Q\ H . Supposons que le demi-
cone C de sommet p et base HNQ contienne Q alors I’ensemble C1UAp, (C)
est convexe.

Démonstration. Soient x un point de C; et y un point de Agp (Cs).
Comme le demi-cOne est préservé par Ay, et contient €, le point y appartient
a C. Comme le demi-cone C est convexe, il contient le segment [x,y]. Ce
segment traverse le mur AN en un point z, le segment [x, z] est inclus dans
le convexe C; et le segment [z,y] est inclus dans le convexe Ap,,(Cr). [

3.5 UN THEOREME DE CONVEXITE

La premiere difficulté est de comprendre pourquoi cette déformation donne
une structure projective proprement convexe. Signalons tout de méme que si la
variété M était compacte alors le théoreme suivant de Koszul ([Kos68]) nous
assurerait que pour ¢ assez petit la déformation de po fournie par I’élément a,
serait encore convexe.

THEOREME 3.6 (Koszul). Soit M une variété compacte, I’espace [3(M)
est ouvert dans P(M).

Nous allons montrer le théoréme suivant:

THEOREME 3.7. Soit M une variété hyperbolique et N' une sous-variété
totalement géodésique de M . Les structures projectives associées au pliage
de M le long de N sont proprement convexes. De plus, notons Dev,: Qy— Q,
la développante de la nouvelle structure projective, alors ’application Dev,
se prolonge de facon unique en un homéomorphisme m(M)-équivariant :
Dev,: Q— Q, qui induit un homéomorphisme Dev,: 0Q¢— 0L, .

La partie 4 est consacrée a la démonstration de ce théoreme.

REMARQUE 3.8. Dans [Kap07], Kapovich montre une version proche de
ce théoreme. Au lieu de recoller des variétés projectives convexes le long d’une
hypersurface totalement géodésique, il recolle aussi des variétés projectives
convexes compactes a coins qui vérifient certaines conditions de compatibilité.
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NOTATIONS. Soit # > 0, on notera A, (resp. U; ) le groupe (resp. I’ouvert
proprement convexe) obtenu par le pliage de My le long de Ay a I’aide de
I’élément a,. On notera Dev,: Uy — U, la nouvelle développante.

4. DEMONSTRATION DU THEOREME DE CONVEXITE

Le but de cette partie est de donner une démonstration du théoréeme 4.7
dont le théoréeme 3.7 est un corollaire.

4.1 DEFINITION

Tout d’abord pour démontrer un résultat de convexité le cadre de P" n’est
pas le plus approprié. Nous allons donc nous placer sur la sphere projective S”
qui est le revétement a deux feuillets de P" ou encore I’espace des demi-droites
vectorielles de R"!. On notera 7 la fibration naturelle 7: R*'\ {0} — S".

DEFINITION 4.1. Une partiec Q de S" est dite convexe lorsque la
réunion 7~ 1(Q)U {0} est une partie convexe de R"!. Un ouvert convexe Q
de S" est dit proprement convexe lorsque son adhérence est incluse dans une
carte affine de S", ce qui est équivalent au fait que son adhérence ne contient
pas de points diamétralement opposés.

REMARQUE 4.2. Tout ouvert convexe de S" est ou bien S" tout entier
ou bien inclus dans une carte affine. De plus, soit € un ouvert convexe
de S", on remarquera que si E; et E, sont deux sous-espaces affines inclus
dans Q alors il existe un sous-espace affine E3 inclus dans Q dont la
direction Eg._> est E1®E, . Tout ouvert convexe de S” possede donc une direction
maximale Eg égale au sous-espace vectoriel engendré par I’intersection QN—Q
dans R"*!. Enfin, la projection de Q dans la sphere projective quotient
S(R™1/ E_>Q) est un ouvert proprement convexe.

Nous allons avoir besoin d’un peu de vocabulaire. Soit M une variété
projective. On peut définir la notion de segment et de convexité sur le
revétement universel M de M.

DEFINITION 4.3. Un segment de M est une application s: [0,1] — M
telle que la composée Dev os: [0,1] — S" est une application continue
injective qui définit un segment de S” de longueur inférieure ou égale a
pour la distance canonique sur S”.
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Une partiec A de M est dite convexe lorsque tout couple de points de A
peut &tre joint par un segment contenu dans A.

DEFINITION 4.4. Soit M une variété projective. On se donne (W,);e;
une famille localement finie d’hypersurfaces propres totalement géodésiques
de M. On appelera les (W;)ie; des murs. On appelera chambre 1’adhérence
de toutes composantes connexes de M \ |J;c; W;. On dira que deux chambres
sont adjacentes lorsque leur intersection est incluse dans un unique mur.

[’intersection de deux murs W; et W, est vide ou une sous-variété propre
totalement géodésique de codimension 2. Lorsqu’elle est non vide, on dira que
I’intersection de deux murs W; et W, est incluse dans une situation diédrale
lorsqu’il existe un entier m > 2, une suite de m murs (W)=, n, €t une
suite de 2m chambres (Cy)i=1,... om telles que (voir figure 5):

e |’intersection de ces m murs et 2m chambres soit I’intersection Wi NW,.
e Deux chambres consécutives sont adjacentes.

e Le mur contenant I’intersection des deux chambres consécutives C;
et Ciy; est aussi le mur contenant I’intersection des deux chambres
consécutives Ciyyy €t Cipiqpm .-

FIGURE 5

Situation diédrale

REMARQUE 4.5. L’image d’un mur par la développante de la structure
projective de M est un ouvert convexe d’un hyperplan projectif de S”.
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42 LE THEOREME

REMARQUE 4.6. L’application Dev est un homéomorphisme local et
I"espace (P",dcqn) est un espace métrique, il existe donc une unique distance
sur M tel que I’application Dev est une isométrie locale. On note CI(M)
le complété de M pour cette distance. L’espace CI(M) est compact et
I’application Dev se prolonge en une application continue encore notée Dev
de Cl(./q) vers S”.

THEOREME 4.7. Soit M une variété projective. On se donne une famille
finie d’hypersurfaces propres totalement géodésiques (H;)ic;. Cette famille
définit une famille localement finie de murs du revétement universel M. On
suppose que :

1. Les chambres de M sont convexes.

2. La réunion de deux chambres adjacentes est convexe.

3. Toute intersection non vide de deux murs est incluse dans une situation
diédrale.

4. Pour tout mur W, et tout point xoo € OW C CI(MV), la réunion des
chambres contenant x., dans leur adhérence (dans Cl(ﬂ) ) est convexe.

Alors, la variété projective M est convexe.

43 DEMONSTRATION DU THEOREME 4.7

La démonstration de ce théoreme se déroule en plusieurs étapes. La
difficulté est d’obtenir le lemme suivant:

LEMME 4.8. L’ensemble /\7 est convexe.

Nous allons commencer par montrer comment ce lemme entraine le

théoreme 4.7. Ensuite nous montrerons ce lemme a I’aide d’un argument
de connexité.

Démonstration du théoreme 4.7 a ’aide du lemme 4.8. On doit montrer
que I’application Dev est un homéomorphisme sur son image Q et que
est une partie convexe de P".

L’application Dev est un homéomorphisme local pour montrer que ¢’est un
homéomorphisme sur son image, il suffit donc de montrer qu’elle est injective.

Soient x_et y deux points de M , il existe un segment s qui relie x
a y dans M, I’application Dev o s est injective donc si Dev(x) = Dev(y)
alors x = y. L’application Dev est donc un homéomorphisme sur son image Q.
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Enfin, 'ouvert Q est convexe puisque c’est I'image de M, qui est
convexe. [

44 DEMONSTRATION DU LEMME 4.8

On appelle point singulier de M tout point inclus dans I’intersection de
trois murs Wy, W, et Wi tel que Wi NW,NWs est une sous-variété totalement
géodésique de codimension 3. On note Sing 1’ensemble des points singuliers
de M.

Soient x un point de M et C une chambre de M . On définit les ensembles
suivants :

C™ = {y € C tel qu’il existe un segment dans M — Sing reliant x a v},

C* = {y € C tel qu’il existe un segment dans M reliant x a v}.

LEMME 4.9. L’application qui a y € C™9 associe le nombre et I’ensemble
des murs traversés par le segment |x,y| est localement constante.

Démonstration. C’est I’hypotheése “toute intersection non vide de deux
murs est incluse dans une situation diédrale” qui donne ce lemme. Il suffit de
regarder la figure 5. [J

LEMME 4.10. L’ensemble C™Y est ouvert dans C.
LEMME 4.11. Les composantes connexes de C* sont fermées dans C.
COROLLAIRE 4.12.  Si C™9 est non vide alors C* =C.

Commencons par montrer que ces lemmes entrainent le corollaire 4.12 et
le lemme 4.8.

Démonstration du corollaire 4.12 a ’aide des lemmes 4.10 et 4.11. Nous
allons montrer que C* est dense dans C. Soit y € C™, on note A™Y une com-
posante connexe de C™Y. Le nombre de murs traversés par les segments [x, y]
pour y € A ne dépend pas de y (lemme 4.9). On note A* la composante
connexe de C* contenant A™Y. Par hypotheése, A* est fermée dans C.

Les murs forment une famille localement finie dans Mv, par conséquent Sing
est une réunion localement finie de sous-variétés totalement géodésiques de
codimension 3.

Comme [’ensemble des murs traversées par tout segment [x,y] est constant
pour y € A™, il existe un fermé S de codimension 2 de C tel que
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A9 NS =A*NS (S°=C\S). Ainsi, les lemmes 4.10 et 4.11 montrent
que A9NS° = A*NS est ouvert et fermé dans S¢. Or, S est de codimension 2
par conséquent S¢ est connexe puisque C est convexe.

Ensuite, S¢ est dense dans C toujours car S est de codimension 2, par
conséquent C™9 est non vide si et seulement si C™ N §¢ est non vide
puisque C™Y est ouvert.

Il vient donc que A9 NS =A*NS =CNS. Le lemme 4.11 montre
que A* =C, puisque S¢ est dense dans C. Il vient que si C™Y est non vide
alors C*=C. [O

Démonstration du lemme 4.3 a I'aide du corollaire 4.12. A présent, pour
montrer que M est convexe, il suffit de choisir un point x de M. On dira
que deux points x et y sont a distance combinatoire inférieure ou égale
a n si et seulement s’il existe une suite de n chambres Cy,...,C, telle
que x € Cy, y € Cy, et C; et Ci1y sont adjacentes.

Le corollaire 4.12 montre facilement a 1’aide d’une récurrence que la
réunion des chambres a distance combinatoire inférieure ou égale a n de x
est étoilé par rapport a x. L’ensemble M est donc convexe. [

4.5 DFEMONSTRATION DU LEMME 4.10

Démonstration du lemme 4.10. Soit y € C™9, il existe un segment s
reliant x a y dans Mv\Sing. Comme I’image d’un segment est compacte elle
est incluse dans un nombre fini de chambres de M On note (x")i:h,,,,N les
points d’intersection du segment [x,y] avec les murs de M numérotés via la
paramétrisation de [x,y]. On pose x° = x et AVt =y,

Comme les chambres sont convexes et .XAV \ Sing est ouvert, il existe des
voisinages Vi de x' (pour i =1,...,N + 1) dans M tels que I’enveloppe
convexe dans chaque chambre des couples (V,i, V,+1) contienne un voisinage
convexe du segment [x',x"!] inclus dans la chambre contenant [x,x*!] et
qui ne rencontre pas Sing. La réunion de ces voisinages contient un voisinage
convexe de [x,y]. Il existe donc un voisinage ouvert du point y dans C™9. []

4.6 DFEMONSTRATION DU LEMME 4.11

L’énoncé du lemme suivant est assez technique.

LEMME 4.13. Soit (s,)nen une suite de segments d’extrémités le point x et
un point 'y, appartenant a une composante connexe de C* fixée. Le segment s,
traverse N, murs Wi, ..., Wy de M (ordonnés par la paramétrisation de s, ).
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On note (xf,)i:] N, les points d’intersection de s, avec les murs de M (or-
donnés via la parametrzsatlon de Sp). Si la suite (x Jnen diverge dans M
et converge dans Cl(./\/l) vers x\_, alors, si n est assez grand, la suite N,

est constante égale a un certain N, les suites W7,..., Wy sont constantes
et les suites (x)nen pour i = 2,...,N divergent dans M et convergent

dans CI(M) vers x\_

Démonstration du lemme 4.13. Comme toutes les intersections de murs
sont incluses dans une situation diédrale, le lemme 4.9 montre que 1’ensemble
des murs traversés est constant et donc fini. Par conséquent, on peut supposer
que les segments s, traversent N murs M et que la suite W7,..., Wy est
constante. La suite de segments [x,xﬁ] est incluse dans la réunion de deux
chambres adjacentes: C; et C' adjacentes au mur W;. La réunion de ces
deux chambres est convexe et la suite x x} converge vers le point . x} de Cl(M)
Par suite, la suite x> diverge dans M et converge dans Cl(/\/l) vers x._

On itere ce raisonnement pour obtenir la conclusion pour toutes les
suites (x)),en pour i =2,...,N. [

Démonstration du lemme 4.11. Soit y, une suite de points d’une com-
posante connexe de C*. Supposons que la suite (y,).en converge dans M
vers un point y., . Nous allons montrer qu’il existe un segment entre x et y. .
Il existe un segment s, reliant x a y, dans M. Les segments s, traversent N,
murs.

On note (xL)ile,Nn les points d’intersections du segment s, avec les murs
de M numérotés via la paramétrisation de s,. On pose x0 = x et AV =y, .

On a trois cas a distinguer:

¢ Toutes les suites (xf,),,eN divergent. En particulier, la suite (x,ﬂ),,eN diverge
dans X, quitte a extraire, on peut supposer qu’elle converge dans CI(MV)

e Il existe un ip = 2,. N tel que la suite (x"))neN diverge dans ./Vl mais
sous-converge dans CI(M) et la suite (x'“*‘),,eN converge dans M

e Toutes les suites (xn),,eN convergent dans M.

Nous allons montrer que les deux premiers cas sont absurdes. Le lemme 4.13
montre que dans le premier cas la suite (N,),en est constante (égale a N) a
partir d’un certain rang et que les suites (x/),en pour i = 1,...,N convergent
vers un point x.  de CI(M) —

La quatrieme hypothese du théoréme 4.7 affirme que la réunion des cham-
bres contenant le point x., dans leur adhérence dans CI(M) est convexe. Par
conséquent la suite y, converge x._ qui n’est pas dans M. Ce qui est absurde.
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[’absurdité du second cas se démontre exactement de la méme manicre.

Par suite, toutes les suites (xf,),,eN convergent dans Mv . Par conséquent,
la suite N, est constante a partir d’un certain rang, puisque les murs forment
une famille localement finie dans M. Il vient que les points x et y., sont
reliés par une réunion finie de segments qui vérifie de plus que sa restriction
a la réunion de deux chambres adjacentes est un segment. Ce chemin est donc
un segment. [

DEMONSTRATION DU THEOREME 3.7. Pour terminer la démonstration du
théoreme 3.7, il faut montrer que dans le cas qui nous intéresse la structure
projective convexe est proprement convexe. Ce n’est pas tres difficile. C’est
une conséquence de la proposition suivante et du fait que les représentations p,
sont irréductibles.

PROPOSITION 4.14. L’holonomie d’une structure projective convexe non
proprement convexe n’est pas irréductible.

Démonstration. La remarque 4.2 montre que 1’holonomie d’une struc-
ture projective convexe doit préserver I’espace vectoriel engendré par I’inter-
section QN —Q. Une structure projective convexe est non proprement convexe
si et seulement si cette intersection est non vide. [

Démonstration du théoreme 3.7. 11 nous reste a montrer que 1’application
Dev,: Qo — Q, se prolonge de facon unique en un homéomorphisme
m(M)-équivariant:  Dev,: Qp — Q, qui induit un homéomorphisme
Dev,: 0Qy — 02, .

Pour cela, _on identifie M avec Qo, et il faut montrer que I’on peut
identifier Cl(/\/l) et Qy. L'espace CI(M) est le complété de M muni de
la distance qui fait de I’application Dev,: M = §" une isométrie locale.
Les chambres de M forment une partition de M en partie convexe.
L’application Dev, restreinte aux chambres de M est une application
projective. I’adhérence d’une chambre de M pour la métrique induite par Dev,
correspond donc a I’adhérence d’une chambre de €, dans S”.

La remarque 4.6 montre que |’application Dev, se prolonge en une
application continue de CI(MV) = Qo vers S8". Cette application restreinte
a Qp est un homéomorphisme sur son image et son image est le convexe €2,
par le théoreme 4.7.

Le prolongement de Dev, est donc un homéomorphisme Q) — €,
m1(M)-équivariant qui induit un homéomorphisme Dev,: 0Qy — 0Q,. [
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5. IRREDUCTIBILITE, ZARISKI-DENSITE ET MINIMALITE

5.1 IRREDUCTIBILITE

DEFINITION 5.1.  Soit I un sous-groupe de SL,,(R). On dira que ' est
irréductible ou que T agit de fagon irréductible sur R"™! lorsque les seuls
sous-espaces vectoriels de R"*! invariants par T sont {0} et R"*!.

DEFINITION 5.2, Soit I' un sous-groupe discret et infini de SO, ;(R). On
se donne xp un point de H et on définit I’ensemble:

LY = {x5 € OH tel qu’il existe une suite v, € I' tel que v, X0 — Xoof.
n—oo

Cet ensemble ne dépend pas du point xo. On I’appele [’ensemble limite
de T et on le note L. Lorsque I n’est pas virtuellement abélien c’est le plus
petit fermé non vide invariant par I' et c¢’est I’adhérence des points attractifs
des ¢léments de I'. On pourra consulter le livre ([Rat06]) pour avoir des
détails.

LEMME 5.3. Soit I' un sous-groupe de SO, (R). Si T' n’est pas
irréductible alors I’ensemble limite de T est inclus dans un hyperplan de OH.

Démonstration. Si T est virtuellement abélien alors I’ensemble limite de
I' contient au plus deux points, il est donc inclus dans un hyperplan de 0H.

Si ' n’est pas virtuellement abélien alors I’ensemble limite de T" est le plus
petit fermé non vide I'-invariant de OH. Nous allons montrer que I' préserve
un fermé non vide de OH de la forme F N OH, ou F est un sous-espace
vectoriel de R+,

Comme le groupe I' n’est pas irréductible, il préserve un sous-espace
vectoriel E de R™! de dimension p. Notons C = {x € R""! | g(x) < 0} le
cOne de lumiere de ¢.

La forme quadratique g restreinte a E possede trois signatures possibles :

D (p,0) ou de facon équivalente ENC=02,
2) (p—1,1) " ENC+2,
3 (p—1,0) " ENC=0 et ENOC+D.

Dans les deux derniers cas, I’intersection ENJH est non vide et préservée
par T', dans le premier cas I’intersection de E-NOH est non vide et préservée
par I'. Par conséquent, I’ensemble limite de I' est inclus dans un hyperplan
de OH. [
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5.2 ENSEMBLE LIMITE

La définition d’ensemble limite pour un sous-groupe discret I' de SL,,4(R)
n’est pas aussi simple que pour un sous-groupe de SO, ;(R), méme s’il
préserve un ouvert proprement convexe. En effet, on ne peut pas définir
I’ensemble limite a 1’aide d’un point base xp, car c’est la convexité stricte de
Iellipsoide qui donne I’indépendance en xo de I’ensemble limite L}’ .

Mais Benoist a montré le théoréme suivant qui nous permet de définir
I’ensemble limite dans un cadre plus général (lemme 2.5 de [BenOO] ou
lemme 3.6 [Ben97]).

THEOREME 5.4 (Benoist). Soit T' un sous-groupe discret de SL,1(R) qui
préserve un ouvert proprement convexe Q de P". Si T' est irréductible alors il
existe un unique fermé non vide T -invariant Ly tel que si F C P" est un fermé
non vide T -invariant alors Ly C F. On appelle ce fermé ’ensemble limite
de T, on le note Ly, c’est I'adhérence des points attractifs des éléments de T .

PROPOSITION 5.5. Le groupe A, que l’on a construit est irréductible. Par
conséquent son ensemble limite est bien défini. L’action du groupe A, sur le
bord dU, du convexe U, est minimale (i.e. il n’existe pas de fermé non trivial
invariant par T ), autrement dit I’ensemble limite du groupe A, est égal a 0U; .

Démonstration. La variété projective M, a été construite a 1’aide d’un
pliage de la variété hyperbolique M, le long de I’hypersurface Ap. On
note H un relevé de Ay a U, pour tout ¢ € R.

Les composantes connexes de U = U;\ U, ¢, ¥H sont des convexes
inclus dans U,. Si M \ N posséde deux composantes connexes alors on
note C! et C? les deux composantes connexes de U qui bordent H. Si M\N
est connexe alors on note C; I'une des deux composantes connexes de U’
qui bordent H.

Les arguments qui suivent ne dépendent pas du cas dans lequel on est. On
se place donc dans I’un des deux cas, on note C, le convexe C, C,2 ou Cf.

Le stabilisateur A" de C, est conjugué a un sous-groupe discret
de SO, 1(R) et la variété C,/ Amer est une variété hyperbolique non complete.
De plus, le volume de tout fermé inclus dans C,/ Amer est fini. L ensemble
limite de A" est donc 9C; \ U, e, 7H -

Par conséquent, I’action de AJ"" sur R+ est irréductible (lemme 5.3).
Il vient que le groupe A, est aussi irréductible. En particulier, son ensemble
limite est bien défini (théoreme 5.4).
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De plus, I’ensemble limite de A, contient les ensembles limites de tous
les stabilisateurs des composantes connexes de U,\Uvel\, ~vH. Par suite,
I’ensemble limite de A, est U, (i.e.’action de A, sur 90U, est minimale). [

5.3 ZARISKI-DENSITE

Le théoréeme suivant est dii a Benoist dans [Ben00].

THEOREME 5.6 (Benoist). Soir T un sous-groupe discret de SL,;1(R)
qui préserve un ouvert proprement convexe Q de P". Si l'action de T' sur

le bord de Q est minimale alors ’adhérence de Zariski de T est conjuguée
a SO, 1(R) ou SL,1(R).

COROLLAIRE 5.7. Les groupes A, que ’on a construit sont Zariski-denses
dans SL,11(R).

Démonstration. 1l ne nous reste plus qu’a montrer que I’adhérence de
Zariski G de A, ne peut pas étre conjuguée a SO, 1(R).

On reprend les notations de la démonstration de la proposition 5.5. Les
stabilisateurs des composantes connexes de U,\UﬁyE A, vH sont des sous-
groupes discrets irréductibles de différents conjugués de SO, ;(R).

Or, le lemme 5.8 montre que ces groupes sont Zariski-denses dans le
conjugué de SO, ;(R) qui le contient. Par conséquent, le groupe G ne peut
étre conjugué a SO, ;(R). [

LEMME 5.8. Tout sous-groupe discret et irréductible de SO, (R) est
Zariski-dense dans SO, ;(R).

On pourra trouver une démonstration de ce lemme dans [BAIHO4].

54 QUELQUES CONSEQUENCES

54.1 UN PLIAGE EST UNE DEFORMATION NON TRIVIALE

COROLLAIRE 5.9. Le pliage d’une variété hyperbolique de volume fini le
long d’une hypersurface totalement géodésique définit une déformation non
triviale de la structure projective.

Démonstration. Supposons que les représentations p, et py sont con-
juguées par un élément g € SL,(R). On ne fait que le cas ot M\ N
posséde deux composantes connexes. L’autre cas est analogue.
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Les représentations p, et py sont égales sur 7 (M,). L'adhérence de
Zariski de p,(m(My)) est SO, (R) (lemme 5.8), par suite, g appartient au
centralisateur de SO, ;(R) dans SL,;(R), ¢’est-a-dire au centre de SL,;(R).
Par suite p, = py, ce qui est absurde. U

542 LE GROUPE A, N’EST PAS UN RESEAU DE SL,.(R)

REMARQUE 5.10. Le groupe A, n’est pas un réseau de SL,;(R), car
I’action d’un réseau de SL,.;(R) sur I’espace SL,;(R)-homogene P" est
ergodique. C’est une conséquence du théoreme d’ergodicité de Moore et
du théoréme de dualité, on pourra consulter le livre [BMOO] (notamment
I’exemple 2.9 page 92).

543 IL’OUVERT U; N’EST PAS HOMOGENE

PROPOSITION 5.11. Le groupe Aut(U;) est discret par conséquent, le
groupe N, est d’indice fini dans le groupe Aut(G;).

Démonstration. Cette proposition est une conséquence directe de la
proposition 5.12 ci-dessous et du corollaire 5.7 ci-dessus. [

La proposition suivante est connue depuis longtemps.

PROPOSITION 5.12.  Tout sous-groupe U Zariski-dense d’un groupe de Lie
quasi-simple G est discret ou dense.

Démonstration. Soit H I’adhérence de I' pour la topologie séparée de G,
on note Hy la composante neutre de H. Le groupe Hp est normalisé par un
sous-groupe d’indice fini de I' car H posseéde un nombre fini de composantes
connexes puisque c’est un groupe algébrique. Par suite, Hyp est normalisé
par G puisque I' est Zariski-dense. Comme G est quasi-simple, Hy est égale
a G ou {l1}. Par suite, I' est discret ou dense. [

6. CONSERVATION DE LA FINITUDE DU VOLUME

6.1 LES THEOREMES DE DIRICHLET ET DE LEE

Le célebre théoréme qui suit nous sera utile pour montrer que le pliage
conserve la finitude du volume de la structure projective proprement convexe.



VARIETES PROJECTIVES STRICTEMENT CONVEXES 33

THEOREME 6.1 (Dirichlet). Soit T un sous-groupe discret de SO, (R). Il
existe un domaine fondamental convexe et localement fini pour 'action de T
sur H.

Si besoin, on rappelle la définition d’un domaine fondamental.

DEFINITION 6.2. Soient X un espace topologique et I' un groupe qui
agit sur X par homéomorphismes, on dit qu’une partie fermée D C X est un
domaine fondamental pour ’action de T" sur X lorsque:

* UyerD=X.
* Vy#1,yDND=2.
De plus, un domaine fondamental D pour I’action de I' sur X est dit

localement fini lorsque :
e VK compact de X, {y € T |yDNK # &} est fini.

Rappelons aussi trés rapidement la démonstration de ce théoreme. Pour
construire un domaine fondamental, Dirichlet choisit un point x, dont le
stabilisateur dans I" est trivial. Il construit ensuite les hyperplans médiateurs H,
des segments [xg, 7 - xo], pour v € I', ce sont des hyperplans de H. Ensuite,
il montre que 1’adhérence de la composante connexe contenant xo de H privé
de ses hyperplans médiateurs H, est un domaine fondamental, on I’appelle
le domaine de Dirichlet pour ’action de T sur H basé en xg.

Le théoreme de Dirichlet posséde un analogue dans le monde projectif
convexe.

THEOREME 6.3 (Jacjeong Lee [Lee]). Soient Q un ouvert proprement
convexe et I' un sous-groupe discret de SL,+1(R) qui préserve Q. Il existe
un domaine fondamental convexe et localement fini pour Uaction de T sur Q.

On pourra trouver une courte démonstration de ce théoreme dans [Mar(9].

6.2 LES ELLIPSOIDES DE PROTECTION

LEMME 6.4. Soit I' un sous-groupe discret sans torsion et de covolume
fini de SO, (R). On suppose qu’il existe un hyperplan H de H tel que
A = Stabr(H) agisse sur H avec un covolume fini et que [’application
H/ A — H/ est un plongement propre.

On se donne xy un point de H dont le stabilisateur dans T est trivial et on
construit alors le domaine de Dirichlet D pour ’action de T sur H basé en xy.
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Le domaine fondamental D rencontre un nombre fini d’hyperplans ~(H)
pour v €T.

De plus, pour tout point p € 9D, s’il n’existe pas d’élément v € T tel
que p € y(H) alors il existe une horoboule centrée en p qui ne rencontre
pas les hyperplans v(H) pour v € T'.

FIGURE 6

Domaine fondamental

Démonstration. Comme I’application H/, — H/p est un plongement
propre, les hyperplans (y(H))yer sont disjoints et forment une famille
localement finie dans H. De plus, I’action de I' sur H est de covolume
fini par conséquent, I’ensemble 9D est fini (on pourra consulter [Bow93]). Il
suffit donc de regarder ce qu’il se passe pres des points p € 9D.

Soit p € 9D. Comme I’action de T sur H est de covolume fini, le
point p est un point parabolique borné, c’est-a-dire que le groupe Stabr(p)
agit cocompactement sur 9H — {p}. Onnote I = {y €T | p € v(H)}.

Nous allons nous placer dans le modéle du demi-espace de Poincaré.
Supposons que p = oo, une horoboule centrée en I’infini dans le modele du
demi-espace de Poincaré est I’ensemble des points d’altitudes supérieures a une
constante. On peut trouver une horoboule centrée en p et qui ne rencontre
pas les hyperplans v(H) pour v ¢ I si et seulement si les altitudes des
hyperplans (H) pour v ¢ I sont bornées. L’altitude d’un hyperplan ne passant
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pas par I’infini dans le modele du demi-espace de Poincaré est égale au rayon
de la sphere qu’il définit sur OH — {co} = R"~! x {0}. Le groupe Stabr(p)
agit par isométrie (euclidienne) et cocompactement sur 9H—{oo}, les altitudes
sont donc bornées. Il existe donc une horoboule & centrée en p = oo telle
que si Y(H)NE # @ alors p € v(H).

En particulier, si le point p ne rencontre pas les hyperplans ~(H)
pour v € I' alors il existe une horoboule centrée en p qui ne rencontre
pas les hyperplans v(H) pour v € I'.

De plus, les hyperplans y(H) pour v € I' ne se rencontrent pas, par
conséquent les hyperplans y(H) pour « € I sont paralleles. Le groupe Stabr(p)
préserve ces hyperplans et agit par isométrie (euclidienne) de facon cocompacte
sur OH— {p}. Le domaine fondamental D est donc inclus dans un cone € de
sommet p et de base un compact de OH— {p}. Comme les y(H) pour 7 € I
sont paralleles et a distance minorée, le cone € et donc D ne rencontre qu’un
nombre fini d’hyperplans y(H) pour y € 1. [

DEFINITION 6.5. Une ellisphere est le bord d’un ellipsoide.

REMARQUE 6.6. Soient £ un ellipsoide de P" et p un point de 9€ . Soit P’
le stabilisateur de p dans Aut(£). Le groupe P’ est isomorphe au groupe
des similitudes Sim™(R”~!). Il posséde donc un sous-groupe distingué P
isomorphe a Isom™(R"~1). Il s’agit du sous-groupe des éléments paraboliques
qui fixent p. Les orbites de P agissant sur P" sont les ellispheres (privées
de p) du faisceau d’ellispheres engendré par O€ et T,E. Les orbites de P
agissant sur &£ sont les horospheres de centre p du modele projectif de
I’espace hyperbolique. Il vient donc que toute horosphere d’un ellipsoide est
une ellisphere privé d’un point. La réciproque est par contre fausse. Toute
ellisphere incluse avec tangence en un point dans un ellipsoide n’est pas
nécessairement une horosphere de celle-ci.

DEFINITION 6.7. Soient Q et Q' deux ouverts proprement convexes de P",
on dira que Q est a Uintérieur (resp. l'extérieur) de Q' lorsque Q C Q'
(resp. Q' C Q).

LEMME 6.8. Soit Q un ouvert proprement convexe et I' un sous-groupe
discret de Aul(Q) qui fixe un point p € 0Q. Supposons que T préserve
un ellipsoide £ tangent a Q en p et que l’action de T sur 0Q\ {p} est
cocompacte. Alors, il existe un ellipsoide Eiy (resp. Eey) a lintérieur (resp.
Uextérieur) de Q. De plus, E;y est une horoboule de &,y .
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Démonstration. Soit A une carte affine contenant I’adhérence de 1’ouvert
proprement convexe €. Soit D un domaine fondamental pour I’action de T’
sur Q (théoreme 6.3). L’ensemble 9D N R est composé de {p} et d’un
compact de 0Q \ {p}. On considere ¢ le demi-cone de A de sommet p
engendré par D.

Les ellispheres du faisceau d’ellispheres engendré par 1’ellisphere 0E et
I’hyperplan tangent 7,0Q sont préservées par I'. Le groupe Aut(€) est
conjugué au groupe SO, ;(R). Le groupe I' est un sous-groupe de Aut(&)
composé uniquement d’éléments paraboliques qui fixent p.

Par conséquent, pour trouver un ellipsoide &, (resp. &) a intérieur
(resp. I’extérieur) de Q, il suffit de voir que si I’ellisphere 9E’ du faisceau
est suffisamment proche (resp. éloignée) de p alors £'NE est inclus dans D
(resp. 9E'NENQ = @ ). On peut donc trouver un ellipsoide &, (resp. Eoy),
en prenant un ellipsoide suffisamment proche (resp. éloigné) de p. [

PROPOSITION 6.9. Il existe un domaine fondamental D; pour l’action de A,
sur U, tel que pour tout point p € 0D, N U, il existe deux ellipsoides F,
et };; et les points suivants sont vérifiés :

1. D, est connexe et c’est une réunion finie de convexes;
2. OD; est fini;

3. F,CU, CFy;

4. 0F, N 00, = 0F, NIV, = {p};

5. F, est une horoboule de F,.

Démonstration. 1'image D; de D par Dev, est un domaine fondamental
pour 'action de A; sur U,. Il vérifie les deux premiers points car D ne ren-
contre qu’un nombre fini d’hyperplans v(H) pour v € ' et I’application Dev,
restreinte & n’importe quelle composante connexe de Up \ UﬂﬂE A, VH est une
application projective.

Si le point p € 9D, N OV, et p¢ U, vH, alors Dellipsoide &,
fourni par le lemme 6.4 est inclus dans ['une des composantes con-
nexes de UO\UWGAU ~vH . Mais D’application Dev, restreinte a n’importe
quelle composante connexe de U \ Uwe A, YH est une application projective.
Lellipsoide F, = Dev,(&,) convient. Comme [’ellipsoide F, est préservé
par Staby,(p), le lemme 6.8 montre qu’il existe un ellipsoide ]—'lﬁ a ’extérieur
de Q et tel que F, est une horoboule de centre p de ]—'Iﬁ.

Si le point p € 9D, NIV, et p € U,YeA’ ~vH , alors la situation est un peu
plus complexe car ’ellipsoide &, fourni par le lemme 6.4 est inclus dans une
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infinité de composantes connexes de Up \ Uﬂ/e A, VH . L’image de &, par Dev,
n’est donc pas un ellipsoide, c’est un ellipsoide par morceaux.

Nous allons montrer que le groupe Staba,(p) préserve un ellipsoide, ainsi
le lemme 6.8 montrera qu’il existe deux ellipsoides F,, et .7-'; qui solutionnent
notre probleme. Montrer que le groupe Staba,(p) préserve un ellipsoide revient
a montrer qu’il préserve une forme quadratique de signature (n,1).

Le groupe Aj, = Staby,(p) est virtuellement isomorphe a 7', cest le
groupe fondamental du cusp de M, associ€ a p. On note A}, ;; le sous-groupe
de A}, des €léments qui préservent H. Il est virtuellement isomorphe a 7'2,
Le groupe Aj ; n’est pas modifié pendant le pliage, c’est un sous-groupe
de ™ (.A/O) s

On souhaite trouver un ellipsoide a ’extérieur et un ellipsoide a I’intérieur
de Uy, tels que les hyperplans tangents en p aux bords de ces trois convexes
coincident. Pour cela, il suffit (lemme 6.8) de trouver un ellipsoide préservé par
un sous-groupe d’indice fini de Staby,(p). On peut donc supposer que Staby,(p)
est isomorphe a Z"!.

Le groupe A, préserve le point p, il agit donc sur I’espace projec-
tif PZ_I des droites projectives de P" passant par p. Il s’agit de ’espace
projectif des droites de 1’espace vectoriel quotient R"*!/p. Il préserve aussi
I’hyperplan 7,00, par conséquent il agit par transformations affines sur
I’espace affine AZ~! =Pr=1\ (P2~' NT,00,). Cet espace affine est dirigé par
I’espace vectoriel quotient 7,000 /p, ou T,00 est le relevé de 7,00, a R*T1.

Montrer que le groupe A;, préserve un ellipsoide tangent a 0Q en p
revient 2 montrer que I’action de A; préserve un produit scalaire sur Al’}‘l.
Le lemme 6.10 ci-dessous montre qu’il suffit de montrer que le groupe Al’7
agit par transformations affines de déterminant 1.

Comme les €léments de Aj, viennent d’un sous-groupe de SL,i(R), il
s’agit de montrer que p est un vecteur propre dont la valeur propre associée
est 1. Comme p est I’'unique point fixe des éléments de A’ , le lemme 6.11
ci-dessous montre que la valeur propre associée a p est 1. [

LEMME 6.10. Soit T' un sous-groupe discret agissant proprement et co-
compactement sur R™ par transformation affine de déterminant 1. Supposons
que T est virtuellement isomorphe a 1" et posséde un sous-groupe T’
distingué virtuellement isomorphe a Z"~' qui agit proprement et cocom-
pactement sur un hyperplan H par transformations euclidiennes. Alors, il
existe un produit scalaire sur R™ préservé par T, autrement dit T" agit par
transformations euclidiennes sur R™.
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Démonstration. On peut supposer que I' est isomorphe a Z™, que I est
isomorphe a Z™~! et qu’il existe un élément § € T tel que T =T"® < § >.
[’adhérence de Zariski du groupe I est le groupe des translations préservant
I’hyperplan H. Un calcul facile montre que Vu € ﬁ,&t,ﬁ*l = 13-
L’élément & commute avec les éléments de I” par conséquent la partie
linéaire de ¢ sur la direction ﬁ est I'identité.

La valeur propre 1 est donc de multiplicité m — 1 mais 1’élément § est
de déterminant 1 par conséquent 1 est une valeur propre de multiplicité m,
autrement dit ¢ est une translation. Ceci montre que I' préserve un produit
scalaire sur R™. [J

LEMME 6.11. Soit v € SL,+1(R). Supposons que ~ préserve un ouvert
proprement convexe Q de P" alors le rayon spectral p(vy) de v est valeur
propre de 7. De plus, si p(y) # 1 alors il existe deux points distincts fixés
par 7y sur le bord 0Q de Q.

Démonstration. Le premier point est le contenu du lemme 3.2 de [Ben05].
Pour montrer le second point, supposons que p(y) > 1. On se donne x € Q,
la suite 4" -x converge vers un point xT € 9Q et le point x* est une droite
propre associée a la valeur propre p(v) pour 7. De plus,ona p(y~ ') <1,
on obtient donc un autre point x~ € 9Q par le méme procédé. Clairement
ces deux points sont distincts. [

6.3 CONSERVATION DE LA FINITUDE DU VOLUME

Nous pouvons presque montrer les deux corollaires suivants.

COROLLAIRE 6.12. Le pliage d’une variété hyperbolique de volume fini
le long d’une hypersurface totalement géodésique définit une déformation de
structure projective proprement convexe de volume fini.

COROLLAIRE 6.13. L’action du groupe A, sur ’ouvert proprement con-
vexe U, est de covolume fini.

Pour montrer ce résultat nous aurons besoin d’un théoreme de comparaison
des volumes en géométrie de Hilbert. Ce résultat de géométrie de Hilbert est
tres classique, c’est une conséquence directe de la définition de la distance
de Hilbert et de la mesure de Busemann. Pour plus de détails, on pourra
consulter [Ver05].
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PROPOSITION 6.14. Soient Q) et Q, deux ouverts proprement convexes
de P" tels que Qi C Q, alors, pour tout borélien A de Qi, on a
/J'Qz(A) g qu(A)

Démonstration des deux corollaires. Comme 0D, est fini (6.9), il est
clair que D, est de volume fini si et seulement si pour tout p € 90U, N D,,
il existe un voisinage V, de p dans Q tel que pg,(V, N D;) < oo. Mais, le
lemme 6.9 montre que si V), est assez petit alors V,ND, C F,. Le convexe F,
est un ellipsoide (donc c’est I’espace hyperbolique), par conséquent, il est
bien connu que pz(V, N D;) < oo. Enfin, la proposition 6.14 montre
que pz5,(V, ND) < pr,(V,ND) <oo. [

6.4 LE GROUPE A, N’EST PAS UN GROUPE DE SCHOTTKY

REMARQUE 6.15. Le groupe A, n’est pas un groupe de Schottky. La
définition de groupe de Schottky ne fait pas 1’'unanimité, rappelons donc deux
définitions pour fixer notre propos.

DEFINITION 6.16. Un élément ~ de SL, 4 (R) est dit loxodromique lorsque
les valeurs propres de +2 sont simples et positives.

DEFINITION 6.17. Un sous-groupe I' de SL,+1(R) est un groupe de
Schottky lorsque c’est un groupe libre discret dont tous les éléments sont
loxodromiques.

Le groupe A, n’est pas un groupe de Schottky car il contient des éléments
unipotents (i.e. 1 est I'unique valeur propre). Par exemple, les stabilisateurs
des points p € 0D, .

7. GROMOV-HYPERBOLICITE

7.1 POINT DE CONCENTRATION FAIBLE

DEFINITION 7.1.  Soient Q un ouvert proprement convexe de P" et T’
un sous-groupe discret et irréductible de SL,;(R) qui préserve Q. Un
point x € 0Q est un point parabolique borné si 1’action du groupe Stabpr(x)
sur Lr — {x} est cocompacte.



40 L. MARQUIS

DEFINITION 7.2. Soient Q un ouvert proprement convexe de P* et I un
sous-groupe discret de SL,+1(R) qui préserve Q. On dit qu’un point x € 9Q
est un point limite conique lorsqu’il existe une suite d’éléments (d,),en de T,
un point xo € Q, une demi-droite [x;,x[, et un réel C > 0 tel que:

1. 6, -x0 — x;
n— oo

2. do(0y - xo, |x1,x]) < C.

DEFINITION 7.3.  Soient © un ouvert proprement convexe de P et T un
sous-groupe discret de SL,1(R) qui préserve Q. On dit qu’un point x € 9Q
est un point de concentration faible lorsqu’il existe un voisinage connexe U
de x dans 0L tel que pour tout voisinage V de x dans 02, il existe un
élément v € T tel que x € y(U) et v(U) C V.

THEOREME 7.4 (Hong, Jeong, SaKong [HIS96]). Soient £ un ellipsoide
de P" et T' un sous-groupe discret de SL,(R) qui préserve & . Tout point
limite conique est un point de concentration faible.

Le théoreme suivant a de nombreuses versions et de nos nombreux auteurs,
on pourra trouver une démonstration dans I’article [Bow93] de Bowditch.

THEOREME 7.5. Soient £ un ellipsoide de P" et T un sous-groupe discret
de SL,11(R) qui préserve €. L’action de T sur & est de covolume fini si
et seulement si tout point de OE est un point parabolique borné ou un point
limite conique.

On obtient donc la proposition suivante:

PROPOSITION 7.6. Tout point de 0U, est un point de concentration faible
ou un point parabolique borné pour ’action de A, .

Démonstration. Le théoréme 7.5 montre que tout point de Uy est un
point parabolique borné ou un point limite conique. Le théoréme 7.4 montre
tout point de Uy est un point parabolique borné ou un point de concentration
faible. Ces deux notions ne font intervenir que les propriétés topologiques de
I’action de Ay par homéomorphismes sur 09Uy .

[’application Dev, est un homéomorphisme équivariant entre les deux
convexes Up et U, de P". Le théoreme 3.7 montre que cet homéomorphisme
se prolonge en un homéomorphisme équivariant: Dev,: 00y — 0U,. Par
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conséquent, tout point de U, est un point parabolique borné ou un point de
concentration faible pour I’action de A,. [

7.2 CONVEXITE STRICTE

PROPOSITION 7.7. Soit Q un ouvert proprement convexe de P", sup-
posons qu’il existe un sous-espace projectif maximal E de P" de dimension
1 <m < n—1 tel que Uintersection 0Q N E soit d’intérieur dans E non
vide. On note S lintérieur dans E de 0QQNE, c’est un ouvert proprement
convexe de E.

Pour toute suite de points x, € Q, pour tout point x., € 0Q, et tout

réel R > 0, si la suite x, — Xxo alors la suite Bf(R) converge vers
n—o00 ¥

la boule Bfw(R) pour la distance de Hausdorff induite par la distance
canonique d.q, de P".

Démonstration. 1l faut montrer deux choses pour montrer cette proposition.
Si X est un ensemble, on notera X° = {y € P" | douu(y,X) < €}. On doit
montrer que pour tout € > 0, il existe N > 0 tel que pour tout n > N, on
a BS (R) C BZ(R)F et BE(R) C BS (R)*. Avec des quantificateurs cela se
traduit par:

Ve >0,3N >0,Yn >N, Yz €BS_(R), Iy, € BL(R) tel que dean(n,200) < €
et
Ve >0,3N >0,Vn > N, Vy, €BE(R), 3200 €BE_(R) tel que dean(Vn, 200) < €.

Il s’agit donc de montrer que 1’on peut trouver une “tranche” de Bﬁ(R) qui
converge “uniformément” vers B; (R) et que BZ(R) est proche de By (R)
si n est assez grand.

Pour montrer le premier point, on commence par choisir une carte
affine A qui contient Q. Considérons E,, le sous-espace affine parallele
a I’espace affine engendré par S passant par x, dans la carte A. Tout point
de P'intersection C, = E, N BZ(R) converge vers un point de B; (R), et
inversement pour tout point z., de Bfw (R), il existe une suite de points
de C, qui converge vers Z.. .

Le sous-espace affine E, converge dans E pour la distance de Hausdorff
dans A. Par suite, pour tout ¢ > 0, il existe un N > 0, tel que pour
tout n >N, on a Bf (R) C BA(R)".

Pour montrer le second point, il faut remarquer que si D, est la droite
passant par x, parallele a une direction fixée qui n’est pas incluse dans E alors
le diametre pour d.q, de D,,ﬂB_ﬁf(R) tend vers O lorsque n tend vers I’infini.
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Par suite, pour tout € > 0, il existe un N > 0, tel que pour tout n > N, on
ait B2(R)C BS_(R°. [

PROPOSITION 7.8. Soient Q un ouvert proprement convexe de P" et T’
un sous-groupe discret et irréductible de SL,11(R) qui préserve Q. Sup-
posons qu’il existe un sous-espace projectif maximal E de P" de dimension
I <m< n—2 tel que Uintersection 0Q N E soit d’intérieur dans E non
vide. Soit x un point dans Uintérieur relatif de 0QNE, le point x ne peut
étre un point de concentation faible.

Démonstration. Supposons que x soit un point de concentration faible.
Il existe alors un voisinage U de x et une suite d’éléments (v,),en de T
tel que ~,(U) n—_>>:>o {p}. On note K, I’enveloppe convexe de ¢/ dans Q,
les v, sont des applications projectives par conséquent, on a ,(K) S {p}.
Comme la dimension de JQNE est strictement inférieure a n—1 et que E est
maximal, le compact K est d’intérieur non vide, il existe donc une boule B
de (Q,dg) incluse dans K. Toute boule B de (Q2,dq) incluse dans K vérifie
que v,(B) — {p}. Mais la proposition 7.7 montre que la suite (7,(B)),eN
ne peut co%?g;ger vers le point p. Le point p n’est donc pas un point de
concentration faible. [

COROLLAIRE 7.9. L’ouvert proprement convexe U, est strictement convexe.

Démonstration. Tout segment du bord de U, est inclus dans un sous-
espace projectif maximal E. L’intersection R = 90U, N E est alors d’intérieur
dans E non vide. On note m la dimension de E.

On commence par traiter le cas ou m vérifie 1 <m < n—2.

Le théoreme 7.5 montre que tout point de U, est un point parabolique
borné ou un point de concentration faible. La proposition 7.8 montre que tout
point p dans I’intérieur relatif de R est un point parabolique borné. Mais, la
proposition 6.9 montre que si p est un point parabolique borné pour 1’action
de A, sur U, alors il existe un ellipsoide 8; tel que:

Qce e 9EN0Q={p}.

Un tel point p ne peut étre dans I'intérieur de R.

Enfin, si m = n—1 alors les points dans I’intérieur de R ne peuvent étre
paraboliques bornés pour la méme raison que précédemment. Par conséquent,
les points paraboliques bornés ne peuvent étre dense dans 0U,. Ce qui est
absurde puisque 1’action de A, sur U, est minimale (proposition 5.5). Par
conséquent, 1’ouvert proprement convexe U, est strictement convexe. Ll
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7.3  GROMOV-HYPERBOLICITE

LEMME 7.10. Soit T' un sous-groupe discret de SL,1(R) qui préserve
un ouvert proprement convexe Q de P". Soit D un domaine fondamental
connexe et localement fini pour Iaction de T sur Q. On suppose que :

1. D est une réunion finie de convexes;

2. OD est un ensemble fini;

3. Vp € 0D N 0Q, il existe deux ellipsoides ouverts E, et 51; tels que:
c 5 CQCE;
s 0E,N0Q =08,N0Q = {p}.

4. Le convexe Q est strictement convexe.

Alors, I'espace métrique (RQ,dg) est Gromov-hyperbolique.

Démonstration. Supposons que [’espace (22,dp) n’est pas Gromov-
hyperbolique. Il existe alors une suite (7,),en de triangles dont la taille
tend vers I’infini lorsque n — co.

11 existe donc 4 suites de points de Q: (X,)neN> VnneN s> (Zn)neN €t (Uy)neN
tels que:

1. Le triangle 7, a pour sommet les points X, V, 2, -
2. Le point u, appartient au segment [x,,y,].
3. On a do(uy, [y, 2] U [2n, yu]) — 00

n— 00

Quitte a appliquer un élément de I', on peut supposer que u, € D. Quitte
a extraire de nouveau, on peut supposer que la suite (u,),en converge vers
Uss € D C Q C P". Nous allons distinguer les deux cas suivants:

1. Le point u,, € Q;
2. Le point u~, € ODNOQ.

Commencgons par supposer que le point u,, € Q. Quitte a extraire, on
peut supposer que les suites (X,)neNs VnneN, (Zn)nen convergent dans Q
vers les points Xoo, Yoo, Zoo -

Les quantités do(u,,x,), do(uy,y,) et do(u,,z,) tendent vers I'infini
lorsque n — oco. Par conséquent les points Xoo, Yoo, Zoo SONt sur le bord
de Q.

Il est clair que Xxoo 7 Yoo pUISQUE Uso € Q. Si Xoo # Zoo alors la
convexité stricte de Q entraine que dgo(Uao, [Xoo, Zoo] U [Zoos Voo l) < 00, ce
qui est absurde. Donc x., = Zoo . Pour la méme raison y., = 7o, . Mais c’est
absurde puisque Xoo F Voo -

Supposons a présent que le point u., € 0D N OQ. La figure 7 peut aider
a suivre cette partie de la démonstration. Il existe alors deux ellipsoides &,
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et & tels que:

1. § CcQCéy;

2. 06,N0Q=0E,NIQ = {p};

3. &, est une horoboule de centre p du convexe &,.

On se donne p* un point sur le bord de I’ellipsoide EIQ qui n’est pas p
et tel que le segment [p,pT| rencontre D dans son intérieur. On se donne un
€élément hyperbolique g € Aut(£,) dont le point attractif est pT et le point
répulsif est p. La suite de convexe g*-&, tend vers £, car &, est I’horoboule
de centre p de I’espace hyperbolique &, .

Nous allons utiliser g pour obliger la “bisuite” (g* - Up)(kiyeN? & SOUS-
converger dans Slﬁ. La suite (u,),en converge vers p et I’élément g est
hyperbolique de point attractif pT . Le supremum #,,,, des quantités de;(x,g-x)
sur la réunion des g“(D) est fini car le segment [p,pT] rencontre D dans son
intérieur, D est une réunion finie de convexe et dD est un ensemble fini.

pt

FIGURE 7

Démonstration de la Gromov-hyperbolicité de

Choisissons un hyperplan H; qui coupe Q le long d’un ouvert proprement
convexe de codimension 1. L’ouvert EIQ\HI est composé de deux composantes
connexes, celles “en-dessous” de H; qui contient p dans son adhérence et
celle “au-dessus™ de H; qui contient p* dans son adhérence. On choisit un
second hyperplan H, parallele dans &/, a distance h = 10 X t,,,, de H; et
au-dessus de H;.
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Apres on observe la suite (u,),en. Il existe un entier ny tel que
pour tout n > ng, la suite u, est sous H;. Ensuite, on applique g, la
suite (g% - u,)ren converge vers pt. La distance entre les hyperplans H,
et H, est suffisamment grande pour qu’il existe un entier ko tel que g*° - u,,
soit entre les deux hyperplans.

Ensuite, il existe un entier n; tel que pour tout n > n; , la suite g -u, est
sous H;. La distance entre les hyperplans H; et H, est suffisamment grande
pour qu’il existe un entier k; tel que g% - u,, soit entre les deux hyperplans.

Ce procédé montre qu’il existe deux extractrices (k;)ien €t (1;)ien
telles que:

1. g5-Q = &

i—00
ki, / &7
2. g% - up, F U € &)

Mais la suite (u,),en est incluse dans le domaine fondamental D, par
conséquent, u._ € 5;. On peut bien entendu quitte a extraire encore une fois
supposer que 1’on a aussi les convergences suivantes:

ki . I~ T
1. g% - xp, i—T;oxOo GEP,

ki . I - T
2. g yll,' ’,_Tgoyooegp’
ki / °r
T Ty eé&l.
Zn i—o0 Zoo P

Les triangles ¢ - T, de ¢%(Q) sont isométriques au triangle 7, de Q.
Par conséquent, on a dg’;(u’oc, X, Zh 1 U [2, Voo ]) = 00, Mais un ellipsoide
muni de sa distance hyperbolique est un espace Gromov-hyperbolique (c’est
I’espace hyperbolique réel) donc ceci entraine que x,, =z, ou y. =z
et par suite x., = y, . Il vient donc que u., = x, = y._, ce qui est
absurde. O

3.9

COROLLAIRE 7.11. L’ouvert proprement convexe (U,,d,) est Gromov-
hyperbolique.

Démonstration. La proposition 6.9 montre que I’action de A; sur U,
vérifie tous les points du lemme précédent. [
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