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L’Enseignement Mathématique (2) 58 (2012), 99-124

SOME BOUNDS ON THE COEFFICIENTS
OF COVERING CURVES

by Tom FISHER

ABSTRACT. We compute bounds on the coefficients of the equations defining ev-
erywhere locally soluble n-coverings of elliptic curves over the rationals for n = 2,3, 4.
Our proofs use recent work of the author with Cremona and Stoll on the minimisation of
genus one curves, together with standard results from the geometry of numbers. We use
the same methods to give a criterion (satisfied by only a finite number of “small” elliptic
curves) for ruling out the existence of elements of order 3 in the Tate-Shafarevich group.

1. INTRODUCTION

Let E/Q be an elliptic curve and n > 2 an integer. The Selmer
group S"™(E/Q) parametrises the everywhere locally soluble n-coverings
m: C — E. By global class field theory the curve C admits a Q-rational
divisor of degree n and hence can be written as either a double cover of P!
(case n = 2) or a genus one normal curve C C P"~! (case n > 3). The
aim of a descent calculation is to compute the Selmer group S™(E/Q) as
an abelian group and to represent its elements by equations for the covering
curves C. In view of the short exact sequence

(1.1) 0 = E(QQ)/nEQ) — S™(E/Q) — IL(E/Q)ln] — 0

this gives information about both the Mordell-Weil group E(Q) and the Tate-
Shafarevich group TII(E/Q). Indeed the covering curves can be used either to
help search for points of infinite order in E(Q) or to exhibit explicit elements
of III(E/Q).

There are two different approaches to explicit 2-descent on an elliptic curve.
The number field method computes S (E/Q) as a subgroup of L*/(L*)?
where L is a product of number fields. The Selmer group elements are then
converted to binary quartics using a method that relies on an explicit version of



100 T. FISHER

the Hasse principle for conics. In contrast the invariant theory method bounds
the coefficients of the required binary quartics, and then uses these bounds to
make an exhaustive search. The invariant theory method was used by Birch and
Swinnerton-Dyer in their pioneering computer calculations [BSD] and subse-
quently developed by Cremona in his program mwrank. The development of
computer algebra packages able to compute the class group and units of number
fields has since made the number field method equally suitable for computation.

The number field method has been generalised to p-descent (see [DSS],
[SS], [CFO]) and is practical for p = 3 (and p = 5 in small examples).
The method relies on an explicit version of the local-to-global principle for
the p-torsion of the Brauer group of Q. The number field method also extends
to 4-descent and 8-descent, as described in [MSS], [Wo], [S]. The invariant
theory method in the case n = 3 was investigated in [DS], but does not appear
to generalise in any practical way to n > 2.

The equations defining an n-covering C of E depend on a choice of co-
ordinates on P"~!_ It is obviously desirable to make a change of co-ordinates
so that the equations have small integer coefficients. In practice this is achieved
by the combination of two techniques, termed minimisation and reduction. In
the minimisation stage spurious prime factors are removed from a suitably
defined discriminant. In the reduction stage an integer unimodular change of
co-ordinates is made to further reduce the size of the coefficients (without
changing the discriminant). Minimisation and reduction are important for both
the number field and invariant theory methods. In the number field method
the equations computed typically have very large coefficients, and we need to
minimise and reduce to get sensible answers. In the invariant theory method
minimisation and reduction are used at the outset to obtain the bounds upon
which the method relies.

In joint work with Cremona and Stoll [CFS] the author has described
efficient algorithms for minimising and reducing n-coverings for n = 2,3,4.
(The work on minimisation applies over an arbitrary local field.) It has been
found in numerical examples that elements of the Tate-Shafarevich group
typically have quite small coefficients and that the size of the coefficients
tends to decrease with n. In this paper we give some theoretical support for
these observations. In fact we give bounds on the coefficients depending only
on the naive height of E. In principle this generalises the invariant theory
method to n = 3,4 although the result is certainly not a practical algorithm.
In view of this we concentrate on giving a single bound for all the coefficients
and do not keep track of certain implied constants. Thus our treatment in the
cases n = 2,3 differs from that in [BSD], [DS].
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In the cases n = 2,3,4 we represent Selmer group elements by equations
of the following form.

DEFINITION 1.1. A genus one model of degree n € {2,3,4} is

(i) if n =2, a binary quartic, i.e. a homogeneous polynomial of degree 4
in 2 variables,

(ii) if n =3, a ternary cubic, i.e. a homogeneous polynomial of degree 3 in
3 variables,

(iii) if n =4, a quadric intersection, i.e. a pair of homogeneous polynomials
of degree 2 in 4 variables.

Although in [F3] we also defined genus one models of degree 5, it will
be understood in this paper that all genus one models are of degrees 2, 3
or 4. Since the theory in [F3] relies on the space of all genus one models
being an affine space, it is far from clear what the appropriate definition of
genus one model would be for curves of degree n > 5.

We recall that the minimal discriminant of an elliptic curve E/Q is

Ap = (c3 —c2)/1728,

where ¢4 and c¢ are the usual quantities associated to a globally minimal
Weierstrass equation for E. In Theorem 1.2 below we instead work with the
naive height of E which we define as

Hp = max(|C4|1/4, |c6|]/6).

We write ||®@||,, for the maximum of the absolute values of the coefficients
of a genus one model ®. The notation f < ¢ should be understood to mean
that f < cg for some absolute constant ¢ > 0.

THEOREM 1.2. Let E/Q be an elliptic curve and let n € {2,3,4}.

(a) Each ¢ € S"(E/Q) can be represented by a genus one model ® with
integer coefficients and
Pl < H.

(b) If € is non-zero in S™(E /Q) then this bound may be improved to
|||, < H.
(¢) If the image of & in TI(E/Q) has exact order n then

0]l < HE™".
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We remark that Theorem 1.2(a) gives a proof that SW(E /Q) is finite, and
hence by (1.1) a proof of the weak Mordell-Weil theorem for n = 2,3,4.
This proof differs from the usual proofs in that we work entirely over the
rationals, i.e. we do not need to make any field extensions.

The formulae in Lemmas 3.11 and 3.12 of [CFS] suggest that the exponents
of Hg in Theorem 1.2(a) and (b) might be best possible. We suspect that the
exponent of Hg in Theorem 1.2(c) is also best possible in view of the models

n=2 y2 = )\ox4+x2z2+/\114
n=3 )\())go-l-/\]}gl +x\2)é—X0X1X2 =0

4 on(z) + x1x3 — )\zxg =0
n—=
)\1)(% + XoXp — )\3)(% =0

that arise in the context of descent by cyclic isogeny (see [F1, §1.2] for the
cases n = 3,4).

We expect that Theorem 1.2 generalises to the case n = 5. (See [F3] for
the definition of a genus one model of degree 5.)

In favourable circumstances, the geometry of numbers can be used to
construct a rational point on a smooth plane cubic. We turn this into a criterion
for ruling out the existence of elements of order 3 in the Tate-Shafarevich

group.

THEOREM 1.3. Let E be an elliptic curve over Q with j-invariant j and
minimal discriminant Ag. Let

B =min{|x| : x € C a root of (X —3*)(X — 3°)* +jX> = 0}.
If |Ag| < £B® then I(E/Q)[3] = 0.

Since B is bounded as a function of j this theorem applies to only finitely
many elliptic curves. In fact B < 3%2v/3 — 3) and so every elliptic curve
satisfying the condition of the theorem has conductor less than 1000. Searching
in Cremona’s tables [C] we find there are exactly 92 such curves. Their ranks
are distributed as follows

rank |0 1 2
# curves |49 41 2

There is no difficulty in verifying by 3-descent (see [SS]) that each of these
curves has III(E/Q)[3] = 0. The interest of Theorem 1.3 instead lies in its
method of proof, and in the hope that similar criteria might be found for
ruling out elements of order n in III(E/Q) for other integers n.
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EXAMPLE 1 4. Let E be the elliptic curve
Y4+y=x 4+x°—2.

Then Ag =389, j=2'273/389 and £B® = 528.57930586... . Theorem 1.3
shows that ITI(E/Q)[3] = 0. In fact E(Q) = Z? and the (inverse pairs of)
non-trivial elements of S®(E/Q) = (Z/3Z)* are represented by the ternary
cubics

Fi(x,y,2) = X’z — xy* — 2xyz + x2° + Y’z + y2
Fo(x,y,2) =Xz — xy* + 2xy2 — y&* — 2

2

F3(x,y,2) = X°y — xy* — x2* — y*z — 2y2°

Fa(x,y,2) = Xy + xy* — 2xyz + x2* — Y’z — yz*.

2. BACKGROUND AND OVERVIEW

2.1 INVARIANTS OF GENUS ONE MODELS

We work over a field K of characteristic zero and write K for its algebraic
closure. The space of genus one models of degree n = 2,3,4 is acted on by
the group G, defined as follows

G» = G, x GL, [u,N1: F — p*(F o N)
G =G, x GL3 [, N]: F +— p(F o N)
Gy = Gl x GLg [M,N]: (Q1,02)" = M(Q;1 0N,Q>0N)".

Let det: G, — G,, be the character defined by [u, N] — pdet N, respectively
[M,N] — detMdetN. An invariant of weight k is a polynomial [ in the
coefficients of a genus one model satisfying

2.1) I(g®) = det(9)'I(®)

for all g € G,. The action of the centre of G, shows that I is homogeneous
of degree kn/(6 —n). In each of the cases n = 2,3,4 the ring of invariants is
generated by invariants ¢4 and c¢¢ of weights 4 and 6. See [F3, §7], [CES]
for explicit formulae. We put A = (¢ — ¢2)/1728. It is shown in [AKM],
|F3] that @ is non-singular (i.e. defines a smooth curve of genus one) if and
only if A(®) # 0, and that the Jacobian elliptic curve is

(2.2) V= x° — 27c4(P)x — 54cs(D) .
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DEFINITION 2.1. Genus one models @, and ®, are K -equivalent if they
are in the same orbit for the action of G,(K). They are properly K -equivalent
if @, = g®d; for some g € G,(K) with detg =1.

LEMMA 2.2. Non-singular genus one models ®, and ®, are properly
K -equivalent if and only if they have the same invariants, i.e. c4(®1) = c4(®»)
and ce(®1) = c(P2).

Proof. The first implication is clear by (2.1). For the converse, we see
by Propositions 4.6 and 4.7 in [F3] that every non-singular model is properly
K -equivalent to a model of the form

n=2 y* =X’z + Ax? + BZ*
n=3 Yz =x +Axz* + B
n=4 X —zg=y*—xt—Axz— B =0.

It then suffices to note that these “Weierstrass models™ are uniquely determined
by their invariants. In fact ¢4 = —48A and ¢ = —864B. ]

A non-singular genus one model @ defines both a smooth curve of genus
one C and a regular I-form w on C. Writing F; for the partial derivative
of F with respect to x; we have

n=2 ¥y =Fx,x) w = xgd(x1 /x0)/2y
n=3 F(xp,x1,x) =0 w = x3d(x; /x0)/Fa
n=4 F=G=0 w = x3d(x1 /x0)/(F2G3 — F3G) .

It is shown in [F3, Proposition 5.19] that if ®;, = g®; and v: C, — C; is
the morphism determined by g then

2.3) ~Y*wy = (detg)w; .

2.2 GALOIS COHOMOLOGY

We consider pairs (C — S,w) where C — § is a morphism from a smooth
curve of genus one C to a Brauer-Severi variety S, and w is a regular 1-form
on C. An isomorphism between (C; — Sj,w;) and (C; — S»,w,) is a pair
of isomorphisms ¢: C; = C, and ¢: §; = S, such that ¢*w, = w; and the
following diagram commutes

C1—>Sl

Rt

C2 —>-S2
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Let n > 2 be an integer. Let E/K be an elliptic curve with invariant
differential wz. We map E — P"~! via the complete linear system |n.0g|,
ie. we map P— (fo(P):...:f,—1(P)) where fo,...,f,—1 are a basis for the
Riemann-Roch space

L(n.0g) = {f € KE)* | div(f) + n.0g > 0} U {0}

We recall that objects defined over K are called twists if they are isomorphic
over K.

LEMMA 2.3. The twists of (E — P\ wgp), up to K-isomorphism, are
parametrised by H'(K,E[n)).

Proof. This is [F2, Lemma 2.3]. [

The obstruction map, defined in [O], [CFO], is

Ob: H' (K, E[n]) — Br(K)
(C — S,w) —[S].

In general this map is not a group homomorphism. Nonetheless we
write ker(Ob) for the inverse image of the identity.

LEMMA 24. Let E/K be an elliptic curve and let n € {2,3,4}. Then
the genus one models of degree n with the same invariants as a fixed
Weierstrass equation for E, up to proper K -equivalence, are parametrised by
ker(Ob) C H'(K, E[n]).

Proof. A non-singular genus one model @ defines a smooth curve of
genus one C — P"~! and a regular 1-form w on C. Conversely, every
twist (C — S,w) of (E — P" ' wp) with §=P""! arises in this way.
Let @z be a genus one model defining (E — P"~!,wg). By (2.2) it has the
same invariants as some Weierstrass equation for E£. We see by (2.3) that @,
and @, are properly equivalent if and only if they determine isomorphic
pairs (C; — P""!,w;) and (C, — P"~!,w,). Thus ker(Ob) parametrises the
genus one models properly K-equivalent to ®f, up to proper K -equivalence.
By Lemma 2.2 the genus one models properly K-equivalent to ®p are those
with the same invariants as ®g. ]

REMARK 2.5. The subset ker(Ob) C H'(K,E[n]) contains the identity
and is closed under taking inverses. A binary quartic represents the identity
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if and only if it has a K-rational root. A ternary cubic, respectively quadric
intersection, represents the identity if and only if it has a K-rational point of
inflection, respectively hyperosculating point.

Taking Galois cohomology of the short exact sequence 0 — E[2] —
E[4] — E[2] — 0 gives an exact sequence

E(K)[2] — H'(K, E[2]) = H'(K, E[4]) 2 H'(K, E[2]).

LEMMA 2.6. The maps 1. and [2]. have the following interpretations.

(i) The binary quartic F(x,z) = ax* + bx’z + cx*22 + dxz> + ez* is mapped
by . to the quadric intersection

24 XoXp — x% = x% — ax% — bxox; — cxf — dx1xp — ex% =0.

(ii) The quadric intersection (Qy,Q,) where Qi(x) = x'Ax for i = 1,2 is
mapped by 2], to the binary quartic

F(x,z) = det(A;x + Az2) .

Proof. (i) Let C, be the curve defined by y?> = F(x,z) and C4 C P? the
curve defined by (2.4). Note that C4 is the image of C, under the embedding

(2.5) (x:y:)—=(Pixz:2y).

If C} is a double cover of P' and Cj a quadric intersection, and these
are related in the same way as C, and Cy4, then each isomorphism
(C; — PY) = (C}, — P') induces an isomorphism (C4y — P3) = (C} — P?)
compatible with the embeddings (2.5). Hence twisting (C, — P!) by
& € H'(K,E[2]) has the effect of twisting (C4 — P?) by 1.& € H'(K,E[4]).

(ii) Let C4 be the curve Q; = Q> = 0 and C, the curve y*> = F(x,z).
Weil [We, Chapter II, Appendix III] constructs a morphism w: C4 x C4 — C;
with the property that

wP,Q) =wP,Q) < P+Q~PFP +(,

where ~ denotes linear equivalence of divisors. For fixed P € C4 the
map Q — w(P,Q) induces a map on Jacobians that is independent of the
choice of P. This map is an isomorphism and we use it to identify the
Jacobians of C4 and C,. Then P — w(P,P) is a morphism that induces
multiplication-by-2 on the Jacobians. Explicit formulae for this covering map
are given in [AKM], [MSS]. If C, and C) are related in the same way
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as C4 and C, then each isomorphism (Cs — P3) 2 (C}, — P?) induces an
isomorphism (C; — P') = (C5 — P') compatible with the covering maps.
Hence twisting (C; — P3) by ¢ € H'(K,E[4]) has the effect of twisting
(C, —PY) by 2. e H'(K,E[2). [

2.3  MINIMISATION AND REDUCTION

We quote the following result on minimisation.

PROPOSITION 2.7. Let n € {2,3,4}. Let C be an everywhere locally
soluble n-covering of an elliptic curve E/Q. Let ¢4 and c¢ be the invariants
of a minimal Weierstrass equation for E. Then C can be defined by an integer
coefficient genus one model with invariants c4 and ce, except in the case n = 2
where it may only be possible to find a model with invariants 2*c4 and 2°ce.

Proof. This is [CFS, Theorem 1.1]. In [CFS] we gave a more general
definition of genus one model of degree 2. The models considered here are
obtained by completing the square. This has the effect of multiplying the
invariants ¢; and c¢ by 2% and 2°. [

Our treatment of reduction differs from that in [CFS]. In that paper our
goal was to find a practical algorithm for reducing, whereas here we are
interested in bounding coefficients. We recall that a genus one model @ is
non-singular if it defines a smooth curve of genus one, equivalently A(®) # 0.
We say that @ is real if it has real coefficients. In Section 3 we prove

PROPOSITION 28. Let n € {2,3,4}. Let ® be a non-singular real
genus one model of degree n with invariants c4 and c¢. Then © is
properly R-equivalent to a genus one model ®' with ||®'| < H®=™/"
where H = max(|c4|'/*, |cs|'/°).

Since ¢4 and c¢g are polynomials of degrees 4n/(6 — n) and 6n/(6 — n)
the exponent of H in Proposition 2.8 is best possible. Combining the last two
propositions we immediately deduce

THEOREM 2.9. Let n € {2,3,4}. Let C be an everywhere locally soluble
n-covering of an elliptic curve E/Q. Then C can be defined by an integer
coefficient genus one model that is properly R-equivalent to a genus one
model @ with ||®'|| < HE™/"
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We write ||x|| = (32 x%)!/2 for the usual Euclidean norm. In Section 4 we
use the geometry of numbers to deduce Theorem 1.2 from Theorem 2.9. The
key fact here is

LEMMA 2.10 (Minkowski). Letr A C R" be a rank n lattice with
covolume 1. Then there are linearly independent vectors vi,...,v, € A
with TT'_, lvi|| < ¥a’* where N is Hermite’s constant.

Proof. See for example [PZ, p.197]. In fact for n < 4 we can
take vy,...,v, a basis for A. [

The exact value of Hermite’s constant is known for n < 8.

nl|1 2 345 6 7 8
w1 4/3 2 4 8 64/3 64 256

We use Lemma 2.10 to give upper bounds on all of the ||v;||. For this we
need lower bounds on some of the ||v;]|. The hypotheses in parts (a), (b)
and (c¢) of Theorem 1.2 are used to give successively better lower bounds,
and hence successively better upper bounds.

3. NORMAL FORMS FOR GENUS ONE MODELS OVER THE REALS
In this section we prove Proposition 2.8.

LEMMA 3.1. Let E/R be an elliptic curve and n > 2 an integer.
(i) If n is odd or Ay <0 then H'(R,E[n]) = 0.

(i) If n is even and Ag > 0 then H' (R, E[n]) = (Z/2Z)2 and the obstruction
map H'(R,E[n]) — Br(R) has kernel of size 3.

Proof. We recall that E[n] = (Z/nZ)2 has a basis S,7 with § € E(R)

and
-T if A >0
”(T)_{S—T it Ag <0

where o denotes complex conjugation. It is easy to compute H'(R,E[n])
using the rule
{a€A:a+o(a) =0}

1 —
HRA = =& bea)
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Now suppose n is even and Ag > 0. Then E(R) = Z/2Z x R/Z and the
exact sequence

0 — E(R)/nERR) — H'(R,E[n]) — H'(R,E)[n] = 0
shows that ker(Ob) has size at least 2. Let (, ) be the Tate pairing
H'(R, E[n]) x H'(R, E[n]) — Br(R)
defined by the Weil pairing and cup product. It is shown in [O], [Z] that

(&,m) = Ob(§ + 1) — Ob(§) — Ob(n)

for all ¢&,m € H'(R,E[n]). Since the Tate pairing is non-degenerate, the
obstruction map is not linear, and hence ker(Ob) has size 3. ]

Let E/R be an elliptic curve and let ¢4 and ¢ be the invariants of a fixed
Weierstrass equation. Lemma 2.4 identifies the proper R-equivalence classes
of genus one models with invariants ¢4 and c¢¢ with ker(Ob) C H'(R,E[n)).
Our strategy for proving Proposition 2.8 is therefore the following. According
as we are in case (i) or (i) of Lemma 3.1 we exhibit either 1 or 3 real genus
one models with the given invariants. In case (ii) we then check that these
models are not equivalent over the reals.

3.1 BINARY QUARTICS

As suggested in Lemma 3.1 we split into cases according to the sign of
the discriminant.

LEMMA 3.2. Let E/R be an elliptic curve with positive discriminant. We
fix a Weierstrass equation

3.1) V=@ —e)x—e)x—e3),

where ey, e;,e3 € R. Then every real binary quartic with the same invariants
as (3.1) is properly R-equivalent to exactly one of Fy, F,, F3 where

Fi(x,2) = ai(x* + %) + 2b*7
and for i,j,k a cyclic permutation of 1,2,3 we put

a,-:(e,-—ej)/4, b,'=(€,'+€j—2€k)/4.
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Proof. A direct calculation shows that the quartics F;(x,z) have the same
invariants as (3.1). Let r,s,¢ be the permutation of 1,2,3 with ¢, < e, < ¢;.
Since

4F;(x,2) = (ei — ¢)(F — ) + 4(e; — e)x’2

it is clear that F.(x,z) < 0 and F,(x,z) > 0 for all (x : z) € P'(R),
whereas F,(x,z) = 0 has 4 roots in P!(R). Hence the F;(x,z) are not equivalent
over the reals. [

The analogous result for negative discriminants is the following.

LEMMA 3.3. Let E/R be an elliptic curve with negative discriminant. We
fix a Weierstrass equation

(32) V= —e)x—e)x—e3),

where ey,e; € C are complex conjugates and ez € R. Then every real binary
quartic with the same invariants as (3.2) is properly R-equivalent to

F(x,2) = a(x* — 2% + 202222,
where

a=(e; —ex)/4i, b={(e; +ex—2e3)/4.

Proof. A direct calculation shows that the quartic F(x,z) has the same
invariants as (3.2). [

The proof of Proposition 2.8 in the case n = 2 is completed by the
following trivial lemma.

LEMMA 3.4. Let e, es,e3 be the roots of f(x) = x> —27cax — S4cs. Then
max(|ey|, |2, les]) < H? where H = max(|cq|'/4;|cs|'/©).

Proof. Since f(e;) = 0 we have |e;]° < max(|cseil, |cs|). The result is
immediate. [

3.2 RECALL OF ANALYTIC FORMULAE

Before proceeding with the proof of Proposition 2.8 in the cases n = 3,4
we recall some standard analytic formulae. For 7 € $ = {z € C : Im(z) > 0}
and o € Q we write ¢ = ¢*™7 _ The Dedekind n-function

(3.3) () =q"> [ - 4"

n>1
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satisfies the functional equation

34 n(=1/m) = \/En(m).

A useful formula in this context is the Jacobi triple product identity

(3'5) H(l _ q2n)(1 _ q2n—lz)(1 _ q2n—lz—l) _ Z(—l)nqnzzn.
n>1 nez

The spaces of modular forms of level 1 and weight kK = 4,6 are spanned
by the Eisenstein series

Ey(m)= 14240 o3(n)q", Eg(t)=1-504> " as5(n)q",
n>1 n>1

where ¢,(n) =5 dn d" . The discriminant modular form is
A(T) = ()% = (Ea(1)® — Eo(1)%)/1728..

The Eisenstein series E4 and Eg are related to the invariants ¢4 and ce as
described in the following well-known lemma (see, for example, [C,p.45]).

LEMMA 3.5. Let E be an elliptic curve over C with Weierstrass equation
3.6) y2+a1xy+a3y:f +a2x2+a4x+a6.

Let A be the period lattice obtained by integrating dx/(2y + a1x + az). If we
choose a basis wy, wy for A so that T = wy/wy € O then the invariants ca
and ce¢ of the Weierstrass equation (3.6) are given by ¢, = (i—T)kEk(T).

Proof. The Weierstrass g-function

| | 1
PR =3+ D ((Z—A)Z_F)

0£NEA
satisfies the equation

(3.7) 02 = 492’ — 2p() — g3,
where g, = 60G4(A), g3 = 140G6(A). Moreover for k > 4 we have
1 2((k
=Y — =205,

k K
w
0#£AEA 1

Hence ¢, = 1—12(3)—7:)4E4(T) and g3 = 2—16(1—’:)6&(7). The uniformisation map ¢
with ¢*(dx/(2y + a;x + a3)) = dz is given by
¢: C/A — E(C)
2 (p) — 15b2, 30'@) — ai(p(z) — 55b2) — as),
where b, = a% + 4a, . A calculation comparing (3.6) and (3.7) now shows
that ¢4 = 129> and ¢ = 216g5. [
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3.3 TERNARY CUBICS

Differentiating the Jacobi triple product identity (3.5) with respect to z
and putting z = ¢ we obtain

(38) (7_) — Z( (2n+l) /8 |/8 H(l _ qn)3

n€Z n>1

LEMMA 3.6. For k=4,6 we have
E() = fin(3)*,V2In@B7y) /n(r)*,
where
fala,b) = a* + %a% +24%* + %aiﬁ +
fola,b) = a® + 2v/3ab + 5a* B> — 5a*b* — 2v/3ab® — b°.

Proof. Let Fi(t) = fin(3)*,V/2Tn(37)*) /n(T)k. It is easily seen that the
g-expansions of F4(7) and Fe(7) each have leading term 1.
Let ¢, = ¢*™/". By (3.8) we have

(5 = Gl =1 - G) Z (—1)'ng@n 17 /24
n=1 mod 3

= (1= G) Y (=" B+ D@/
nel

=3(G — Hn@Br)*.

Hence
T+1

n(=y? ) 277(37)
3.9
G2 ey e LS

It is readily verified that
fila+iG3b, ) = fila,b) .

Hence Fi(t + 1) = Fi(1). A straightforward calculation using the func-
tional equation (3.4) shows that Fi(—1/7) = 7%F,(1). Since the space of
modular forms of level 1 and weight £k = 4,6 is [-dimensional it follows
that Ek =Fy. |

LEMMA 3.7. Let E/R be an elliptic curve with Weierstrass equation
(3.10) y2+a1xy+a3y:x"+a2x2+a4x+a6.

Let A = Zw) + Zw, be the period lattice obtained by integrating
dx/(2y + a1x + a3). We may assume that w; € Rso and 7 = wy/w; € 9
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with Re(t) € {0,3/2}. Then every real ternary cubic with the same invariants
as (3.10) is properly R-equivalent to

F(x,y,2) = a(X +y* + 2°) — 3(a + V3byz ,

“«— ! (2_7T) n(r/3)° b— (2_7T> n@37)°
V27 \wi ) n(m) w ) )
Proof. Since Re(r) € {0,3/2} it is clear that ¢'/3 is real, and hence a
and b are real. For k = 4,6 we compute
ci(F) = 3*/2fi(a, b) = (E)Vfi (03P, V2TnB7)) [n(r) = (E ) E(r) .

It follows by Lemma 3.5 that F has the same invariants as (3.10). [

where

The proof of Proposition 2.8 in the case n =3 is completed by

LEMMA 38. For 7 € ) with Re(r) € {0,3/2} we have

3 n T';
3.11) max( = ) < max(|Ea(r)['/*, |Es(m)['/) .

Proof. The functional equation (3.4) shows we are free to replace 7
by —1/7. Likewise (3.9) shows we may replace 7 by 7+ 1. So if the bound
holds on some subset of §, then it will hold on any SI.,(Z)-translate of that
subset (possibly with a different implied constant).

We only need to establish the bound for Im(7) large and Im(7) small, since
the result will then follow by a compactness argument. (Note that E4 and Eg
have no common zeros in $.) As Im(7) — oo we have ¢ — 0 and the result
is clear. By the action of SI,(Z) this implies the result for Im(r) small. []

34 QUADRIC INTERSECTIONS

Putting z = —¢,+1 in the Jacobi triple product identity (3.5) we obtain
functions

0ar) = Y g0t = 2g 4 Tt = (1 + g7
n€Z n=1

(3.12) 03(1) = anz = H(] _ q2n)(] + q2n—l)2

neZl n=1

0s(r) =Y (~1"q" =[] = g1 - "'
n=1

nez
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LEMMA 39. For k=4,6 we have

Ey(r) = fi(02(7),05(7)) = (3)"u(03(5), 04(F)) ,
where
fala,b) = a® + 14a*b* + b®
fola,b) = a'* — 33a®b* — 33a*b® + b'2.
Proof. Let Fi(1) = fi(02(7),05(7)). It is clear that F4(7) and Fe(7) are
power series in g with constant term 1. So to prove the first equality it
suffices to show that Fy(—1/7) = 7"Fi(1) for k = 4,6.

The expressions for the §;(7) as products allow us to rewrite them in terms
of the Dedekind n-function:

nér)? n2r)’ _ )’
n2r)’ n(r)*n4r)*’ n2r)

By the functional equation (3.4) and the expressions for the 6;(7) as sums,
we deduce

92(7‘) =2

0(1) = 04(1)

Ox(=1/7) = \/Z04(5) = \/E(=02(T) + 65(7)
(3.13)
O3(=1/7) = \/Z055) = \/ZO:(7) + 65(7))

It is readily verified that
fi(=a+ b,a + b) = (2i)*fi(a,b).
Hence
Fi(=1/7) = fi(Bx(—1/7),65(—1/7)
= (3)fi(=02(7) + 05(7), 02(7) + 03(7)) = T*Fi(7) .

Since the space of modular forms of level 1 and weight &k = 4,6
is 1-dimensional it follows that E; = Fj. The second expression for Ej
is obtained by replacing 7 by —1/7 and using (3.13). [

As suggested in Lemma 3.1 we split into cases according to the sign of
the discriminant.

LEMMA 3.10. Let E/R be an elliptic curve with positive discriminant
and with Weierstrass equation

(3.14) y2+a1xy+a3y:f+a2x2+a4x+a6.
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Let AN = Zw; + Zw, be the period lattice obtained by integrating
dx/Q2y + a1x + a3). We may assume that w; € Rso and 7 = wy/w) € 9
with Re(t) = 0. Then every real quadric intersection with the same invari-
ants as (3.14) is properly R-equivalent to exactly one of (Q1,02), (0}, 05),
(07,0 where

Q1 = a(x3 + x3) — 2bxix3 Q| = a(x} — x3) — 2bx;x3
0> = a(x} + x3) — 2bxox, 0, = a(x] — x3) — 2bxox

0 = b(x§ +x3) — 2ax1x3
Q5 = b(x} + x3) — 2axox;

a= /0, b=1/Teem.

Proof. In the notation of Lemma 3.9 all three quadric intersections have
invariants 28f4(a,b) and —2'%fs(a,b). For k = 4,6 we compute

and

(@i)'fila, b) = () i(04(5), 03(5) = () Ex(r) .
It follows by Lemma 3.5 that these quadric intersections have the same

invariants as (3.14). It remains to show that they are pairwise inequivalent
over the reals.

Since Re(7)= 0 we have ¢> 0 and hence b> a> 0. We put c=v/b* — a*.
Then Q; = Q> = 0 has real point (in fact a hyperosculating point)

(X0 : X ZX2ZX3):(\/mZ\/CEZ \/ZTCQZ\/CE).
Rather more obviously Q) = Q5 = 0 has real point
(x0 : X :x2:x3):(\/m: 1:0:1).
On the other hand, since the quadratic form
O + 04 = 25 ((o + x2)* + (61 + x3)%) + G52 (o — x2)* + (11 — x3)°)

is positive definite, there are no real solutions to O} = QY =0.
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Finally we claim that (Q;,Q,) and (Q},Q5) are not equivalent over the
reals. Let Aj, Ay be the matrices of second partial derivatives of Q;, Q> and
likewise for Q], Q5. We compute

det(xA; + zA) = —24(d?x* — b*2)(b*x* — a*2?)

det(xA] + zAY) = 24(a@*¥* + VP2 (WX + a* 7).
The first of these quartics has four real roots, whereas the second has no real
roots. This proves our claim O

The analogous result for negative discriminants is the following.

LEMMA 3.11. Let E/R be an elliptic curve with negative discriminant
and with Weierstrass equation

(3.15) y2+a1,\w+a3y:)f’—|—a2x2+a4x+a6.

Let A = Zw) + Zw, be the period lattice obtained by integrating
dx/(2y + a1x + a3). We may assume that w; € Rso and 7 = wy/w; € 9
with Re(t) = 1/2. Then every real quadric intersection with the same invari-
ants as (3.15) is properly R-equivalent to (Qy, Q) where

01 = a(x} — x3) — 2bx1x3
0> = a(x} — x3) — b(xg + x2)

2r 2
a= 5560w, b= T,

Proof. Since Re(t) = 1/2 it is clear from (3.12) that a and b are
real. In the notation of Lemma 3.9 the quadric intersection (Q;, Q) has
invariants 28£,(Cga, b) and 2'%fs((sa,b). We compute

4i(Gza, b) = EVfi0x(7), 05(7)) = (N E(7) .
It follows by Lemma 3.5 that (Q;, Q>) has the same invariants as (3.15). [l

and

The proof of Proposition 2.8 in the case n =4 is completed by

LEMMA 3.12. For 7 € $ with Re(t) € {0,1/2} we have
(3.16) max(|02(7)|, |05(7)]) < max(|Es(r)["/%, |Es(r)]/'2)
and

Ga7 max(03(Pl, 104D < max([Eym)|'/%, [Eo()['/1).
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Proof. The first two equalities in (3.13) show that (3.16) is equivalent
to (3.17) with 7 replaced by —1/7. The second two equalities in (3.13) show
that (3.16) and (3.17) are equivalent. It is clear from the definitions of 6,
and 05 that we may replace 7 by 7+ 1. So if either bound holds on some
subset of $ then both bounds hold on any SI,(Z)-translate of that subset
(possibly with different implied constants).

We only need to establish the bounds for Im(7) large and Im(7) small,
since the result will then follow by a compactness argument. (Note that E4
and Es have no common zeros in §.) As Im(7) — oo we have ¢ — 0 and the
result is clear. By the action of SI,(Z) this implies the result for Im(7)
small. [

4. GENUS ONE MODELS AND THE GEOMETRY OF NUMBERS

In this section we use the geometry of numbers to deduce Theorem 1.2
from Theorem 2.9.

4.1 BINARY QUARTICS

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.1. Let C be an everywhere locally soluble 2-covering of an
elliptic curve E/Q. Then C can be defined by an integer coefficient binary
quartic whose coefficient of x*~Iz/ is bounded in absolute value by Au‘l‘*"‘ ,ué
where A < Hz and pyps < 1.

The binary quartic representing C is non-singular, i.e. it has no repeated
roots in P!'(Q). Under the hypothesis of Theorem 1.2(b) it has no Q-rational
root (see Remark 2.5). Since n = 2 the bound claimed in Theorem 1.2(c)
is the same as that in Theorem 1.2(b). The proof of Theorem 1.2 in the
case n =2 is completed by

LEMMA 4.2. Let ® be an integer coefficient binary quartic. Suppose that
the coefficient of x*7/z/ is bounded in absolute value by A/ff_j W .

(i) If ® has no repeated root in PY(Q) then [|®] < A3 p12)°.
(i) If ® has no root in PY(Q) then ||®| < A*(uip2)*.
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Proof. Without loss of generality p; < ps.
(i) If Ap?,ug < 1 then ® has no x* or X’z terms and therefore a repeated

root at (1 : 0). By hypothesis this does not happen. Therefore Ay3j, > 1 and
]| < Az < A (p1ps2)°.

(ii) If A < 1 then @ has no x* term and therefore a root at (1 : 0).
By hypothesis this does not happen. Therefore Auj > 1 and

@, <A <A(um)*. O

4.2 TERNARY CUBICS

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.3. Let C be an everywhere locally soluble 3-covering of
an elliptic curve E/Q. Then C can be defined by an integer coefficient

ternary whose coefficient of x'y/z* is bounded in absolute value by Ap' sk
where A < Hg and pypaps < 1.

The hypotheses of parts (b) and (c) of Theorem 1.2 are that C has no
Q-rational point of inflection, respectively that C has no Q-rational point.
The proof of Theorem 1.2 in the case n = 3 is completed by

LEMMA 44. Let ® be an integer coefficient ternary cubic defining a
plane cubic curve C C P?. Suppose that the coefficient of x'yiz* is bounded
in absolute value by Ayl iy .

(i) If C is non-singular then ||®||_ < A(p1p2p3)°.
(ii) If C is non-singular and has no Q-rational point of inflection then
@l < A*(p1paps)*.
(iii) If C has no Q-rational points then || @] < A3y papiz).

Proof. Without loss of generality p; < py < 3.

(i) If Apps < 1 then @ has no x°, x%y or x’z terms and therefore C is
singular at (1:0:0). If Ay <1 then @ has no x*, x?y, xy*, or y* terms.
This would imply that C contains the line z = 0 and is therefore singular.
Accordingly we have Ap3us > 1 and Ap3 > 1. It follows by the identity

A3 (A 3 (Ap3)* = A poguz)°
that [|®| < Apg < A%t paps)®.



BOUNDS ON THE COEFFICIENTS OF COVERING CURVES 119

(ii) If Apyp3 <1 then @ has no x°, x?y or xy* terms and therefore C
meets the line z = 0 with multiplicity at least 3. This would imply that
either C is singular or that (1 : 0 : 0) is a point of inflection. Accordingly
we have App3 > 1. Exactly as in the proof of (i) we have Apus > 1. It
follows by the identity

Ap3(Am )* Api s = A popsz)*

that ||®| < Apd < A*(uipops)*.

(iii) If Ayl < 1 then (1 : 0 : 0) is a Q-rational point on C.
Therefore Ay > 1 and ||| < A3 < A(uipopz)®. O

4.3 QUADRIC INTERSECTIONS

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.5. Let C be an everywhere locally soluble 4-covering of an
elliptic curve E/Q. Then C can be defined by an integer coefficient quadric
intersection (Qy,Q2) whose coefficient of xjx; in Q; is bounded in absolute

value by ANipjjuy, where A < H}i/z, M L 1 and pypopspe < 1.

Suppose that rank(xQ; + zQ,) < 4 for some (x : z) € P'(Q). Then by
Remark 2.5 and Lemma 2.6(ii) the element ¢, € H'(Q, E[4]) corresponding
to C satisfies [2].64 = 0. Hence & = 1.(&) for some & € HY(Q,E[2]).
Since C is everywhere locally soluble & has trivial obstruction, i.e. it is
represented by a binary quartic. We can therefore represent C by a quadric
intersection of the form specified in Lemma 2.6(i). In this case Theorem 1.2(b)
follows from the result for n = 2. Since & and & have the same images
in III(E/Q) the hypothesis of Theorem 1.2(c) is not satisfied.

The proof of Theorem 1.2 in the case n =4 is completed by

LEMMA 4.6. Let ® = (Q1, Q) be an integer coefficient quadric intersec-
tion defining a degree 4 curve C C P?. Suppose that the coefficient of XX
in Q; is bounded in absolute value by AN;ppy .

(i) If C is non-singular then ||®@||_ < A0 (11 o i3 fia)®.
(ii) If C is non-singular and there are no Q-rational singular quadrics in
the pencil spanned by Q and Q then

@] < AN (1 prapzpia)*
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(iii) If C has no Q-rational points and there are no Q-rational singular
quadrics in the pencil spanned by Q| and Q, then

@l < A* N prapizfea)®

Proof. Without loss of generality A\; < X, and p; < pp < sz < pug.
(i) We make the following observations:

e If Adypipz <1 then (1:0:0:0) is a singular point on C.

o If AX\yu3 < 1 then C contains the line {x3 = x4 = 0}.

o If A\jp3 <1 then Q) has rank at most 2.

o If A\juppq < 1 then Q; has rank at most 2.

We are given that C is non-singular, and so none of the above inequalities
can hold. We further note that if both A\yp? < 1 and A\jpps < 1
then (1 : 0 : 0 :0) is a singular point on C. We therefore split into the
cases A)\zuf > 1 and AXjppg > 1. In the first case it follows by the identity

(AN} (AN pi3) (AN 113) (AN o p1a) > (Adap13) = AR \a)* (i po iz )’

that [|®|| < Ahaud < A3\ A)* (i papzpa)*. In the second case it follows
by the identity

(Adapi p3)> (Ao 3 (AN 13 (AN o pra)  (Ada i) = AP (N N2)C (i pra iz pg)®

that [|®| < Adppf < AP\ A2)0(u1piopizpea)® .
(ii) We replace the third and fourth observations in (i) by
o If A\jupu3 < 1 then Q; has rank at most 3.
o If A\jpuipga < 1 then Q; has rank at most 3.
It follows by the identity

(AXafi1 p3)> (Ao f13) (AN o p13) > (AN i1 pra)* (Ao pid) = AP ) (i prapus pra)*

that [|®| < Ahop? < A3\ A)* (i prapizpia)® .

(iii) If A)\z,u% < 1 then (1 : 0:0:0) is a Q-rational point on C.
Therefore A/\z,u% > 1. We have already seen in (ii) that AX\jpuous > 1. It
follows by the identity

(Ao i) (AN pafi3) (Ada ) = A* N1 N2 (i prafiz pra)®

that || @, < Adpd < A*O N (uipopzps)?*. O
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5. A CRITERION FOR II(E/Q)[3] =0

In this section we prove Theorem 1.3. We will need the following lemma
whose proof is just an exercise in calculus.

LEMMA 5.1. Let a,b € R and put ¢ = (a* + \/3ab + b*)'/2 . Let
F(x,y,2) = a(® +y* +2°) — 3(a + V3b)xyz.
Then |F(x)| < max(|a|, |b], [c]||x|]’ for all x = (x,y,z) € R®.

Proof. Let (x,y,z) be alocal maximum of F on the sphere x2+y?+z2 = 1.

Then we have
rank <FX Fy FZ) <.
Xy z

We compute
YF = xFy = 3(x — Y)(@xy + (a + V3b)(x + y)2).

If x,y,z are distinct then a + V3b = a or —a/2. In the first case we
have b = 0 and xy+yz+zx = 0. But then x+y+z = +1 and F(x,y,z) = +a.
In the second case we have xy = yz = zx, and this contradicts that x,y,z are
distinct.

If x=y =z then F(x,y,z) = +b. So without loss of generality x # y = z.
Then

axy+(a+\/§b)(x+y)y:0.

If y=0 we get F(x,y,z) = £a. Otherwise

x=—(a+V3b)¢

y = (2a+ V3b)¢
for some £ € R. We compute

X+ + 2 = 96%d + LV3ab + b7
F(x,y,2) = 2763 (a® + V3ab + b*)(@ + 2V/3ab + b?).
Eliminating & gives
@ + /3ab + b?
(@ + Y\/3ab + b2)1/2
If ab> 0 then |F(x,y,z)| < |c|. Otherwise if |a| > |b| we have
(@ +V3ab + b — a*(@® + V3ab + b*) = (Zza +by’b < 0

and hence |F(x,y,z)| < |a|. The case |b| > |a| is similar.  []

|F(x,y,2)| =
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Proof of Theorem 1.3. Let E/Q be an elliptic curve. We aim to show
that (under suitable hypotheses) III(E/Q)[3] = 0. By (1.1) it is equivalent to
show that every ¢ € S®(E/Q) maps to zero in III(E/Q).

Let £ € SP(E/Q). Then ¢ corresponds to an everywhere locally soluble
3-covering 7w: C — E. Our aim is to show that C(Q) # & . By Proposition 2.7
we know that C can be defined by an integer coefficient ternary cubic f with
the same invariants as a minimal Weierstrass equation for E. We fix a minimal
Weierstrass equation for E and let 7 = wy/w; € § be as in Lemma 3.7.
Then f = Fog for some g € SL3(R) where

F(x,,2) = a(¥® +y* +2°) — 3(a + V3b)xyz

L) 0/ - (%) 03y
V27 \wi ) ) \wi ) nn)

Let y= a+i(3b and c= |y| = (a®++/3ab+b*)'/? . The lattice A = g(Z*) C R®

has covolume 1. Hence by Lemma 2.10 there exists 0 # x € A

with ||x|> < V2. If max(|al, |b|,|c]) < 1/v/2 then by Lemma 5.1 we have
[F(0)| < max(lal, [B], |e]) [|x[|* < 1.

Since F(x) = f(u,v,w) for some u,v,w € Z it follows that F(x) = 0.
Hence C(Q) # @ and & maps to zero in III(E/Q).

It remains to show that the condition max(|al, ||, |c|) < 1/+/2 is equivalent
to the hypothesis of the theorem. By (3.9) we have

_L(Z_W> st <2_7r> (5’
= \e ) et T e ) -1

We now put

and

(1) = —n(%)"*? as(r) = (="
ax(r) = =3%(3n)" aa(r) = n(5H"
and claim that

4
G ] = ) =X = 3p)HX = 3n(r)'?) + Ea(ryn(r)°X .

i=1

It is routine to check using (3.3) and (3.4) that

(T + 1) = —a3(1) ai(=1/1) = =1%ax(r)
oo(t + 1) = —an(1) o (—1/7) = =% (1)
a3(T + 1) = —ay(7) az(—1/7) = —7%au(r)

ay(T+ 1) = —ay (1) as(—1/1) = —1%a3(7).
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the square of each coefficient of the left hand side of (5.1) is a

modular form of level 1. The claim is then proved by comparing the first few
coefficients of the g-expansions. By Lemma 3.5 we have Ap = (i—T)lZA(T)
and j = E4(7)’/A(7). Finally we compute

max(|al, |bl,|c]) < %

= FpEmax (F, VERGOP, InEHE) < Sl
> 25|Ag| max{|x|> : x a root of (5.1)} < 3'%8|n(r)[*

<= 2°|Ag| max{|x]’ : x a root of (X —3%)(X —3)’ +jX =0} < 3'®
<= 2°|Ag| < min{|x’ : x a root of (X —3*)(X — 3’ +X° = 0}.

This final condition is the hypothesis of the theorem. [
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