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QUADRATIC FORM MADE A PERFECT POWER

BY A HEW COMPOSITION THEOREM

ON ARBITRARY QUADRATIC FORMS

by Ajai Choudhry

ABSTRACT. This paper deals with the diophantine equation Q(xi, x%, xm) y",
where m and n are arbitrary positive integers and Q(x\. xz, xm) is an arbitrary
quadratic form in the m variables x\, xz, xm. While solutions of special cases of
this equation have been published earlier, the general equation of this type has not
been solved till now. To solve this equation, we first show that, given an arbitrary
quadratic form Q(xi, xz, xm) in m variables, there exists a composition formula
Q(ui)Q2(i>i) Q(wi) where and vi (i 1, 2, m) are arbitrary variables and the

Wi (i L 2. m) are cubic forms in the variables and Vi (i — 1.2...., m).
This is a new composition formula, different from the standard composition formulae
of the type Q(u()Q(vi) Q(wi) which are known for certain classes of quadratic
forms. As the equation Ô(x<) y" is not always solvable, we prove a theorem giving
a necessary and sufficient condition for its solvability. We use the aforementioned
composition formula to obtain parametric solutions of the equation Q(xi) y", and
also give some numerical examples.

1. Introduction

This paper deals with the diophantine equation

(1.1) Q(xu x2) xm) /,
where m and n are arbitrary positive integers and Q(xi, xz. xm) is an

arbitrary quadratic form in the m variables x\, xz- xm. The case m 2
has received considerable attention [1, Chapter 20, pp. 533-543] and a number

of authors have also considered several special cases when m> 3 [1, pp. 543-
544]. However, the equation does not seem to have been solved in the most

general case as represented by equation (1.1).
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92 A. CHOUDHRY

We first show in Section 2 that, given any arbitrary quadratic form

Q{x\, x2, xm) in m variables, there exists a very general composition
formula of the type

(1.2) Q(k1{ u2, um) Qz(vi, v2, vm) Q(wi, w2, wm),

where the u, and v, (J 1. 2. m) are arbitrary variables while the wt

(i 1, 2, m) are cubic forms in the variables Uj and Vj.
As we shall see in Section 3, equation (1.1) does not always have a

solution in integers. Accordingly, we first prove a theorem in Section 3 giving
a necessary and sufficient condition for the solvability of this equation. When

equation (1.1) is solvable in integers, it is easy to find a parametric solution
such that Xi (i 1.2, m) are given by polynomials that have a common

polynomial factor. We show in Section 3 that, using the identity proved in
Section 2, parametric solutions of equation (1.1) can be obtained such that

x, (i 1, 2, m) are given by polynomials that do not have a common
polynomial factor. While there are equations of type (1.1) for which solutions
in relatively prime integers simply do not exist, when such solutions are

possible, the parametric solutions obtained in the paper may yield solutions
of (1.1) in relatively prime integers.

2. A COMPOSITION THEOREM ON .ARBITRARY QUADRATIC FORMS

In this section we prove a general composition theorem for arbitrary
quadratic forms in any number of variables. This theorem establishes the

identity (1.2) which is reminiscent of the well-known composition formulae

of the type

(2.1) Q(xi)Q(yi) Q(zi),

where Q(xf) is a certain quadratic form in the variables xt, and the z-t are

bilinear forms in the x, and y,-. All the composition formulae of type (2.1)
are known [2, pp. 417-427] but in all such formulae there are restrictions on
the quadratic forms Q(x,) as well as on the number of the variables x,. The

identity (1.2) differs from the standard composition formulae in view of the

squared quadratic form Qz(vd occurring in (1.2) but there is no restriction
either on the quadratic form Q(uj) or on the number of the variables it,.

We note that in the identity (1.2), while the u, and Vj are completely
arbitrary, the w, (i 1, 2, m) are cubic forms in the w,, v, such that if
u, (i 1, 2, m) are taken as constants, the w, become quadratic forms
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QUADRATIC FORM MADE A PERFECT POWER 93

in the variables v-t whereas if vt (i 1, 2, m) are taken as constants,
the tvi become linear forms in the variables w,-.

THEOREM 1. If Q(xi, X2, xm) is an arbitrary quadratic form in m

variables xi, X2, xm, with m being an arbitrary integer; there is an identity
given by

(2.2) Q(uu u2, um) Q2(v i, v2, vm) Q(wi, «ri, •, wm),

where u-t and t',- (i 1, 2, in) are arbitrary variables while lüj
(i 1. 2, m) are cubic forms in the variables u-t and v-t defined by

\A dQ(u)
(2.3) w, —Vi <j

2^Vi ^ I +u;Q(vi, v2, i 1,1,2 m.

Proof. To prove the identity (2.2), we will first obtain a solution of the

following diophantine equation in the variables t\, t2, tm. u\, U2, um :

(2.4) Q(ti, t2. tm) Q(uu u2, um).

We substitute

(2.5) t[ vfi 4- U[, i 1, 2, m

in equation (2.4), and get

(2.6) Q(vi,V2, vm)ßz+^J2^^^^ß 0-

If QCi'i- V2, P/m) f 0, a non-zero solution of this equation is given by

w*
duim> « -12 «';^rr 1 /»%.* • • •. o-

V i=l
With this value of 0, using (2.5), we get a solution of (2.4) given by

(2.8) t-, — i 1.2, ....mQ(vi, 'l?2- • •, I'm)

where

(2.9) Wi -vi IJ2 I +M«'ßfa, '-'2 v«), i l,2,. m.

We now have a solution of (2.4) with Uj (i 1. 2. m) being arbitraiy
while tj (i 1.2. m) are given in terms of u-t (i 1.2. m) as well
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94 A. CHOUDHRY

as additional arbitrary parameters v-t (i 1,2,..., in). Substituting the above

values of 4 (i 1, 2, m) in (2.4), and multiplying by Qz(vi. v2, • - •, vm),

we get the identity (2.2). This proves the theorem when Q(v\, v2, -, vm) ^ 0.

Finally we note that when Q(v\, vz, ?+) 0, the identity (2.2) is readily
verified. This completes the proof.

As an example, we have the identity

(m| + 4 + u2)(v\ + ?;§ 4-1|)2 {(—i'f -F if + vf)«i - 2u2v\v2 - 2u5vivi}2

+ { — 2u\ ViVz + (if — if + if)u2 — 2uyVz'Ci }2

r 2 2 2 "12
-|- {—2u\V\Vz, — 2u2v2v3 4" (14 4" n2 — '^-3)^3/ •

As a more general example, we have the identity

(öif 4" bu2 4" cu2 4" du2)(av2 4* Aif 4" cv2 4* du2)2 cav2 4* bw2 4" cw2 4* dw2

where

u'l (—mf 4- Mf 4- c?f 4- dif )mi — 2bu2v\v2 — 2cuyo\V3 — 2duyv\ 04 -,

w2 —2öm 1 1 ;.'2 4" (ßif — bv2 4" c'f 4" dv^)u2 — 2cu3 v2 v3 — 2duyv2 v4

i6'3 —2flMi'6'i'(.'3 — 2bu2v2v3 4 (ßtf 4 &if — c'dy -J- dv2)u3 — 2du^ v3V4

w4 —2au1vii,4 - 2bu2v2V4 - 2cu3vyV4 + {av\ + bv§ 4- ctf - dvl)u4

with a, b, c, ûf, m,-, + (i 1, 2. 3, 4) being arbitrary parameters.

3. Quadratic form made a perfect power

In Section 3.1 we consider the solvability of equation (1.1). In the following
two subsections, Section 3.2 and Section 3.3, we obtain parametric solutions

of equation (1.1) in terms of m arbitrary parameters.

3.1 Solvability of the equation Q(xt) /
Equation (1.1) is not always solvable in integers. Apart from the obvious

cases when n is even and Q(x\, x2. xm) is a negative definite form so

that (1.1) cannot have any integer solutions, it is well known that the quadratic

equation Q(x\, x2, xm) y2 is not always solvable when m < 4. For
instance, it is readily established that the quadratic equation

(3.1) 2x?+34=y2,
has no solution in integers.
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QUADRATIC FORM MADE A PERFECT POWER 95

Even when equation (1.1) has an integer solution, it is possible that it may
have no solutions in relatively prime integers. As an example, consider the

equation

(3.2) 2xj + 24=y4

If and X2 are both odd integers, it is easily seen that the left-hand side

of (3.2) is 4 (mod 16), while if one of the integers .q, xz is odd and one
is even, then the left-hand side of (3.2) is 2 or 10 (mod 16). Since the

only fourth power residues modulo 16 are 0 and 1, it is clear that neither

can jq and xz be both odd nor can one of them be odd and one even. Thus,
for any solution of (3.2), both jq and x2 must be even, and hence cannot
be relatively prime. A numerical solution of (3.2) is jq =2, xz 2. Thus,

equation (3.2) has solutions in integers but no solution in relatively prime
integers.

We further note that if a solution of (1.1) is given by x, X;

(i 1, 2, m) and y Y, another solution of (1.1) is given by Xj rnX{

(i 1. 2, m) and y r2T, where r is an arbitrary parameter. It follows
that if we find a solution of (1.1) in rational numbers, or a parametric solution
in terms of polynomials with rational numbers as coefficients, by choosing a

suitable integer value of r, we can readily obtain a solution in integers, or in
terms of polynomials with integer coefficients.

We now prove a theorem about the solvability of equation (1.1).

THEOREM 2. If Q(.q, xz- xm) is any arbitrary quadratic form with
integer coefficients in m variables jq. q. xm, the diophantine equation

(3.3) QCq, x2, xm) =y"

always has a solution in integers when n is odd. Further, when n is even,

equation (3.3) has a solution in integers ifand only if the quadratic diophantine

equation

(3.4) Q(x\, xz, xm) Yz

has a solution in integers.

Proof. When n 2k -f 1 is an odd integer, a simple parametric solution
of (3.3) is given by Xj — rk Si, y r, where r — Q(s\, sz, sm) and the

Si are arbitrary, for with these values of x,, we have Q(xf f^Qisf
r2k+1 — y". This parametric solution readily yields solutions of equation (3.3)
in integers.
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96 A. CHOUDHRY

When n 2k, any integer solution of equation (3.3) immediately gives
an integer solution of (3.4) with Y y*. Conversely if equation (3.4) has

a solution in integers, say, x-, — s,- (i 1.2,..., m), Y r, a solution in
integers of equation (3.3) is given by x-t — rk~lsi (i — 1, 2, m), y r,
since then Q(x{) Q(rk~1si) r2k~2Q(Sj) r2k y".

The conditions of solvability of equation (3.4) are well-known [3, p. 42].
Thus, given any arbitrary quadratic form Q(xj) in any number of variables, we

can readily determine whether or not equation (3.3) has a solution in integers.
In fact, if (3.4) has an integer solution, we can easily find a parametric
solution of (3.4), and use it as indicated above to obtain a parametric solution

of (3.3).
While we have obtained parametric solutions of equation (3.3) whenever

this equation is solvable, we note that these parametric solutions give values

of Xj (i — 1,2. m) in terms of polynomials which necessarily have

a common polynomial factor. We will obtain in the next two subsections

parametric solutions that do not have this property, and hence may lead to
solutions of (3.3) in coprime integers.

3.2 The. equation Q(xf) yn when n is odd

In this section we consider the equation (3.3) when n is odd, that is, the

diophantine equation

(3.5) Q(xux2,...,xm)=y2k+1,

where k is an arbitrary positive integer and Q(x\, X2, xm) is an arbitrary
quadratic form with integer coefficients in m variables x\, X2, ...,xm. We

will use the composition theorem of Section 2 to obtain parametric solutions

of equation (3.5) such that x, (i 1, 2, m) do not have a common
polynomial factor.

Since ui and ?;, (i 1, 2, m) are completely arbitrary in (2.2), we

can use this formula h times as follows:

Q(M)Q2h(vd Q(wdtfh-\vd
Q(M)Q2h~\vi)

(3.6)

Q(zi, z2, - zm),

where zi. Zz- zm are forms of degree 2h + 1 in the variables u,, v,

(f 1, 2. m).
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Another, more interesting way of using the identity (2.2) is as follows:

Q(MOp2(w)g2(w)g2(w)Q2(w) Q{wdQ\udQ\vdQ2{ud..
h terms h — 1 terms

ôN)ô2(tv)Ô2(^)---
(3.7) h — 2 terms

ß(2l, 22» • ••» 2«)»

or, ßAl (^,)0/,2(w) ß(2l, 22, • • • Zm)

where hi h + 1, % h if h is even and h\ — h, hz h + 1 if h is
odd, and as before, zi, zz~ • zm are forms of degree 2h+1 in the variables

Uj, Vj (i 1,2. m). Naturally, the forms zi in the identity (3.6) and the

forms zi in the identity (3.7) are different.

If we take h k and substitute ut s-t, v-, st (i 1, 2, m)
in the final identity given either by (3.6) or by (3.7), we get an identity
Q2k+1(si) Q(zi, Z2, • - Zm), and it follows that a solution of (3.5) is given
by Xj Zi, y Q(sd- However, in both cases the forms zi (i 1,2, m)
reduce respectively to the forms Qk(sj)s, (i — 1,2. m) and we get the

solution of (3.5) already mentioned in Theorem 1. A similar situation arises

if we take ut slt v-, —Si (i 1, 2, m) and use either of the two
identities (3.6) or (3.7).

If, on the other hand, we substitute values of u-t. v, in (3.7) such that

Q(iij) — Q(vi) but u, and v, are not of the type already mentioned, we
obtain a parametric solution of (3.5) such that Xj (i 1, 2, m) do not
have a common polynomial factor. For instance, if Q(x,) Yl?=i a'^i > we

may simply take t1! —uit Vi ut (i 2,3.....m), when we have

Q{ut) — Q(vj), and substituting these values of vt in the identity (3.7), we

get Q2h+l(ui) — Q(z\, Z2-. -. Zm), where Zi (i 1,2,..., m) are forms in
the variables u, and it follows that a parametric solution of equation (3.5) is

given by

Xj Zi(u\, ur, um) i 1, 2 m
(3.8) '

y ß(«l, Uz, Um).

This solution gives x, (i 1, 2, m) in terms of polynomials that do not
have a common factor.

As an example, a parametric solution of the equation

(3.9) axf + bxI -f cx\ y1.
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98 A. CHOUDHRY

obtained as described above, is given by

xl 4- 21azbu\4 4- 21a2cu4u2 — 35at?4u2

— 70abcu\4u3 — 35ac24u3 4- 7b3u\ 4- 21b2cu4u2

+ 21 be2u2u4 4~ 7c3u^)u\

X2 (7a3«f — 35azbu\u\ - 35a2cu\u2 + 21 ab2u\u\

4- 42abcuZiÂiÂ + 21 ac^uZut — b34 — 3b2cutiÂ
(3.10) 2 2 4 3 6

— 3b(ru2u3 — c u3)u2

x3 (7a5u I — 35a2bu\u\ — 35ctzcu4luz + 21 ab2u\u4

"I- A-2dbcu^U2U^ 4~ 21ac UiU3 — b U2

— 3b2cu\u3 — 3bczuzu4 — c3u3)u3

y ai4 + bi'*2 + cu$

where u\, «2 and u-s are arbitrary parameters.

As a numerical example, a solution of the equation

(3.11) X\ + 24+ 34=y\
obtained by substituting a 1. b 2, c 3, u\ 1. «2 3, u3 4 in (3.10),
is as follows:

(3.12) xi 1861397, v2 -594969, x3 -793292, y 67.

This solution is in coprime integers, that is, gcdQq, x2. x3) 1.

When the quadratic form Q(xf) in equation (3.5) contains tenns of the

type XjXj, we can reduce it by an invertible linear transformation to the type

j a,Xz, solve the equation QiXf) y" as described above and thereby
obtain a parametric solution for (3.5) in terms of polynomials that do not
have a common polynomial factor but which may have coefficients given by
rational numbers depending on the initial invertible linear transformation. As
observed in Section 3.1, such a solution readily yields a solution in terms of
polynomials with integer coefficients.

3.3 The equation Q(x;) — yn when n is even

When n is an even positive integer, we may write n 2h(2k 4-1 where

h is a positive and k a nonnegative integer, and so equation (3.3) may be

written as

(3.13) Q{xi,X2, ...,xm)=/(-2k+l).
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We will obtain a parametric solution of this equation if the condition of
solvability stated in Theorem 1 is satisfied. Equation (3.13) is equivalent to
the following two diophantine equations:

(3.14) Q(xux2, ...,xm)=yz1,

(3.15)

When equation (3.13) is solvable in integers, it follows from Theorem 1 that

equation (3.14) also has a solution in integers. Any solution of equation (3.14)
in integers yields, on appropriate scaling, another solution of (3.14) in rational
numbers such that yi 1. We use such a solution to obtain a parametric
solution of (3.14), substitute the value of yi so obtained in equation (3.15),
and solve the resulting equation.

If Xi (i 1, 2, m), yi 1 is a solution in rational numbers

of equation (3.14) so that <2(6) — 1, we obtain a parametric solution of this

equation by writing

X; xnO + £;, i 1, 2, m.
(3.16) .«is.. -

y i 1
>

where x(1 (i 1, 2, m) are arbitrary parameters. With these values,

equation (3.14) gives

(3.17) Q(xn, xzi, xml)02 + {£> J 0 + <2(6) - 1
•

Since 0(6) we can readily solve (3.17) to get a nonzero value of 0

which on being substituted in (3.16) gives a solution of equation (3.14) that

may be written, after multiplying by Q(xn, xzi, xmi), as follows:

(3.18) Xi Qi(xh, X2i, xmi), i 1, 2, m,
(3.19) yi Q Cru, *21, ^mO-

where Qi(xu, X21, xmi) (i 1,2,...,/») are certain quadratic forms
in m arbitrary parameters in, *21, • • •, xmi Substituting this value of yi in
equation (3.15), we get the equation

(3.20) Q(xn, jC2i, xml) /h~l)(-2k+»

Since Q(xu, x21, xm\) is a quadratic form in m arbitrary variables

xn (i 1,2, m), equation (3.20) is exactly of the same type as

equation (3.13) and is equivalent to the following two equations:

(3.21) Q(xn, X21, xmi) y§

(3.22) y2 /"2)(2Ä+1).
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We now obtain a solution of (3.21) in terms of m new arbitrary parameters

x,2 (i 1, 2, m) and proceeding as before, we substitute the value of y2
in equation (3.22) to obtain the equation

(3.23) Q(X\2- X22, **2) /<ft"2)(2Ä+1)

where x12, x22, • xm2 are m arbitrary parameters. Equation (3.23) is again
of the same type as equation (3.13), and by repeating this process h times,

we will obtain the equation

(3.24) Q(xlh, x2h, ...,xmh)= /*+1,

where x\h, X2h, xmh are m arbitrary parameters.
We can obtain a parametric solution of equation (3.24) as described

in Section 3.2, and working backwards, we successively obtain parametric
solutions of all intermediate equations such as (3.23) and (3.20), and eventually
we obtain a parametric solution of equation (3.13). In general, the values of

Xj (i 1, 2, m) and y given by this solution are in terms of polynomials
that do not have a common polynomial factor. Further, these polynomials may
have rational coefficients but, as already noted, we can readily use such a

solution to obtain a solution in terms of polynomials with integer coefficients.

As an example, a parametric solution of the equation

(3.25) X\ -I- 2Xl + 3*3 - }'"8

obtained by the above method, is as follows:

X\ —x\ + 56xj.x| + 84vf^f — 280x^2 — 840xjx|x?

— 630x^X3 + 224xfxf 4-1008xfx^xf + 1512xfxfx3

+ 756xfxf - 16x| - 96x2X3 - 216x2X3 - 216x|xf - 81x^

X2 8x!X2(—xf + 2x| + 3xf)

x (xf — 12xjx% - 1 Sxfxf + 4x2 + 12xfx| + 9xj),
Xj, 8x1X3 (—X3 + 2x2 ~b 3X3)

x (xf - 12x?xf - 18xfxf + 4xf + 12x2X3 + 9x3),

Y xf + 2xf + 3x|,

where xi, x2 and X3 are arbitrary parameters. Taking xi l,x2 4,X3 2,
we get the following solution of (3.25) in coprime integers:

xi -1497233, x2 2302048, x:3 1151024, Y — 45.

We also note that if we substitute in (3.26) the values of x1; x2 and x3
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obtained by taking a 1, b 2, c 3 in (3.10), we will get a parametric
solution of the diophantine equation

(3.27) X\ + 2Xl + 3*f Y56

While this solution is cumbersome to write, substituting in (3.26) the numerical
values of xi,x2 and *3 stated in (3.12), we find the following solution of
equation (3.27) in coprime integers:

Xi -1131964395580295061121284789093517073064318753427441,

X2 -271146391211682262765778908184694414526742521916520,

X3 -361528521615576350354371877579592552702323362555360,

Y 61.

The above method does not always yield solutions in coprime integers
of a given equation of type (3.13). This is not surprising since, as seen in
Section 3.1, solutions in coprime integers do not always exist. We give below

an example where the parametric solution obtained as described above does

not give a solution in coprime integers.

A parametric solution of the diophantine equation

(3.28) 24 -I- 34 + 74 /
obtained by the above method, is as follows :

xi - 215524 ~ 3234147«| - 3619728«] M]W3 + 76952736«]«?«?

4- 25873176«]M| - 177147«] + 26046048«]«? - 18480840«]«]

- 91161168«]«! + 2112096«f«| - 51152472m?«]«!

4- 137433240m?«!«] + 7715736«I«]M3 — 5630688M?M|M3

+ 966168«]«] - 33030900«?«] 4- 45580584«!«? + 6062364«f«?

4- 1547910«]«] - 1063104«?«3 - 16532208«]«?«?

- 59344488«! «]«] - 25412184«!«?«? + 1102248«?«] + 143136«]«?

x2 24«2(2«i "T 7m3)(—10«? + 56«!«3 — 27«? + 35«?)

x (124«] + 2240«]«3 - 108«?«? - 2604«?«?

4" 6048«I«?M3 — 7840«i M? — 729«] 4" 7182«?«? 4~ 1519«?),
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x3 37968M] H- 5697573M] 4 495331 2M] M]M3 ~ 2401 8624M] M]M]

- 45580584m]M] - 177147M] 4 4224192M]M] 4 32557560M]M]

- 14784672m]«3 - 3720864M]M] - 1441 0872M]u\M]

4" 84280392m]m]m] 4 535377(Su\ m2m3 4 737856m]m]m3 + 476280m]m]

4 2309076M]m] 4 7392336mim] 4 9369108M]M] - 353161 62M]M]

- 17241 6M]M3 - 17675280M] M]M] - 673051 68MIM]M]

4 88037712mim]M] 4 1 57464M]u\ + 252000M]M]

y — 9(2m] 4 3m] 4 7m])

where m1; m2 and m3 are arbitrary parameters. Here the values of x1; x2 and

x3 are always divisible by 3 but not necessarily by a larger factor. Taking
Mi 1, m2 2, m3 3 in the above solution, we get the following solution
of (3.28):

xi —20601098187, JC2 86152445040, x3 65551346853, y 693,

for which gcd(x1; x2, x3) 3.
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