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THE TAMBARA-YAMAGAMI CATEGORIES
AND 3-MANIFOLD INVARIANTS

by Vladimir TURAEV and Leonid VAINERMAN

ABSTRACT. We prove that if two Tambara-Yamagami categories 7 V(A, x, V)
and TY(A',x',V') give rise to the same state sum invariants of 3-manifolds and
the order of one of the groups A, A’ is odd, then v = v/ and there is a group
isomorphism A ~ A" carrying x to x’. The proof is based on an explicit computation
of the state sum invariants for the lens spaces of type (k,1).

INTRODUCTION

One of the fundamental achievements of quantum topology was a discovery
of a non-trivial connection between monoidal categories and state-sum
3-manifold invariants. This connection was first observed by O.Viro and
V.Turaev and later generalized in the papers of J.Barrett, B.Westbury,
A.Ocneanu, S.Gelfand, D.Kazhdan and others. Their results may be summa-
rized by saying that every spherical fusion category C over C with dim(C) # 0
gives rise to a numerical topological invariant |M|c € C of any closed ori-
ented 3-dimensional manifold M. A prototypical example of a spherical fusion
category is the category REP(G) of finite-dimensional complex representations
of a finite group G. This category allows nice operations on objects and
morphisms : direct sums, tensor products, left and right dualization. Moreover,
REP(G) contains a finite family of “simple” objects (= irreducible representa-
tions) such that all objects split as direct sums of the objects of this family.
Certainly, the sets of morphisms in REP(G) are finite-dimensional complex
vector spaces. Axiomatizing these properties, one obtains a notion of a fusion
category, see [4]. The condition of sphericity on a fusion category C is more
technical and basically says that all objects of C have a well-defined numeri-
cal dimension invariant under isomorphisms in C, see [2]. A spherical fusion
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category C has a numerical dimension defined as the sum of the squares of
the dimensions of the isomorphism classes of simple objects (for example,
dim(REP(G)) = |G|). The class of spherical fusion categories includes the
categories of type REP(G) and many other categories some of which will be
mentioned below. The class of spherical fusion categories is believed to be
“big but not too big” so that one may hope for some kind of classification.

The invariant of a 3-manifold M associated with REP(G) is nothing but the
number of homomorphisms from the fundamental group of M to G. In general,
the invariant |M|c associated with a spherical fusion category C can not be
defined in terms of the fundamental group. The definition of |M|c proceeds
in terms of state sums on a triangulation of M. The key algebraic ingredients
of these state sums are the so-called 6j-symbols associated with C.

The formula (M,C) — |M|c defines a pairing between homeomorphism
classes of closed oriented 3-manifolds and spherical fusion categories of non-
zero dimension. A study of this pairing leads to natural questions both in
algebra and topology. One usually studies the topological aspects. Is the
pairing (M,C) + |M|c sufficiently strong to distinguish the 3-sphere from
other 3-manifolds ? (The answer is “yes”.) Is it sufficiently strong to distinguish
arbitrary 3-manifolds up to homeomorphism ? (The answer is “no”, see [5].)

We shall focus on algebraic questions and specifically on the following
reconstruction problem: To what extent can a spherical fusion category be
reconstructed from the associated 3-manifold invariants ? The rational for this
problem is that the number |M|c may be viewed as a generalized dimension
of C determined by M. The reconstruction problem is intriguing already for
the categories of type REP(G). Is it true that for any non-isomorphic finite
groups Gi, G, there is a closed oriented 3-manifold M such that the numbers
of homomorphisms from 7 (M) to G; and G, are different? We do not
know the answer.

In this paper, we study the reconstruction problem for a class of spheri-
cal fusion categories introduced by Tambara and Yamagami [13]. The origin
of their work is as follows. On the one hand, studying bimodule categories
in the theory of operator algebras, Yamagami [17] constructed examples of
non-isomorphic semisimple Hopf algebras with equivalent categories of repre-
sentations. On the other hand, Tambara and Yamagami attempted to distinguish
three existing 8-dimensional non-commutative semisimple Hopf algebras by
their categories of representations. These Hopf algebras are the Kac-Paljutkin
algebra [8] and the group algebras of the dihedral group Dg and the quater-
nion group Qg. It was known that the representation categories of these Hopf
algebras had the same Grothendieck ring, but it was unknown whether or not
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these tensor categories themselves were equivalent. Tambara and Yamagami
completely classified semisimple tensor categories with Grothendieck ring of
the above mentioned type, and deduced that the categories of representations
of the three Hopf algebras in question are not equivalent to each other.

A Tambara-Yamagami category TY(A,x,v) is determined by a bi-
character y on a finite abelian group A and a sign v = +1. By a bicharacter
on A we mean a non-degenerate symmetric bilinear pairing y: AXA — S'; the
non-degeneracy of x means that the adjoint homomorphism A — Hom(A, S')
is bijective. The pair (A, x) is called a bicharacter pair. It is known that the
category T Y(A, x,v) has a canonical structure of a spherical fusion category
and its dimension is non-zero.

Two bicharacter pairs (A,x) and (A’,x’) are said to be isomorphic if
there is an isomorphism A = A’ transforming y into x’. It is known
that two Tambara-Yamagami categories, 7V(A, x,v) and TY(A', X', V'), are
monoidally equivalent if and only if the pairs (A, x) and (A’, x) are isomorphic
and v = /. Moreover, the monoidal equivalence, if it exists, may always be
chosen to preserve the structure of a spherical category.

Each bicharacter pair (A, x) splits uniquely as an orthogonal sum

(A, x) = BAP, xP),
P

where p runs over all prime natural numbers, A?’ C A is the abelian p-group
consisting of the elements of A annihilated by a sufficiently big power of p,
and Y?: AP x AP — §' is the restriction of y to A® . In the sequel, the
order of a group A is denoted |A].

THEOREM 0.1. Let C = TYA,x,v) and C' = TYA, X, V) be
two Tambara-Yamagami categories such that |M|c = |M|c: for all closed
oriented 3-manifolds M .

(a) We have |A| = |A’| and if |A| is not a positive power of 4, then v =1".
(b) For every odd prime p, the pairs (AP, x?) and (A'P,x\'P) are
isomorphic.

Combining the claims (a) and (b) we obtain the following corollary.

COROLLARY 02. Let C = TYA,x,v) and C' = TYA ,xX',V') be
two Tambara-Yamagami categories such that |M|c = |M|c/ for all closed
oriented 3-manifolds M. If |A| is odd, then the bicharacter pairs (A,x)
and (A’,X") are isomorphic and v =v'".
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We conjecture a similar claim in the case where |A| is even.

The proof of Theorem 0.1 is based on an explicit computation of |M|c
for the lens spaces Ly = Ly with k = 0,1,2,... Recall that L, is the
closed oriented 3-manifold obtained from the 3-sphere S® by surgery along
a trivial knot in §° with framing k. In particular, Ly = S'x 8§82, L, =8,
and L, = RP3. The manifolds {Ly}« are pairwise non-homeomorphic; they
are distinguished by the fundamental group (L) = Z/kZ.

To formulate our computation of |L|c, we recall the notion of a Gauss
sum. Let A be a finite abelian group and x: A x A — S' be a symmetric
bilinear form (possibly degenerate). A quadratic map associated with y is a
map p: A — S' such that for all a,b € A,

wa + b) = x(a, b) p(a) u(b).
In other words, the coboundary of p is equal to x. Such a p always exists
(see, for example, [9]) and determines the normalized Gauss sum
V() = A7 21AC T2 ey € €,
acA
where
Ay ={a € Alx(ab)=1 forall be A}
is the annihilator of x. (If x is a bicharacter, then Ay = {0}.) The
normalization is chosen so that either v(x) = 0 or |y(u)| =1 (see Lemma 2.1
below).

Denote by Q, the set of quadratic maps associated with x. This set has
precisely |A| elements; this follows from the fact that any two quadratic maps
associated with y differ by a homomorphism A — S'. Every integer k > 0
determines a subgroup Ay = {a € A|ka =0} of A and a number

GO0 = A7 2A 2 Y vt e C.
NGQX

For example, Ag = A and (p(x) = 1.

THEOREM 0.3. Let C = TY(A, x,v) be a Tambara—Yamagami category.
For any odd integer k > 1, we have
| Ak
0.1 Lile = —.
0.1) |Lklc 2|
For any even integer k > 0, we have
A+ AR A 2 G (X0
- 21A| '

0.2) |Li|c
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For k = 0, Formula (0.2) gives |S' x $?|c = 1 which is known to be true
for all spherical fusion categories C.

Our proof of Theorem 0.3 is based on two results. The first is the
equality |M|c = Tz (M) recently established in [16]. Here C is an arbitrary
spherical fusion category of non-zero dimension, Z(C) is the Drinfeld-Joyal-
Street center of C, and 7zc)(M) is the Reshetikhin-Turaev invariant of M.
The second result is the computation of the center of C = T Y(A, x,v) in [6].

The paper is organized as follows. In Section 1 we recall the Tambara-
Yamagami category and its center and prove Theorem 0.3. In Sections 2 and 3
we prove respectively claims (a) and (b) of Theorem 0.1.

ACKNOWLEDGEMENTS. This paper was started during the visit of VT to
the University of Caen in June 2010. VT would like to thank the University
of Caen for hospitality. The work of V. Turaev was partially supported by the
NSF grant DMS-0904262.

1. THE TAMBARA-YAMAGAMI CATEGORIES AND THEIR CENTERS

In this section, (A,x) is a bicharacter pair, v = +1,and n=|A|.

1.1 THE CATEGORY T (A, x,V)

The simple objects of the Tambara-Yamagami category C = T (A, x, V)
are all elements a of A and an additional object m. The unit object of C
is the zero element 0 € A. All other objects of C are finite direct sums of
the simple objects. The tensor product in C is determined by the following
Sfusion rules :

a®b=a+b and a®@m=m®a=m forall abecA,
and me@m= @ a.
acA

The category C is associative but generally speaking not strictly associative.
For any simple objects U,V,W of C, the associativity isomorphism
ouyw: URV)Q@W — U®(V®W) is given by the following formulas
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(where a,b,c run over A):

¢a,b,v = ida+b+(‘ ) ¢a,b,m = idm s d)m,a,b = ldm 5

¢a,m,b = X(a7 b)ldm ’ ¢a,m,m = @ ldb ) ¢m,m,a = @ ldh y
beA beA

¢m,a7m = @ X(a, b)ldb y ¢m,m7m = (Vﬂil/ZX(ay b)ilidm)a,b .
bEA

The unit isomorphisms are trivial. The duality in C is defined by a* = —a
for all @ € A and m* = m. The left duality morphisms in C are the identity
maps 0 — a®a*, a*®a — 0 for a € A, the inclusion 0 — m®m and vn'/?
times the obvious projection m @ m — 0. The right duality morphisms in C
are the identity maps 0 = a* ® a, a®a* — 0 for a € A, v times the
inclusion 0 < m®m and n'/? times the obvious projection m®@m — 0.

The functor X — X**, where X is an object of TY(A,x,v), equals to
the identity functor. There is a pivotal structure j on TY(A, x,v) defined
by j(a) = id, for all a € A and j(m) = sign(v)id,, , where sign means the sign
of a real number. This structure is canonical in the sense that the corresponding
pivotal dimensions are equal to the Perron-Frobenius dimensions of objects:
dim(a) = 1 for all a € A and dim(m) = \/]A].

We define a fusion category as a C-linear monoidal category with
compatible left and right dualities such that all objects are direct sums of
simple objects, the number of isomorphism classes of simple objects is finite,
and the unit object is simple. (An object V is simple if End(V) = Cidy.) The
condition of sphericity says that the left and right dimensions of all objects
are equal. A spherical fusion category has a numerical dimension defined as
the sum of the squares of the dimensions of the (isomorphism classes of)
simple objects. A basic reference on the theory of fusion categories is [4].

It is easy to see that the above mentioned pivotal structure in C =T Y(A, x, V)
is spherical. It turns C into a spherical fusion category of dimension 2n.

1.2 THE CENTER

The center Z(C) of C = TY(A, x,v) was computed in [6], Prop. 4.1. The
category Z(C) has three types of simple objects whose description together
with the corresponding quantum dimensions and twists is as follows:

(1) 2n invertible objects X4, Where a runs over A and € runs over complex
square roots of x(a,a)~!. Here dim(X(,,)) = 1 and 0.0 = x(a,a)~";

2) @ objects Y, parameterized by unordered pairs (a,b), where
a,b€ A, a#b.Here dim(Y) =2 and O = x(a,b)~";
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(3) 2n objects Z, ay, where p runs over Q, and A runs over the square
roots of vy(u). Here dim(Z, ) = n'/? and 0, = A.
Denote by I the set of the (isomorphism classes of) simple objects of Z(C).
The dimension of Z(C) is computed by
nn—1)

dim Z(C) = Z(dim(z’))2 =2nx1+ X 44 2n x n = 4n?.

i€l
We will need the following more general computation.

LEMMA 1.1.  For an integer k > 0, set 7, =, 0%(dim(i))?, where 0;
and dim(i) are the twist and the dimension of i € I. If k is odd,
then i = 2n|A¢| . If k is even, then Ty = 2n(|Ag| + /2| A|'2|Ag /2|22 (X)) -

Proof. A direct computation shows that 7, = 2uy + nvi, where

w=>Y x@a ™+ Y xab*

acA (a,b)EA? ,az#b

and v = Z(m " A* . Since x is non-degenerate,

we= Y x@ab =Y x@b")=n|Al.
a,beA a,beA
If k is odd, then the contributions of the pairs (u,A) and (@, —A) to v
cancel so that vy =0 and 74 = 2n|A|. For even k&,

ve =Y 2y(w)* = 2042 |AV2 Ay o] P Gepa(X) -
0

1.3 PROOF OF THEOREM 0.3

Since C = TJY(A,x,v) is a spherical fusion category of non-zero
dimension, it determines for any closed oriented 3-manifold M a state sum
invariant  |M|c € C, see [15], [1]. By a theorem of Miger [10], the
category Z(C) is modular in the sense of [14]. A modular category endowed
with a square root D of its dimension gives rise to the Reshetikhin-Turaev
invariant of any M as above. The RT-invariant of M determined by Z(C)
and the square root D =2n =11 of dim Z(C) will be denoted by 7z(c)(M).
A theorem of Virelizier and Turaev [16] implies that |M|c = Tz()(M) for
all M. By [14], Chapter II, 2.2, for all £k >0,

Tzo(L) = D7) 0¥(dim())? = 4n 27 .
icl
Substituting the expression for 7; provided by Lemma 1.1, we obtain the
claim of the theorem.
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2. PROOF OF THEOREM 0.1(a)

We start with a well-known lemma. In this lemma we call a quadratic
map p: A — S' homogeneous if j(na) = (u(a))”2 forall neZ and a € A.

LEMMA 2.1. Let A be a finite abelian group and 1: A — S' be a
quadratic map associated with a symmetric bilinear form x: A x A — S'.
Set A+ =Ay CA.

— If WA) # 1, then v(p) = 0.

— If WAY) =1, then |y(p)| = 1.

— If W(AY) =1 and 1 is homogeneous, then () is an 8-th complex root
of unity.

Proof. We have
AlAY P =) w@f = w@u® = Y w@pu®)™"

acA a,beA a,beA
= > wa+bu®) " =Y x@,bu@.
a,beA a,beA

When b runs over A, the complex number x(a, b) runs over a finite subgroup
of S'. We have > e X(a,b) = 0 unless this subgroup is trivial. The latter
holds if and only if @ € A+ and in this case >, ., x(a,b) = |A|. Therefore,

A[A Iyl = A D wa).
acAtL

The restriction of x to A+ is a group homomorphism A+ — S'.If u(A+) # 1,
then > .. p(a) = 0 and therefore y(u) = 0. Suppose now that A =1.
Then Y. pu(a) = |A*| and therefore |y(p)| = 1. The equality pu(A+) =1
also ensures that 4 is the composition of the projection A — A’ = A/AL with
a quadratic map p': A’ — S' associated with the non-degenerate symmetric
bilinear form A’ x A’ — S' induced by . It follows from the definitions
that ~v(u) = v(u'). If p is homogeneous, then so is p’. It is known (see, for
instance, [11], Chapter 5, Section 2) that for any homogeneous quadratic map
on a finite abelian group associated with a non-degenerate symmetric bilinear
form, the corresponding invariant ~ is an 8-th root of unity. This implies the
last claim of the lemma.

LEMMA 22. Let (A,x) be a bicharacter pair. For any integer k > 1,
either (x(x) =0 or ((x) is an 8-th root of unity. If k=1 or k is divisible
by 8|A|, then (i(x) =1.
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Proof. Pick a quadratic map po: A — S' associated with y . Observe that
for every integer k , the function zf: A — S! carrying any ¢ € A to (uo(c)*
is a quadratic map associated with the symmetric bilinear form x*: AxA — §!
defined by x*(a,b) = (x(a,b))*. We claim that for all k € Z,

@2.1) GO0 = (g ™) (v(po))*.

Indeed, since x is non-degenerate, any quadratic map u: A — S' associated
with x can be expanded in the form u(a) = x(a,c)po(a) for a unique
c = c(u) € A. Since x(a,c) pola) = pola + ¢) po(c)~" for all a,c € A, we
have

GO = (A7 21472 (AT et

HEQy acA
= |A72Ad 2D (AT xda, ©) pol@))t
cEA acA
= (A4 712 Y po@ HIAIT2 Y po®)}
CcEA bEA
= (kg ") (Y(po))*.

In the last equality we use the obvious fact that At_k = Ay.

We can always choose po: A — S' to be homogeneous. Then k
also is homogeneous. Since y is non-degenerate, the previous lemma implies
that ~y(y10) is an 8-th root of unity and (s, k) is either zero or an 8-th root
of unity. This implies the first claim of the lemma.

For k = 1, Formula (2.1) gives

GO0 = (g ) Y(ko) = Y(70) Y(ko) = (o) Y(ko) = 1,

where the overbar is the complex conjugation.
Observe that p2" =1 for n = |A|. Indeed, for any a € A,

I = 110(0) = po(2na) = (po(@)*" x(a,a)"" "
= (uo(@)*x(na, (n — a) = (uo(@)™".
Therefore for all k € 2nZ, we have ~(u,") = 1. If k € 8Z,
then (y(10))* = 1. Hence, if k € 8nZ, then (u(x) = (g *) (y(uo))* = 1.

2.1 PROOF OF THEOREM 0.1(a)
For k = 1, Formula (0.1) gives |Li|c = (2|A|)~!. Thus,
Al = ILilg' /2= Lig' /2 = 1A'
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This and Formula (0.1) imply that |A¢| = |A;| for all odd k > 1.

Set n = |A] = |A’|. Suppose that v # v/. Assume for concreteness
that v = —1 and v/ = +1. Formula (0.2) with kK =2 and Lemma 2.2 show
that

|Az| — n'/? = 2n|Ly|c = 2n|Ly|c = |AY] + n'/2.

Thus, |Ay| — |A}| = 2n'/2. Therefore, n = m? for an integer m > 1. Since n
is not a positive power of 4, either m = 1 or m is not a power of 2.
If m=1,then A=A"= {0} and so A, = A}, = {0} which contradicts the
equality |Az| — |Ab| = 2m.

Suppose that m = n'/? is not a power of 2. Pick an odd divisor ¢ > 3
of m. Applying Formula (0.2) to k = 2¢, we obtain

Ae| — m|Ad) 2 Co(x) = |AL| + m|AY|2C(x) -

Note that |A;] = |Az||A¢] and similarly for A’. Since ¢ is odd, we
have |A;| = |A}|. Therefore

Aa| — |A5] = m|Ag| ™ 2(CX) + G -

The right-hand side of this equality must be a real number that cannot
exceed 2m|A,|~'/? by Lemma 2.2. Thus, |A;| — |A}| < 2m|A,|~'/%. Since ¢
divides n, we have Ay # 1 so that |A,| > 2. This gives |A,| — |A}| < 2m/v/2
which contradicts the equality |Az| — |A| = 2m. This contradiction shows
that v = /.

2.2 REMARKS

(i) It is easy to extend the above argument to show that the conclusion
of Theorem 0.1(a) also holds for |A| = 4.

(i) Let in the proof above |A| = |A’| = n be a positive power of 2
and v = —1,7' = 1. Formula (0.2) with k = 2¢, where ¢ > 3 is odd, shows
that

|Age| — 12| A0 2Co(x) = 2n|Ladlc = 2n|Lag|cr = |Ahe| + n'/?|A%2Cu(X) -

But now A, = {0}, so |As = 1, |Ax| = |A2] and similarly for A’.
This gives |Az| — |A5] = n'/2(C(x") + Co(x)). Comparing with the equal-
ity |Az] — |A5] = 2n'/2 obtained above, we conclude that Co(y') + Co(x) = 2.
By Lemma 2.2, this is possible if and only if (,(x) = (u(x') = 1 for all
odd ¢ > 3.
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(iii) The number (;(x) is closely related to the Frobenius-Schur indica-
tor vy (m) of the object m of the category C = TY(A, x,v) computed by
Shimizu [12]. Indeed, substituting n = 2k, V = m in formula (3) of [12] and
taking into account that dim(C) = 2|A|, 6,, = A, dim(m) = |A|'/2, we obtain

ag(m) = W SN = A2 S o = Al PG00
w,A nEQy

(our sign v is equal to Shimizu’s sgn(7)). This and Lemma 2.2 give another
proof of the following results of Shimizu (see [12], Theorem 3.5): the
number |A;|~'/2vy(m) is either 0 or an 8-th complex root of unity for
all k; this number is O if and only if for some (and then for any) u € Q,,
there is a = a, € Ay such that w(@* = 1. The latter claim follows from
Lemma 2.1, Formula (2.1), and the equality Ai*k = Ag.

3. PROOF OF THEOREM 0.1(b)

3.1 PRELIMINARIES ON BICHARACTERS

Any finite abelian group A splits uniquely as a direct sum A = @, AP,
where p > 2 runs over all prime integers and AP consists of all elements
of A annihilated by a sufficiently big power of p. The group A® is a p-group,
i.e., an abelian group annihilated by a sufficiently big power of p. Given a
bicharacter y of A, we have Y(A?,A?") = 1 for any distinct p, p’. Therefore
the restriction, Y, of x to A? is a bicharacter and we have an orthogonal
splitting (A, x) = @, (AP, xP).

Fix a prime integer p > 2 and recall the properties of bicharacters
on p-groups, see, for example, [3] for a survey. Given a bicharacter x on a
finite abelian p-group A, there is an orthogonal splitting (A, x) = ®>1(As, Xs) »
where A, is a direct sum of several copies of Z/p*Z and y,: A, X Ay — St
is a bicharacter. The rank of Ay as a Z/p*Z-module depends only on A and
is denoted r, 4(A).

Assume from now on that p # 2. Then the splitting (A, x) = ®y>1(Ay, X5)
is unique up to isomorphism and each ; is an orthogonal sum of bicharacters
on ry(A) copies of the cyclic abelian group Z/p*Z. Using the canonical
injection Z/p°'Z — S',z+— ¢*™2/P" | we can view y, as a pairing with values
in the ring Z/p*Z. This allows us to consider the determinant detx, € Z/p°Z
of ;. Since x; is non-degenerate, dety, is coprime with p. Let

7000 = (52 € (1)
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be the corresponding Legendre symbol. Recall that for an integer d coprime
with p, the Legendre symbol (g) is equal to 1 if d (mod p) is a quadratic
residue and to —1 otherwise, see, for example, [7]. If r, (A) = 0, then by
definition o, = 1. It follows from the definitions that the integers {r,}, are
additive and the signs {o,}s are multiplicative with respect to orthogonal
summation of bicharacter pairs. A theorem due to H. Minkowski, E. Seifert,
and C.T.C. Wall says that these invariants form a complete system: two
bicharacters, x; and 2, on p-groups A; and A;, respectively, are isomorphic
if and only if r, (A)) = r,(A2) and o, (x1) = 0,5(x2) for all s > 1.

For brevity, when p is specified, we denote r, ((A) and o, (x) by ry(A)
and o,(y), respectively.

3.2 COMPUTATION OF (j

Consider the C-valued invariants {Ck}kzl of bicharacters defined in the in-
troduction. It is easy to deduce from the definitions that (;(x®x") = G(x) G(x)
for any bicharacters x,x’ and any k. Thus, the formula x — (;(x) defines
a multiplicative function from the semigroup of bicharacter pairs (with the
orthogonal sum & as operation) to C.

Fix an odd prime p > 3. We now compute (; on the bicharacters
on p-groups. For any odd integer a, set ¢, =i = V=1 if a =3 (mod 4)
and ¢, = 1 otherwise. For any integers k,s > 1, we have gcd(k,p*) = p'
with 0 <7 <s. Set

Ek h ks+s—t K s—t
ars=ks+s—t and Bp,=— (—) (—) € {+1,+i},
' Ep.\-—r p )4
where h = (p* +1)/2 € Z and k' = k/p" € Z. Note that gcd(h,p) = 1 so that

the Legendre symbol (g) is defined. If ¢ < s, then ged(k’,p) =1 so that the

Legendre symbol (%) is defined; if # = s, then by definition, (%)5_' =1.

LEMMA 3.1. For any k > 1 and any bicharacter x on a p-group A,

3. G0 =[] 8" os0017.

s>1

Proof. The proof is based on the following classical Gauss formula: for
any integer d coprime with p,

L o L\ s (dY)
(3.2) > exp (—de ) =piey (-) .
par- p p



THE TAMBARA-YAMAGAMI CATEGORIES AND 3-MANIFOLD INVARIANTS 143

A more general formula holds for any integer d: if ged(d,p’) = p'
with 0 <7 <s and d' =d/p’, then
——

= d i " N
(3.3) Zexp( > Py exp (p“ j> =p7T ey (;) ,

j=0 j=0

where, by definition, for ¢ = s, the expression (‘1’—]’)3'_’ is equal to 1.

We now prove (3.1). It is clear that both sides of (3.1) are multiplicative
with respect to orthogonal summation of bicharacters. The results stated in
Section 3.1 allow us to reduce the proof of (3.1) to the case where A = Z/p°Z

for some s > 1. We must prove that for any bicharacter y: A x A — S',

G4 GO0 = Brs [a,001%.

Set as above h = (p*+1)/2 and k' = k/p' , where gcd(k,p®) = p'
with 0 < ¢ < 5. The bicharacter x is given by x(a,b) = exp(%Aab)
for all a,b € A, where A is an integer coprime with p. Observe that the
map jo: A — S' carrying any a € A to exp(%hAaz) is a quadratic map
associated with x. Formula (3.2) and the multiplicativity of the Legendre
symbol imply that

p—1 K s K
2ri R\ (A h
==Y e () = (3) (5) = () wocor

Similarly, Formula (3.3) implies that

p'—1

> o)~ Z exp <p—khA 2)

cEA Jj=0

' B h s—t k, s—t .
et (B) (£ pecor
p p

Since |A| = p* and |A;| = ged(k, p*) = p', we have

h s—t k/ s—t
Vo™ = 1AI7V21A T2 Y o) F = ¢! (;) (;) o)1

cEA

These computations and Formula (2.1) imply that

k
GO0 = (g *) (Y(po))k = E” (- )‘”S '( )S osolts.
px—l

This is equivalent to Formula (3.4).
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Note one special case of Lemma 3.1: if k is divisible by 2|A|,
then G(x) = [],~, ,CfiA). Indeed, in this case for all s such that Z/p*Z
is a direct summand of A, we have ged(k, p®) = p* and oy = ks € 2Z. For
all other s, we have oy(yx) = 1. Therefore [o(x)]|*: =1 for all s.

3.3 PROOF OF THEOREM 0.1(b)

We begin with a few remarks concerning the subgroups (A;); of A
defined in the introduction. Using the splitting A = @®,A®, one easily
checks that Ay = Ay & A; for any relatively prime integers k,[/. For
any prime p, the integers (JApn|),>1 depend only on the group AP and
determine the isomorphism class of A® . Indeed, A” = &,>1(Z/p*Z)"»+ for
Tps = Ips(A) > 0. Given m > 1,

m

Ay = (AP)y = DL/PTY™ & DL/p"L)r.

s=1 s>m
Hence,
Ing(|Ap'”+‘ ‘/|Ap’"|) =Tpmt1 tTpmt2 + 0.

Therefore, the sequence (|Ayn|),>1 determines the sequence {r,(A)}s>1 and
so determines the isomorphism type of A® .

Formula (0.1) and the assumptions of the theorem imply that, for all
odd k> 1,

|A| = 2n|Li|c = 2n|Li|cr = |Ay],

where n = |A| = |A/| . By the previous paragraph, AP = A'® for all
prime p # 2, and for all s > 1,

(3.5) 7ps(A?) = 1, (A) = 1, ((A) = 1, (A'P)).

Since n =[], |A?| , we also have [A®| = [|A"®)].
Let N > 2 be a positive power of 2 annihilating both A® and A’®.
Then Ay = A® and Aj = A’® . For any odd integer £ > 1,

[Ane| = |Av| 1Ae] = |AP]|Al] = |42 4] = |A}] |A7] = |A}| -

Similarly, |Aave| = |Aby,|l. Applying (02) to k = 2N/, we obtain
Cve(x) = Cue(X).

Fix from now on an odd prime p. The identity (3.5) shows that to prove
that the bicharacter pairs (A?,x®) and (A'®,x'®) are isomorphic, it is
enough to verify that oy(x?) = o,(x'?) for all s> 1. Set

A A
== 11 1491= T] wel= ,
| A | | AW | H H ‘ A/ | | AP |
9>3.,97#p 9>3,97#p
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where ¢ runs over all odd primes distinct from p. Clearly, ¢ is an odd
integer. For any N as above, (ye(x) = (ye(X’'). Observe that

ne0) = Guex®) [T ve X,

q>3

where ¢ runs over all odd primes. Since N/ is divisible by 2|A?| for q # p,
the remark at the end of Section 3.2 implies that (ye(x'?) = Cue(X'?) # 0
for all ¢ # p. Replacing if necessary N by a bigger power of 2, we
can assume that N is divisible by 8|A®| = 8|A"®|. The last claim of
Lemma 2.2 yields (ve(x®) = Cve(x’®) = 1. Combining these equalities,
we obtain Cye(x®) = Cve(x'?). Expanding both sides as in Formula (3.1)
and using Formula (3.5) and the inclusions o (x?),o(x'?) € {+1}, we

obtain
II e = [ o).
odd s>1 odd s>1
Replacing in this argument ¢ by fp,¢p?,¢p>,... , we similarly obtain that

for all odd u > 1 and even v > 2,

II o™= [ o, II o™= ] ox®.

odd s>u odd s>u evens>wv even s>

These equalities easily imply that o,(x?)) = o,(x'®) for all s.
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