Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique
Band: 58 (2012)

Artikel: Circle-valued momentum maps for symplectic periodic flows
Autor: Pelayo, Alvaro / Ratiu, Tudor S.
DOl: https://doi.org/10.5169/seals-515819

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-515819
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 58 (2012), 205-219

CIRCLE-VALUED MOMENTUM MAPS
FOR SYMPLECTIC PERIODIC FLOWS

by Alvaro PELAYO*) and Tudor S. RATIU)

ABSTRACT. We give a detailed proof of the well-known classical fact that every
symplectic circle action on a compact manifold admits a circle-valued momentum map
relative to some symplectic form. This momentum map is Morse-Bott-Novikov and
each connected component of the fixed point set has even index. These proofs do not
seem to have appeared elsewhere.

1. INTRODUCTION

A smooth circle action on a symplectic manifold (M, o) is Hamiltonian if
it is symplectic (in other words, the diffeomorphism associated to every group
element preserves the symplectic form) and the contraction i, 1= o(ly,-)
of o with the infinitesimal generator 1, of the action is an exact one-form,
i.e., it is of the form du for some smooth function p: M — R. The map pu
is called a momentum map of the action. Any two momentum maps differ by
a constant on each connected component of M.

While there are many examples of interesting Hamiltonian circle actions
— see for example Karshon’s classification [9] in dimension 4 — there
are also numerous situations in geometry and dynamical systems when one
has a symplectic circle action (equivalently, a symplectic periodic flow) on a
manifold but the one-form ig, o is not exact, e.g., consider any action without
fixed points such as a free action. Duistermaat-Pelayo [3, Remark 7.6 and
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0965738, an Oberwolfach Leibniz Fellowship and an NSF CAREER Award DMS-1055897.

) Partially supported by Swiss NSF grant 200020-126630 and by the government grant of the
Russian Federation for support of research projects implemented by leading scientists, Lomonosov
Moscow State University under the agreement No. 11.G34.31.0054.
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Theorem 9.6] and Pelayo [19, Examples 8.1.1, 8.1.2, and Theorem 8.2.1]
give infinitely many examples of compact connected symplectic manifolds in
any dimension equipped with symplectic free torus actions that are hence not
Hamiltonian. A particularly famous example among these manifolds is the
Kodaira variety in [10, Theorem 19, case 3], also known as the Kodaira-
Thurston manifold [13, Example 3.8 on page 88], which was pointed out by
Thurston [21] to be a non-Kéhler symplectic manifold.

The simplest example of a Hamiltonian S'-action is the rotation of the
sphere S? about the polar axis. The flow lines of the infinitesimal generator
defining this action are the latitude circles. Frankel’s seminal results [5,
Lemmas | and 2] and their proofs imply that the momentum map for a
circle action on a compact Kdhler manifold is Morse-Bott and the index of
each connected component of the fixed point set of the action is even.

The goal of this expository note is to give a proof of two classical facts:

(@) Every symplectic circle action admits a circle-valued momentum map
relative to some (possibly different) invariant symplectic form.

Concretely, (a) means the following. Consider a symplectic S!-action
on a compact connected symplectic manifold M, with generating vector
field 1p. We are identifying the circle S' with the quotient R/Z having
coordinate ¢ and length form A = dr. Then i;,0 is a closed one-form and so
it represents a cohomology class in H'(M; R). If this class is in the image
of H'(M;Z) — H'(M; R), then the action has a circle-valued momentum
map p: M — S' with the property that ij,,0 = p*(dr). If not, then there is
a (nearby) S'-invariant symplectic form w such that kli;,w] € H'(M; Z) for
some k € R. There is always a corresponding momentum ') map p: M — S'
for any such form kw. This important observation was first made in an
influential paper by Dusa McDuff [12, Lemma 1], which prompted much later
research.

(b) The map p: M — S' is Morse-Bott-Novikov and each connected
component of the fixed point set has even index.

Statement (b) extends Frankel’s result to circle-valued momentum maps.
Strictly speaking, in order to state this latter fact precisely we need to first
introduce the notions of Morse-Bott-Novikov, non-degeneracy, and index of a
critical point for smooth circle-valued maps. The definitions of these notions
parallel those for real-valued maps. Formally, one replaces the smooth S'-
valued function by its logarithmic exterior differential which is in agreement

') If ¢ is the coordinate on R and p: M — R is the standard momentum map
then dp = p*(dr) ; formally, this information is found in formula (2) in Section 2.
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with the fact that non-degeneracy of a critical point is a local notion. Once
we have introduced these concepts, we can state the main result of this note,
Theorem 3 in Section 2, stating McDuff’s important observation and the
extension of Frankel’s theorem.

To our knowledge, no detailed proofs of these classical facts are available
in the literature. We have received many questions over the years about them.
This has prompted us to write the present note, with the goal of providing
elementary and complete proofs. We follow, to a certain extent, McDuff’s
outline in the proof of the existence of the circle-valued momentum map and
extend Frankel’s argument from real to circle-valued maps. The proofs in this
note are self-contained.

ACKNOWLEDGEMENTS. We thank an anonymous referee for many helpful
suggestions. We are also thankful to Allen Hatcher, Dan Burghelea, Dan
Halpern, Stefan Papadima, and Susan Tolman for valuable discussions. We
are very grateful to Dusa McDuff who gave us detailed comments on several
preliminary versions of this paper, resulting in an improved exposition.

2. CIRCLE-VALUED MAPS AND THE MAIN THEOREM

In this section we explain in which sense a circle-valued momentum map
is Morse-Bott-Novikov, what non-degeneracy means for a critical point of such
a map, and what is the natural notion of index of a critical point. To be as
self-contained as possible, we start by recalling some basic notions.

MORSE THEORY FOR CIRCLE-VALUED MOMENTUM MAPS

Throughout this subsection M is any smooth manifold (not necessarily
connected, or compact, or symplectic, etc.).

CONVENTIONS CONCERNING S!. Our conventions and notations concerning
the circle S' are the following. We identify throughout this paper the circle S'
with R/Z and denote by 7: R 3 7+ [7] € R/Z the canonical projection, a
surjective submersive Lie group homomorphism. Thus Tom: R — Tjo(R/Z)
is an isomorphism and so we identify R with the Lie algebra of R/Z,
ie., r € R is identified with Tom(r). If L, and L) denote left (equivalently,
right) translation on R and R/Z, respectively, then moL, = Lj,;o7 and hence

Tiy(R/Z) = {T;n(r) | r € R}, (T[OlLlr] o Tmr) ©,r) = Tyw(t,r), Vt,r € R.
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The length form \ € Q' (R/Z) is defined by \([t]) (T;w(r)) := r. So, in
the local coordinate r € I (I C R is an open interval of length strictly less
than one), A\ = dr since T,7(r) = r%. Therefore, fR/Z)‘ = fol dr=1 and )
is left (equivalently, right) invariant.

LOGARITHMIC EXTERIOR DIFFERENTIAL. For any smooth map f: M —R/Z,
the classical logarithmic exterior differential 8f € QY(M) of f is defined by

(l) 6f(m)(vm) = Tf(m)Lff(m) (Tmf(vm)) eR )

where m € M, v, € T,M. It is easy to see that if g: M — R/Z is
another smooth map, then d(fg) = df + dg. As usual, for X € X(M), we
define (df,X) € C*(M) by (8f,X) (m) := §f(m)(X(m)) for any m € M.

The following formula for any f: M — R/Z is easy to check and will be
used later on:

2 JTA=9f.

The logarithmic exterior differential is related to the usual exterior differ-
ential of the canonical lift in the following manner. Let

M = {(m,1) € M x R | f(m) = [1]}

be the pull back bundle by f of the principal Z-bundle 7: R — R/Z.
Thus, 7: M > (m,t) — m € M is also a principal Z-bundle and hence a
covering space. Note that

3) TimoM = { (vm, (1, 8f () () | f(m) = [1]} .

Define the canonical lift of f by f: M > (m,1) — t € R. Since mof =fo7,
formula (3) implies that

“ 8f (m)(vy) = df (m, 1) (v, (1, 8f (M) (V)))

forall me M, v, € T,M, t € R such that f(m) = [t]. In particular, m € M
is a critical point of f (i.., T,,f = 0 or, equivalently, 6f(m) = 0) if and only
if all (m,t) € 7~ "(m) C M are critical points of the real-valued function f .
Denote by Crit(f) := {m € M | §f(m) = 0} the set of critical points of f.

HESSIAN OF A CIRCLE-VALUED SMOOTH MAP. The definition of the Hessian
(Hessf)(mo): Tyy,M X T,,,M — R at the critical point mg € M of f: M — R/Z
parallels that for real-valued functions (see, e.g., [14, page 4]):

(5)  (Hessf)(mo)(u,v) := £5 ((f, 7)) (mo) = (d ((df, 7)) (mo), uy,
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for all u,v € T,,,M, where u,v are arbitrary local smooth vector fields in a
neighborhood of mg such that u(mg) = u, v(mg) = v. From (4) and (5) it
follows that if mg € Crit(f), then

(6) (Hess f)(mo)(u, v) = (Hess f )(mo, 0) ((u, (0, 0)), (v, (1o, 0))) ,

for any 17y € R satisfying f(mg) = [to] and u,v € T,,,M , where the right hand
side is the usual Hessian of the real-valued function f . To see this, note first
that since myq € Crit(f) and ty € 7 '(mp), formula (3) yields

T(m(nto)M = {(Umm ([0,0) |f(m0) = [tOl} .

Thus, if v € T,,,M and v is an arbitrary local smooth vector field defined in
a neighborhood of mg and satisfying v(mo) = v, then (v, (§f,v)) is a smooth
local vector field on M defined in a neighborhood of (my, 1)) € M whose
value at (myg, to) is (v, (1p,0)) € T(,,ZO,,(,)]VI. Thus, if m(e) € M with m(0) = my
and m'(0) = u, we get

(Hess f ) (mo, t0) ((u, (10, 0)), (v, (10, 0))) = (d (df, (@, (f, ©))) (mo, to), (u, (1o, 0)))

d = ~
= 2| (A, @, (8, 7)) (m(e), 10) 2 (8f, ) (m(e)
e=0

de e=0

(d ((8f,7)) (mo), u) E (Hess f)(mo)(u, v).

Formula (6) shows that (Hessf)(mo): T,y,M % T,,,M — R is a symmetric
bilinear form and that its definition does not depend on the extensions u
and v but only on their point values u,v € T,,M. As for real-valued
functions, the critical point myg is said to be non-degenerate if (Hessf)(mg)
is a non-degenerate bilinear form. Thus, formula (6) implies that mo is a
non-degenerate critical point of f if and only if all (mg,1y) € 7 (mg) C M
are non-degenerate critical points of f . In addition, the Morse Lemma for f
and the fact that 7: M — M is a covering space, imply that non-degenerate
critical points of f: M — R/Z are isolated. In particular, if M is compact,
then there are only finitely many non-degenerate critical points of f.

4
de

MORSE-BOTT-NOVIKOV MAPS. Recall that a smooth map f: M — R is
Morse if all its critical points are non-degenerate. The smooth map f is
Morse-Bott if the critical set Crit(f) of f is a disjoint union of connected
submanifolds C; of M such that ker(Hessf)(m) = T,C;, for each i
and m € C;. The index of m is the number of negative eigenvalues
of (Hessf)(m). For circle-valued maps we proceed in the same manner.

A smooth map f: M — R/Z is Morse-Bott-Novikov if the critical
set Crit(f) := {m € M | df(m) = 0} of f is a disjoint union of
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connected submanifolds C; of M such that ker(Hessf)(m) = T,C;, for
each i and m € C;. The index of m is the number of negative eigenvalues
of (Hessf)(m). Since Crit(f) is closed, if M is compact, then it has only a
finite number of connected components.

Formula (4) implies that Critf = 71 (Critf). Thus, from (6) we conclude
that f: M — R/Z is Morse-Bott-Novikov if and only if f: M — R is
Morse-Bott.

THE CIRCLE-VALUED MOMENTUM MAP

Let (M,o0) be a symplectic manifold, i.e., M is a smooth manifold and o
is a non-degenerate closed smooth 2-form on M.

Let ®: R/Z x M — M be a smooth action by symplectomorphisms
(i.e., each diffeomorphism @ : M — M preserves the symplectic form o).
Let ry € X(M) be the infinitesimal generator of the action determined
by r € R whose value at an arbitrary point x € M is given by

ry(x) = di Dppey(x) -
€ e=0
The circle action on (M, o) is said to be Hamiltonian if there exists a smooth
map p: M — R, called the momentum map, such that iy,,0c = o(ly, ) =dpu.
The existence of such a map p is equivalent to the exactness of the one-
form i, 0. It follows that the obstruction to the action being Hamiltonian lies
in the first cohomology group of M ; thus, if H'(M;R) is the trivial group
then every symplectic R/Z-action on M is Hamiltonian.

DEFINITION 1. A circle-valued momentum map p: M — R/Z is defined
by the condition p*\ = ij,,0, where \ € Q'(R/Z) is the standard length
form.

REMARK 2. Definition 1 is equivalent to that of group-valued momen-
tum maps ([1, 7, 8], [17, Definition 5.4.1]) in the case of R/Z because
of formula (2). There is a close relationship between the cylinder-valued
momentum map ([2], [17, §5.2]) and the group-valued momentum map for
Abelian Lie groups. Any cylinder-valued momentum map associated to an
Abelian Lie algebra action whose associated holonomy group is closed can be
understood as a Lie group-valued momentum map ([17, Proposition 5.4.4]).
Conversely, connected Abelian Lie groups have closed holonomy groups. The
precise technical conditions when Lie group and cylinder-valued momentum
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maps are equivalent for connected Abelian Lie groups are spelled out in [17,
Theorem 5.4.6].

STATEMENT OF THE MAIN THEOREM. With this background, we can now
give a precise statement of the result announced in the introduction.

THEOREM 3. Let the circle R/Z act symplectically on the compact
symplectic manifold (M,c). Denote by MR'Z the fixed point set of the
R/Z-action. Then either the action admits a standard momentum map or,
if not, there exists a R/Z-invariant symplectic form w on M that admits a
circle-valued momentum map j: M — R/Z. Moreover, 1 is a Morse-Bott-
Novikov function and each connected component of MR/% = Crit(1) has even
index.

REMARK 4. As we shall see in the proof, if o is integral, then w =o.

REMARK 5. An analogue of Theorem 3 also holds for actions of higher
dimensional tori.

REMARK 6. If p: M — R is a standard momentum map for a circle action
on a 2n-dimensional compact symplectic manifold (M, o), it is well known
that it has at least n+ 1 critical points or, equivalently, the circle action has at
least n+1 fixed points. Let us briefly recall the argument. Since p is Morse-
Bott (Theorem 3), the connected components of Crit(x) are submanifolds
of M. If at least one is not zero-dimensional, then there are infinitely many
critical points of p and the result is obvious. If all connected components are
zero-dimensional, then p is a Morse function and so it must be perfect (i.e.,
the Morse inequalities are equalities) because of the following classical result:
If f is a Morse function on a compact manifold whose critical points have only
even indices, then it is a perfect Morse function (see e.g., [15, Corollary 2.19 on
page 52]). Thus, if my(u) denotes the number of critical points of x4 of index k,
the total number of critical points of p equals Ziio m(p) = i"zo by(M),
where by(M) := dim (H*(M,R)) is the kth Betti number of M. However,
since o is a symplectic form, the cohomology classes [o¥] are nontrivial
elements of H*(M,R) for k=0,...,n, and hence by (M) > 1, which then
implies that the total number of critical points of p is at least n+ 1.

It is tempting to use Theorem 3 to deduce a similar result for circle-
valued momentum maps by replacing the Morse inequalities by the Novikov
inequalities (see [18, Chapter 11, Proposition 2.4], [4, Theorem 2.4]), if all
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critical points of p are non-degenerate. In this case, the number of critical
points of the circle-valued momentum map g is Zi’;o my(p) . This integer is
estimated from below by

2n

> (B + 4 + 1 (),

k=0
where Ek(M) is the rank of the Z((7))-module Hk(l\7l, ) @gy L) , Gi(M)
is the torsion number of this module, and M is the pull back by u: M — R/Z
of the principal Z-bundle ¢ € R — [¢7] € R/Z. Unfortunately, this lower bound
can be zero, in stark contrast to the Hamiltonian case. For example, the circle
action on the two-torus by rotation on the first factor is free and hence has no
fixed points. See [4, §7.3] for further information. However, it is known that if
this lower bound is strictly positive, then it must be at least two. In addition,
if dim(M) > 8, then if the lower bound is strictly positive, it must be at
least three. These results were proved in [20, Corollary 6] using localization
in equivariant cohomology. To our knowledge, no universal lower bound for
non-Hamiltonian symplectic circle actions with at least one fixed point is
available. It was proved in [20, Theorem 1] that this lower bound is at least
n+ 1 provided that the so-called Chern class map is somewhere injective.

The rest of the paper is devoted to the proof of Theorem 3.

3. PROOF OF THE FIRST PART OF THEOREM 3: EXISTENCE OF

The goal of this section is to prove the existence of the circle-valued
momentum map.

NOTATION AND BASIC FACTS

In order to be as explicit and self-contained as possible we give a proof
of the following basic observation.

LEMMA 7. Let ®@: (R/Z)XM — M be a smooth action and let ¢: R/Z— N
be a smooth map. Define : (R/Z) x (R/Z) — N by

U([s], [1]) == @y (@ ([s])) -
Then, if o € QM) is an R/Z-invariant form we have

(7 / o= —/ e (,0).
(R/Z)X(R/Z) R/Z
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Proof. let B € Q*(R/Z) x (R/Z)). Denote by [s] the elements of
the first circle and by [z] those of the second. Let 0/0t € X(R/Z) be
the left (equivalently, right) invariant vector field whose value at [0] is 1.
Let dr € Q'(R/Z) be the one-form dual to 9/0t, ie., (dt,0/0t) = 1
A direct verification shows that 3 = —i 2 B Adet. If 8 is invariant under the
translations Ay, of the second factor in (R/Z) x (R/Z) (the r-direction), i.e.,
it Apg(Is], 12D = (sl [z + ul), then A},8 = 3 for all [u] € R/Z, it follows
that la [ is also invariant under such translations. Thus la ( depends only
on Isl ‘and hence

®) / p=— [ uigs.
(R/Z)x(R/Z) R/Z

where ¢1: (R/Z) > [s] — (Is],[0]) € (R/Z) x (R/Z) is the standard
embedding of the first circle into the 2-torus.

Now notice that ¥*a € Q2(R/Z) x (R/Z)) is invariant under the
translations on the second factor. Indeed, since

g 0 0
Ts1, 1Y ( 8t> = TyusnPrn (aTms@ (8 ) + blM@([Sl)))

0 0 0 0
Ts1,1mAtu) (aa,b5> = <a%’b5> ([s], [t +ul),

(R/Z)-invariance of a € QM) implies that Af‘ul¢*a = Y*a. Thus,
formula (8) is applicable for 3 = ¢ *«. In addition,

)
(L’fi%z/;*a) (IsD) (a&> _ (i%w*a) (Is1, [0]) (a— o)
) 9 )
- (w a)([s]7 IOI) <<0a E) ) <aa_70>>

= a (sl [0]) <T(m,101>¢( ) Ts1, lOIﬂ/’( ))

= a(p(s]) <1M(90([S]))70Tlsl )>

(5
= (i1, a) (e(sD) <TIW( >>
— o* (i )([s])( a)

ie., tfigyra=¢* (i1,,) which, together with (8), implies formula (7).
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EXISTENCE OF p

If the R/Z-action does not admit a standard momentum map, the action
is necessarily not trivial, because the trivial action admits the constant map
everywhere equal to zero as a momentum map. Thus, assuming that the action
is not Hamiltonian, it follows that the one-form i, o is not exact. In this case
we shall prove that there exists a R/Z-invariant symplectic form w on M
that admits a circle-valued momentum map p: M — R/Z.

The following steps cover three cases. Before we proceed, we recall that
for a compact manifold X, a rational cohomology class in H*(X;R) is a real
cohomology class which lies in the image of H*(X;Q) — H*(X;R). Similarly,
when Q is replaced by Z for integral cohomology class.

STEP 1. Existence of the circle-valued momentum map when [o| € H*(M; Z).
Identity (7) shows that [iy, 0] € H'(M;Z); we note that this statement may
also be deduced as a property of the flux homomorphism, cf. [13, Lemma 10.7].
Pick a point my € M, let =, be an arbitrary smooth path connecting mg to m
in M, and define the map pu: M — R/Z by

&) p(m) = [/ ilMU] .

m

The map p is well defined. Indeed, if 7, is another path connecting mq to m,
let 7, % (—7,,) be the closed loop formed by starting at my, following ~,, and
then returning from m to my on 7,,. Since ij,,0c € H'(M;Z), all its periods
are integral and hence [ . ii,0 =tk € Z. Thus

/ilMO':/ i1M0'+k
A

which shows that [fv ilMa} = [fa ilMa} . The map g is clearly smooth.

Finally, since for any v,, € T,,M ,we have T,,p(vy) =T ilMaﬂ(ilMU(m)(vm)) .
it follows that Y

N M) (W) = Mpp(m)) (Tupu(v)) = (i, 0) (M) (W) 5
i.e., the symplectic form o admits the circle-valued momentum map p defined
in (9) on M.

STEP 2. Existence of the circle-valued momentum map when || € H*(M; Q).
Identity (7) shows that [ilMa] € H'(M;Q). Thus there is a k € N such
that [iy, (ko)|] = k[iy,0] € H'(M:Z). Since the R/Z-action clearly pre-
serves ko, by Step 1, the symplectic form ko on M admits a circle-valued
momentum map on M.
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STEP 3. Existence of the circle-valued momentum map when (o] € H*>(M;R)
is irrational. We will use the de Rham theorem for G-invariant forms: let G
be a connected compact Lie group acting smoothly on a compact manifold X .
Let Q*(X)Y denote the set of G-invariant forms. Then the inclusion map
i Q"(X)¢ — Q*(X) induces an isomorphism H*(X;R)® =2 H*(X;R) in real
cohomology.

Therefore, in our case, for the group R/Z, we conclude that

H*(M;R)®*% = H>(M; R)

by the compactness of M ; let m:= dimg (H*(M;R)) = dimq (H*(M;Q)) be
the second Betti number. Choose a Q-basis of H?(M;Q); then it is also
an R-basis of H*(M;R) = H?*(M;Q) ®q R and hence H*(M;Q) = Q"
as Q-vector spaces, and H*(M;R) = R"™ as R-vector spaces. Endow-
ing H*(M;R) with the topology induced by this linear isomorphism,
this implies that H*(M;Q) is dense in HX(M;R) = H*(M;R)®/Z. Since
0 # [0] € HAM;R®/Z because o is a symplectic form, we can

complete to a basis {[o],[wi],...[wn_1]} of HA2(M;R)®/Z. In particular,
Oy Wis ey Wit € Q2a(MR/Z are linearly independent and hence
V = spang{o,wi,...wu_1}

is an m-dimensional vector subspace of Q2% ,(MR/% isomorphic to
HXM;R)®/Z the isomorphism being given by its values on the basis:
o+ lol, wx = lw], for k =1,...,m — 1. Embed by this isomorphism
the Q-vector space H*(M;Q) in V; its image U is a dense Q-vector sub-
space of V. Because non-degeneracy is an open condition, it follows that
the set of R/Z-invariant symplectic forms in V is open and also non-empty
since o € V. Because U is dense in V, it follows that we can find a
form w € U, hence necessarily closed and R/Z-invariant, so close to o € V
that it is symplectic. The problem has now been reduced to the situation
studied in Step 2 with o replaced by w.

This concludes the proof of existence of the circle-valued momentum map.

4. PROOF OF THE SECOND PART OF THEOREM 3:
1 1S MORSE-BOTT-NOVIKOV

The goal of this section is to prove that the circle-valued momentum
map p: M — R/Z is Morse-Bott-Novikov. As discussed in Section 2, this
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is equivalent to showing that the standard lift p: M — R is Morse-Bott,
where M = {(m,1) € M x R | u(m) = [1]}.

Let w be the R/Z-invariant symplectic form on M constructed in
Section 3. Since 7: M > (m,f) — m € M is a covering space it follows
that 7w € Q*(M) is a symplectic form on M. In addition, R/Z naturally
acts on M by Wig(m,t) = (®(m),t). This is well-defined since the
momentum map is (R/Z)-invariant. To see this, note that it suffices to prove
that 7, u(1p(m)) = 0, which follows from the following computation:

T Lt Tt (g (m)) 2 8pu(m)(1yg(m) 2 (1 N m)(Lyg(m))
= (i1, w) (m)(Ay(m) = w(m) Ly (m), Ly(m)) = 0.

The identity 7 o W) = @y o7 and R/Z-invariance of w implies that the
R/Z-action W on M is symplectic. Let us show that fi: M > (m,7) — t € R is
a momentum map of this action. Indeed, since 15;(m, 1) = (1y(m),(¢,0)),s0 15
and 1, are 7-related, for any m € M, t € R such that f(m) = [t], v, € T,,M,
and r := (§f(m),v,) € R, we have

illq(%*w)(m, [)(Um, (t7 r)) = iIMw(m)(Um) - (/J'*)‘)(m)(vm)

2 5 1(m) () 2 dfi(m, ) (v, (1, 7)) .

Finally, note that 1z oW = pi. Thus, the problem is reduced to showing that
the standard invariant momentum map of a circle action is Morse-Bott, which
is a well-known classical result.

In the interest of completeness, we recall the proof. So, let (M,w) be a
compact symplectic manifold, ®: (R/Z) x M — M an action preserving the
symplectic form and admitting an invariant momentum map J: M — R. We
shall show that J is a Morse-Bott map.

First, we note that the submanifold MR/Z | consisting of fixed points of
the action, coincides with Crit(J). Indeed, since R/Z is connected, so it is
generated by a neighborhood of the identity element, it follows that m € M®/Z
if and only if 1(m) = 0. By non-degeneracy of w and the defining
identity w(m)(1y(m),vy) = dJ(m)(vy,), for any v,, € T,,M , of the momentum
map J, it follows that 1y(m) =0 if and only if dJ(m)=0.

Second, we show that each connected component F of MR/Z = Crit(])
has even index. Let mp € F C Crit(J), u,v € T,,,M , and take vector fields u, v
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such that u(mg) = u, v(mg) = v. Thus,

Hess(J)(mo) = £5 ((dJ, 7)) (mo) = £ (w (1y, 1)) (mo)
= (Lw)(mo) (1 (mo), v)+w(mo) ( [it, 1] (mo), v) +w(mo) (1y(ma), [, 0] (m))

e d -
= w(mo) (v, [1y, 4] (mo)) = w(mp) <v, —|  (T®_youody) (mo)>

dt

t=0

dt

However, T,,®;: TyM — T,,M is the flow of the linearized vector
field 14,(mo): T,j,M — T,,,M and hence

(10)  (Hess J)(mo)(u, v) = w(mg) (v, — 1), (mo)(w)) = w(mo) (1},(mo)(w), v) .

At this point we recall that the symplectic representation

= w(my) (% 4

Tmo®|t](”)> .

t=0

Ty @iy (TingM, w(mg)) — (T, M, w(my))
of R/Z admits an invariant momentum map L: 7,,,M — R whose expres-
sion is ’
L(v) = Sw(mo) (13,(mo) (), v)
for any v € T,,,M (see, e.g., [11, formula (12.4.6)]) and hence
(Hess J)(mo)(u, u) = 2L(u)

for all u € T,,M. Obviously, if u € T,,F, both the Hessian and L vanish.
So we need to compute the Hessian on a subspace transversal to 7,,F in
order to determine the index of F. Since T,,,F = T, (MY/%) = (T,,,M) R/2
is a symplectic vector subspace of (T,,,M,w(mpy)) (e.g, [16, (24.5) and
Proposition 4.2.7]), its w(mg)-orthogonal complement W is also a symplectic
subspace of (7,,,M,w(mp)) and we have T,, /M = (T,,,OM) R/Z @ W. Thus, we
shall compute (HessJ)(mo)|wxw . The only fixed point of the R/Z-symplectic
representation on W is the origin. We recall the following well-known linear
algebra result (see e.g., [6, paragraphs 1 and 2, Section 32, p.249, 250]).

LEMMA 8. The 2k-dimensional R/Z-symplectic representation space W
splits as a w(mg)-orthogonal sum of irreducible representations : W = @;;1 W;,
where dimW; = 2.

For any irreducible symplectic representation of R/Z on a two-dimensional
symplectic vector space (U,dg Adp), the associated momentum map has the
expression U > (q,p) — %(q2 +p?) € R, where a € R is the weight of the
representation.
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Therefore, for any w; +---+wy € 69;‘:1 W;, formula (10) implies that

(11)  (Hess J)(mo)(wy + - - - + wg, wy + -+ - 4+ wy)

k k k
= (Hess J)(mo)(wy, wy) = Y _2L(wy,w) = Y _a; (q} +p}) ,

j=1 j=1 j=1

where a; € R are the weights of the irreducible R/Z-representations
and (gj,p;) are the symplectic coordinates of w; € W;, j=1,...,k. From
Lemma 8 and (11) it follows that J is Morse-Bott and that the index of the
connected component F C CritJ equals twice the number of the negative
weights a; € R. Thus the index of F is even.
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