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RANK OF MAPPING TORI AND COMPANION MATRICES

by Gilbert LEVITT and Vassilis METAFTSIS

ABSTRACT. Given an element ¢ € GL(d,Z), consider the mapping torus defined
as the semidirect product G = Z¢ x, Z. We show that one can decide whether G
has rank 2 or not (i.e. whether G may be generated by two elements). When G is
2-generated, one may classify generating pairs up to Nielsen equivalence. If ¢ has
infinite order, we show that the rank of Z¢ Xn Z is at least 3 for all n large enough;
equivalently, " is not conjugate to a companion matrix in GL(d,Z) if n is large.

For Fritz Grunewald

1. INTRODUCTION

The rank of a finitely generated group is the minimum cardinality of a
generating set. There are very few families of groups for which one knows
how to compute the rank (see [8] and references therein), and there exists no
algorithm computing the rank of a word-hyperbolic group [2].

By Grushko’s theorem, rank is additive under free product. It does
not behave as nicely under direct product, even when one of the fac-
tors is Z: it can be checked that the solvable Baumslag-Solitar group
BS(1,2) = {(a,b | bab=' = a*) and the product BS(1,2) x Z both have
rank 2 since the latter is generated by {b,xa} where x is the generator of Z.

In this paper we consider semi-direct products G = A x, Z (also known
as mapping tori), with the generator ¢ of the cyclic group Z acting on A
by some automorphism ¢ € Aut(A). This was motivated by the remark that,
when A is a non-abelian free group F; of rank d and ¢ has finite order
in Out(Fy), then G is a generalized Baumslag-Solitar group and its rank is
computed in a forthcoming work by the first author. But we do not know how
to compute the rank when ¢ has infinite order in Out(F,). Abelianizing does
not help much, so we ask:
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QUESTION. Is there an algorithm that, given ¢ € GL(d,Z), computes the
rank of G =124 x,Z?

We can prove:

THEOREM 1.1. There is an algorithm that, given d € N and ¢ € Gl.(d,Z),
decides whether G =7 x, Z has rank 2 or not.

Here is a sketch of the proof. We show that the rank of G is | plus the
minimum number k such that Z¢ may be generated by k orbits of ¢ (i.e.
there exist gi,...,gx € Z¢ such that the elements ¢"(g;), for n € Z and
i=1,...,k, generate Z¢). In particular, G has rank 2 if and only if Z¢ may
be generated by a single ¢-orbit. We then show that this happens precisely
when ¢ is conjugate in GL(d,Z) to the companion matrix M, having the
same characteristic polynomial. This may be decided since the conjugacy
problem is solvable in GI.(d,Z) by Grunewald [6].

Theorem 1.1 extends to the case when ¢ is an automorphism of an arbitrary
finitely generated nilpotent group A, by reduction to the abelian case.

When G has rank 2, one can classify generating pairs up to Nielsen
equivalence. In particular:

THEOREM 1.2. Suppose that G = Z¢ X Z has rank 2. There are finitely
many Nielsen classes of generating pairs if and only if the cyclic subgroup
of GL(d,Z) generated by ¢ has finite index in its centralizer.

Our next result is motivated by the following theorem due to J. Souto:

THEOREM 1.3 ([12]). Let A be the fundamental group of a closed
orientable surface of genus g > 2. Let ¢ be an automorphism of A
representing a pseudo-Anosov mapping class. Then there exists ng such that
the rank of G, =A X Z is 29+ 1 for all n > ny.

We prove:

THEOREM 1 4. Given ¢ of infinite order in GL(d,Z), there exists ng
such that the rank of G, = Z¢ Xon L is >3 for all n> ng.

The theorem becomes false if the hypothesis that ¢ has infinite order is
dropped, or if 3 is replaced by 4. We do not know hypotheses that would
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guarantee that the rank is d + 1 for n large.
Since Z¢ X, Z has rank 2 if and only if ¢ is conjugate to a companion
matrix, an equivalent formulation of Theorem 1.4 is:

THEOREM 1.5. Given a matrix ¢ of infinite order in GL(d,Z), with d > 2,
there exists no such that ©" is not conjugate to a companion matrix if n > ny.

. . 11 . .
EXAMPLE. Let ¢ be the unipotent matrix (0 1) . It is obvious that ¢

has infinite order. Notice that Z2 X, Z has rank 2 since it is generated by a
generator of Z and the element (0, 1) of Z?. The companion matrix with the
0 -1
1 2

G-GD0D0Y

On the other hand, ¢" =

same characteristic polynomial as ¢ is M, = ( ) and one can easily

confirm that

n : .
0 1 has the same companion matrix as ¢,
but it is easy to check (by reducing modulo a prime dividing n) that ¢ and ¢"
are not conjugate in GL(2,Z) if n> 2.

Our proof of Theorem 1.5, given in Section 5, is based on the Skolem-
Mabhler-Lech theorem on linear recurrent sequences [3]. There are alternative
approaches based on equations in S-units and Baker’s theory on linear forms
in logarithms. They are due to Amoroso-Zannier [1] and yield uniformity : one
may take ng = [Cd®(logd)®] where C is a universal constant (independent
of ¢). We refer to [1] for related number-theoretic questions, for instance a
discussion of a “Hasse principle”.

We conclude with a few open questions.

What about ascending HNN extensions ? For instance, let ¢ be an injective
endomorphism of Z¢ (a matrix with integral entries and non-zero determinant).
Let G = Z%, = (Z%t | tgt=" = p(g)). Is there an algorithm that can decide
whether G has rank 2 ?

Our analysis on Z¢ uses the Cayley-Hamilton theorem. This is not available
in a non-abelian free group F,. Given ¢ € Aut(F,), is there an algorithm
that can decide whether F; may be generated (or normally generated) by a
single -orbit? More basically: given ¢ € Aut(F,;) and g € F,, can one
decide whether the (-orbit of g generates F; ?
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2. GENERALITIES

Let A be a finitely generated group. The letters a,b,v will always denote
elements of A. We denote by i, the inner automorphism v — ava~".

Given ¢ € Aut(A), we let G be the mapping torus
G=Ax,Z={(At|tat" =pa).

There is an exact sequence | -+ A — G — Z — 1. Up to isomorphism, G
only depends on the image of ¢ in Out(A). Any g € G has unique forms at",
"a" with n€ Z and a,d’ € A.

If N is a characteristic subgroup of A, we denote by ¢ the automorphism
induced on A/N. There is an exact sequence

Il N —-Ax,Z—A/Nx;Z—1.

The rank rk(G) is the minimum cardinality of a generating set. We
let vrk(G) be the minimum number of elements needed to generate a
finite index subgroup: vrk(G) = infyrk(H) with the infimum taken over
all subgroups of finite index. Note that one may have vrk(H) > vrk(G) if H
has finite index in G, for instance when G is free.

We say that two generating sets with the same cardinality are Nielsen
equivalent if one can pass from one to the other by Nielsen operations:
permuting the generators, replacing g; by ¢! or gigj- For instance, any
generating set of Z is Nielsen equivalent to {0,...,0,1} by the Euclidean
algorithm.

The @-orbit of a € A is {¢"(a) | n € Z}. We denote by or(p) the
minimum number of ¢-orbits needed to generate A. Clearly or(y) < rk(A).
We also denote by vor(y) the minimum number of ¢ -orbits needed to generate
a finite index subgroup of A, so vor(y) < vrk(A).
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LEMMA 2.1. Given a,ay,...,a; € A, the intersection

A'={ay,...,ar,at) N A

is generated by the (i, o p)-orbits of ay,...,a.
The (i, o )-orbits of ay,...,ar generate A if and only if ay,...,a,at
generate G.

Proof. One has (i, o ¢)"(v) = (at)"v(at)™" for v € A and n € Z. This
shows that the (i, o )-orbit of a; is contained in A’. Conversely, if v € A’,

write it in terms of aj,...,ag,at. The exponent sum of 7 is 0, so v is a
product of elements of the form (at)"a,il(at)_”.
If A=A, then (ay,...,aat) contains A and at, so equals G. [

COROLLARY 2.2. r1k(G) =1 + minge4 0r(i, o ).

Proof. < is clear. For the converse, apply Euclid’s algorithm modulo A
to see that any finite generating set of G is Nielsen equivalent to a set
{ar,...,ax,at}. [

COROLLARY 2.3. vrk(G) = I + minggg n20 VOr(iy o ¢").

Proof. If n # 0 and the (i, o ¢")-orbits of ay,...,a; generate a finite
index subgroup of A, the subgroup of G generated by ay,...,ax,at" has
finite index because it maps onto nZ and it meets A in a subgroup of finite
index. This shows that vrk(G) < 1 + mingeg 0 vor(i; o ©").

For the opposite inequality, note that any finite subset of G generating a
finite index subgroup is Nielsen equivalent to {ai,...,ax,a"} with n # 0,
and the (i,o¢")-orbits of ay,...,a; generate a finite index subgroup of A. [

COROLLARY 2.4. Suppose that A is abelian.
(1) 1k(G) =1 + or(p) and vik(G) = 1 + vor(yp).
(2) G has rank < 2 if and only if A is generated by a single @-orbit.
A pair (ay,at) generates G if and only if the @-orbit of a, generates A.
3) vrk(G) is computable.

Proof. i, is the identity and vor(yp) < vor(¢"), so (1) follows from
previous results. (2) is clear.

For (3), first suppose A = Z?. View ¢ as an automorphism of the
vector space Q7. Then vor(p) is the minimum number of ¢-orbits needed
to generate Q¢. This is computable (it is the number of blocks in the
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rational canonical form of ¢). In general, if T is the torsion subgroup of A,
then A/T ~ Z¢ for some d. Let ¢ be the automorphism induced on Z¢.
Then vor(p) = vor(p) is computable. [

3. COMPUTABILITY
Suppose A = Z¢ with d > 1. We view ¢ € Aut(A) as an automorphism

of Z¢ or as a matrix in GL(d,Z). Its companion matrix M, is the unique
matrix of the form

0 *
1 0 *
. *

I 0 =

1

having the same characteristic polynomial as ¢ (the empty triangles are filled
with 0’s, and * denotes an arbitrary integer).

LEMMA 3.1. Let ¢ € GL(d,Z), with d > 1.

(1) The following are equivalent :
@ G=17¢ Xo L has rank 2 ;
(b) Z¢ may be generated by a single @-orbit;
(c) there exists a € Z¢ such that {a,(a), ..., "~ (a)} is a basis of Z¢ ;
(d) ¢ is conjugate to its companion matrix M, in GL(d,Z).

(2) Suppose that the @-orbit of a generates Z%. Then the @-orbit of b
generates Z¢ if and only if b = h(a) where h € GL(d,Z) commutes
with ¢.

Proof. We already know that (a) is equivalent to (b). If a is the first
element of a basis of Z? in which ¢ is represented by the matrix M, ,
then the basis is {a, p(a),...,¢? (a)} and the @-orbit of a generates Z¢,
so (d)=(c)=(b).

Conversely, note that the ¢-orbit of any element a is generated
by {a,¢(a),...,¢? (@)} as a consequence of the Cayley-Hamilton theo-
rem. So if (b) holds for the orbit of a, we obtain (c). Finally (c) clearly
implies (d).

To prove (2), suppose that 4 commutes with ¢, and define b = h(a). The
image of the basis (a, ¢(a),...,0% (a)) by h is (b,®),...,0? (b)), so
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the orbit of b generates. Conversely, if the orbit of b generates, define 4 as the
automorphism of Z¢ taking (a, ¢(a),...,0% (@) to (b, pb),..., " (b)).
It commutes with ¢ because M, represents ¢ in both bases. [

PROPOSITION 3.2. Let A be a finitely generated nilpotent group. There
is an algorithm which, given ¢ € Aut(A), decides whether G = A X, Z has
rank 2 or not.

Proof. If A = Z¢, one has to decide whether ¢ is conjugate to its
companion matrix M, in GIL(d,Z). This is possible because the conjugacy
problem is algorithmically solvable in GL(d,Z) by [6] (see Remark 3.4).

We now assume that A is abelian. It fits in an exact sequence
0T —A—=2¢-0

with T finite. We denote by a + a the map A — Z¢, and by h — h the
natural epimorphism Aut(A) — Aut(Z¢). They each have finite kernel.

We have to decide whether A may be generated by a single ¢-orbit. We
first check whether the matrix of ¢ is conjugate to its companion matrix.
If not, the answer to our question is no. If yes, [6] yields a conjugator and
therefore an explicit u € Z¢ whose @-orbit generates Z.

We claim that A may be generated by a single ¢-orbit if and only if
there exist a € A mapping onto u, and v € Aut(A) of the form hoh™!
with i € Aut(A) and [k, 3] = 1, such that the v -orbit of a generates A.

The “if” direction is clear. Conversely, suppose that the ¢-orbit of b
generates A. Then the @-orbit of b generates Z?, so by Lemma 3.1 there
exists 6 € Aut(Z?) commuting with ¢ and mapping b to u. Let & be any
lift of @ to Aut(A). Defining a = h(b) and ¥ = hph™!, it is easy to check
that the 1 -orbit of a generates A. This proves the claim.

We now explain how to decide whether a and v as above exist. Note
that @ and ¢ must belong to explicit finite sets: a belongs to the preimage A,
of u, and v belongs to the preimage X, of ¢ in Aut(A).

By Theorem C of [6], the centralizer of ¢ in Aut(Z%) is a finitely
generated subgroup and one can compute a finite generating set. The same is
true of D = {h € Aut(A) | [h, @] = 1}, so we can list the elements ¢ in the
orbit Dy of ¢ for the action of D on X, by conjugation.

By the claim proved above, A may be generated by a single -orbit if
and only if there exist a € A, and i € Dy such that the v -orbit of a



196 G. LEVITT AND V. METAFTSIS

generates A. To decide this, we enumerate the pairs (a,1)) with a € A,
and @ € Dyp. For each pair, we consider the increasing sequence of
subgroups Ay = (¥ "N(a),. .., (a),a,(a),...¥"(a)). It stabilizes and we
check whether Ay = A for N large.

This completes the proof for A abelian. If A is nilpotent, let B be
its abelianization and let p: B — B be the automorphism induced by ¢.
If G, =A X, Z has rank 2, so does its quotient G, = B x, Z. Conversely,
if G, has rank 2, it is generated by ¢ and some b € B whose p-orbit
generates B. Let a be any lift of b to A. The subgroup of A generated by
the -orbit of a maps surjectively to B, so equals A by a classical fact about
nilpotent groups (see e.g. Theorem 2.2.3(d) of [9]). Thus G, has rank 2. []

COROLLARY 3.3. If A=17? or A =F,, one can compute the rank of G.

Proof. The rank is 2 or 3, so this is clear from the proposition if A = Z2.
Recall that the natural map Out(F,) — Out(Z?) = Aut(Z?) is an isomorphism
(both groups are isomorphic to GL(2,Z)). Given G = F, x, Z, let p be the
image of ¢ in Aut(Z?). Consider G, = Z*> x1, Z. We prove that G and G,
have the same rank.

Clearly 2 < rk(G,) < rk(G) < 3.1If G, has rank 2, Lemma 3.1 lets us

+1

assume that p is of the form " ) Since G only depends on the

|
class of ¢ in Out(F3), it is isomorphic to

(a,b,t | tat™" = b,tbr™" = a™'b"),

so has rank 2. [

REMARK 3.4. Grunewald’s solution to the conjugacy problem is entirely
algorithmic. Given two matrices T, T> € GlL(d, Z), there is an algorithm which
decides whether there exists a matrix X € GL(d,Z) such that X' X~ ! = T5.
If the answer is yes, the algorithm constructs such an X. In fact, Grunewald’s
algorithm decomposes each T; into the sum of two matrices 7; = S; + U;,
where S; is a rational semisimple matrix and U; is a rational nilpotent
matrix. Then the conjugation question between the 7;’s reduces to conjugation
questions between the S;’s and U;’s. In turn these questions are transformed
into problems about isomorphisms of modules over quotient rings of a subring
of finite index in a ring of integers of an algebraic number field. Arguments
are rather involved.
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4. NIELSEN EQUIVALENCE

PROPOSITION 4.1.  Suppose that A is abelian and G = Ax,Z has rank 2.

(1) Any generating pair of G is Nielsen equivalent to a pair (a,t) with a € A.
(2) Two generating pairs (a,t) and (b,t), with a,b € A, are Nielsen equivalent

if and only if b belongs to the @-orbit of a or a~'.

Proof. Given x,y € A, and n, write

(e, 2y) ~ ()" x(1) ™", 1y) = (9" (), 1y)
and
(x, 2y) ~ ("), 1y) ~ ("), typ" (1)) ~ (x, typ" (X)),
where ~ denotes Nielsen equivalence.

Every generating pair is equivalent to some (a,ty), with the @-orbit of a
generating A. But (a, ty) ~ (a, typ"(a)) so by an easy induction (a, ty) ~ (a,1).
This proves (1).

If b= ¢"(a®) with e = %1, then

(b, 1) = (@), t) = (["a"t™",1) ~ (a,1).
The converse follows from Theorem 2.1 of [7]. We give a proof for
completeness. If (b,1) ~ (a,t), we can write b = w(a,t) with w a primitive
word with exponent sum 0 in 7. Such a word is conjugate to a*! in the free
group F(a,1), so b is conjugate to a*!' in G. Since A is abelian, b belongs
to the @-orbit of a*'. [

REMARK 4.2. More generally, if A is abelian, any generating set of G
is Nielsen equivalent to a set of the form {ay,...,a,1}.

REMARK 4.3. The proposition does not extend to nilpotent groups. Let A
be the Heisenberg group (a, b, c | [a,b] = ¢,la,c] = [b,c] = 1). Let p map a
to ab and b to b. The generating pairs (a,f) and (ac™',f) are Nielsen
equivalent (even conjugate) but ac~! does not belong to the y-orbit of a*'.
Moreover, (a,tc) is a generating pair which is not Nielsen equivalent to a
pair (x,7) with x € A. Indeed, if it were, then ¢ would be conjugate to rca*
for some k € Z by [7]. Counting exponent sum in a yields k = 0. But ¢
and zc are not conjugate.

COROLLARY 44. Let A= 7. If G has rank 2, the number of Nielsen
classes of generating pairs is equal to the (possibly infinite) index of the group
generated by ¢ and —Id in the centralizer of ¢ in GL(d,Z).
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Proof. By Proposition 4.1 we need only consider generating pairs of the
form (a,?). Fix one. To any b € Z? such that (b,7) generates G we associate
the automorphism v, of Z? taking the basis {a,p(a),. .., '(a)} to the
basis {b, p(b), ..., ' (b)}. By Lemma 3.1, the image of this map b + v,
is the centralizer of ¢ in GL(d,Z). By Proposition 4.1, (b,1) ~ (a,t) if and
only if 1 is £¢" for some n€ Z. []

EXAMPLE. If A= Z2 and G has rank 2, the number of Nielsen classes
of generating pairs is always finite. If

01 00 110
= 110D or 0 1 1
1o o0 01 0o 1)’
001 0
this number is infinite.
5. POWERS

Fix ¢ € GlL(d,Z). Say that v € Z is p-cyclic if its p-orbit generates Z4,
or equivalently if {v,p(v),...,¢* 1(v)} is a basis of Z?. The existence of
such a v is equivalent to ¢ being conjugate to its companion matrix, and
also to G having rank 2. If v is ¢"-cyclic for some n > 2, it is ¢-cyclic
since its " -orbit is contained in its ¢-orbit.

If v is @-cyclic, we denote by &, the index of the subgroup of Z¢
generated by the ¢"-orbit of v. It does not depend on the choice of v
since ¢ always has matrix M, in the basis {v,p),..., g@d_l(v)}. Also note
that §; = 1. The group G, = Z¢ x, Z has rank 2 (equivalently, " is
conjugate to its companion matrix) if and only if J§, = 1.

THEOREM 5.1. If ¢ € GL(2,Z) has infinite order, the rank of G, = Z2><1¢,,,Z
is 3 for all n > 3 (and also for n = 2 unless det(p) = —1 and
trace(p) = +1).

Proof. If G, has rank 2 for some n, there exists a ¢"-cyclic element v.
Such a v is also ¢-cyclic. In the basis {v, p(v)}, the matrix of ¢ has the form

1
of the determinant ¢, of the matrix expressing the family {v,¢"(v)} in the
basis {v, p(v)}. We prove the theorem by showing that |c,| > 1 for n > 3.

M = < g i > with ¢ = +1. If finite, the index ¢, is the absolute value
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The number ¢, is determined by the equation M" = ¢,M +d,I. It follows
from the Cayley-Hamilton theorem that the sequence c, satisfies the recurrence
relation ¢,42 — 7Cpp1 —ec, = 0.

If e =—1 one has

n—1

k
Cp = H(T —2cos —W),
n
k=1

because ¢, is a monic polynomial of degree n — 1 in 7 which vanishes
for 7 = ZCOSkI—:r (one also has ¢, = U,—(7/2), with U,—; a Chebyshev
polynomial of the second kind).

If e =1 one has
n—1

k
Ccp = H(T — 2icos —W).
k=1 n
Since ¢ is assumed to have infinite order, one has 7 # 0 if ¢ = 1,
and || > 2 if ¢ = —1. One checks that |c,|] > 1 for n > 3 (for n > 2
ife=—lor|r[>2). O

THEOREM 5.2. Suppose that ¢ € GL(d,Z) has infinite order.
(1) There exists ng such that G, = Z¢ Xn L has rank > 3 for every n > ny.
Equivalently : ©" is not conjugate to its companion matrix for n > ny.
(2) More precisely, the minimum index of 2-generated subgroups of G, goes
to infinity with n.

Note that there are arbitrarily large values of n for which the rank of G,
is d+1 (whenever ¢" is the identity modulo some prime number). As already
mentioned, it is proved in [1] that nyp may be chosen to depend only on d.

The key step in the proof of Theorem 5.2 is the following result.

PROPOSITION 5.3. If ¢ has infinite order and v is @-cyclic, then the
index 6, of the subgroup of Z¢ generated by the "-orbit of v goes to
infinity with n.

REMARK. This proposition remains true if v is not assumed to be ¢-cyclic,
provided 4, is defined as the index of the subgroup generated by the ¢"-orbit
of v in the subgroup generated by the ¢-orbit of v.

Proof of the theorem from the proposition. As above, if G, has rank 2
for some 7, there exists a -cyclic element v. For n large one has 6, > 1,
so G, has rank > 2. Assertion 1 is proved.
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For Assertion 2, suppose that there are arbitrarily large values of n such
that G,, contains a 2-generated subgroup H, of index < C, for some fixed C.
This subgroup has a generating pair of the form (a,,t,) with a, € Z, and
the intersection of H, with Z? is generated by the @™ -orbit of a, for
some m, > 1. It has index < C in Z¢.

The subgroup of Z? generated by the @-orbit of @, has index < C, so
we can assume that it does not depend on n. Call it J. It is @-invariant
so we can apply the proposition to the action of ¢ on J, with v = a, . This
gives the required contradiction. [

Proof of Proposition 53. When d = 2, one easily checks that c,, as
computed above, goes to infinity with n. The proof in the general case is
more involved.

Define numbers wu(i), for k=0,...,d—1 and i > 0, by

d—1
P'w) = uliye @) .
k=0
The sequences ug,...,uys—; form a basis for the space S of sequences

satisfying the linear recurrence associated to the characteristic polynomial
of ¢ (the recurrence is Zj:o ajui(i + j) = 0 if the characteristic polynomial
is 0 aX).

The index 6, is the absolute value of the determinant ¢, of the matrix
(ur(ni))o<ik<d—1 (unless the determinant is 0, in which case 6, is infinite).
We have to prove that, given ¢ # 0, the set of n’s such that ¢, = ¢ is finite.
We assume it is not and we work towards a contradiction.

A sequence satisfies a linear recurrence if and only if it is a finite sum
of polynomials times exponentials, so ¢, also is a recurrent sequence. The
Skolem-Mahler-Lech theorem [3] then implies that ¢, = ¢ for all »n in an
arithmetic progression No C N.

We shall now replace the basis u; of S by another basis wy depending on
the eigenvalues of ¢ . We then assume that D, := det(wi(ni))o<ir<i—1 = ' #0
for n € Np.

We sort the eigenvalues \; of ¢ so that 0 < [A\j| < [A\p| < -+ < |\y|. First
suppose that the eigenvalues are all distinct. We then choose wi(i) = (A1)’
In this case D, is a Vandermonde determinant, for instance

| | 1
D, =) ()" (A)"
A )™ )™
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for d=3,s0 D,= [ (Ow)'—O0").
1<k<m<d
If all moduli |\;| are distinct, then |D,| goes to infinity with n because

its diagonal term
)" O™ .. QA = (M3 .. A D)"

has modulus bigger than all others.

If the A\;’s are distinct but their moduli are not, we write each of the d!
terms in the standard expansion of D, in the form g;u" (with g = £1).
Now there may be several (possibly cancelling) terms for which |u;| takes its
maximal value K = |A\2(A3)%...(A»)“~P|. Note that K > 1 because otherwise
all A\;’s have modulus 1, hence are roots of unity by a classical result of
Kronecker ([11], [5, Proposition 1.2.1]), and ¢ has finite order.

Since D, = ¢’ for n € No and K > 1, one has >3 ey =0
for n € No. Call this sum D, x. Recall that D, =[] ()" —(W)"). To

1<k<m<d
expand this product, one chooses one of (A\,)" or (A\)" for each couple k,m.

The corresponding term contributes to D, g if and only if one always
chooses a term of maximal modulus. In other words, D, x = H Eim
1<k<m<p
with Ep,, = )" — )" if [ Au| = [M] and Eg o = )" 0 | An] > [ Al
Since the \;’s are non-zero, D, x = 0 implies (\y)" = (\,)" for some k,m
with k # m, so that D, = 0, a contradiction.
This completes the proof when the eigenvalues of ¢ are distinct. In the
remaining case, the basis w; must have a different form: if \ is an eigenvalue
of multiplicity r, we use the sequences \',i\, ..., '\, For instance,

1 0 0 1
D — A" n(AD" n*(\p)" (Aa)"
TP 20007 PP (AP
QD™ 3n()™  Gn*A)™ ()
when d =4 and \; = Xy = \3 # \4.
Calling vy,...,v, the distinct eigenvalues of ¢, there exist integers

a,b,ck,dye (depending only on the multiplicities of the eigenvalues) such
that

q
Dy=an’ TJwr s [ (ww - )™
k=1 1<k<m<gq

(see [4] or Theorem 21 in [10]). For instance, D, as displayed above equals
2 (AP ()" — ).
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If K> 1, we conclude as in the previous case. If K =1, all eigenvalues
are roots of unity and D, = n’E, where E, only takes finitely many values
and b > 0 (an eigenvalue v; of multiplicity » > 2 contributes 1+---+(r—1)
to b). Such a product cannot take a non-zero value infinitely often. [

COROLLARY 54. If A is abelian, and ¢ € Aut(A) has infinite order, then
G, = AXgn L has rank >3 for n large. The minimum index of 2-generated
subgroups of G, goes to infinity with n.

This follows readily from Theorem 5.2, writing A/T ~ Z¢ with T finite.
The analogous result for nilpotent groups is false, as the following example
shows. Let A be the Heisenberg group as in Remark 4.3. If ¢ maps a to bc,
b to ac®, and ¢ to ¢!, then ¥t (a) = bc'™", so Gy,p1 has rank 2
since a and p*'T!(a) generate A. The automorphism induced by ¢ on the
abelianization of A has order 2.
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