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L'Enseignement Mathematique (2) 58 (2012), 165-188

GENERATING THE TORELLI GROUP

by Allen Hatcher and Dan Margalit*)

Abstract We give a new proof of the theorem of Birman-Powell that the Torelli
subgroup of the mapping class group of a closed onentable surface of genus at least 3

is generated by simple homeomorphisms known as bounding pair maps The key
ingredient is a proof that the subcomplex of the curve complex of the surface spanned
by curves withm a fixed homology class is connected

1. Introduction

The mapping class group of a closed connected orientable surface S

is M(S) 7T0(Diff+(5)), the group of isotopy classes of orientation-preserving
diffeomorphisms of S. Perhaps the simplest type of isotopically nontrivial
diffeomorphism of S is a Dehn twist along an embedded closed curve. This
is a diffeomorphism supported on an annular neighborhood of the curve, the

effect of the diffeomorphism on arcs crossing the annulus being to twist these

arcs around the annulus as shown in the following figure.

In the 1920s Dehn proved that M(S) is generated by these twists, although
this result was only published a decade later in [3, § 10]; an English translation

can be found in [4, Paper 8].
The group M(S) has a natural action on Hi(S) //i(S;Z), and the kernel

of this action is known as the Torelli group, for which we use the notation T(S).
In this paper we will be interested in the analogue of Dehn's theorem for the

Torelli group.

*) The second author gratefully acknowledges support from the National Science Foundation
and the Sloan Foundation
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Certain Dehn twists belong to the Torelli group, namely the twists along

curves that separate S. This can be seen by observing that for each separating

curve c, a basis for H\(S) can be chosen consisting of curves disjoint from c.
Conversely, it is easy to see that if c is nonseparating, a twist along c acts

nontrivially on the homology class of a curve that crosses c exactly once.
The next-simplest element of T(S) after a separating twist is a bounding

pair map, which is the composition of a twist along a nonseparating curve c

and an inverse twist along another nonseparating curve d disjoint from c but

representing the same homology class as c, so c U d separates S into two
subsurfaces having c U d as their common boundary.

A bounding pair map, like a separating twist, can be realized by a motion
of an embedding of S in R3 in which a subsurface is rotated through 360

degrees, a subsurface bounded by c in the case of a separating twist and

by c and d in the case of a bounding pair map. One can see that a bounding
pair map acts trivially on homology by noting that a basis for Hi(S) can be

chosen to consist of curves disjoint from c and d except for one curve that

crosses each of c and d exactly once, and it is easy to see that this curve is

taken to a homologous curve.

THEOREM 1 (Birman-Powell). The Torelli group T(S) is generated by

separating twists and bounding pair maps.

Nontrivial separating twists exist only when the genus g of S is at

least 2, and nontrivial bounding pair maps exist only when g > 3. Thus

when g 1 the Torelli group is trivial, a fact known long before the Birman-
Powell theorem, and when g 2 the theorem says that T(S) is generated by
separating twists. When g > 3, separating twists do not generate all of T(S)
but only a subgroup of infinite index known as the Johnson kernel [7]. On
the other hand, it is easy to express separating twists as products of bounding

pair maps when g > 3, as we recall in Proposition 11, so bounding pair maps
alone generate T(S) when g > 3. It is also easy to express all bounding pair

maps in terms of those where the two curves that specify the map cut off a

genus 1 subsurface of S; see Proposition 12.
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In this paper we give a proof of the Birman-Powell theorem that is

in line with the standard proofs of Dehn's theorem on M(S) (see, e.g., [5,
Theorem 4.1]). Dehn in fact found a finite set of twist maps that generate M(S),
and the standard proofs of Dehn's theorem usually prove this as well. Finding
a finite set of bounding pair maps that generate T(S) when g > 3 is more
difficult, and was first done by Johnson [9]. We do not attempt to reprove the

finite generation here. Recently Putman [17] has greatly improved Johnson's

finite generation result by showing that the number of generators can be

reduced from Johnson's exponential function of g to a cubic function of g.
The genus 2 case of the Birman-Powell theorem was not stated explicitly

in their original papers, but can easily be deduced from their methods. The

genus 2 case is exceptional not only in the types of generators that are needed,
but also in the fact that T(S) is not finitely generated in this case, a result
due originally to McCullough and Miller [12] and subsequently improved by
Mess [13] who showed that T(S) is a free group on a countably infinite set

of twist generators. Another more recent proof of this can be found in [1]
and we give a version of this proof at the end of Section 5.

Before sketching the idea for the new proof of the Birman-Powell theorem,
let us say a few words about the two prior proofs in the literature.

First proof: Birman and Powell 1970s. This starts with a fact from group
theory. Suppose we have a short exact sequence of groups

1 —> A —> B —% C —>1.

Let {/?!,...,/?„} be a finite set of generators for B, and suppose we have a

presentation for C in terms of the generating set {irib^}. The relators for
the presentation of C are words in the ir(^), and to each such relator w, the

corresponding product of the bt gives an element w of A if we identify A

with the kernel of tt It is then a basic fact that the collection of all such w,
together with their conjugates in B, forms a generating set for A (see the

proof of [11, Theorem 2.1]).
In 1961 Klingen [10] gave an algorithm for finding a presentation

of Sp(2g,Z) and ten years later Birman [2, Theorem 1] used this algorithm
to give an explicit finite presentation for Sp(2g,Z). Birman's presentation
therefore gave a generating set for T(S) as above, but it was not immediately
clear how to interpret the generators geometrically. In 1978, Powell recognized
Birman's generators as Dehn twists about separating curves and bounding pair

maps, or products of these [14, Theorem 2]. Neither the Birman paper nor
the Powell paper contain complete details, as in both cases the required
calculations are lengthy and technical.
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Second proof: Putman 2007. Here the starting point is the fact that if
a group G acts on a simply-connected simplicial complex X in such a way
that the quotient of X by G is simply connected, then G is generated by
stabilizers of simplices.

Putman [15] applied this strategy to the action of T(S) on the curve
complex C(S). This is the simplicial complex whose vertices are the isotopy
classes of nontrivial simple closed curves in S, with simplices corresponding to
collections of disjoint curves. Harer had shown that C(S) is (2g-3)-connected,
hence simply connected when g > 2. Putman then showed that C(S)/T(S) is

simply connected when g >2.
By the fact about group actions stated above, this reduces the problem to

understanding stabilizers of simplices of C(S). Just as in the proof that M(S)
is generated by Dehn twists, this step can be accomplished by induction on g

using the Birman exact sequence.

A new proof. This also proceeds by induction on genus, but is based

on a different fact about group actions on complexes that only requires the

complexes to be connected. The complex we use is the subcomplex CX(S)

of C(S) spanned by curves that can be oriented so as to represent some fixed

primitive class v E HfS). The key fact is therefore:

Theorem 2 (Putman). For g > 3, the complex CX(S) is connected.

Putman's proof of this in [16, Theorem 1.9] uses Johnson's explicit finite
generating set for T(S), which in turn depends on the Birman-Powell theorem.

The idea of the new approach is to reverse these dependencies to give a proof
of Theorem 2 from scratch and deduce the Birman-Powell theorem from this.

The induction for the new proof of the Birman-Powell theorem starts with
the case g 2. The complex CX(S) has dimension 0 in this case and is not

connected, so instead we use a larger complex BX(S) that appears in the proof
of Theorem 2. It was shown in [1] that BX(S) is contractible for all g, and

we reprove this here. For g > 3 we only need that BX(S) is connected, but

when g 2 the complex BX(S) is 1-dimensional and we need that it is a tree

so that we can use basic facts about groups acting on trees.

Our goal is to give a self-contained proof of the Birman-Powell theorem,
and so this paper contains a number of proofs of known results, even when

our proofs are not essentially different from the existing proofs.
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Outline of the paper. In Section 2 we recall from [1] the construction of
a complex BX(S) D CX(S) whose points are isotopy classes of oriented, weighted
multicurves (collections of finitely many disjoint curves) in S representing the

homology class x, and we show that BX(S) is contractible. In Section 3 we

prove Theorem 2 by showing that the map ttoCx(S) -A ttoBx(S) is injective.
This is where most of the novelty of the paper occurs. The inductive step
in the proof of the Birman-Powell theorem is given in Section 4. Finally, in
Section 5 we complete the proof, using BX(S) directly to handle the base case

of the induction, genus 2.

Acknowledgements. We would like to thank Tara Brendle, Leah

Childers, Thomas Church, John Etnyre, Chris Leininger, Andy Putman, and

Saul Schleimer for helpful discussions.

2. Representing homology classes by multicurves

In this section we reformulate some constructions from [1] involving the

representations of elements of Hi(S) by linear combinations of disjoint oriented

curves in S.

By a multicurve in S we mean a collection, possibly empty, of finitely
many disjoint simple closed curves in S, none of which bounds a disk in S

and no two of which bound an annulus. Usually we will not distinguish
between a multicurve and its isotopy class. If orientations are specified for
each curve cx in a multicurve c ciU- -Ucn then a linear combination kxcx

with coefficients kx G Z determines a class in BL\(S). If we allow
coefficients ^ G R, then J2lklcl gives a class in Hi(S\R). By reorienting
the curves cx if necessary we can assume kt > 0 for each i. The linear
combinations ^ klcl then correspond to points in the first orthant [0, oo)n

in R". For each oriented multicurve c we have a corresponding orthant 0(c),
and we can form a space A(S) by starting with the disjoint union of all
such orthants 0(c), one for each isotopy class of oriented multicurves c, and

then identifying the faces obtained by setting some coefficients kt equal to 0

with the orthants corresponding to the multicurves obtained by deleting the

corresponding curves cx. (When c is empty, the orthant 0(c) reduces to just
the origin in R°, so the origins of all the orthants 0(c) are identified.)

The natural map h\ A(S) Hi(S\R) sending a weighted oriented

multicurve t0 its homology class is linear on each orthant 0(c). For a

nonzero class v e Hi(S\R) we define w4x(S) h~l(x). This is a cell complex
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whose cells are the intersections of orthants 0(c) [0, oo)n with affine planes
in R". These 'cells' E(c) 0(c) C\h~l(x) can be noncompact, so AX(S) will
not be a cell complex in the usual sense, but something more general. To

guarantee that the cells E(c) are compact we need to impose a further condition

on the oriented multicurves c, namely that if we translate the affine plane that
determines E(c) until this plane passes through the origin, which amounts to

taking 0(c) fl/z-1(0), then 0(c) n/z-1(0) {0}. In other words, no nontrivial
linear combination ^ffJlklcl with each kt > 0 represents 0 in ifi(S;R). Taking
only orthants 0(c) for c satisfying this extra condition yields a subspace B(S)
of A(S). The corresponding subspace BX(S) of *4X(S) has the structure of a cell

complex in the usual sense, with cells E(c) that are compact convex polyhedra.
There is another way to characterize the compact cells E(c) directly in

terms of c :

Proposition 3. A cell E(c) is compact ifand only if no submulticurve of c

with the induced orientation from c is a boundary, representing 0 in H\ (S).

We call an oriented multicurve satisfying this property reduced. As we
will see in the proof, an equivalent condition is that no submulticurve with its

induced orientation is the oriented boundary of an oriented subsurface of S.

Proof. As noted earlier, E(c) is compact if and only if no nontrivial linear
combination J2ikiCt with each kt > 0 is trivial in HfS). This obviously
implies that no submulticurve is a boundary, either in the homological sense

or the geometric sense of bounding an oriented subsurface of S.

For the converse, suppose that some nontrivial sum wl^
each kt £ [0, oo), is a boundary, say ^ffJlklcl d(J2jljRj) where the Rfs

are the closures of the components of S — c, oriented via a fixed orientation
of S. Since d(J2jRj) 0, we can add a large constant I to each lj to

guarantee that h > 0 for all j. Let R be the union of the Rj's with maximal

lj. Since "f2lklcl is nontrivial, the surface R is a proper subsurface of S.

Then the equation sfflklcl d(J2jljRj) implies that dR is a nonzero linear
combination of the oriented curves ct with each coefficient equal to 0 or 1.

Thus c has a null-homologous submulticurve, in fact a submulticurve that
bounds a subsurface of S.

A multicurve c has a dual graph G(c) whose vertices correspond to components

of S — c and whose edges correspond to components of c. If c is an
oriented multicurve, then G(c) becomes an oriented graph by fixing an orientation
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of S and a rule for passing from an orientation of c to a transverse orientation.
The condition for c to be reduced can be translated into a condition on G(c):

PROPOSITION 4. An oriented multicurve c is reduced if and only if its dual

graph G(c) is recurrent: Every edge of G(c) lies in a loop consisting of a

finite sequence of edges traversed in the directions given by their orientations
in G(c). Such loops can be assumed to be embedded.

This recurrence condition can be restated in terms of c as saying that

through every point of c there passes a closed oriented loop in S transverse

to c whose algebraic and geometric intersection numbers with c are equal,
so the loop always crosses c in the same direction.

Proof. If c contains a bounding submulticurve c', then any closed loop
in S intersecting c' transversely must cross c' in both directions, so G(c)
is not recurrent. Conversely, suppose G(c) is not recurrent. Let G be the

quotient graph of G(c) obtained by collapsing to a point each component of
the subgraph consisting of edges that lie in closed loops of oriented edges.

Then G contains no such edges. Hence G must contain at least one "sink"
vertex whose abutting edges are all oriented toward the vertex. These edges

correspond to a bounding submulticurve of c.

Proposition 5. The cell E(c) of BX(S) corresponding to an oriented
multicurve c has dimension equal to one less than the number of connected

components ofS — c.

Proof. Consider cellular homology with coefficients in R for a cell

structure on S containing c as a subcomplex. With notation as in the proof
of Proposition 3, the regions Rj generate a subgroup (Rf) of the 2-chains
and the curves cx generate a subgroup (ct) of the 1-chains. The boundary

map d: (Rfi (ct) has 1-dimensional kernel H2(S',R) so its image has

dimension one less than the number of Rj's. Cosets of this image are the

planes h~l(x), and intersecting one of these with the orthant 0(c) gives the

cell E(c), with the stated dimension.

Up until this point the class v was any nonzero element of ifi(S;R), but

from now on we restrict attention to classes in H\(S) H\(S\Z).

Proposition 6. For a nonzero class x e H\(S), the coefficients of a

vertex ktct of BX(S) are integers.
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Proof. By Proposition 5 the multicurve c Ulcl has connected

complement, so for each Cj there is a transverse curve dj intersecting Cj once
and disjoint from the other cfs. The algebraic intersection number of dj
with sfflklcl is then ±kj, so if ^fJlklcl represents an integral homology
class, kj must be an integer.

Proposition 7. Let g > I, and let x E HfS) be any nonzero element.

Then the complexes v4x(S) and BX(S) are contractible.

Proof. We follow the plan of the second proof in [1]. First consider AX(S).
To prove that AX(S) is contractible we will construct a canonical "linear" path
in AX(S) joining any two given points a and ß, assuming that the multicurves

underlying a and ß have first been isotoped to intersect transversely with
the minimum number of points of intersection. With this minimality condition
the configuration formed by the union of the two multicurves is unique up
to isotopy of S, which will ensure that the construction is well defined on

isotopy classes (the minimality assumption is actually superfluous).

To a weighted multicurve a hci representing a point in AX(S) we
associate a map fa : S S1 in the following way. First, choose disjoint product
neighborhoods cx x fO, kt\ of the curves cx in S. (We can assume each kx > 0

by deleting any cx with kt 0.) From these product neighborhoods we obtain

a quotient map q from S to the graph G(c) by projecting each cx x [0,kj
to [0, kt\ and then to the corresponding edge of G(c), with the complementary

components of the thickened c in S mapping to the corresponding vertices

of G(c). The weights kt determine lengths for the edges of G(c) making it
into a metric graph, with edges oriented via the orientation of c. There is

then a natural map p: G(c) -A S1 R/Z defined up to rotations of S1 by
the condition that it is an orientation-preserving local isometry on each edge

of G(c). Namely, choose a vertex of G(c) and send it to an arbitrary point
in R. This determines a map on adjacent edges sending them isometrically
to R preserving orientations, and we then continue inductively for edges

adjacent to the previous edges. Loops in G(c) have signed length equal to the

algebraic intersection number of lifted loops in S with v, and these intersection
numbers are integers since v is an integral homology class, so when we pass

to the quotient R/Z we have a well-defined map ip: G(c) S1. Changing the

initial vertex or its image in R has the effect of composing p with a rotation
of S1. The composition pq is then a map fa: S —» Sl. This corresponds to
the class in Hl(S\ Z) Poincare dual to v. We can arrange that fa is a smooth

map by parametrizing the annuli ct x [0suitably.
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For a second point ß in *4X(S) we choose annular neighborhoods of its

curves that intersect the neighborhood of a in rectangles around the points
where a and ß intersect, and then we construct the associated function fß
by the same procedure as for fa. We would like to define a one-parameter

family of functions S -A S1 by the formula (1 — t)fa + tfß for 0 < t < 1.

This does not quite make sense as it stands since scalar multiplication is

not defined for maps to S1, but we can give it meaning by considering the

covering space S of S corresponding to the kernel of the map irfS) -a ttiC-S'1)

induced by fa and fß which are homotopic since a and ß both represent v.
Then fa and fß lift to maps fa and fß from S to R, and we can form the

linear combination (1 - t)fa + tfß. This is equivariant with respect to the

action of Z as deck transformations in S and R, so it passes to a well-defined

map f 1 - t)fa + tfß from S to S1.

The critical points of f are the closures of the components of the

complement of the union of the annular neighborhoods of a and ß. In the

interiors of the rectangles where these neighborhoods intersect there are no
critical points since the gradient vectors of f are the vectors (1 -t)\7fa +tVfß
which are nonzero. Since there are finitely many complementary components
of aUß, the function f has finitely many critical values, each of which varies

linearly with t. For fixed t the complement of the critical values consists

of finitely many open intervals in S1, and the preimages of these intervals
consist of finitely many open annuli in S, thickenings of disjoint curves which
are oriented transversely by V/?, with weights given by the lengths of the

corresponding intervals in S1. These curves determine a weighted oriented
multicurve representing a point at in AX(S) by discarding any trivial curves
and replacing isotopic curves by a single curve, weighted by the appropriate
signed sum of the weights of the isotopic curves. For t 0 we have ao a
and for t 1 we have a\ ß. The point at G AX(S) varies continuously
with t since the functions f vary smoothly and the intervals of noncritical
values vary continuously, shrinking to length zero when critical values coalesce.

This happens only finitely often for the path at since the finitely many critical
values are varying linearly with t. By similar reasoning the path at varies

continuously with the weights on the original multicurve a. Thus by fixing ß
and letting a vary over all of AX(S) we obtain a contraction of AX(S).

Now we show that AX(S) deformation retracts onto BX(S), which implies
that BX(S) is also contractible. The procedure here will be the same "draining"
process as in [1]. If a point sffJlklcl in AX(S) is not reduced, let {Rj} be the

collection of oriented compact subsurfaces of S whose oriented boundary is a

subset of the cfs, respecting their given orientations. We deform sffJlklcl by
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subtracting t^ dRj for increasing t > 0 until one or more cx's becomes 0.
Deleting these cx's and the Rj's whose boundaries include these cx's, we then

iterate the process until we obtain a reduced weighted multicurve in BX(S).

It is clear this process depends continuously on the initial point kici and

so defines a deformation retraction of AX(S) into BX(S).

Canonical triangulations of Ax(S) and Bx(S) Although we will not
need this in the rest of the paper, there is a canonical subdivision of the cell

complex BX(S) as a simplicial complex whose vertices are the integer points
of BX(S), the linear combinations kxcx with positive integer coefficients kx.

This subdivision can be obtained as follows. In the preceding proof we
associated to J2lklcl a map /: S -A S1. This factors through the oriented
metric graph G(c) associated to klcl, with an induced map p: G(c) S1.

Recall that the dimension of the cell E(c) is 1 less than the number of
complementary regions of c, which is the number of vertices of G(c). This
cell is subdivided by the various hyperplanes where two vertices of G(c)
have the same image under p, hyperplanes defined by linear equations in
the variables kx with integer coefficients and integer constant terms. These

hyperplanes subdivide E(c) into simplices whose barycentric coordinates are

the lengths of the segments of Sl R/Z between adjacent images of vertices

of G(c). The vertices of the subdivision of E(c) are thus the points J2iklcl
where all vertices of G(c) have the same image under p, which is equivalent
to saying that all the coefficients kx are integers.

The same procedure works more generally for AX(S), where the noncompact

cells are subdivided into infinitely many simplices.

3. The complex of homologous curves

In this section we prove Theorem 2, that CX(S) is connected when g > 3

and v is any nonzero primitive class in H\(S). Recall the basic fact
(see, e.g., [5, Proposition 6.2]) that primitive classes x are exactly those

represented by oriented simple closed curves with coefficient 1. Thus when x
is primitive, CX(S) is the subcomplex of BX(S) consisting of the cells that are

simplices corresponding to cycles kici where the ct's are disjoint oriented

curves each representing the homology class x and ^2tkx 1. To prove
that CX(S) is connected it will suffice to show that the map ttqCx(S) ttqBx(S)
is injective when g > 3 since we already know that BX(S) is connected. We
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will show in fact that each edge path 7 in BX(S) with endpoints in CX(S) is

homotopic, fixing endpoints, to an edge path in CX(S).

Deforming the edge path 7 into CX(S) will be done by a sequence of
local deformations, gradually decreasing the maximum value along 7 of the

"weight function" W: BX(S) -A (0, 00) defined by

In terms of dual graphs, W measures the total length of all the edges. The
function W is linear on cells of BX(S) and takes integer values on vertices.

It follows that the image of W is contained in [l,oo). As x is assumed to
be primitive, we have CX(S) W_1(l) since W takes the value 1 on vertices

of CX(S), hence on simplices of CX(S), and if W 1 on all vertices of a cell
of BX(S) then these vertices lie in CX(S) and span a simplex of CX(S).

Thus it will suffice to deform 7 to decrease the maximum value of W

along its vertices to 1. There will be two main steps. First, when the maximum

occurs at two successive vertices of 7 we will deform this edge of 7 across

a 2-cell in BX(S) having smaller values of W on all the other vertices of the

cell. Then by a more complicated procedure we will deform 7 on the two
edges surrounding a vertex where W is maximal to decrease the maximum

along this part of 7.

Proof of Theorem 2. Let (vo,v\) be an edge of BX(S) joining vertices v0

and v\. Associated to the points vt along this edge, 0 < t < 1, are dual

graphs Gt. These are oriented metric graphs having two vertices a and b

for 0 < t < 1, so they have the form shown in the figure below. Since Gt is

recurrent, there is at least one edge from a to b and at least one edge from b

to a, but the number of edge-loops at a or b can be zero.

As t varies from 0 to 1, the lengths of the edges joining a and b vary, with
all edges from a to b increasing in length at the same rate that all edges

from b to a shrink, or vice versa. This corresponds to varying the weights
in the weighted oriented multicurve vt by adding a multiple of the boundary
of the subsurface of S corresponding to a or b. If there are edge-loops at a

or /?, their lengths do not change. When t reaches 0 or 1, at least one edge

joining a and b shrinks to length 0 and the vertices a and b coalesce.
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Suppose that Gt has at least two edges entering at vertex a. We can

pinch equal-length segments of two of these edges together at a to produce
a new metric graph G't with three vertices. Assuming that the subsurface

of S corresponding to a is not simply a pair of pants, we can realize G't as

the dual graph for a point in a 2-cell of BX(S) where the subsurface of S

corresponding to the new vertex is a pair of pants, two of whose boundary

curves correspond to the two edges of Gt being pinched together, with the third
boundary curve corresponding to the new edge of G't. Note that pinching Gt

to G't preserves the recurrence property so we do indeed have a 2-cell
of BX(S). In similar fashion we could realize the graph G't obtained by pinching
segments of two edges of Gt exiting a, or two edges entering or exiting b.

Let us apply this construction when (vo,vi) is an edge of 7 with
W(vo) W(v1) and this is the maximum value of W along 7. The

condition W(v0) W(v1) means that at both a and b there will be the

same number of entering edges as exiting edges since varying t does not

change the total length of all the edges of Gt. If the number of entering
and exiting edges is equal to 1 at both a and b then Gt is just a circle
and WOo) W(v\) 1 since the class v is primitive. We may thus assume

the number of entering and exiting edges at a, say, is greater than 1. We can
then perform the pinching operation at a and this decreases the total length
of Gt, so we obtain a 2-cell with the function W taking on its maximum value

only along the edge (vo, v\) of this 2-cell, since the 2-cell is a convex polygon
and W is a nonconstant linear function on this polygon. If we modify 7 by
pushing the edge (vo,vi) across this 2-cell to the complementary edges in
the boundary of the cell, we have then improved the situation so that W has

strictly smaller values between vq and v\. After repeating this step finitely
many times we can arrange that the maximum value of W along 7 occurs

only at isolated vertices.

Now let (vo,vi) be an edge of 7 with W(To) an isolated maximum of W

along 7. A special case is when one of the vertices a or b of the graph Gt
for points in the interior of this edge has valence 3 and the corresponding
subsurface of S is a pair of pants. In this case we call (vo,vi) a P-edge. We

wish to reduce to the case that all edges {vq,v\) of 7 adjacent to vertices vo

with maximal W value are P-edges, so suppose on the contrary that (u0, v\) is

not a P-edge. Since W(v1) < W(vo), the number of edges in Gt from a to b

will be different from the number of edges from b to a. For whichever type
of edge there are more of, we can pinch two of the edges of this type together
at either a or b, and this gives rise to a deformation of (vo, v\) across a 2-cell
of BX(S) as in the preceding paragraph since we assume (^0,^1) is not a
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P-edge. Then for the new path 7 the new edge at vq is a P-edge. Iterating
this step, we can arrange that all edges of 7 at vertices with W maximum

are P-edges.

Let vo be a vertex of 7 with W maximal and greater than 1. If we cut S

along the multicurve given by vo we obtain a cobordism R between two
copies of this multicurve, which we label d+R and d-R. A P-edge from vq

then corresponds to a pair of pants in R with two boundary curves in d+R
or two boundary curves in d-R. If the genus of S is at least 3, such a pair
of pants is uniquely determined by its third boundary curve, which gives a

vertex in the curve complex C(R). Such vertices span a subcomplex V(R)
of C(R). We will prove below that T(R) is connected when the genus of S is

at least 3. Assuming this, we finish the proof of the theorem as follows. By
the preceding paragraph, we can assume the edges in 7 on both sides of vq

are P-edges. Since V(R) is connected, we can interpolate between these two
P-edges a sequence of P-edges, each corresponding to a pair of pants disjoint
from the next one. Each pair of successive P-edges then forms two adjacent

edges of a 2-cell of BX(S) (either a triangle or a square). We then deform 7
by pushing across each of these 2-cells, thereby replacing the two edges of 7
adjacent to v0 by a sequence of edges along which W has values smaller
than W(v0) since W is linear on each of the 2-cells.

After finitely many iterations of these steps we eventually deform 7,
staying fixed on its endpoints, to a path in W-1(l) CX(S).

Lemma 8. The complex T(R) is connected when g > 3.

Proof. Instead of regarding vertices of T(R) as isotopy classes of pairs
of pants in R we can regard them as isotopy classes of arcs in R joining two
curves of d-R or two curves of d+R, where the pair of pants corresponding
to such an arc is a thickening of the union of the arc and the two curves
at its endpoints. When we say "arc" in what follows, we will mean an arc

giving a vertex of T(R) in this way. A simplex of V(R) corresponds to a

collection of disjoint arcs joining disjoint pairs of curves of dR. Let us fix
a standard arc a0 joining two curves in d-R. An arbitrary arc a can be

connected to an arc joining the same two curves of d-R as ao by a sequence
of at most two edges of V(R), first by choosing an arc a' disjoint from a

joining curves of d+R if a does not already do this, then by choosing an arc

disjoint from a' joining the two curves of da0. Thus it suffices to connect an

arbitrary arc a joining the two curves of d-R containing daQ to the arc u0

by a sequence of edges in V(R).
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First we do this for three special types of arcs. For the first two cases we
fix a genus 0 subsurface 7?+ of R — ao containing d+R and having just one

more boundary curve, which lies in the interior of R.

there is an edge joining a to an arc a' in R+ and then an edge joining a'
tO ÜQ

(ii) An arc a that intersects 7?+ in a single subsegment that separates 7?+

into two components, one of which contains only one curve of d+R and the

other of which contains at least two curves of d+R, assuming that d+R has at

least three curves in total. This case is illustrated in the second figure above.

In this case we can choose an arc a' in R+ disjoint from a and proceed as

in (/).

(iii) An arc a as in the figure below, in the case that d+R contains just two

curves, hence R has genus at least 1 since g > 3. Then there are edges

joining a to a' and then to a0.

d+R

d+R

Now we reduce the general case to these special cases. Let us regard the

curve of d-R at one end of üq as a puncture p rather than a boundary

component. If we allow this puncture to move around anywhere in the

surface Rf obtained from R by filling in this puncture (or equivalently,
collapsing the boundary component of R to a point), then any other arc a

with the same endpoints as üq can be isotoped to üq. This implies that üq

can be transformed to a (or an arc isotopic to a) by a diffeomorphism h

of R obtained by dragging p around a loop in R based at p. Such

diffeomorphisms form a subgroup of M(R',p), the image of the boundary



GENERATING THE TORELLI GROUP 179

map d: nfR^p) -a 7To Diff+(7?/,/?) in the long exact sequence of homotopy

groups associated to the fibration Diff+(Rf,p) -a Diff+(7?7) -a Rf obtained by
evaluating diffeomorphisms of Rf at p, with fiber the subgroup Diff+(Rf,p)
of Diff+(/0 consisting of diffeomorphisms that fix p. The map d associates

to a loop at p the diffeomorphism obtained by dragging p around this loop.
(The long exact sequence in fact reduces to a short exact sequence, the Birman
exact sequence.)

Since J is a homomorphism, it follows that the diffeomorphism h is iso-

topic to a composition h\- -hn of diffeomorphisms ht obtained by dragging p
around a suitable sequence of loops that generate tt\(R',p). For such generators
we can choose loops in R — R+ producing arcs a hfaf) as in (/), or loops
that wind once around a single curve of d+R, producing arcs a hfaf) as in

(ii) or (///). By the special cases (/-///) there is an edge path in V(R) joining a0

to ht(ao), for each i. By applying the product h\ • • -hx-\ to this edge path

we obtain an edge path joining h\ • • • ht-i(ao) to h\ • • • hfaf). Stringing these

edge paths together, we obtain an edge path from a0 to the arc h(a0) a.

4. The inductive step

We will prove Theorem 1 by induction on genus. In this section we give
the inductive step, deferring the base case of genus 2 until the next section

since it requires methods that are special to that case.
The inductive step will use the following basic fact about group actions:

Suppose a group G acts on a connected cell complex X. Let A C G be a
subset with the property that, for any two vertices of X connected by an edge,
there is an element of A taking one vertex to the other. Then G is generated
by the union of A and the set of vertex stabilizers.

Since CX(S) is connected when g > 3, we may apply this fact to the case of
the T(S) action on CX(S). For A we choose the set of bounding pair maps
and twists about separating curves in T(S). The condition on edges is verified
in the next lemma. Here and in what follows we use the notation Ta for the

twist along the curve a.

LEMMA 9. If v and w are vertices of CX(S) that are connected by an

edge, then there is a bounding pair map TaTfl in T(S) with TaTfl(v) w.

It is worth pointing out that this lemma together with the connectedness

of CX(S) immediately implies the non-obvious fact, known to Johnson [8,
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page 253, line 6], that when g > 3, any two oriented curves in S in the same

homology class are equivalent under the action of the Torelli group. This also

holds when g 2, as we will see in the next section.

Proof. We can view S as a torus with handles attached, with v and w
as longitudes on the torus. Then if we choose a and b as meridians on the

torus as shown in the figure below, it is clear that TaTfl takes v to w.

To finish the inductive step it remains to show that for each vertex v
of Cjc(S), the stabilizer of v in T(S) is contained in the subgroup of T(S)

generated by bounding pair maps and twists about separating curves. If v is

represented by an oriented curve a in the homology class x, the stabilizer of v
in T(S) is the subgroup T(S,a) represented by diffeomorphisms leaving a
invariant. More generally, let M(S, a) denote the stabilizer of a in M(S). There
is a natural homomorphism g: M(S,a) —» M(S',P) where Sf is the closed
surface of genus g — 1 obtained from S by cutting along a and collapsing the

resulting two boundary curves to a pair P {p, q} of distinguished points, and

M(S',P) is the mapping class group of Sf fixing each of these two points. The
kernel of g is the infinite cyclic group generated by Ta [5, Proposition 3.20].
Since HfS^P) HfS.a) HfS)/^]), and since Tka T(S) for k + 0, it
follows that g restricts to an isomorphism:

If Td is a twist about a separating curve d in Sf — P, then g~l(Td) is

either a bounding pair map TdT~l or a twist about a separating curve Td,

depending on whether or not d separates the two points of P in Sf. If TcTfl
is a bounding pair map in T(57, P), then cU d does not separate the two points
of P, otherwise TcTfx would not preserve the homology class of an arc that
intersects c once and is disjoint from d. It follows that g~l(TcTfl) is a

g: T(S,a)^T(S',P),

where the latter group is the kernel of the natural homomorphism

M(Sf, P) Aut(//i (Sf, P)).
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bounding pair map in T(S,a). Thus in order to show that T(S,a) is generated

by twists about separating curves and bounding pair maps it suffices to show

that T(S',P) has this property.
We will prove this by considering two short exact sequences:

1 Ki T(S',p) T(Sf) 1

1 K2 TOS*,P) T(S',p) -+ 1.

These are analogs for the Torelli group of Birman exact sequences for the

full mapping class group; the first was considered by Johnson [9, Lemma 3]
and the second by van den Berg [18, Proposition 2.4.1] and Putman [15,
Theorem 4.1].

Consider first the first sequence. Here T(Sf ,p) is the subgroup of M(S',p)
acting trivially on H\(S',p) H\(S'). The map T(S',p) -A TOS")

forgets the point p. Elements of T(Sf) represented by separating twists and

bounding pair maps clearly lift to such elements of TWe claim
the kernel K\ is generated by bounding pair maps. As in the proof of
Lemma 8, the kernel of M(S',p) -A MOS") consists of elements obtained

by dragging p around a loop in Sf. This is the image of the homomor-

phism d: tt\(Sf,p) 7To Diff+(5/,/?) defined there. Generators for this kernel

are obtained by dragging p around generators for tt\ (Sr, p), and we can
choose embedded nonseparating curves for these generators, from the standard

presentation of tt\(Sr,p). Such drag maps are bounding pair maps, so the

kernel of M(S',p) —) MOS") is in fact contained in T(Sf,p) and so coincides

with K\. Thus K\ is generated by bounding pair maps, as claimed. It follows
that T(S' ,p) is generated by separating twists and bounding pair maps if this
is true for TOS").

Now we proceed to the second short exact sequence. Separating twists
and bounding pair maps in T(Sf,p) lift to such maps in T(5',P) by
choosing the point q to be sufficiently close to p. Next we show that
the kernel K2 is generated by products of separating twists in T(57,P).
The kernel of M(S,p) is formed by maps d1 d(7) resulting
from dragging q around loops 7 in Sf — p, where now d is the boundary

map 7T1 (5" —p, q) 7To Diff+(5/, P). To see how d7 acts on Hi(S', P), consider
the short exact sequence

0 ^ Hx(Sf) Hi(S',P) -4 H0(P) -4 0

which is invariant under M(S',P). Clearly d1 acts trivially on the image
of H\(S') in H\(S',P) since d1 is trivial in M(Sf). Also d1 acts trivially
on Hq(P) since it fixes P. The action of d1 on H\(S',P) will then be trivial if
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and only if it acts trivially on an element of HfS'.P) that maps to a generator
of H0(P). We can represent such an element by an arc e joining p to q.
It follows from the fact that the diffeomorphisms d7 act trivially on H\(S')
and H0(P) that there is a homomorphism p: m (Sf -p, q) -A Hi (,S') C Hi (S', P)
such that d1 [e] [e] + <^(7) for all 7. We claim that p(y) [7], so that p
is the abelianization map 7Ti(S' - p,q) -A HfS' - p) HfS'). Since p is a

homomorphism it suffices to check that d7[e] [e] + [7] for 7 ranging over
a set of generators for nfS' — p,q). As generators we can choose embedded

loops 7 disjoint from e, and for such loops 7 the formula d7[e] [e] + [7]
obviously holds.

From the formula d7[e] [e]+[7] we see that d7 acts trivially on Hi(S',P)
if and only if 7 lies in the commutator subgroup of 7Ti (S7 —p). It is a general
fact that the commutator subgroup of a group is normally generated by commutators

of generators of the group. For tti(Sf —p) we choose generators coming
from representing S'—p as a punctured 4(^—1)-gon with opposite edges identified

(this is not the standard identification These generators are nonseparating

curves, any two of which intersect transversely in one point, so their commutator

is represented by a curve 7 bounding a genus 1 subsurface of S'—p. The

map d7 is then the composition of a twist along a parallel copy of 7 and an

inverse twist along another parallel copy of 7. This shows that K2 is generated

by products of separating twists. All such separating twists lie in T(S',P) since

for a twist along a separating curve 7 that does not separate p and q a basis

for Hi(S, P) can be chosen disjoint from 7, while if 7 does separate p and q
then composing the twist along 7 with d7 or d~l converts the twist along 7
to a twist along a 7 that does not separate p and q, and d1 e T(S',P).

In summary, we have shown the inductive step:

PROPOSITION 10. If T(S7) is generated by separating twists and bounding

pair maps, then so are T(S',p), T(S',P), and T(S) in turn, in the last case

assuming that the genus of S is at least 3.

The next two propositions, due to Johnson [6], justify two supplementary
statements made earlier.

PROPOSITION 11. Every Dehn twist about a separating curve in a surface

of genus at least 3 is isotopic to a product of bounding pair maps.

Proof. First consider the case that S has genus 3. A nontrivial separating

curve c in S then splits S into a punctured torus and a punctured genus 2
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surface, and the latter surface can be further decomposed as the union of a

4-punctured sphere and a pair of pants, as in the figure below.
The lantern relation ([3, p. 187],

[6, §IV], [5, §5.1]) gives

TxTyTz TcJ]jTcJd.

Since each of Ta, Th, Tc, and Td

commutes with all seven Dehn twists
in the relation, we can rewrite this
relation as follows:

(TxT-1)(TyT^)(TzT~1) Tc.

In other words the Dehn twist about the separating curve c is the product of
three bounding pair maps. This takes care of the genus 3 case. The general

case is obtained from this by attaching the appropriate number of handles to
the punctured torus and the pair of pants.

Proposition 12. Every bounding pair map of a surface S is isotopic
to a product of bounding pair maps associated to pairs of curves bounding

genus 1 subsurfaces of S.

Proof. A bounding pair map is obtained by twisting a subsurface bounded

by two curves through 360 degrees. If this subsurface has genus n, it can
be decomposed into n subsurfaces of genus 1, each bounded by two curves,
as indicated in the figure below, and the twist of the genus n subsurface is

isotopic to the composition of n twists of the genus 1 subsurfaces.

5. Starting the induction: genus 2

Now we restrict to the case that S has genus 2, where we want to show

that T(S) is generated by separating twists. The complex CX(S) is 0-dimensional
in this case, so is of little help. Instead we use BX(S), which is 1-dimensional
and contractible, hence a tree. From the elementary theory of groups acting
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on trees, it will suffice to show that the quotient BX(S)/T(S) is also a tree,
and that the stabilizers of vertices in BX(S) are generated by separating twists.

It will be helpful to know exactly what an edge of BX(S) looks like. Such

an edge corresponds to a multicurve separating S into two components, so

these components must be pairs of pants, with the multicurve consisting of
three nonseparating curves a, b, c as in the figure below.

Since the multicurve is reduced, two of the three curves, say a and b, will
be oriented consistently with an orientation of either of the pairs of pants, and

the third curve c will be oppositely oriented. As we move across the edge we
transfer weights from a and b to c, or vice versa. Transferring weights from a
and b to c decreases the value of W. At the end of the edge with larger
W-value the weighted multicurve is pa + qb, with p > q say, and then at the

other end the weighted multicurve is (p — q)a + qc, so we subtract q from the

weights on a and b and add q to the weight on c. The value of W decreases

from p + q to p. (Thus for a sequence of edges along which W decreases,

the pairs of weights are changing according to the Euclidean algorithm of
repeatedly subtracting the smaller of two numbers from the larger.)

We claim that from a given vertex pa + qb with W > 1 (so both p and q
are greater than 0) all the edges of BX(S) leading to vertices with smaller

W -value are equivalent under the action of the stabilizer of the vertex in T(S).
This implies that each component of BX(S)/T(S) is a tree since there is a

well-defined flow on it decreasing the values of W monotonically until they
reach the value 1 at a vertex represented by a single curve. Since BX(S) is

connected, so is its quotient BX(S)/T(S), so the quotient must then be a tree,
with a single vertex where W 1. In particular, this shows that T(S) acts

transitively on oriented curves in a given homology class, just as in higher

genus as we noted in the remarks following Lemma 9.

To verify the claim, consider two edges of BX(S) leading downward from
this vertex. These two edges correspond to two different choices for the c

curve, in the notation above. Both choices lie in the complement of the a
and b curves, a 4-punctured sphere. Isotopy classes of nontrivial curves in
a 4-punctured sphere are classified by their slope, an element of Q U {oc}.
Let us choose coordinates on the 4-punctured sphere so that one choice

of c has slope 0/1 and a separating curve d as in the preceding figure has
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slope 1 /0. The mapping class group of a 4-punctured sphere fixing each of
the punctures can be identified with the subgroup G of PSL(2, Z) represented

by matrices congruent to the identity mod 2. The action of G on slopes
has three orbits, the slopes whose numerators and denominators are congruent
to those of 0/1, 1/0, or 1/1 mod 2. Topologically, these three classes are

distinguished by how the corresponding curves separate the 4 punctures into

pairs. In particular, the slopes congruent to 1/0 correspond to separating

curves on 5, such as the curve d. Whether the value of W decreases or
increases for a particular choice for c depends only on how c separates the 4

punctures. For c of slope 0/1 as in the figure the value of W decreases,

so the slopes congruent to 0/1 correspond to the curves c for which W
decreases. These slopes form the vertices of a tree T that can be visualized

by superimposing it on the Farey diagram, as in the figure below.

Two vertices of T are joined by a sequence of edges of T, and the curves

corresponding to vertices along this path are related each to the next by Dehn
twists along curves of slope congruent to 1/0 mod 2. For example, a twist
along a curve of slope 1/0 takes slope 0/1 to slope 2/1. Slopes congruent
to 1/0 mod 2 give separating curves in 5, so the path in T gives a product
of separating twists on S taking the first choice of c to the second choice,

verifying the claim.

Next we check that the stabilizer of a vertex of BX(S) corresponding to

a vertex pa + qb with p,q > 0 is generated by separating twists. We have

just seen that products of separating twists in the stabilizer act transitively
on vertices of T, so, modulo such products, we can assume the element
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of the stabilizer fixes the slope 0/1 curve c. But the stabilizer of the

multicurve a U b U c in T(S) is trivial, since an element in this stabilizer
would have to be a product of twists along a, b, and c, and it is easy to
see that such a product acts nontrivially on homology unless it is the trivial
product. (Consider the action on curves that intersect two of a, b, c transversely
in one point and are disjoint from the third.) Thus the stabilizer of pa + qb

in T(S) is generated by separating twists when both p and q are positive.
There remains the stabilizer of a vertex corresponding to a single curve a.

This situation was analyzed in the previous section for arbitrary genus, where

we showed that the stabilizer of a curve in genus g is generated by twists
and bounding pair maps if this is true for the full Torelli group in one lower

genus. In the present situation the Torelli group for genus 1 is trivial, so the

stabilizer of a curve in genus 2 is generated by separating twists since there

are no bounding pair maps until genus 3.
This finishes the proof that T(S) is generated by separating twists in

genus 2, and hence also the proof of the Birman-Powell theorem.

The structure of the Torelli group in genus 2. It is not hard to
extend the preceding arguments to see that T(S) is a nonfinitely generated
free group in genus 2. For the action of T(S) on the tree BX(S) the edge

stabilizers are trivial as we observed above, and the quotient BX(S)/T(S) is

a tree, so T(S) is a free product of vertex stabilizers, with one factor for
each vertex of BX(S)/T(S). For a vertex pa-\-qb of BX(S) with p,q > 0 the

stabilizer acts freely on the tree T since we saw that no vertices can be fixed

points, and no edge can be inverted since elements of the group G cannot

interchange slopes congruent to 1/0 and 1/1 mod 2. The stabilizer group
acts transitively on vertices of T, so the stabilizer is the fundamental group
of the orbit space of the action, an infinite wedge of circles since vertices

of T have infinite valence. Thus the stabilizer of pa + qb is a free group on

an infinite number of generators.
The other case is the stabilizer of a vertex that is a single curve. From

the discussion in the preceding section this is isomorphic to the kernel K2

of the map T(S,P) -A T(S,p). This is a subgroup of the kernel of the

map M(S, P) -A M(S,p) which is 7ir (S — p) from the long exact sequence of
homotopy groups for the fibration Diff -a M—p obtained by evaluating

diffeomorphisms at q, with fiber Diff+(M, P). The group tt\(M — p) is free

so the subgroup K2 is free as well. It is in fact the commutator subgroup, as

our analysis showed, so it is nonfinitely generated.

Since BX(S)/T(S) is an infinite tree, we see that T(S) is a free product
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of infinitely many stabilizers, each of which is a nonfinitely generated free

group, so T(S) is a nonfinitely generated free group itself. Mess [13] gives
the following more precise description of the infinite generating set. Each

nontrivial separating curve in S induces a splitting of Hi(S) into two sym-
plectic subspaces, namely, the subspaces consisting of the elements represented

by 1 -cycles supported entirely on one side of the separating curve or the other.

Mess proved that T(S) has a free generating set where there is one generator for
each such symplectic splitting of Hi(S) (this description can in fact be deduced

by sharpening the argument given above, as in [1, Section 7]). It is not true,
however, that if we make an arbitrary choice of Dehn twist for each symplectic
splitting, then we obtain a generating set. As such, it is still an open problem
to turn Mess's description of the generating set into an explicit generating set.

Final remark. It is tempting to try to prove the Birman-Powell theorem

in genus 2 using the same inductive step we used in higher genus. Indeed, the

genus one Torelli group is trivial, so by the Birman exact sequence it would
suffice to show that CX(S), or some variant, is connected in genus 2.

We have already mentioned that CX(S) has no edges in genus 2. In particular,
the complex is not connected. One might try to repair this by enlarging CX(S)

to a complex with edges joining pairs of vertices corresponding to curves that

are not disjoint but intersect in the minimum number of points, namely 4,
such as the curves c and Td(c) where c and d are the curves shown in
the figure at the beginning of this section. This does not work, however.

The curves c and Td(c) are joined by an edge path in BX(S) of length 2

with a-\-b as the intermediate vertex, so the values of W along this edge path
lie between 1 and 2. But there are pairs of vertices of CX(S) for which the

values of W along the path in BX(S) joining the two vertices must exceed any
preassigned number n, since one can start with a vertex of BX(S) where W
has a value larger than n and then follow two different paths from this vertex

along which W decreases monotonically until one reaches a pair of vertices

in CX(S) with W 1. Since BX(S) is a tree, these two vertices cannot be

joined by any other path along which W has the maximum value 2, so

these two vertices cannot be in the same path component of the proposed

enlargement of CX(S). This argument shows moreover that CX(S) cannot be

made connected by adding only a finite number of types of edges.

REFERENCES

[1] Bestvina, M K-U Bux and D MARGALIT The dimension of the Torelli
group J Amer Math Soc 23 (2010), 61-105



188 A HATCHER AND D MARGALIT

[2] Birman, J S On Siegel's modular group Math Ann 191 (1971), 59-68
[3] Dehn, M Die Gruppe der Abbildungsklassen Das arithmetische Feld auf

Flachen Acta Math 69 (1938), 135-206
[4] Papers on Group Theory and Topology Translated from the German and

with introductions and an appendix by John Stillwell With an appendix
by Otto Schreier Springer-Verlag, New York, 1987

[5] FÄRB, B and D MARGALIT A Primer on Mapping Class Groups Princeton
Mathematical Series 49 Princeton University Press, Princeton, NJ, 2012

[6] JOHNSON, D L Homeomorphisms of a surface which act trivially on homology
Proc Amer Math Soc 75 (1979), 119-125

[7] An abelian quotient of the mapping class group Xg Math Ann 249
(1980), 225-242

[8] Conjugacy relations m subgroups of the mapping class group and a group-
theoretic description of the Rochlm invariant Math Ann 249 (1980),
243-263

[9] The structure of the Torelli group I A finite set of generators for T
Ann of Math (2) 118 (1983), 423^142

[10] Klingen, H Charakterisierung der Siegeischen Modulgruppe durch em
endliches System definierender Relationen Math Ann 144 (1961), 64-82

[11] MAGNUS, W, A Karrass and D Solitar Combinatorial Group Theory
Presentations of groups m terms of generators and relations Reprint of
the 1976 second edition Dover Publications, Inc Mmeola, NY, 2004

[12] McCULLOUGH, D and A Miller The genus 2 Torelli group is not finitely
generated Topology Appl 22 (1986), 43^-9

[13] MESS, G The Torelli groups for genus 2 and 3 surfaces Topology 31 (1992),
775-790

[14] POWELL, J Two theorems on the mapping class group of a surface Proc
Amer Math Soc 68 (1978), 347-350

[15] PUTMAN, A Cutting and pasting m the Torelli group Geom Topol 11 (2007),
829-865

[16] A note on the connectivity of certain complexes associated to surfaces

L'Enseignement Math (2) 54 (2008), 287-301

[17] Small generating sets for the Torelli group Preprint arXiv 1106 3294
(2011), to appear m Geom Topol

[18] VAN DEN Berg, B On the abelianization of the Torelli group PhD thesis,
University of Utrecht, 2003

Allen Hatcher

Department of Mathematics
310 Malott Hall
Cornell University
Ithaca, NY 14853-4201

USA
e-mail hatcher@math Cornell edu

(Regu le 10 octobre 2011)

Dan Margaht
School of Mathematics
Georgia Institute of Technology
686 Cherry St

Atlanta, GA 30332-0160
USA
e-mail margalit@math gatech edu


	Generating the Torelli Group

