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L’Enseignement Mathématique (2) 58 (2012), 147-163

THE THEORY OF SCHUR POLYNOMIALS REVISITED

by Harry TAMVAKIS *)

ABSTRACT. We use Young’s raising operators to give short and uniform proofs of
several well-known results about Schur polynomials and symmetric functions, starting
from the Jacobi-Trudi identity.

1. INTRODUCTION

One of the earliest papers to study the symmetric functions later known
as the Schur polynomials sy is that of Jacobi [J], where the following two
formulas are found. The first is Cauchy’s definition of sy as a quotient of
determinants :

(1 SAX1, ) = dete ),/ det(f ),

where A = (Ar,...,\,) is an integer partition with at most n non-zero parts.
The second is the Jacobi-Trudi identity

2) sy = det(hy,4j—i<i,j<n

which expresses sy as a polynomial in the complete symmetric functions 4, ,
r > 0. Nearly a century later, Littlewood [L] obtained the positive combina-
torial expansion

3) SEEDIE S
T

where the sum is over all semistandard Young tableaux 7' of shape A, and ¢(T)
denotes the content vector of 7.

*) The author was supported in part by NSF Grant DMS-0901341.



148 H. TAMVAKIS

The traditional approach to the theory of Schur polynomials begins with
the classical definition (1); see for example [FH, M, Ma]. Since equation (1)
is a special case of the Weyl character formula, this method is particularly
suitable for applications to representation theory. The more combinatorial
treatments [Sa, Sta] use (3) as the definition of s)(x), and proceed from
there. It is not hard to relate formulas (1) and (3) to each other directly; see
e.g. |Pr, Ste].

In this article, we take the Jacobi-Trudi formula (2) as the starting point,
where the £, represent algebraically independent variables. We avoid the use
of the x variables or ‘alphabets’ and try to prove as much as we can without
them. For this purpose, it turns out to be very useful to express (2) in the
alternative form

@ sv=]Ja - Rphx,

i<j

where the Rj; are Young’s raising operators |Y| and hy = hy hy,---hy,.
The equivalence of (2) and (4) follows immediately from the Vandermonde
identity.

The motivation for this approach to the subject comes from Schubert cal-
culus. It is well known that the algebra of Schur polynomials agrees with
that of the Schubert classes in the cohomology ring of the complex Grass-
mannian G(k,r), when k and r are sufficiently large. Giambelli [G] showed
that the Schubert classes on G(k,r) satisfy the determinantal formula (2); the
closely related Pieri rule [P] had been obtained geometrically a few years
earlier. Recently, with Buch and Kresch [BKT1, BKT2], we proved analogues
of the Pieri and Giambelli formulas for the isotropic Grassmannians which are
quotients of the symplectic and orthogonal groups. Our Giambelli formulas
for the Schubert classes on these spaces are not determinantal, but rather
are stated in terms of raising operators. In [T], we used raising operators to
obtain a tableau formula for the corresponding theta polynomials, which is
an analogue of Littlewood’s equation (3) in this context. Moreover, the same
methods were applied loc. cit. to provide new proofs of similar facts about
the Hall-Littlewood functions.

Our aim here is to give a self-contained treatment of those aspects of the
theory of Schur polynomials and symmetric functions which follow naturally
from the above raising operator approach. Using (4) as the definition of Schur
polynomials, we give short proofs of the Pieri and Littlewood-Richardson
rules, and follow this with a discussion — in this setting — of the duality



THE THEORY OF SCHUR POLYNOMIALS REVISITED 149

involution, Cauchy identities, and skew Schur polynomials. We next introduce
the variables x = (x, x2,...) and study the ring A of symmetric functions in x
from scratch. In particular, we derive the bialternant and tableau formulas (1)
and (3) for sy(x). See [La] for an approach to these topics which begins
with (2) but is based on alphabets and properties of determinants such as the
Binet-Cauchy formula, and [vL, Ste] for a different treatment which employs
alternating sums stemming from (1).

Most of the proofs in this article are streamlined versions of more involved
arguments contained in [BKT2], [M], and [T]. The proof we give of the
Littlewood-Richardson rule from the Pieri rule is essentially that of Remmel-
Shimozono [RS] and Gasharov [G], but expressed in the concise form adapted
by Stembridge [Ste]. Each of these proofs employs the same sign reversing
involution on a certain set of Young tableaux, which originates in the work of
Berenstein-Zelevinsky [BZ]. The version given here does not use formulas (1)
and (3) at all, but relies on the alternating property of the determinant (2),
which serves the same purpose.

The reduction formula (22) for the number of variables in s)(xy,...,x,)
is classically known as a ‘branching rule’ for the characters of the general
linear group [Pr, W]. Our terminology differs because there are similar results
in situations where the connection with representation theory is not available
(see |T]). We use the reduction formula to derive (3) from (4); a different
cancellation argument relating formulas (2) and (3) to each other is due to
Gessel-Viennot [GV, Sa].

We find that the short arguments in this article are quite uniform, especially
when compared to other treatments of the same material. On the other hand,
much of the theory of Schur polynomials does not readily fit into the present
framework. Missing from the discussion are the Hall inner product, the Hopf
algebra structure on A, the basis of power sums, the character theory of the
symmetric and general linear groups, Young tableau algorithms such as jeu de
taquin, the plactic algebra, and noncommutative symmetric functions. These
topics and many more can be added following standard references such as
|F, La, M, Ma, Sa, Sta, Z], but are not as natural from the point of view
adopted here, which stems from Grassmannian Schubert calculus. A similar
approach may be used to study the theory of Schur Q-polynomials and more
generally of Hall-Littlewood functions; some of this story may be found
in [T].

The author is indebted to his collaborators Anders Buch and Andrew
Kresch for their efforts on the related projects [BKT1, BKT2].
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2. THE ALGEBRA OF SCHUR POLYNOMIALS

2.1 PRELIMINARIES

An integer sequence or integer vector is a sequence of integers « =
(aq,az,...) with only finitely «; non-zero. The length of «, denoted ((c),
is largest integer ¢ > 0 such that ay # 0. We identify an integer sequence of
length ¢ with the vector consisting of its first ¢ terms. We let |a] = Y «; and
write o > 3 if «; > ; for each i. An integer sequence « is a composition
if o; >0 for all i and a partition if o; > «jyp > 0 for all i.

Consider the polynomial ring A = Z[u;, u5,...] where the u; are countably
infinite commuting independent variables. We regard A as a graded ring with
each u; having graded degree i, and adopt the convention here and throughout
the paper that uy = 1 while u, = 0 for r < 0. For each integer vector «,
set u, = Hl. Uy, ; then A has a free Z-basis consisting of the monomials u)
for all partitions \.

For two integer sequences «, (3 such that |a| = |3|, we say that «
dominates [3 and write o = 3 if oy +---+a; > B +---+ ; for each i.
Given any integer sequence o = (o, az,...) and i < j, we define

Rij(a) = (v, ..., + 1,05 —1,...).

A raising operator R is any monomial in these Rj’s. Note that we
have Ra >~ « for all integer sequences «. For any raising operator R,
define Ru, = ug, . Here the operator R acts on the index «, and not on
the monomial u, itself. Thus, if the components of « are a permutation of
the components of 3, then u, = ug as elements of A, but it may happen
that Ru, # Rug. Formal manipulations using these raising operators are
justified carefully in the following section. Note that if «, < 0 for ¢ = {l(«),
then Ru, =0 in A for any raising operator R.

2.2 SCHUR POLYNOMIALS

For any integer vector «, define the Schur polynomial U, by the formula

) Uo =[] = R ttar.

i<j

Although the product in (5) is infinite, if we expand it into a formal series we
find that only finitely many of the summands are nonzero; hence, U, is well
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defined. We will show that equation (5) may be written in the determinantal
form

(6) Uy = det(u,1j-1<ijce = 3 (=1 " tatpor—pe »
wES,

where ¢ denotes the length of o and pp = —1,0—-2,...,1,0).

Algebraic expressions and identities involving raising operators like the
above can be justified by viewing them as the image of a Z-linear
map Z|ZY] — A, where Z[Z!] denotes the group algebra of (Z*,+).
We let xp,...,x, be independent variables and identify Z[Z°] with
Z[xl,xl_',...,xg,lel. For any integer vector o = («y,...,ay) and raising
operator R, set x* = x{" ---x¢ and Rx® = x®* Then if 1: Z[Z‘] — A is the
Z-linear map determined by (x*) = u, for each a, we have Ru, = xRy,
It follows from the Vandermonde identity

H (o — x;) = det(x/ ™ N1<i j<s
1<i<j<e
that
I a-rpx*= J] (O —xayHa =detx® 7)< j<s .
1<i<j<t 1<i<j<e

Now apply the map v to both ends of the above equation to obtain (6).

EXAMPLE 1. We have

Usap = (1 = Ri)(1 — Ri3)(1 — Rp3) us,42
= (1 = Ri2 = Ri3 — Ro3 + R12R13 + R12R23 + R13R»3 — R12R13R23) U(5,4.2)

= U5,42) — U63,2) — U6,4,1) — U5, T UT3) T Ue41) T 6,500 — U7,4,0)

Us Ug U7
2
= UsUglly — UeU3Uy — USUY + UU3U| + UsUs — U7y = | U3 U4 U5
1 uy U
If = (ay,...,a0) and B = (By,...,0,) are two integer vectors and r,
s € Z,welet (a,r,s,3) denote the integer vector (ay,...,ap, 7,8, B1, ..., Om).

The next lemma is known as a ‘straightening law’ for the U, .

LEMMA 1.

(a) Let o and (3 be integer vectors. Then for any r,s € Z we have

U,rs.) = —Ulas—1,041,8) -
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(b) Let a = (avy,...,ap) be any integer vector. Then U, = 0 unless o+ py =
w(p + pe) for a (unique) permutation w € Sy and partition . In the
latter case, we have U, = (—1)"U,,.

Proof. Both parts follow immediately from (6) and the alternating property
of the determinant. [

If X\ is any partition, clearly (5) implies that Uy = uy + Z;»/\ Ay
where ay, € Z and the sum is over partitions x which strictly dominate .
We deduce that the Uy for A a partition form another Z-basis of A.

2.3  MIRROR IDENTITIES

We will represent a partition A by its Young diagram of boxes, arranged in
left-justified rows, with \; boxes in row i. We write A\ C p instead of A < p
for the containment relation between two Young diagrams; in this case the
set-theoretic difference p~ A is the skew diagram p/X\. A skew diagram is
a horizontal (resp. vertical) strip if it does not contain two boxes in the same
column (resp. row). We write A LN w if w/X\ is a horizontal strip with p
boxes.

LEMMA 2. Let A\ be a partition and p > 0 be an integer. Then we have

) Y Urxia= Uy and Y Ura= Y Uy,

a>0, |a|=p >\L>H a>0, |al=p HL})\

where the sums are over compositions o > 0 with |a| = p and partitions p D
A (respectively pn C \) such that \ £ u (respectively, LN ). Moreover, for
every n > ((\), the identities (7) remain true if the sums are taken over «
and v of length at most n.

Proof. The proofs of the two identities are very similar, so we will only
discuss the second. Let us rewrite the sum Y. <o Ux—q as >, ., U,, where
the latter sum is over integer sequences v such that »; < \; for each i
and |v| = |\ — p. Call any such sequence v bad if there exists a j > 1
such that v; < Aj;1, and let X be the set of all bad sequences. Define
an involution ¢: X — X as follows: for v € X, choose j minimal such
that v; < Aj1, and set

W) = Wi,y Ve, Vigr — L+ L0,

Lemma I(a) implies that U, + U, = 0 for every v € X. Therefore all bad
indices may be omitted from the sum ) < U, , and this completes the proof.
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Moreover, to evaluate Zu</\ U, in the situation where v; =0 for all j > n,
notice that if the minimal j such that v; < Ay is j=n, then v, < 0 and
therefore U, =0. [

24 THE PIERI RULE

For any d > 1 define the operator R¢ by
R'= [] a-ry.

1<i<j<d
For p > 0 and any partition \ of length ¢, we compute

14
’ ¢ ’ .
up - Un = tty - R un = R'urpy = R TTA = R ™ uin

i=1

;
=R TJA+ Rt + Rl + - Dup = D Untas
i=1 a0

where the sum is over all compositions « such that |a| = p and o; = 0
for j > ¢+ 1. Applying Lemma 2, we arrive at the Pieri rule

) upy- U= > Uy,.
/\Lﬂz

Conversely, suppose that we are given a family {X,} of elements of A,
one for each partition A, such that X, = u, for every integer p > 0 and

the X satisfy the Pieri rule X, - X\ = Z)‘L) X,,. We claim then that
i

Xy =Ux =[]0 = Ry ux
i<j

for every partition A. To see this, note that the Pieri rule implies that

) U+ Y aUp=uy-ur, =Xx+ Y aru X,
=D A

for some constants ay, € Z. The claim now follows by induction on .

EXAMPLE 2. We have

- Uy = Usay + Uaso + Ussin + Ussz + Uz -
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2.5 KOSTKA NUMBERS

A (semistandard) tableau T on the skew shape \/u is a filling of the
boxes of A/u with positive integers, so that the entries are weakly increasing
along each row from left to right and strictly increasing down each column.
We can identify such a tableau 7 with a sequence of partitions

p=X0 A E =)

such that for 1 <i <r the horizontal strip \'/A\'~! consists of the ¢; boxes
in T with entry i. The composition ¢(T) = (cy,...,c,;) is called the content
of T.

Let p be a partition and « any integer vector. The equation

Uy U}L = ZK)\/;L,(,! Ux
A

summed over partitions A such that A O p defines the Kostka numbers Ky, « -
If o is not a composition such that |a| = [A/u| then we have K/, o = 0.
Otherwise, iteration of the Pieri rule shows that K/, . equals the number
of tableaux 7 of shape A\/u and content vector ¢(T) = a. We deduce from
equation (9) that the Kostka matrix K = {K ,}, whose rows and columns
are indexed by partitions, is lower unitriangular with respect to the dominance
order.

2.6 THE LITTLEWOOD-RICHARDSON RULE

Define the Littlewood-Richardson coefficients to be the structure con-

stants ¢, in the equation

(10) Uy U, =Y ch, Us.
A

If ¢ ={0(v), we compute that
Up-Uy = Z (_l)w”w(vaﬂe)*/)z Uy

weSy
= Z Z (_l)wKA/M,w(V+pe)—pz U
A wESy
from which we deduce that
(1) = (=D",
(w,T)

where the sum is over all pairs (w,T) such that w € Sy and T is a tableau
on A/p with «(T) + pe = w(v + pg) . Observe that ¢(T) is a partition if and
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only if ¢(T) + pe is a strict partition, in which case ¢(T) + p¢ = w(v + py)
implies that w = 1.

For any tableau 7', let T, denote the subtableau of T formed by the entries
in columns r and higher, and define 7, and T, similarly. We say that a pair
(w,T) is bad if ¢(T>,) is not a partition for some r. Let Y denote the set of bad
pairs indexing the sum (11), and define a sign reversing involution ¢: ¥ — Y
as follows. Given (w,T) € Y, choose r maximal such that ¢(T>,) is not a
partition, and let j be minimal such that ¢(T>,) < ¢j+1(T>,). Call an entry j
(resp. j+1) in T free if there is no j+1 (resp. j) in its column. Let 77 denote
the filling of \/u obtained from T by replacing all free j’s (resp. (j+ 1)°s)
that lie in T, with (j+ 1)’s (resp. j’s), and then arranging the entries of
each row in weakly increasing order. Since c¢(7~,) is a partition, we deduce
that 7' contains a single entry j+ 1 in column r, and no j in column r,
while ¢;(T>,)+1 = ¢j+1(T>,). It follows easily from this that 7" is a tableau.
We define «(w,T) = (¢jw,T’), where ¢; denotes the transposition (j,j+ 1).
Since €jc(T<,) = (T,) and €;(c(T>,)+pe) = c(T>,)+pe, while T, coincides
with 7%, it follows that ¢(c(T) + pg) = c(I") + p; and «(w,T) € Y. We
conclude that the bad pairs can be cancelled from the sum (11).

The above argument proves that c”)y is equal to the number of tableaux 7'
of shape \/p and content v such that T, is a partition for each r. This is
one among many equivalent forms of the Littlewood-Richardson rule.

2.7 DUALITY INVOLUTION

Let v, = Uy for r > 1, v9o =1, and v, = 0 for r < 0. By expanding
the determinant Ujr) = det(u;4—;)1<;, j<, along the first row, we obtain the
identity

(12) Vp — U Vp—1 + UsVpy — -+ (=1D)u, = 0.

Define a ring homomorphism w: A — A by setting w(u,) = v, for every
integer r. For any integer sequence «, let v, = [[; vq, , and for any partition A,
set

Vi =wWy) =[]0 = Ry

i<j
We deduce from (8) that the V) satisfy the Pieri rule

(13) v Va= Y V.

/\L>,LL
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On the other hand, the Littlewood-Richardson rule easily implies that
(14) Uary - Uy :ZUp
I

summed over all partitions p D A such that p/\ is a vertical p-strip. It follows
from (13), (14), and induction on X that V) = Uy, for each \. Here N
denotes the partition which is conjugate to A, i.e. such that \; = #{j | \; > i}
for all i.In particular, the equality w(Uy) = Uy, proves that w is an involution
of A, a fact that can also be deduced from (12).

2.8 CAUCHY IDENTITIES AND SKEW SCHUR POLYNOMIALS

Define a new Z-basis 7, of A by the transition equations

(15) Un=> Kty
I

In other words, the transition matrix M(U,t) between the bases U, and f)
of A is defined to be the lower unitriangular Kostka matrix K. Then
A:=Mt,U)=K" and B:= M(u,U) = K'. We have

Y n@uy= > ABrn U, @ U,
A A v

= Z A;A)\B)\V U[L ® UV . Z U;L &® Uu
m

A,y

in A®z A, where the above sums are either formal or restricted to run over
partitions of a fixed integer n. We deduce the Cauchy identity

(16) ZU}JX)Ux:ZZ)\@u)\
A A
and, by applying the automorphism | ® w to (16), the dual Cauchy identity

17) ZU)\®V>\:ZZ)\®’U)\.
A A

For any skew diagram X/, define the skew Schur polynomial Uy, by
generalizing equation (15):

U= DK puw to
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We have the following computation in the ring A ®z A ®z A :

YU QU QUU,=> Uy@1, @ Uutty = Y Uy @1, @ Ky/pi, U
v v A v

:ZU/L@)U)\/;L@U)\-
AL

By comparing the coefficient of U, ® U, ® Uy on either end of the previous
equation, we obtain

(18) Unju=Y_cp, Uy,

where the coefficients cf;l, are the same as the ones in (10). Since w(Uy) = Uy,
A we deduce from (18) that

implies the identity ¢y,

’
= Cﬁ/l,/ i

(19) WU/ = Unrjpr -

3. SYMMETRIC FUNCTIONS

3.1 INITIAL DEFINITIONS

Let x = (x1,x2,...) be an infinite sequence of commuting variables. For
any composition « we set x* = [[,x*. Given k > 0, let A* denote the
abelian group of all formal power series Zlalzk cox® € Z|[x1,x2,...]] which
are invariant under any permutation of the variables x;. The elements of A*
are called homogeneous symmetric functions of degree k, and the graded
ring A =@, A¥ is the ring of symmetric functions.

For each f)artition A of k, we obtain an element m, € A* by sym-
metrizing the monomial x*. In other words, my(x) = Za x® where the
sum is over all distinct permutations o = (o, @2,...) of A = (A, Aa,...).
We call my a monomial symmetric function. The definition implies that
if f =73 ,cax® € AY, then f = >, camy. It follows that the my for
all partitions A\ of k (respectively, for all partitions \) form a Z-basis of A*
(respectively, of A).

Let h, = h,(x) denote the r-th complete symmetric function, defined by

= > m®= > x-x.

M| A|=r i1 <<y
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We have the generating function equation
(20) HO) =Y hr =] —xn~".
r=0 i=1

Let ho = []. ha, for any integer sequence «.

There is a unique ring homomorphism ¢: A — A defined by set-
ting ¢(u,) = h, for every r > 0. For any integer sequence «, the Schur
function s, is defined by s, = ¢(U,). We have

sa = [ (1 = Ry hae = detlha, -
i<j
3.2 REDUCTION AND TABLEAU FORMULAS

Let y = (y1,y2,...) be a second sequence of variables, choose n > 1,
and set x" = (xi,...,x,). It follows easily from equation (20) that for any
integer p,

4
hy(”, ) =3~ i) by "V, y).
i=0
Therefore, for any integer vector v, we have

b7, 3) = haGa) by a0, =3 A o ("7, y)
«a>0 «a>0

summed over all compositions «. If R denotes any raising operator and \ is
any partition, we obtain

@D REAG®,y) =Y A ey o070 y) = YT A Ry, y) .
a>0 a>0

Since s) = Hi<j(1 — Rjj) hy, we deduce from (21) that

oo
@) = W) =D " Y s 0y

a>0 p=0 |al=p

Applying Lemma 2, we obtain the reduction formula

oo
22) AN =D x> 5,600y,
7=9 /LL))\
Repeated application of the reduction equation (22) results in

(23) @) =500 Y D,

wCA Ton\/p
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where the first sum is over partitions 1 C A and the second over all tableau T
of shape \/p with entries at most n. As n is arbitrary, equation (23) holds
with x = (x1,x,...) in place of x" . It follows that
a0 =Y 500 Y, D,
nCA Ton\/p
where the second sum is over all tableau 7' of shape A/ . Substituting y = 0
proves Littlewood’s tableau formula
(24) @ =Y XD ="Ky umux).
Ton A m
From (24) we deduce immediately that the sy for A a partition form a Z-basis
of A, and comparing with (15) shows that ¢(zy) = my . It follows that the
functions hy for A\ a partition also form a Z-basis of A.

3.3 DUALITY AND CAUCHY IDENTITIES

Let e, = e-(x) denote the r-th elementary symmetric function in the
variables x, so that
(X)) =man() = Y xy-x; .
i <<y
The generating function E(r) for the e, satisfies

E(t) = Z e () = H(l +xi1).
r=0 i=1

Since E(1)H(—t) = 1, we obtain
(25) er—he,_y+he_p—--+(=1)h =0

for each r > 1. For any integer sequence o, we set ¢, =[], eq, .

By comparing equations (12) and (25), we deduce that ¢(v,) = e, for
each r, and hence ¢(vy) = ey and ¢(Vy) = sy . The duality involution on A
transfers to an automorphism w: A — A which sends k) to ey and s)
to sy, for each partition A. We deduce that the e, form another Z-basis
of A. Moreover, by applying ¢ to (16) and (17), we obtain the usual form
of the Cauchy identities
D na@sa) => m@ho) =[] :

A

Iy i j I =iy

and
Y n@sn () =Y m@er») = [ +xyp),
A A ij
where the sums are taken over all partitions A.
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3.4 SKEW SCHUR FUNCTIONS

Define the skew Schur functions sy, by

S)\/u(-x) = ¢(U)\/“) = ZK)‘//MV my(x) = Z xL‘(T).

Ton\/p

Equation (23) then implies that

(26) S ) = D sa/u(05.0) = D 5,52/, 0) -

nCA nCA

Applying the operator ]], <j(I = Ryj) to both sides of the equation

I, ) =Y ha(®hr—a()

a>0

gives

27) 36 Y) = Y ha(®sa—a ().
a>0

Since hy =) u K, o5, , comparing (26) with (27) proves that

(28) S\ /u= Y Kuasra-

a>0

Observe that (28) is a generalization of the second identity in Lemma 2.
Using Lemma 1(b) in (27), we obtain that

(29) A =Y 5,0 D (=D Bty o0 @)

I wES,

where the first sum is over all partitions p and ¢ = ¢(\). Equating the
coefficients of s,(y) in (26) and (29) proves the following generalization of
the Jacobi-Trudi identity (2):

(30) S =3 (=D Bt py it poy = detCy, i)
wES,

By applying the involution w to (30) and using (19), we derive the dual
equation

S)\//#/ = det(e,\i_uj_‘_j_i)hj .
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3.5 THE CLASSICAL DEFINITION OF SCHUR POLYNOMIALS

In this section we fix n, the number of variables, and work with integer
vectors and partitions in Z". Let x = (x1,...,x,) and set p = p, =
(n—1,...,1,0). For each a € Z", define

Ao =Y (=1)"x" = det(x")1<i,j<n
weS,
and set §,(x) = Aa+p/Ap. Consider the Z-linear map A — Z[xy,...,x,]
sending Uy to Axy, for any partition A with ¢(\) < n, and to zero,
if £(A\) > n. It follows from Lemma 1(b) that this map sends U, to A,
for any composition o € Z". Lemma 2 therefore implies that for any
partition A € Z" and integer r > 0, we have

(3]) Z A)\+a+p - Z Ap,+/)7

20 )\%u
where the sums are over compositions « > 0 with |« =r and ¢(«) < n and
partitions g with A = ;2 and (i) < n. Furthermore, we have

Aniph@) =) (=D* Y awdote

wES, a>0: |a|=r
_ Z (_l)w Z xw()\+p)+w(a)
WES, a>0: |a|=r
= Z Axtatp = Z Aptp s
a>0:|a|=r AL)/J
by (31). Now divide by A, to deduce that
(32) B@h® =) 5.0.
)\L)/_L

Applying (32) with A = 0 gives 5.(x) = h,(x), for every r > 1. Since
the §)(x) satisfy the Pieri rule, it follows by induction on A as in §2.4 that
52 = [ = Ry hax) = sx(0)

i<j
for each partition A of length at most n. We have thus proved equation (1).
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