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QUADRATIC FORM MADE A PERFECT POWER
BY A NEW COMPOSITION THEOREM
ON ARBITRARY QUADRATIC FORMS

by Ajai CHOUDHRY

ABSTRACT. This paper deals with the diophantine equation Q(x1, X, ..., Xp) = V",
where m and # are arbitrary positive integers and Q{x1. x2, ..., X,) 1s an arbitrary
quadratic form in the m variables xi, x». ..., x,. While solutions of special cases of
this equation have been published ecarlier, the general equation of this type has not

been solved till now. To solve this equation, we first show that, given an arbitrary

quadratic form ©(x1, x, ..., X,) in m variables, there exists a composition formila
Q(ui)Qz(fu,) = Q(w;) where u; and v; (i = 1, 2, ..., m) are arbitrary variables and the
wy (i=1,2, ..., m) are cubic forms in the varables u;, and v (i=1,2, ..., m)

This is a new composition formula, difterent from the standard composition formulae
of the type Qu)Q(v;) = O(w;) which are known for certain classes of quadratic
forms. As the equation Q(x;) = ¥" is not always solvable, we prove a theorem giving
a necessary and sufficient condition for its solvability. We use the aforementioned
composition formula to obtain parametric solutions of the equation {Q(x;) = ¥*, and
also give some numerical examples.

1.  INTRCDUCTION

This paper deals with the diophantine equation

(1.1) Ox1, 32, ooy Xm) = Y7,
where m and n are arbitrary positive integers and Q(xjy, x2, ..., X») 1S an
arbitrary quadratic form in the m variables x1, xa, ..., x». The case m =2

has received considerable attention [1, Chapter 20, pp. 533-543] and a number
of authors have also considered several special cases when m > 3 [1, pp. 43—
544]. However, the equation does not seem to have been solved in the most
general case as represented by equation (1.1).
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92 A. CHOUDHRY

We first show in Section 2 that, given any arbitrary quadratic form
Qx1, X2, ..., xy) In m variables, there exists a very general composition
formula of the type

12 QU iy, o, ) QUL B, -y ) = O, Wi, e W)

where the #; and »; (i =1, 2, ..., m) are arbitrary variables while the a;
(i=1,2,..., m) are cubic forms in the variables 1; and w;.

As we shall see in Section 3, equation (1.1) does not always have a
solution in integers. Accordingly, we first prove a theorem in Section 3 giving
a necessary and sufficient condition for the solvability of this equation. When
equation (1.1) is solvable in integers, it is easy to find a parametric solution
such that x; (i =1, 2, ..., m) are given by polynomials that have a common
polynomial factor. We show in Section 3 that, using the identity proved in
Section 2, parametric solutions of equation (1.1) can be obtained such that
x; (i=1,2,..., m) are given by polynomials that do not have a common
polynomial factor. While there are equations of type (1.1) for which solutions
in relatively prime integers simply do not exist, when such solutions are
possible, the parametric solutions obtained in the paper may yield solutions
of (1.1} in relatively prime integers.

2. A COMPOSITION THEOREM ON ARBITRARY QUADRATIC FORMS

In this section we prove a general composition theorem for arbitrary
quadratic forms in any number of variables. This theorem establishes the
identity (1.2) which is reminiscent of the well-known composition formulae
of the type

21 Qtx) Qi) = Xz,

where Q(x;) is a certain quadratic form in the variables x;, and the z; are
bilinear forms in the x; and y;. All the composition formulae of type (2.1)
are known [2, pp.417-427] but in all such formulae there are restrictions on
the quadratic forms Q(x;) as well as on the number of the variables x;. The
identity (1.2) differs from the standard composition formulae in view of the
squared quadratic form QZ(U!‘) occurring in (1.2) but there is no restriction
either on the quadratic form Q(x;) or on the number of the variables ;.
We note that in the identity (1.2), while the u; and w; are completely
arbitrary, the wy (i =1, 2, ..., m) are cubic forms in the w;, v; such that if
w; (i=1,2, ..., m) are taken as constants, the w; become quadratic forms

L’Enseignement Mathématique, t. 57 (2011)



QUADRATIC FORM MADE A PERFECT POWER 93

in the variables v; whereas if w; (i = 1, 2, ..., m) are taken as constants,
the w; become linear forms in the variables u;.

THEOREM 1. [f Q(x1, x2, ..., Xp) is an arbitrary quadratic form in m

variables x1, xa, ..., X, with m being an arbitrary integer, there is an identity
given by

3
(2.2) Q(Mb Hpo e Mm)Q (TI: L AN Um) — Q(rwlc Wy onny ’wm):
where w; and v (i = 1,2,...,m) are arbitrary variables while w;

(i=1,2, ..., m) are cubic forms in the variables u; and v; defined by

2.3 -w;—-L‘;{Z--(9S£u)}+uQ(ll Ve e Um)s E=1,2, .,
i—=1

Proof. To prove the identity ¢(2.2), we will first obtain a solution of the
following diophantine equation in the variables #1, fa, ..., ty, ¥1, W2, ooy Uy !

(2.4 O, oy vy ) = Quy, 1o, oo )
We substitute
(2.5 I,':’U,'O+M5, F=d, 2, v gt

in equation (2.4), and get

= 00w

5 oy 2 e _
(2.6) Q(v1, U, .., V) 8 + {Z; N }9 =0.
If @iy, vo, ..., 2) # 0, a non-zero solution of this equation is given by

. 90w

2.7 g=— Ve ey U
@7 {Zl 5 /0 v )
With this value of #, using (2.5), we get a solution of (2.4) given by
2.8) e i=1,2,....m

QCut, 2, 000y Un)
where
2.9 wy=-—n {;%dgff) }—Ht Qvr, v2, ... Un), i=1,2,....m.

We now have a solution of (2.4) with w; (i =1, 2, ..., m) being arbitrary
while 7 (i=1,2, ..., m)are given in terms of u; ({1 =1.2, ..., m) as well
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94 A. CHOUDHRY

as additional arbitrary parameters v; (i =1, 2, ..., m). Substituting the above
values of #; (i =1, 2, ..., m)in (2.4), and multiplying by Q%(v1, w2, ... Um),
we get the identity (2.2). This proves the theorem when vy, v, ..., ¥a) # 0.
Finally we note that when QCup, 2, ..., vy =0, the identity (2.2) is readily
verified. This completes the proof.

As an example, we have the identity
(u% -+ u% + u%)(”u% -+ 7;% -+ I%)z = {(—'U% -+ 1!% + -L‘%)Ltl — 2ipvtn — 2Uu30103 }2
+ [ —2umvio + (8 — 05 + 05 — 2usipus }t
+ {2103 — 2Zwpenus + (*u% + ’Ug = ‘L-’%)Mg,}z .
As a more general example, we have the identity
(aut + b + cy + dud)(av? + bvi + cvf +dud)? = aw? + buk + cul + duj
where

Uy = (—a-v% + b?;% + c*u% + dt:f)ul — 2bipinte — 2cusvivs — 2digvivy

e = —2auyvve + (a'r)% — b‘u% + c-v% + d’a.:i)uz — 2eustavs — 2dugony
ws = —2auivivs — 2buztos + (av% + bbg — 5'032 + dvi)m — 2duigvsty ,
wy = —2auptyvy — 2bustovy — 2euzvsvg + (m;% + bv% + co% - dvi)m \

with a, b, ¢, d, u;, v; (i =1, 2, 3, 4) being arbitrary parameters.

3. QUADRATIC FCRM MADE A PERFECT POWER

In Section 3.1 we consider the solvability of equation (1.1). In the following
two subsections, Section 3.2 and Section 3.3, we obtain parametric solutions
of equation (1.1) in terms of m arbitrary parameters.

3.1 SOLVARILITY OF THE EQUATION Q(x;) = y"

Equation (1.1) is not always solvable in integers. Apart from the obvious
cases when n is even and Q(xy, Xz, ..., X,) 1S a negative definite form so
that (1.1) cannot have any integer solutions, it is well known that the quadratic
equation Q(x1, X2, ..., Xp) = y2 is not always solvable when m < 4. For
instance, it is readily established that the quadratic equation

3.1 24 +354 =5,

has no solution in integers.
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QUADRATIC FORM MADE A PERFECT POWER 95

Even when equation (1.1) has an integer solution, it is possible that it may
have no solutions in relatively prime integers. As an example, consider the
equation

(3.2) 2 L% =,

If x; and x» are both odd integers, it is easily seen that the left-hand side
of (3.2) is =4 (mod 16), while if one of the integers x3. x» is odd and one
is even, then the left-hand side of (3.2) is = 2 or 10 (mod 16). Since the
only fourth power residues modulo 16 are O and 1, it is clear that neither
can x; and x» be both odd nor can one of them be odd and one even. Thus,
for any solution of (3.2), both x; and x must be even, and hence cannot
be relatively prime. A numerical solution of (3.2) is x; = 2, x = 2. Thus,
equation (3.2) has solutions in integers but no solution in relatively prime
integers.

We further note that if a solution of (1.1) is given by x;, = X,
(i=1,2,...,m)and y=7Y, another solution of (1.1) is given by x; = r" X;
(i=1,2,...,m)and y=r?Y, where r is an arbitrary parameter. It follows
that if we find a solution of (1.1) in rational numbers, or a parametric solution
in terms of polynomials with rational numbers as coefficients, by choosing a
suitable integer value of r, we can readily obtain a solution in integers, or in
terms of polynomials with integer coefficients.

We now prove a theorem about the solvability of equation (1.1).

THEOREM 2. If Q(x1, X2, ..., Xy) IS any arbitrary quadratic form with
integer coefficients in m variables xy, X, ..., x,, the diophantine equation
(3.3) Ox1, X2 ooy X)) =¥

always has a solution in integers when n is odd. Further, when n is even,
equation (3.3) has a solution in integers if and only if the quadratic diophantine
equation

(3.4) OX1, X20 ooy X)) = Y2
has a solution in integers.

Proof. When n=2k+1 is an odd integer, a simple parametric solution
of (3.3) is given by x; = rfs;, vy =r, where r = Q(s1, 52, ..., 5,) and the
s; are arbitrary, for with these values of x;, we have Q(x;) = r¥*Q(s;) =
p#+Hl — 7 This parametric solution readily yields solutions of equation (3.3)
in integers.
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96 A. CHOUDHRY

When n = 2k, any integer solution of equation (3.3) immediately gives
an integer solution of (3.4) with ¥ = ¥*. Conversely if equation (3.4) has
a solution in integers, say, x; = s (i = 1,2, ..., m), ¥ = r, a solution in
integers of equatien (3.3} is given by x; =/ ls; (i=1,2,....m), y=r,
since then Q(x;) = O s = r¥20(s) = r¥ = ",

The conditions of solvability of equation (3.4) are well known [3, p.42].
Thus, given any arbitrary quadratic form Q(x;) in any number of variables, we
can readily determine whether or not equation (3.3) has a solution in integers.
In fact, if (3.4) has an integer solution, we can easily find a parametric
solution of (3.4), and use it as indicated above to obtain a parametric solution
of (3.3).

While we have obtained parametric solutions of equation (3.3) whenever
this equation is solvable, we note that these parametric solutions give values
of x; (i = 1,2, ..., m) in terms of polynomials which necessarily have
a common polynomial factor. We will obtain in the next two subsections
parametric solutions that do not have this property, and hence may lead to
solutions of (3.3) in coprime integers.

32 THE EQUATION Q(x;) =y" WHEN n IS ODD

In this section we consider the equation (3.3) when # is odd, that is, the
diophantine equation

3.5 Oxy, X2y oo X)) =¥

where & is an arbitrary positive integer and Q(xj, x2. ..., xy) i$ an arbitrary
quadratic form with integer coefficients in m variables xp, x2, ..., xu. We
will use the composition theorem of Section 2 to obtain parametric solutions
of equation (3.5) such that x; (i = 1,2, ..., m) do not have a common
polynomial factor.

Since u; and w; (i =1, 2, ..., m) are completely arbitrary in (2.2), we
can use this formula A times as follows:

QN0 () = QCwD PP ()
= Q(uH O™ )
(3.6) _
= s Zas 5 wxs Tads

where z1, 22, ..., zn are forms of degree 2h + 1 in the variables u;, w;
(i=1,2,...,m).

L’Enseignement Mathématique, t. 57 (2011)
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Another, more interesting way of using the identity (2.2) is as follows:
Q) Q* () Q) (o) Q% (uy) . . . = Q) QP Q™ (W) (wy) . ..
h terms h— 1 terms
= Q) QP wHQ ) . ..
S ———

h—2 terms

3.7

= Q(Zly 2.0y Zm)t
or, Q" )™ (v) = Q1, 22, - To) -

where iy = A+ 1, p = h if hisevenand Ay = h, b = h+1 if h is
odd, and as before, 21, 22, ..., z» are forms of degree 2k 4 1 in the variables
i, vy (=1, 2, ..., m). Naturally, the forms z; in the identity (3.6) and the
forms z; in the identity (3.7) are different.

If we take £ = &k and substitute w; = s;, v; = 5 (I = 1,2, ..., m)
in the final identity given either by (3.6) or by (3.7), we get an identity
Qs = Q(z1. 22, ..., Zm), and it follows that a solution of (3.5) is given
by x; = z;, ¥ = Q(s;). However, in both cases the forms z; (i=1,2, ..., m)
reduce respectively to the forms Ofsds (i=1,2,....m) and we get the
solution of (3.5) already mentioned in Theorem 1. A similar situation arises
if we take w; = 5;, v; = —s; (i = 1,2, ..., m) and use either of the two
identities (3.6) or (3.7).

If, on the other hand, we substitute values of u;, »; in (3.7) such that
Q) = Q(u) but uw; and w; are not of the type already mentioned, we
obtain a parametric solution of (3.5) such that x; (i =1, 2, ..., m) do not
have a common polynomial factor. For instance, if Q(x;) = Ef":lagx,-z, we
may simply take ©; = —uy, v = u; (§ = 2.3,....m), when we have
Q) = (v, and substituting these values of w; in the identity (3.7), we
get 0%l = Qz1, 22, .-, Tm), Where z; (i =1, 2, ..., m) are forms in
the variables u; and it follows that a parametric solution of equation (3.5) is
given by
38) X =z, Uy ooy Uy P=01 2y nen oy

¥ = Q1. MH2e ooy Uy
This solution gives x; (i =1, 2, ..., m) in terms of polynomials that do not
have a common factor.

As an example, a parametric solution of the equation

(3.9) ad 4+ b +exi=y,
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98 A. CHOUDHRY

obtained as described above, is given by

x) = (—u + 21a%buhis + 21dP ety — 35abPibul

— T0abert s — 35act il + 708 + 216° il
+ 21bczu§u§ + 7

= (7a’ i — 35a°butis — 358 ciitus + 21ab*ilus
+ 42abcu1u2u3 + 2lactuiug — bl — 3bFcudid
— 3b52u2u3 Auuy

= (7a’i — 35a%butus — 35 cuius + 21ab* iy
+ D2abeiiZi + 2lact il — Bl
— 3B cuyit — 3bFidut — A

y=auf + b + ci

where uj, up and u; are arbitrary parameters.

3.10

As a numerical example, a solution of the equation
(3.11) Bl Sy,

obtained by substituting a =1, b =2, c =3, = 1,12 = 3,113 =4 in (3.10),
is as follows:

3.12) x1 = 1861397, x» = —594969, x3 = —=793292, y=67.

This solution is in coprime integers, that is, ged(x;, x;, x3) = 1.

When the quadratic form Q(x;) in equation (3.5) contains terms of the
type xux;, we can reduce it by an invertible linear transformation to the type
Zf;l a;X!-z, solve the equation Q(X;) = ¥' as described above and thereby
obtain a parametric solution for (3.5) in terms of polynomials that do not
have a common polynomial factor but which may have coefficients given by
rational numbers depending on the initial invertible linear transformation. As
observed in Section 3.1, such a solution readily yields a solution in terms of

polynomials with integer coefficients.

33 THE EQUATION Q(x;) =3y" WHEN n IS EVEN

When # is an even positive integer, we may write n = M2k + 1) where
h is a positive and & a nonnegative integer, and so equation (3.3) may be
written as

(3.13) Ox1, Xz, v vy X)) = P2 D
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We will obtain a parametric solution of this equation if the condition of
solvability stated in Theorem 1 is satisfied. Equation (3.13) is equivalent to
the following two diophantine equations:

(3.14) O Bos wows Bl =35 5
(3.15) g = 2D

When equation (3.13) is solvable in integers, it follows from Theorem 1 that
equation (3.14) also has a solution in integers. Any solution of equation (3.14)
in integers yields, on appropriate scaling, another solution of ¢3.14) in rational
numbers such that y; = 1. We use such a solution to obtain a parametric
solution of (3.14), substitute the value of y; so obtained in equation (3.15),
and solve the resulting equation.

Ifx, =& (i=1,2,...,m), y1 =1 is a solution in rational numbers
of equation (3.14) so that Q¢¢) =1, we obtain a parametric solution of this
equation by writing

xi:x510+£is ‘i:lxz!"'ﬂm:
(3.16)
n=1,
where x5 (i = 1,2, ..., m) are arbitrary parameters. With these values,

equation (3.14) gives

u d
(3.17) Q(xlhx%...,xm1>92+{2xn( Q(x)) }9+Q(&)—1.
x=E;

e
i=1 i

Since Q(¢;) =1, we can readily solve (3.17) to get a nonzero value of 8
which on being substituted in (3.16) gives a solution of equation (3.14) that

may be written, after multiplying by Q(x11, X21, - .., Xp1), as follows:
(3.18) X“:Q“(Xll,le, "':Xml)-, lil 2 ceey L
(3.19) ¥1=Qx11, X215 «- oy Xm1),
where Q;(x11, x21, ..., Xm1) (0 = 1,2, ..., m) are certain quadratic forms
in m arbitrary parameters xji, Xz1, . ... Xn1. Substituting this value of y; in
equation (3.15), we get the equation
(3.20) QGxit, a1, oy Xm) =3 D

Since Q(xi1. X21. ..., Xm1) 1S a quadratic form in m arbitrary variables
xp (i = 1,2,...,m), equation (3.20) is exactly of the same type as
equation (3.13) and is equivalent to the following two equations:
(3.21) Q011 %21, oy Xwt) = V5,
(3.22) s yzth—z)(zk+1) .
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100 A. CHOUDHRY

We now obtain a solution of (3.21) in terms of m new arbitrary parameters

xp (i=1,2, ..., m) and proceeding as before, we substitute the value of v,
in equation (3.22) to obtain the equation

(3.23) Qxiz, Koz, .oy Xmp) = GHD

where xy2. X2, ..., Xup are m arbitrary parameters. Equation (3.23) is again

of the same type as equation (3.13), and by repeating this process A times,
we will obtain the equation

(3.24) Oy ons sovailmis P51

where Xip, Xpp, ..., Xy ar€ m arbitrary parameters.

We can obtain a parametric solution of equation (3.24) as described
in Section 3.2, and working backwards, we successively obfain parametric
solutions of all intermediate equations such as (3.23) and (3.20), and eventually
we obtain a parametric solution of equation (3.13). In general, the values of
xi (i=1,2,...,m)and y given by this solution are in terms of polynomials
that do not have a common polynomial factor. Further, these polynomials may
have rational coefficients but, as already noted, we can readily use such a
solution to obtain a solution in terms of polynomials with integer coefficients.

As an example, a parametric solution of the equation

(3.25) X2 L PRTa GRE B
obtained by the above method, is as follows:
Xi= ol 4 5600 4840 — 080 —Silnixie
— 630x]x4 + 224358 + 10088 3325 + 15122356548
+ 756x5x8 — 16:8 — 96x3x5 — 216x5xF — 2165525 — 815,
Xz = 8xyn(—x] + 25 + 3x3)
Kolrp 120506 —185xs 4 Bgb 12652 -9,
X3 = 8X1JC3(—J€% -+ ng + 3X§)
X (xf — 12x35 — 1844 + 43 12655 + 9,
Y =x] +25 +33,

where x;, x» and x; are arbitrary parameters. Taking x; = 1,x, = 4,x3 = 2,
we get the following solution of (3.25) in coprime integers:

(3.26)

x; = —1497233, x = 2302048, x3 =1151024, Y =45.

We also note that if we substitute in (3.20) the values of x;.x and x3
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QUADRATIC FORM MADE A PERFECT POWER 101

obtained by taking a = 1,5 =2,¢c =3 in (3.10), we will get a parametric
solution of the diophantine equation

(3.27) A4 232 28K =0,

While this solution is cumbersome to write, substituting in (3.26) the numerical
values of x3,x» and x; stated in (3.12), we find the following solution of
equation (3.27) in coprime integers:

X1 = —1131964395580295061121 28478909351 7073064318753427441 ,

X> = —2711463912116822627657789081 8469441 452674252191 6520,

X5 = —36152852161 5576350354371 877579592552702323362555360,
Y =67

The above method does not always yield solutions in coprime integers
of a given equation of type (3.13). This is not surprising since, as seen in
Section 3.1, solutions in coprime integers do not always exist. We give below
an example where the parametric solution obtained as described above does
not give a solution in coprime integers.

A parametric solution of the diophantine equation

(3.28) Bar ) B Thee P
obtained by the above method, is as follows:

xy = — 2155218 — 323414718 — 361972818 1us + 7695273615 1518
+ 258731761505 — 177147us 4+ 260460485 13 — 18480840u; 14}
— 9116116815 + 21120961515 — 5115247213 13165
+ 1374332400153 + 771 5736u1 1815 — 563068815 15U
+ 966168utus — 330309001515 + 45580584u11], + 6062364u515
+1547910udut — 1063104u]us — 16532208u 515
— 59344488 i1, — 2541218 15 + 1102248715 + 143136515 .

x2 = 242y + Tus X — 1007 + 56115 — 27145 + 35u3)
% (124u] + 224015 us — 1081513 — 260u5 15
+ 6048u 1515 — T840u1 18 — 7293 + T182u515 + 1519u)
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102 A. CHOUDHRY

x5 = 37968u5 + 569757368 + 495331 2u] usues — 240186241511
— 4558058451 — 17714718 + 4224192518 -+ 32557560x 1t
— 14784672u3 13 — 37208641812 — 1441087258 11
4 84280392u 15148 + 53537 76uysbus + 7378361 usus + 4762800 1)
+ 2309076505 + 73923361 1] + 9369108u5u5 — 353161 62usus
— 1724 605 — 17675280u 1515 — 67305168u1 13163
+ 88037712u115185 + 157464518 + 252000515 ,

V=92 + 3u5 + 1),

where uy. » and us are arbitrary parameters. Here the values of xy, x» and
x3 are always divisible by 3 but not necessarily by a larger factor. Taking
#y =1, m =2, 43 =3 in the above solution, we get the following solution
of (3.28):

xp = —20001098187, xp = 86152445040, x3 = 65551346853, y = 693,

for which ged(x;. X, x3) = 3.
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