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L'Enseignement Mathematique (2) 58 (2012), 99-124

SOME BOUNDS ON THE COEFFICIENTS

OF COVERING CURVES

by Tom Fisher

Abstract We compute bounds on the coefficients of the equations defining
everywhere locally soluble n-coverings of elliptic curves over the rationals for n 2, 3,4
Our proofs use recent work of the author with Cremona and Stoll on the minimisation of
genus one curves, together with standard results from the geometry of numbers We use
the same methods to give a criterion (satisfied by only a finite number of "small" elliptic
curves) for ruling out the existence of elements of order 3 m the Tate-Shafarevich group

1. Introduction

Let E/Q be an elliptic curve and n > 2 an integer. The Selmer

group &n\E/Q) parametrises the everywhere locally soluble n -coverings
TT: C -A E. By global class field theory the curve C admits a Q-rational
divisor of degree n and hence can be written as either a double cover of P1

(case n 2) or a genus one normal curve C C Pw_1 (case n > 3). The
aim of a descent calculation is to compute the Selmer group S^n\E/Q) as

an abelian group and to represent its elements by equations for the covering
curves C. In view of the short exact sequence

(1.1) 0 -A E(Q)/nE(Q) -A S{n)(E/Q) -A U1(E/Q)[n] -A 0

this gives information about both the Mordell-Weil group E(Q) and the Tate-

Shafarevich group HI(£/Q). Indeed the covering curves can be used either to

help search for points of infinite order in E(Q) or to exhibit explicit elements

of HI(£/Q).
There are two different approaches to explicit 2-descent on an elliptic curve.

The number field method computes S^2\E/Q) as a subgroup of LX/(LX)2
where L is a product of number fields. The Selmer group elements are then

converted to binary quartics using a method that relies on an explicit version of
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the Hasse principle for conies. In contrast the invariant theory method bounds

the coefficients of the required binary quartics, and then uses these bounds to
make an exhaustive search. The invariant theory method was used by Birch and

Swinnerton-Dyer in their pioneering computer calculations [BSD! and

subsequently developed by Cremona in his program mwrank. The development of
computer algebra packages able to compute the class group and units of number
fields has since made the number field method equally suitable for computation.

The number field method has been generalised to p-descent (see [DSS],
[SS], [CFO]) and is practical for p 3 (and p 5 in small examples).
The method relies on an explicit version of the local-to-global principle for
the p-torsion of the Brauer group of Q. The number field method also extends

to 4-descent and 8-descent, as described in [MSS], [Wo], [S]. The invariant

theory method in the case n 3 was investigated in [DS], but does not appear
to generalise in any practical way to n > 2.

The equations defining an n-covering C of E depend on a choice of
coordinates on Pw_1. It is obviously desirable to make a change of co-ordinates

so that the equations have small integer coefficients. In practice this is achieved

by the combination of two techniques, termed minimisation and reduction. In
the minimisation stage spurious prime factors are removed from a suitably
defined discriminant. In the reduction stage an integer unimodular change of
co-ordinates is made to further reduce the size of the coefficients (without
changing the discriminant). Minimisation and reduction are important for both
the number field and invariant theory methods. In the number field method
the equations computed typically have very large coefficients, and we need to
minimise and reduce to get sensible answers. In the invariant theory method

minimisation and reduction are used at the outset to obtain the bounds upon
which the method relies.

In joint work with Cremona and Stoll [CFS] the author has described

efficient algorithms for minimising and reducing n-coverings for n 2,3,4.
(The work on minimisation applies over an arbitrary local field.) It has been

found in numerical examples that elements of the Tate-Shafarevich group
typically have quite small coefficients and that the size of the coefficients
tends to decrease with n. In this paper we give some theoretical support for
these observations. In fact we give bounds on the coefficients depending only
on the naive height of E. In principle this generalises the invariant theory
method to n 3,4 although the result is certainly not a practical algorithm.
In view of this we concentrate on giving a single bound for all the coefficients
and do not keep track of certain implied constants. Thus our treatment in the

cases n 2,3 differs from that in [BSD], [DS].
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In the cases n 2, 3,4 we represent Selmer group elements by equations
of the following form.

Definition 1.1. A genus one model of degree ft E {2,3,4} is

(i) if n 2, a binary quartic, i.e. a homogeneous polynomial of degree 4
in 2 variables,

(ii) if n 3, a ternary cubic, i.e. a homogeneous polynomial of degree 3 in
3 variables,

(iii) if n 4, a quadric intersection, i.e. a pair of homogeneous polynomials
of degree 2 in 4 variables.

Although in [F3] we also defined genus one models of degree 5, it will
be understood in this paper that all genus one models are of degrees 2, 3

or 4. Since the theory in [F3] relies on the space of all genus one models

being an affine space, it is far from clear what the appropriate definition of
genus one model would be for curves of degree n > 5.

We recall that the minimal discriminant of an elliptic curve E/Q is

A£ (4 - eg)/1728,

where C4 and ce are the usual quantities associated to a globally minimal
Weierstrass equation for E. In Theorem 1.2 below we instead work with the

naive height of E which we define as

He max(|c4|1/4, |c6|1/6).

We write for the maximum of the absolute values of the coefficients

of a genus one model O. The notation f g should be understood to mean
that f < eg for some absolute constant c > 0.

Theorem 1.2. Eet E/Q be an elliptic curve and let n E {2,3,4}.
(a) Each £ E S(n\E/Q) can be represented by a genus one model O with

integer coefficients and

Moo««!-
(b) If £ is non-zero in &"\E/Q) then this bound may be improved to

Moo««*-
(c) If the image of £ in III(£,/Q) has exact order n then

Moo ««!-"•



102 T FISHER

We remark that Theorem 1.2(a) gives a proof that S^iE/Q) is finite, and

hence by (1.1) a proof of the weak Mordell-Weil theorem for n 2,3,4.
This proof differs from the usual proofs in that we work entirely over the

rationals, i.e. we do not need to make any field extensions.

The formulae in Lemmas 3.11 and 3.12 of [CFS] suggest that the exponents
of He in Theorem 1.2(a) and (b) might be best possible. We suspect that the

exponent of HE in Theorem 1.2(c) is also best possible in view of the models

n 2 y2 X0x4 + x2z2 + Mz4

n — 3 AoVq 4" AixJ T A2V2 — xqX\X2 0

{Ao^o
+ x1X3 — X2X2 0

2 2
X\Xx + XqX2 — A3V3 0

that arise in the context of descent by cyclic isogeny (see [Fl, § 1.2] for the

cases n 3,4).
We expect that Theorem 1.2 generalises to the case n 5. (See [F3] for

the definition of a genus one model of degree 5.)

In favourable circumstances, the geometry of numbers can be used to

construct a rational point on a smooth plane cubic. We turn this into a criterion
for ruling out the existence of elements of order 3 in the Tate-Shafarevich

group.

Theorem 1.3. Let E be an elliptic curve over Q with j-invariant j and
minimal discriminant XE. Let

B min{|;c| : * <E C a root of (X - 33)(X - 35)3 + jX3 0}

If |A£| < ±B3 then IH(£/Q)[3] 0.

Since B is bounded as a function of j this theorem applies to only finitely
many elliptic curves. In fact B < 34(2\/3 — 3) and so every elliptic curve

satisfying the condition of the theorem has conductor less than 1000. Searching
in Cremona's tables [C] we find there are exactly 92 such curves. Their ranks

are distributed as follows

rank 0 1 2

# curves 49 41 2

There is no difficulty in verifying by 3-descent (see [SS]) that each of these

curves has III (is/Q) [3] 0. The interest of Theorem 1.3 instead lies in its

method of proof, and in the hope that similar criteria might be found for
ruling out elements of order n in III (is/Q) for other integers n.
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Example 1.4. Let E be the elliptic curve

y2 + y v3 + v2 - 2x.

Then AE 389, j 21273/389 and ±B3 528.57930586.... Theorem 1.3

shows that IH(F/Q)[3] 0. In fact E(Q) Z2 and the (inverse pairs of)
non-trivial elements of 5(3)(F/Q) (Z/3Z)2 are represented by the ternary
cubics

Fi (x, y, z) x2z- xy2 - 2xyz + xz2 + y2z + yz2

y, z) x2z - xy2 + 2xyz - yz2 - z3

F3(x, y, z) x2y - xy2 - xz2 - y2z - 2yz2

F4(x, y, z) x2y + xy2 - 2xyz + vz2 y2z yz2

2. Background and overview

2.1 Invariants of genus one models

We work over a field K of characteristic zero and write K for its algebraic
closure. The space of genus one models of degree n 2, 3,4 is acted on by
the group Qn defined as follows

Q2 — Gm x GL2 l/i,N\: F i-a /i2(E o N)

g3 Gmx GL3 [pL,Ni: F ^ /x(F oN)
g4 GUx GU [M, N]: (ßi, ß2)r H- M(Ö! oN,Q2oN)T.

Let det: Q„ —> Gm be the character defined by [/«.A'] n- /<del^, respectively

[M,N] det M det N. An invariant of weight k is a polynomial / in the

coefficients of a genus one model satisfying

(2.1) 7(5®) det(c//7(0)

for all g e Gn- The action of the centre of Qn shows that I is homogeneous
of degree kn/(6 — n). In each of the cases n 2, 3,4 the ring of invariants is

generated by invariants c4 and c6 of weights 4 and 6. See [F3, §7], [CFS]
for explicit formulae. We put A (c\ — c%)/112&. It is shown in [AKM],
[F3] that O is non-singular (i.e. defines a smooth curve of genus one) if and

only if A(O) 7^ 0, and that the Jacobian elliptic curve is

(2.2) y2 v3 — 27c4(0)v - 54c6(0)
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Definition 2.1. Genus one models Oi and 02 are K-equivalent if they

are in the same orbit for the action of Gn(K). They are properly K-equivalent
if 02 gOi for some g e Qn(K) with detg — 1.

LEMMA 2.2. Non-singular genus one models Oi and 02 are properly
K-equivalent if and only if they have the same invariants, i.e. C4(Oi) C4(02)
and c6(Oi) c6(02).

Proof. The first implication is clear by (2.1). For the converse, we see

by Propositions 4.6 and 4.7 in [F3] that every non-singular model is properly
K-equivalent to a model of the form

n 2 y2 + Axz3 + Bz4

n — 3 y2z v3 + Axz2 + Bz3

n 4 x2 — zt y2 — xt — Axz — Bz2 0.

It then suffices to note that these "Weierstrass models" are uniquely determined

by their invariants. In fact C4 —48A and ce —864#.

A non-singular genus one model O defines both a smooth curve of genus
one C and a regular 1-form lj on C. Writing F{ for the partial derivative

of F with respect to xt we have

n 2 y2 F(x0,xi) oj x%d(xi/x0)/2y

n — 3 F(xo,x\,X2) — 0 uj Zd(x\ jx§)jF2

n 4 F G 0 ui= Z0d(x1 /x0)/(F2G3 - F3G2).

It is shown in [F3, Proposition 5.19] that if 02 gO 1 and 7: C2 Ci is

the morphism determined by g then

(2.3) 7*^ (detflf)o;2.

2.2 Galois cohomology

We consider pairs (C —) 5, cj) where C 5 is a morphism from a smooth

curve of genus one C to a Brauer-Severi variety 5, and uo is a regular 1-form
on C. An isomorphism between (Ci -A Si,ui) and (C2 -A 52,cj2) is a pair
of isomorphisms f: C\ C2 and ij)\ S\ 52 such that 0*cj2 cji and the

following diagram commutes

Ci -5,
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Let n > 2 be an integer. Let E/K be an elliptic curve with invariant
differential uje We map E -a Vn~l via the complete linear system \n.0E\

i.e. we map P i-a (fo(P) : \fn-\(P)) where /o,... ,/„_i are a basis for the

Riemann-Roch space

On.0E) {fe K(E)X | div(/) + n.0* > 0} U {0}

We recall that objects defined over K are called twists if they are isomorphic
over K.

LEMMA 2.3. The twists of (E -a P"-1,^), wp to K-isomorphism, are

parametrised by Hl{K^E\n\).

Proof. This is [F2, Lemma 2.3].

The obstruction map, defined in [O], [CFO], is

Ob: Hl(K,E\n\) -A Br(K)

(C -A 5, u) ha [S].

In general this map is not a group homomorphism. Nonetheless we
write ker(Ob) for the inverse image of the identity.

LEMMA 2.4. Let E/K be an elliptic curve and let n E {2,3,4}. Then

the genus one models of degree n with the same invariants as a fixed
Weierstrass equation for E, up to proper K-equivalence, are parametrised by

ker(Ob) C Hl(K,E\n\).

Proof. A non-singular genus one model O defines a smooth curve of
genus one C —) Pw_1 and a regular 1-form uo on C. Conversely, every
twist (C —» S,uj) of (.E Pn~l,uE) with S Vn~l arises in this way.
Let be a genus one model defining (.E P"-1,^). By (2.2) it has the

same invariants as some Weierstrass equation for E. We see by (2.3) that Oi
and O2 are properly equivalent if and only if they determine isomorphic
pairs (Ci Pw-1,ü;i) and (C2 —P"-1,^). Thus ker(Ob) parametrises the

genus one models properly K-equivalent to up to proper ^-equivalence.
By Lemma 2.2 the genus one models properly -equivalent to are those

with the same invariants as

Remark 2.5. The subset ker(Ob) c Hl{K,E\n\) contains the identity
and is closed under taking inverses. A binary quartic represents the identity
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if and only if it has a -rational root. A ternary cubic, respectively quadric
intersection, represents the identity if and only if it has a /Grational point of
inflection, respectively hyperosculating point.

Taking Galois cohomology of the short exact sequence 0 ^ E[2] ^
E\4] E\2] -a 0 gives an exact sequence

E(K)[2] —> Hl(K,E[2]) H\K,E[4\) Hl(K,E[2]).

Lemma 2.6. The maps i* and [2]* have the following interpretations.

(i) The binary quartic F{x, z) ax4 + bx?z + cx2z2 + dxz3 + £Z4 fv mapped
by l* to the quadric intersection

(2.4) xqX2 — x2 x2 — oxq — bxoX\ — cx\ — dx\X2 — ex\ 0

(ii) The quadric intersection (ßi,ß2) where Qt(x) xTAlx for i 1,2 is

mapped by [2]* to the binary quartic

F(x, z) det(Aiv + A2z).

Proof, (i) Let C2 be the curve defined by y2 F(x, z) and C4 C P3 the

curve defined by (2.4). Note that C4 is the image of C2 under the embedding

(2.5) (x : y : z) ^ (x2 : xz : z2 : y) •

If C'2 is a double cover of P1 and C'A a quadric intersection, and these

are related in the same way as C2 and C4, then each isomorphism
(C2 -A P1) {C'2 -A P1) induces an isomorphism (C4 -A P3) (C4 -A P3)

compatible with the embeddings (2.5). Hence twisting (C2 P1) by
£ G H\K,E\2]) has the effect of twisting (C4 ^ P3) by e H\K,E[4]).

(ii) Let C4 be the curve Q1 Q2 0 and C2 the curve y2 F(x, z).
Weil [We, Chapter II, Appendix III] constructs a morphism cu: C4 x C4 —> C2

with the property that

üü{P,Q) U{P',Q') ^ P + Q~P' + Q',

where ~ denotes linear equivalence of divisors. For fixed P E C4 the

map Q uo{P, Q) induces a map on Jacobians that is independent of the

choice of P. This map is an isomorphism and we use it to identify the

Jacobians of C4 and C2. Then P \-> uj{P,P) is a morphism that induces

multiplication-by-2 on the Jacobians. Explicit formulae for this covering map
are given in [AKM], [MSS]. If C4 and C'2 are related in the same way
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as C4 and C2 then each isomorphism (C4 -A P3) (C\ -A P3) induces an

isomorphism (C2 P1) (C'2 P1) compatible with the covering maps.
Hence twisting (C4 -A P3) by £ G Hl(K,E\4f) has the effect of twisting
(Cz-^P1) by [2UeH\K,E\2]).

2.3 Minimisation and reduction

We quote the following result on minimisation.

PROPOSITION 2.7. Let n e {2,3,4}. Let C be an everywhere locally
soluble n-covering of an elliptic curve E/Q. Let C4 and Cß be the invariants

of a minimal Weierstrass equation for E. Then C can be defined by an integer
coefficient genus one model with invariants C4 and Cß, except in the case n 2

where it may only be possible to find a model with invariants 24C4 and 26Cß.

Proof. This is [CFS, Theorem 1.1]. In [CFS] we gave a more general
definition of genus one model of degree 2. The models considered here are

obtained by completing the square. This has the effect of multiplying the

invariants c4 and c6 by 24 and 26.

Our treatment of reduction differs from that in [CFS]. In that paper our
goal was to find a practical algorithm for reducing, whereas here we are
interested in bounding coefficients. We recall that a genus one model O is

non-singular if it defines a smooth curve of genus one, equivalently A(O) / 0.
We say that O is real if it has real coefficients. In Section 3 we prove

Proposition 2.8. Let n G {2,3,4}. Let O be a non-singular real

genus one model of degree n with invariants C4 and Cß. Then O is

properly K-equivalent to a genus one model O7 with <C H^6~n^n

where H max(|c4|1/4, \cß\1/6).

Since c4 and c6 are polynomials of degrees 4n/(6 — n) and 6n/(6 — n)

the exponent of H in Proposition 2.8 is best possible. Combining the last two
propositions we immediately deduce

THEOREM 2.9. Let n G {2, 3,4}. Let C be an everywhere locally soluble

n-covering of an elliptic curve EjQ. Then C can be defined by an integer
coefficient genus one model that is properly R-equivalent to a genus one
model <D' with HO'H^
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We write ||v|| Cf^x2)1/2 for the usual Euclidean norm. In Section 4 we

use the geometry of numbers to deduce Theorem 1.2 from Theorem 2.9. The

key fact here is

Lemma 2.10 (Minkowski). Let A c R" be a rank n lattice with
covolume 1. Then there are linearly independent vectors v\,...,vn E A
with n; i IK 11 < In1 where yf is Hermite's constant.

Proof. See for example [PZ, p. 197]. In fact for n < 4 we can
take v\,...,vn a basis for A.

The exact value of Hermite's constant is known for n < 8.

We use Lemma 2.10 to give upper bounds on all of the |K||. Lor this we
need lower bounds on some of the |K||. The hypotheses in parts (a), (b)
and (c) of Theorem 1.2 are used to give successively better lower bounds,
and hence successively better upper bounds.

3. Normal forms for genus one models over the reals

In this section we prove Proposition 2.8.

Lemma 3.1. Let E/R be an elliptic curve and n > 2 an integer.

(i) If n is odd or A# < 0 then HX(R,E\n}) 0.

(ii) If n is even and AE > 0 then /^(R, E\n\) (Z/2Z)2 and the obstruction

map if1 (R, is [ft]) Br(R) has kernel of size 3.

Proof. We recall that E\n] (Z/nZ)2 has a basis S, T with S E L(R)

where a denotes complex conjugation. It is easy to compute i/^R, L[ft])
using the rule

ft 1 2 3 4 5 6 7 8

yf | 1 4/3 2 4 8 64/3 64 256

and
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Now suppose n is even and > 0. Then E(R) Z/2Z x R/Z and the

exact sequence

0 ->• E(R)/nE(R) -» //'(R.EM) ->• //'(R.E)M ->• 0

shows that ker(Ob) has size at least 2. Let be the Tate pairing

H\R,E[n]) x H\R,E[n]) -> Br(R)

defined by the Weil pairing and cup product. It is shown in [O], [Z] that

(£,f/) Ob(£ + T7)-Ob(0-Ob(77)

for all £,77 G ^(R.Eln]). Since the Tate pairing is non-degenerate, the

obstruction map is not linear, and hence ker(Ob) has size 3.

Let E/R be an elliptic curve and let c4 and c6 be the invariants of a fixed
Weierstrass equation. Lemma 2.4 identifies the proper R-equivalence classes

of genus one models with invariants c4 and ce with ker(Ob) c ^(R.Eln]).
Our strategy for proving Proposition 2.8 is therefore the following. According
as we are in case (i) or (ii) of Lemma 3.1 we exhibit either 1 or 3 real genus
one models with the given invariants. In case (ii) we then check that these

models are not equivalent over the reals.

3.1 Binary quartics

As suggested in Lemma 3.1 we split into cases according to the sign of
the discriminant.

Lemma 3.2. Let EjR be an elliptic curve with positive discriminant. We

fix a Weierstrass equation

(3.1) y2 (x- ei)(x - e2)(x - e3),

where ^1,^2,^3 R- Then every real binary quartic with the same invariants

as (3.1) is properly R-equivalent to exactly one of F\, F2, F3 where

Ffx, z) afx4 + z4) + 2btx2z2

and for ij,k a cyclic permutation of 1,2,3 we put

ax (ex - efi/4, bx (ex + e3 - 2ek)/4.
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Proof. A direct calculation shows that the quartics Ft(x,z) have the same

invariants as (3.1). Let r,s, t be the permutation of 1,2,3 with er < es < et.
Since

4F,(x, z) (e, - e})(V - z2)2 + 4(e, - ek)x2z2

it is clear that Fr(x,z) < 0 and Ft(x,z) > 0 for all (x : z) G P1^),
whereas Fs(v, z) 0 has 4 roots in PX(R). Hence the Ffx, z) are not equivalent
over the reals.

The analogous result for negative discriminants is the following.

Lemma 3.3. Let E/R be an elliptic curve with negative discriminant. We

fix a Weierstrass equation

(3.2) y2 - (x - ei)(x - e2)(x - e3),

where £i,£2 £ C are complex conjugates and £3 G R. Then every real binary
quartic with the same invariants as (3.2) is properly R-equivalent to

F(x, z) a(x4 - z4) + 2bx2z2

where

a (e 1 - ef) /4/, fc (<?i + <?2 - 2<?3)/4.

Proof. A direct calculation shows that the quartic F(x,z) has the same

invariants as (3.2).

The proof of Proposition 2.8 in the case n 2 is completed by the

following trivial lemma.

Lemma 3.4. Let e\, £2, e3 be the roots of f(x) x5 — 27c4v — 54c6. Then

max(|ei|, |e2|, 1^1) H2 where H max(|c4|1/4, |c6|1/6).

Proof. Since f(et) 0 we have |^|3 <C max(|c4^|, |c6|). The result is

immediate.

3.2 Recall of analytic formulae
Before proceeding with the proof of Proposition 2.8 in the cases n 3,4

we recall some standard analytic formulae. For r E S) {z G C : Im(z) > 0}
and a £ Q we write qa e2niaT. The Dedekind p -function

(3.3) V(r) ql/24l[a "
n> 1



BOUNDS ON THE COEFFICIENTS OF COVERING CURVES 111

satisfies the functional equation

(3.4) rji—l/r)
A useful formula in this context is the Jacobi triple product identity

0.5) n«-- q2n~lz)(i - =D-1^-
«>1 «GZ

The spaces of modular forms of level 1 and weight k 4,6 are spanned

by the Eisenstein series

E4(t) I + 240 ^ a3(n)q" E6(t) 1 - 504^ <j5{n)cf
«>1 «>1

where <Jm(n) • The discriminant modular form is

A(r) rj(T)24 (£4(t)3 - £6(r)2)/1728

The Eisenstein series £4 and E<$ are related to the invariants C4 and c<$ as

described in the following well-known lemma (see, for example, [C,p.45]).

LEMMA 3.5. Let E be an elliptic curve over C with Weierstrass equation

(3.6) y2 + a\xy + apy v3 + a2X2 + a^x + a§

A be the period lattice obtained by integrating dx/(2y + a\x + af). If we
choose a basis oo\, 002 for A sc t 002/oo\ £ S) then the invariants C4

end C6 of the Weierstrass equation (3.6) are given by ck (^)kEk(r).

Proof. The Weierstrass p -function

satisfies the equation

(3.7) p'(z)2 4p(zf - g2p(z) - 93

where $2 60G4(A), g:3 140G6(A). Moreover for k > 4 we have

«A> E
O/aga 1

Hence g2 i^(^)4^4(r) and 93 The uniformisation map f
with f*(dx/(2y + a\x + <23)) dz is given by

f \ C/A -a £(C)

z i-a (p(z) - - afp(z) - ^b2) - a3),

where Z?2 + 4c2- A calculation comparing (3.6) and (3.7) now shows

that C4 I2g2 and ce 216^3
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3.3 Ternary cubics

Differentiating the Jacobi triple product identity (3.5) with respect to z

and putting z q we obtain

(3.8) j?(r)3 £)(-1)V2"+1)2/8 qlß nd " <?")3
•

«GZ «>1

Lemma 3.6. For k 4,6 we have

Ek(T) =fk(v($)3, VZ7ii(3t)3)/r/(T)k

where

f4(a, b) a4 + ~^a3b + 2a2/?2 + -^ß/?3 + Z?4

/6(a, Z?) a6 + 2a/3a5b + 5a4/?2 — 5a2/?4 — 2s/3ab5 — b6.

Proof. Let F^(r) fk(p(j)3,VT7p(3r)3)/p(r)k. It is easily seen that the

g-expansions of F4(t) and Fö(r) each have leading term 1.

Let (n £2?n/«. By (3.8) we have

riijf ~ (24 (1 " Cs) ("l)W2n+1)2/24
«=1 mod 3

(i - C3) i)3"+i(3w+i)^3<2"+i>2/8
wEZ

3(Cs - l)r?(3r)3.

Hence

(3.9) ^ ^ + V27Kf(3T)3
t](t + 1) r/(r) 1](t)

It is readily verified that

fk(a + i(£b, &b) =fk(a, b).

Hence Fk(r + 1) Fk(r). A straightforward calculation using the
functional equation (3.4) shows that Fk(— 1/r) rkFk{r). Since the space of
modular forms of level 1 and weight k 4,6 is 1-dimensional it follows
that Ek Fk.

LEMMA 3.7. Let E/R be an elliptic curve with Weierstrass equation

(3.10) y2 + aixy + a^y v3 + a2X2 + a4x + ae

Let A Zlüi + Züü2 be the period lattice obtained by integrating
dx/(2y 4- a\x + af). may assume that G R>o r üü2/(^1 G fj
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with Re(r) £ {0, 3/2}. Then every real ternary cubic with the same invariants

as (3.10) is properly R-equivalent to

F(x, y, z) a(V + y3 + z3) - 3(a + V3b)xyz

where

a= _L b=(2F)qPlt.v^W/ \ViJ pir)

Proof. Since Re(r) £ {0,3/2} it is clear that q1/3 is real, and hence a
and b are real. For k 4,6 we compute

ck(F) Vk/2fk(a,b) \/27t7(3t)3)Mt)* (^)*£t(r).
It follows by Lemma 3.5 that F has the same invariants as (3.10).

The proof of Proposition 2.8 in the case n 3 is completed by

LEMMA 3.8. For t £ f) with Re(r) £ {0,3/2} we have

(3.11) max I

?7(T/3)3 77(3 r)3
r)(r) 5 r](r)

<Cmax(|£4(T)|1/4,|£6(T)|1/6).

Proof. The functional equation (3.4) shows we are free to replace r
by — 1/r. Likewise (3.9) shows we may replace r by r + 1. So if the bound

holds on some subset of S), then it will hold on any SL2(Z)-translate of that
subset (possibly with a different implied constant).

We only need to establish the bound for Im(r) large and Im(r) small, since

the result will then follow by a compactness argument. (Note that E4 and E<$

have no common zeros in S).) As Im(r) £00 we have q -A 0 and the result
is clear. By the action of SL2(Z) this implies the result for Im(r) small.

3.4 Quadric intersections

Putting z —± 1 in the Jacobi triple product identity (3.5) we obtain
functions

02(t) - 2"+D2/4 2ql'A P[(l - q2n)( 1 + q2n)2

«G Z n= 1

00

(3.12) fc(T) IL - q2n){l + q2n~l)2

«G Z n= 1

00

04(t) ^(-iyy2 - <?2nxi - <i2n~1)2-

«GZ n= 1



114 T FISHER

Lemma 3.9. For k 4,6 we have

~ ^2i} ^4V 4£*(r) =/*(02(r),fe(r)) (£)*/*(&(?), 04(5>)

where

f/\fa, b) a8 + I4a4b4 + Z?8

/6(a,fc) a12 - 33asb4 - 33a4b8 + b12.

Proof. Let Fk{r) =fk(02(r), 03(r)). It is clear that T4(r) and Fö(t) are

power series in q with constant term 1. So to prove the first equality it
suffices to show that Fk(— 1/r) rkFk(r) for k 4,6.

The expressions for the Ofr) as products allow us to rewrite them in terms

of the Dedekind rj-function:

a / x o^41")2 ü '?(2r)5 ??(r)2
"2'T) 2^)"' <,3<T)

,<r)=,(4r)» ' '4(T) ^ '

By the functional equation (3.4) and the expressions for the Ofr) as sums,
we deduce

02(-l/r) + fc(T))
(3.13)

V V

03(-l/r) yj j03(l) sj^(02(r) + 03(T))

It is readily verified that

M-a + b,a + b) (2i)kfk(a, b).

Hence

Fk(-1/T) =M02(-1/t),03(-1/t))
(fffki-Oiir) + 03(r), 02(t) + 03(t)) rkFk{r).

Since the space of modular forms of level 1 and weight k 4,6
is 1-dimensional it follows that — F^. The second expression for E^
is obtained by replacing r by -1/r and using (3.13).

As suggested in Lemma 3.1 we split into cases according to the sign of
the discriminant.

Lemma 3.10. Let E/R be an elliptic curve with positive discriminant
and with Weierstrass equation

(3.14) y2 + a\xy + a^y v3 + ü2X2 + a^x + a<s
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Let A Tjüoi + 7jüü2 be the period lattice obtained by integrating
dx/(2y + a\x + a3). We may assume that uo\ E R>o and r 002/^1 £
with Re(r) 0. TTierc real quadric intersection with the same invariants

as (3.14) is properly R-equivalent to exactly one of (2uÖ2)> (QIjQ^)»
(QwQ'i) where

Qi a(x0 + x|) — 2/7^1X3 2i a(xg — X2) — 2/7x1X3

22 ^(^1 + X3) — 2/?XoX2 22 a(xl — ^3) — 2/?XOX2

21 + V2) - laxix3

22 £(*1 + V3) — 2axoX2

and

a L/^04(t/4), /? L /-^-03(t/4)
V ^1 V ^1

Proof. In the notation of Lemma 3.9 all three quadric intersections have

invariants 28/4(a, Z?) and — 212/6(a, Z?). For k 4,6 we compute

(4i)*/*(fl, b) (^)*/*(04(5), ö3(5)) •

It follows by Lemma 3.5 that these quadric intersections have the same

invariants as (3.14). It remains to show that they are pairwise inequivalent
over the reals.

Since Re(r) 0 we have q > 0 and hence b> a> 0. We put c \JbA — a4.

Then 2i Qi 0 has real point (in fact a hyperosculating point)

(xo : xi : X2 : X3) (\Jb2 + c2 : Väb : s/b2 — c2 : Väb).

Rather more obviously 2i Q2 0 has real point

(xo : xi : X2 : X3) (y2b/a : 1 : 0 : 1).

On the other hand, since the quadratic form

Ql + Ql — ~2^ {(X° X2^2 (Xl X3)2) + ((*0 — V2)2 + (Xi — X3)2)

is positive definite, there are no real solutions to Q" Q2 =0.
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Finally we claim that (ßi, ß2) and (Q[, ß^) are not equivalent over the

reals. Let Ai,A2 be the matrices of second partial derivatives of ßi,ß2 and

likewise for Q[, Q'2. We compute

det(vAi + zAi) —2A(a2x2 — b2z2)(b2x2 — a2z2)

det/vA^ + zÄ,2) 24(a2x2 + b2z2)(b2x2 + a2z2).

The first of these quartics has four real roots, whereas the second has no real

roots. This proves our claim

The analogous result for negative discriminants is the following.

Lemma 3.11. Let EjR be an elliptic curve with negative discriminant
and with Weierstrass equation

(3.15) y2 + a\xy + a^y v3 + <22v2 + a/pc + a$

Let A 7jüj\ + 7jüü2 be the period lattice obtained by integrating
dx/(2y + a\x + <23). We may assume that uj\ G R>o and r 002/^1 £
with Re(r) 1/2. Then every real quadric intersection with the same invariants

as (3.15) is properly R-equivalent to (ßi,ß2) where

Qi a(x^ — x2) — 2bxiX3

Q2 a(x^ - xj) - b(xl + x2)

and

a=1i\l¥Aie2(T)' b=1i\f¥ld3(T)-

Proof. Since Re(r) 1/2 it is clear from (3.12) that a and b are

real. In the notation of Lemma 3.9 the quadric intersection (ßi,ß2) has

invariants 28/4(C8^, b) and 212/6(C8<2, b). We compute

4kfk(Csa,b) (^)kEk(T).

It follows by Lemma 3.5 that (ßi, ß2) has the same invariants as (3.15).

The proof of Proposition 2.8 in the case n 4 is completed by

LEMMA 3.12. For r G fj with Re(r) G {0,1/2} we have

(3.16) max(|02(r)|, |fe(r)|) < max(|£4(r)|1/8, |£6(t)|1/12)

and

(3.17) max(|03(5)|, |04(5)|) « max(|E4(t)\1/s, |£6(t)|1/12)
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Proof. The first two equalities in (3.13) show that (3.16) is equivalent
to (3.17) with t replaced by — 1 /t. The second two equalities in (3.13) show

that (3.16) and (3.17) are equivalent. It is clear from the definitions of #2

and 63 that we may replace r by r + 1. So if either bound holds on some
subset of f) then both bounds hold on any SL2(Z)-translate of that subset

(possibly with different implied constants).

We only need to establish the bounds for Im(r) large and Im(r) small,
since the result will then follow by a compactness argument. (Note that E4

and E6 have no common zeros in S).) As Im(r) -A 00 we have q 0 and the

result is clear. By the action of SL2(Z) this implies the result for Im(r)
small.

4. Genus one models and the geometry of numbers

In this section we use the geometry of numbers to deduce Theorem 1.2

from Theorem 2.9.

4.1 Binary quartics

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.1. Let C be an everywhere locally soluble 2-covering of an

elliptic curve E/Q. Then C can be defined by an integer coefficient binary
quartic whose coefficient of x4~JzJ is bounded in absolute value by Ap\~JpJ2

where A <C 7/f and /u/x2 <C 1.

The binary quartic representing C is non-singular, i.e. it has no repeated

roots in PX(Q)- Under the hypothesis of Theorem 1.2(b) it has no Q-rational
root (see Remark 2.5). Since n 2 the bound claimed in Theorem 1.2(c)
is the same as that in Theorem 1.2(b). The proof of Theorem 1.2 in the

case n 2 is completed by

LEMMA 4.2. Let O be an integer coefficient binary quartic. Suppose that
the coefficient of x4~JzJ is bounded in absolute value by Ap^~Jp2.

(i) If O has no repeated root in PX(Q) then < A3(/u/x2)6.

(ii) If O has no root in PX(Q) then < A2(p,\/x2)4.
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Proof. Without loss of generality p\ < fi2-
(i) If Afjb\ii2 < 1 then O has no x4 or x3^ terms and therefore a repeated

root at (1 : 0). By hypothesis this does not happen. Therefore A/i3/i2 > 1 and

\m\oo<AV42<A3(^2)6-

(ii) If Aji\ < 1 then O has no x4 term and therefore a root at (1 : 0).
By hypothesis this does not happen. Therefore Ap\ > 1 and

Halloo < A/4 < A2(infi2)4-

4.2 Ternary cubics

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.3. Let C be an everywhere locally soluble 3 -covering of
an elliptic curve E/Q. Then C can be defined by an integer coefficient

ternary whose coefficient of xlyJzk is bounded in absolute value by Ap\P2T3
where A <C He and pJ\P2h3 1

•

The hypotheses of parts (b) and (c) of Theorem 1.2 are that C has no

Q-rational point of inflection, respectively that C has no Q-rational point.
The proof of Theorem 1.2 in the case n 3 is completed by

LEMMA 4.4. Let O be an integer coefficient ternary cubic defining a

plane cubic curve C C P2. Suppose that the coefficient of xlyJzk is bounded

in absolute value by Ap\pJJ2h3 •

(i) If C is non-singular then < A6(p\p2h3)6-

(ii) If C is non-singular and has no Q-rational point of inflection then

ll^lloo < A4(ßiß2ß3)4-

(iii) If C has no Q-rational points then H^ll^ < V(/xi/i2jU3)3.

Proof. Without loss of generality /i\ < //2 < /'.?

(1) If ai4p3 < 1 then O has no x3, x2y or x2z terms and therefore C is

singular at (1 : 0 : 0). If Ap\ < 1 then O has no x3, x2y, xy2, or y3 terms.
This would imply that C contains the line z 0 and is therefore singular.

Accordingly we have A/x2/i3 > 1 and Ap\ > 1. It follows by the identity

Apl{Ap\p3)\Aß\f A6(Pmp3)6

that <Ap\ < A6{ßyß2ß3f



BOUNDS ON THE COEFFICIENTS OF COVERING CURVES 119

(ii) If A/jli/jl2 < 1 then O has no x3, x2y or xy2 terms and therefore C

meets the line z 0 with multiplicity at least 3. This would imply that

either C is singular or that (1 : 0 : 0) is a point of inflection. Accordingly
we have A/u/i2 > 1. Exactly as in the proof of (i) we have A/i2/i3 > 1. It
follows by the identity

Aßl{Amß\)2Aß\ß3 A4(piß2H3)4

that ll^lloo <Al4 < A4(Plß2ß3)4

(iii) If Ap\ < 1 then (1 : 0 : 0) is a Q-rational point on C.
Therefore Ap\ > 1 and ||O||^ < Ap% <A3(pi^^)3 •

4.3 Quadric intersections

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.5. Let C be an everywhere locally soluble 4-covering of an

elliptic curve E/Q. Then C can be defined by an integer coefficient quadric
intersection (Qi^Qi) whose coefficient of XjXk in Qt is bounded in absolute

1 /2value by AX^jPk, where A <C Hfi A1A2 <C 1 and /u/i2/^3/M 1
•

Suppose that rank(xßi + zQf) < 4 for some (x : z) E PX(Q)- Then by
Remark 2.5 and Lemma 2.6(ii) the element £4 E if1 (Q, is [4]) corresponding
to C satisfies [2]*£4 0. Hence £4 £*(£2) for some £2 L Hl(Q,E\2\).
Since C is everywhere locally soluble £2 has trivial obstruction, i.e. it is

represented by a binary quartic. We can therefore represent C by a quadric
intersection of the form specified in Lemma 2.6(i). In this case Theorem 1.2(b)
follows from the result for n 2. Since £2 and £4 have the same images
in IH(L/Q) the hypothesis of Theorem 1.2(c) is not satisfied.

The proof of Theorem 1.2 in the case n 4 is completed by

LEMMA 4.6. Let O (ßi, Qf) be an integer coefficient quadric intersection

defining a degree 4 curve C C P3. Suppose that the coefficient of XjXk

in Qt is bounded in absolute value by AXtpjPk-

(i) If C is non-singular then < A12(AiA2)6(/ii//2M3/M)6-

(ii) If C is non-singular and there are no Q-rational singular quadrics in
the pencil spanned by Q\ and Q2 then

ll^lloo <A8(AjA2)Vm2A<3/M)4.
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(iii) If C has no Q-rational points and there are no Q-rational singular
quadrics in the pencil spanned by Q\ and Q2 then

Halloo < ^4(AlA2)2(/il/X2M3M4)2-

Proof. Without loss of generality Ai < A2 and < h3 < /M •

(i) We make the following observations:

• If AA2/H/X3 < 1 then (1:0:0:0) is a singular point on C.
• If AX2P2 < t ^en C contains the line {*3 X4 0}.
• If AXipl < 1 ^en Q\ has rank at most 2.
• If AAi/i2M4 < 1 then Q\ has rank at most 2.

We are given that C is non-singular, and so none of the above inequalities
can hold. We further note that if both AX2p\ < 1 and AX\p\p4 < 1

then (1 : 0 : 0 : 0) is a singular point on C. We therefore split into the

cases AX2P1 ^ t and AAi/ii/i4 > 1. In the first case it follows by the identity

{AX2p\)2{AX2p\){AXip^)2{AXipJ2h4)2(AX2p14) A8(AiA2)4(/il^2M3/M)4

that ||O< AA2/X4 < A8(AiA2)4(/ii/X2M3/i4)4 • In the second case it follows
by the identity

(A\2ß1ß3)2(AX2p2)3(AX1p3)2(AX1ß1ß4)4(AX2p4)^An(XiX2)6(ßiß2ß3ß4)6

that Halloo < AX2h2a < Al2(XiX2)6(ßni2ß3ß4)6

(ii) We replace the third and fourth observations in (i) by

• If AXiji2p3 < 1 then Q\ has rank at most 3.

• If AX1P1P4 < 1 then Qi has rank at most 3.

It follows by the identity

(AX2PlP3)2(AX2pJl)(AXipJ2h3)2(AXipifl4)2(AX2pJ2) A8(AiA2)4(/ioU2/i3/M)4

that <AX2p24 < A8(AiA2)4(/ii/i2M3M4)4-

(iii) If AX2P1 < t then (1:0:0:0) is a Q-rational point on C.
Therefore AX2p\ > 1. We have already seen in (ii) that AXip2ß3 > 1. It
follows by the identity

(AX2p2i)(AXipJ2pJ3)2(AX2P%) A4(XiX2)2(piP2h3h4)2

that lloy^ < AX2P2 < ^4(AiA2)2(/ii/i2M3M4)2-
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5. A CRITERION FOR HI(£/Q)[3] 0

In this section we prove Theorem 1.3. We will need the following lemma
whose proof is just an exercise in calculus.

Lemma 5.1. Let a,b e R and put c {a2 + y/3ab + Z?2)1/2. Let

F(x, y, z) a{o? + y3 + z3) - 3(a + V3b)xyz.

Then |F(x)| < max(|a|, |Z?|, |c|)||x||3 for all x (x,y, z) £ R3

Proof. Let (x,y, z) be a local maximum of F on the sphere x2+y2+z2 1.

Then we have

rank (Fx Fy F' \ < I

We compute

yEx - xFy 3(x - y){axy + (a + V?>b)(x + y)z).

If x,y,z are distinct then a + \/3Z? a or —a/2. In the first case we
have b 0 and xy+yz+zx 0. But then x+y+z ±1 and F(x,y,z) Fa.
In the second case we have xy yz zx, and this contradicts that x, y, z are

distinct.

If x y z then F(x,y, z) Fb. So without loss of generality x 7- y z.
Then

axy + (a + V?>b)(x + y)y 0

If y 0 we get F(x,y,z) Fa. Otherwise

x —{a + a/3Z?)£

y (2a-\- V3Z?)£

for some £ £ R. We compute

x2 + y2 F z2 9£2(a2 + ab + b2)

F(x, y, z) 27£3(a2 + + Z?2)(a2 + + b2).

Eliminating £ gives

„2.
|F(x,y,z)|

a^ T y/3ab T Z?2

(a2 + ^V3ab + Z?2)1/2

If ab >0 then |F(x,y,z)| < |c|. Otherwise if |a| > |Z?| we have

(a2 + V3ab + b2)2 — a2(a2 + ¥/V?>ab + Z?2) (^0 + < 0

and hence |F(x,y,z)| < |tf|. The case |Z?| > \a\ is similar.
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Proof of Theorem 1.3. Let E/Q be an elliptic curve. We aim to show

that (under suitable hypotheses) IH(£/Q)[3] 0. By (1.1) it is equivalent to
show that every £ G S^3\E/Q) maps to zero in IH(£/Q).

Let £ G SP\E/Q). Then £ corresponds to an everywhere locally soluble

3-covering tt : C —» E. Our aim is to show that C(Q) ^ 0. By Proposition 2.7

we know that C can be defined by an integer coefficient ternary cubic / with
the same invariants as a minimal Weierstrass equation for E. We fix a minimal
Weierstrass equation for E and let r 002/001 G $) be as in Lemma 3.7.

Then / F o g for some g G SLs(R) where

F(x, y, z) a(p? + y3 + z3) - 3(a + a/3b)xyz

and
vQT)3

a
1 (27r\ T7(T/3)3

/27 V wi / r?(r) '
V 7a/27 V wi / r?(r) ' V 7

Let 7= a+i(ßb and c= |7| (a2+\/3ab+b2)1 /2. The lattice A g(Z3) c R3

has covolume 1. Hence by Lemma 2.10 there exists 0 / x e A
with ||x||3 < y/l. If max(|a|, \b\, |c|) < l/y/2 then by Lemma 5.1 we have

|F(x)| < max(|a|, \b\, \c\) ||x||3 < 1.

Since F(x) f(u,v,w) for some u,v,w G Z it follows that F(x) 0.
Hence C(Q) 7^ 0 and £ maps to zero in IH(£/Q).

It remains to show that the condition max(|a|, |Z?|, |c|) < 1/V2 is equivalent
to the hypothesis of the theorem. By (3.9) we have

7 J_ 7 _L {*l\ 3

V27 V^t 7 V(T + 1)
' \/27 \wi 7 V(T - 1)

'

We now put

c*i(t) -??(f)12 a3 (r) Iji1^1)12

oti(t) -36t](3t)12 a4(r) r/i^f1)12

and claim that
4

(5.1) - a,(T)) (X- 33r)(r)12)(X - 3j?(t)12)3 + £4(t)37?(t)12X
1=1

It is routine to check using (3.3) and (3.4) that

oi\(t + 1) —a3(r) ai(—1/r) -r6a2(r)

ö2(t + 1) — Cü2(r) a2(—1/r) -r6ai(r)
a3(r + 1) —o4(r) a3(-l/r) -t6o:4(t)

o4(r + 1) -cüi(r) a4(—1/r) -r6a3(r).
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Hence the square of each coefficient of the left hand side of (5.1) is a

modular form of level 1. The claim is then proved by comparing the first few
coefficients of the g-expansions. By Lemma 3.5 we have (^)12A(t)
and j E4(t)3/A(t). Finally we compute

max(|a|, \b\, |c|) < ^
^ ^f(^)max(|?7(f)|3,v/27|??(3r)|M?7(^±i)|3) < -^\V(t)\

26\Ae\ max{|x|3 : x a root of (5.1)} < 318|^(t)|36

26|A^| max{|x|3 : x a root of (X - 33)(X - 3)3 + jX 0} < 318

26|A^| < min{|x|3 : x a root of (X - 33)(Y - 35)3 + jX3 0}

This final condition is the hypothesis of the theorem.
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