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A FROBENIUS THEOREM FOR CARTAN GEOMETRIES,
WITH APPLICATIONS

by Karin MELNICK*)

ABSTRACT. We prove analogues for Cartan geometries of Gromov's major theorems
on automorphisms of rigid geometric structures. The starting point is a Frobenius
theorem, which says that infinitesimal automorphisms of sufficiently high order integrate
to local automorphisms. Consequences include a stratification theorem describing the
configuration of orbits for local Killing fields in a compact real-analytic Cartan

geometry, and an open-dense theorem in the smooth case, which says that if there is
a dense orbit, then there is an open, dense, locally homogeneous subset. Combining
the Frobenius theorem with the embedding theorem of Bader, Frances, and the author
gives a representation theorem that relates the fundamental group of the manifold with
the automorphism group.

1. Introduction

The classical result on local orbits in geometric manifolds is Singer's

homogeneity theorem for Riemannian manifolds [16]: given a Riemannian
manifold M, there exists k, depending on dimM, such that if every x,y M
are related by an infinitesimal isometry of order k, then M is locally
homogeneous. An infinitesimal isometry of order k is a linear isometry from
TXM to TyM that pulls back the curvature tensor at y and its covariant
derivatives up to order k to those at a. An open subset U Ç M of a

geometric manifold is locally homogeneous if for every x,x' U, there is a

local automorphism f m U with f(x) x'. Such a local automorphism is a

diffeomorphism from a neighborhood V of x in U to a neighborhood of x'
in U, with / an isomorphism between the geometric structures restricted to
V and f(V).

*) Partially supported by NSF fellowship DMS-855735.
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58 K. MELNICK

Gromov extended Singer's theorem to manifolds with rigid geometric
structures of algebraic type in [9, 1.6.G]. He also proved the celebrated open-
dense theorem [9, 3.3.A] and a stratification for orbits of local automorphisms
of such structures on compact real-analytic manifolds (see [9, 3.4] and [6,

3.2.A]). The open-dense theorem says that if M is a smooth manifold with
smooth rigid geometric structure of algebraic type, and if there is an orbit for
local automorphisms that is dense in M, then M contains an open, dense,

locally homogeneous subset A crucial ingredient for Gromov's theorems is

his difficult Frobenius theorem, which says that infinitesimal isometries of
sufficiently high order can be integrated to local isometries near any point
on a real-analytic manifold, and near regular points in the smooth case.

Infinitesimal isometries in this context are a suitable generalization of the

definition in the previous paragraph.
This article treats Cartan geometries, a notion of geometric structure less

flexible than Gromov's rigid geometric structures, but still including essentially
all classical geometric structures with finite-dimensional automorphism groups,
such as pseudo-Riemannian metrics, conformai pseudo-Riemannian structures

in dimension at least 3, and a broad class of CR-structures. The author does not
know whether every Cartan geometry determines a rigid geometric structure
à la Gromov, but strongly suspects not. The central result is a Frobenius
theorem for Cartan geometries (3.11, 6.3), which is considerably easier in this

setting, and is in fact broadly modeled on the paper [12] of Nomizu from
1960 treating Riemannian isometries (see also [3]).

From the Frobenius theorem we obtain the stratification and open-dense
theorems as in [9] for local Killing fields of Cartan geometries (4.1, 6.4). The

embedding theorem for automorphism groups of Cartan geometries proved
in [2], combined with the Frobenius theorem, gives rise to centralizer and

7Ti-representation theorems for real-analytic Cartan geometries (5.4, 5.9), which

can be formulated for actions that do not necessarily preserve a finite volume.

A Cartan geometry infinitesimally models a manifold on a homogeneous space.

Definition 1.1. Let G be a Lie group with Lie algebra g, and P < G

a closed subgroup with Lie algebra p. A Cartan geometry on a manifold
M modeled on the pair (g.P) is a triple (M,Zhu?), where it: B ^ M is a

principal R-bundle over M, and to is a g-valued 1-form on B satisfying

1. tot : TbB —» g is a linear isomorphism for all b B \

2. for all X e p, if Xx is the fundamental vector field on B corresponding
to X, then u^(X?) X at all b £ B,

3. R*ut Ad#-1 ou? for all g £ P.
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A FROBENIUS THEOREM FOR CARTAN GEOMETRIES 59

Definition 1.2. Let (M,B,ut) be a Cartan geometry. An automorphism
of is a diffeomorphism f of M that lifts to a bundle automorphism

f of B satisfying /* OJ — UJ. The group of all such automorphisms will be

denoted, somewhat abusively, by AutM below.

An important fact that will be used throughout the sequel is that AutM,
when lifted to B, acts freely. In fact, a local automorphism / defined on
U C M is determined by f(b) for any b G 7r-1(£/) ; similarly, a local Killing
field X defined on U c M lifts to X on tc~1(U) and is determined by
X(b) for any b 7r-1(t/). This freeness follows from the fact that (local)
automorphisms preserve a framing on B, so act freely and properly (see [10,

1.3.2]).

EXAMPLES. Riemannian and pseudo-Riemannian metrics. The canonical

Cartan geometry associated to a Riemannian metric on Mn is modeled on
the pair (isom(Rrt), 0(n)), where isom(R") is the Lie algebra of Isom(R*)
O(n) ix R" The bundle of orthonormal frames on M is the principal O(n) -

bundle B. The Levi-Civita connection gives an o(ri)-valued 1-form u on B

with the appropriate 0(n) -equivariance. The Cartan connection to is the sum
of v and the n tautological 1-forms on B.

Now if M carries a pseudo-Riemannian metric of type (p. q), where

p + q n, then there is again a Levi-Civita connection. The model pair is

(tsom(Rp^), O(p,q)), and B is the analogous bundle of normalized frames,
in which the metric takes the standard form. Again, to is the sum of the

Levi-Civita connection with the tautological 1 -forms.

The automorphisms of the resulting (M. B.oj) are exactly the isometries

of the metric.

Conformai structures. A conformai Riemannian structure on Mn, n > 3,
yields a canonical Cartan geometry modeled on the round sphere Sn, as

a homogeneous space corresponding to the pair (o(l.rc + l),/>), where

P < 0(l,n +1) Conf Sn is the stabilizer of a point of Sn. It is a parabolic
subgroup isomorphic to (R* x SO(«)) x R". The bundle B is a subset of the

second-order frame bundle of M, comprising 2-jets of local diffeomorphisms
from R" to M that are conformai to order 2 at the origin. The existence of
a canonical form u; on B was proved by Cartan.

More generally, if M has a type-(p,^) conformai structure, p T q > 3,
then there is a canonical Cartan geometry modeled on the pseudo-Riemannian
generalization of the round sphere, namely the Einstein space Einp'q. The Lie

Achevé de composer le 28 juin 2011 à 15 :17



60 K. MELNICK

algebra of Conf Eii/:<? is o(p -I-1 ,q + 1), and the stabilizer of a point is a

maximal parabolic P CO(p,q) ix Rp,q.

The automorphisms of the resulting (M.B.lo) are the conformai transformations

of M.

Nondegenerate CR-structures. These structures model real hypersurfaces
in complex manifolds. A nondegenerate strictly pseudoconvex CR-structure

on a (2m - 1)-dimensional manifold M is the data of a contact subbundle

E cTM equipped with an almost-complex structure J and a conformai class

of positive definite Hermitian metrics. Such a structure is equivalent to a

canonical Cartan geometry modeled on SU(l,m)/F, where P is the parabolic
subgroup stabilizing an isotropic complex line in This homogeneous

space is the boundary of complex hyperbolic space CHm.

More generally, if p + q m — 1, then a nondegenerate CR-structure of
type (p, q) is as above, but with the conformai class of Hermitian metrics of
signature (p.q). One of these structures is equivalent to a canonical Cartan

geometry modeled on SU(/?+l, q+l)/P, where P is again a maximal parabolic
subgroup stabilizing a null line in the standard representation on cm+1.

The equivalence problem for strictly pseudo-convex CR-structures was first
solved by E. Cartan in dimension 3, and in the general case in [5], [17], [4].

Let (M,B, u?) be a Cartan geometry modeled on G/P. We will make the

following standard assumptions on G/P :

1. G is connected.

2. P contains no nontrivial normal subgroup of G. (Suppose that N <] G

were such a subgroup. Then let G' GjN and P' P/N. If (M.B,to) is

a Cartan geometry modeled on (g,R), then lo descends to a g' - valued 1-
form u/ on B' B/N, giving a Cartan geometry (M,B/N. u/) modeled

on G'/P'.)
3. P is an analytic subgroup of G.

In Section 5 we will further assume that AdgP is an algebraic subgroup of
Autg. In this case, the Cartan geometry (M,B,u>) is said to be of algebraic

type.

Acknowledgements. I thank David Fisher for helpful conversations

about this project, and Ben McKay for bringing to my attention an error in a

previous version of this article. I also thank Charles Frances, Gregory Margulis,
and Amir Mohammad! for illuminating conversations on related topics. I am

grateful to the referees for their helpful comments.
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2. Baker-Campbell-Hausdorff formula

The main proposition of this section, Proposition 2.1, asserts that the usual

BCH formula holds to any finite order with cu-constant vector fields on B

in place of left-invariant vector fields. When (M,B,u) is real-analytic, this
formula gives the Taylor series at each point of B for the flow along two
successive a;-constant vector fields, in terms of the exponential coordinates.

For X, Y G q, define

a: 0X0 —> g

(X,Y) I—> logg(expÊ X expe Y),

where expg is the group exponential map 0 TeG —> G, and loge the inverse

of expg. The exponential map of G can be considered a function Gx g —? G,
with

exp(g. X) expß X g expe X.

It is the flow for time 1 with initial value g along the left-invariant vector
field corresponding to X. Note that

expgX • expe Y exp(exp(e,X), Y).

For any k N, there exist functions cii,.... ak, and R of (X, Y) such that

À
a(tX. tY) tai(X, Y) -\ + —ak{X, Y) + ^R{tX, tY),

k\

where

lim R(tXjY) 0.
ts-0

These functions are given by the BCH formula, and they are rational multiples
of iterated brackets of X and Y. For example,

ai(X, Y)=X+Y,
a2(X, Y) [X, Y],

and

m{X, Y) l-([X, [X, Y]] + [Y, [Y,X]]).

For any Lie algebra u, not necessarily finite-dimensional, with a linear

injection p: g —> u, the functions ak define obvious functions ak : p($) —> u,
evaluated by taking iterated brackets in u.
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62 K. MELNICK

In the bundle B of the Cartan geometry, denote by exp the exponential

map B x g —> B, defined on a neighborhood of B x {0}, and by logfc the

inverse of expfc, defined on a neighborhood of b. For any b e B, define, for
sufficiently small X, Y G g,

As above, there exist functions zi, zk, corresponding to the time derivatives

of (b(tX,tY) up to order k, and a remainder function.

PROPOSITION 2.1. Let G be a Lie group with Lie algebra g and (M, B, uj)

a Cartan geometry modeled on (q,P). Let a-K and Zk be the coefficients of
fi/k\ in the respective order- k Taylor approximations of the above functions
a and £&. Then

where X and Y are the u> -constant vector fields on B corresponding to X
and Y, respectively.

Proof. Fix X, Y G g, and let Z(t) (b(tX,tY). The following lemmas

give two different ways to compute, for an arbitrary Ck function ip on B and

b G B, the derivative

(b(X, Y) logfc(exp(exp(b,X), 30).

zk(X. Y) — u)b(ak(X, 30) ;

dk

v?(exp(b, Z(t))).
o

LEMMA 2.2. For X G 0, b G B, and if G Ck(B)

d^
dtk

o

~k
ip(exp(b. tX)) — X f b

Proof. For k — 1

Now let n > 1 and suppose that the formula holds for all k < n

L'Enseignement Mathématique, t. 57 (2011)
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Then

X
«+i x.x

(X .ip)(exp(b,tX))

o

d«+!

_cT

ds*

d*

ds*

^(exp(exp(£>. tX), sX))

p(exp(by (t + s)X))

dun+1
?(exp(b, uX)),

where u t 4- s.

Corollary 2.3. For X, Y g g,

dk

dtk
^>(exp(exp(&. tX), îY)) ^ x". Ym. p

n
' ' £—' m\ n\

0 m+n=k

Proof. By two applications of Lemma 2.2,

— ri —m
X .Y _ _cf

b ds*
(Ym. p)(exp(b, sX)) ~—

dî"
_cf
dtn

p(exp(exp(b, sX), tY))

The desired formula follows.

LEMMA 2.4. Let Z(t) be a curve in g, b B, and <p Ck(B). Then

cr_

dtk ^(exph Z(J)) d^
d/* y; 4 [ää+• • +Ä]w! L fc! J

,n=0

where Z^(0) L the to-constant vector field on B evaluating to

Lü((expbfiz(0)^l>(0)).

Proof. Let c(/) — expb Z(t). Equality is clear when k — 0. When k — 1

the left side is

Z'(0). <p

and the right side is

d

dt
<p(c(oy) 4- tz'ifS).

40)

40)
Z'(0).<p

40)
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64 K. MELNICK

Now let n > 1, and suppose that the formula
curve Z(t). Then

dn+i

dtn+1

d

dt

d

dt

d"

ds"

d"

ds"

Ü
ds"

f(c(s))

f(c(s + 0)

U=o 40

where Z®(r) is the cc-constant vector field evaluating to ^((exp^z^Z^C#
at c(t). Continuing, the last expression equals

~n+1 „d" d

ds" o dt O

d"

ds*
O

Et tsZ'(r)+'
çrt+l

,k=0

rt+1

O + l)!
"+1 i yi+i
> [JZ'(O) + • • • + -Z^+i)(0)l^ (k- 1)! L

Oz + 1)!
J

40.

A-l

\sr\o)

(n + 1)!

£-ZOH^(o) + -4—z(^o)].
«! (n + 1)!

,«+i

c(0)

A
f'+1 1 ji+1
E a» • + + —-j-f^°+1,(0)] • *
k=o ' v A 40)

using that

Z^>>(6>. • • •. <f
40

^ Z<"">(0). • • •. Z<"'-+1)(0). • • •. Z(m'\0). f
1=1

40)

Continuing, we have

r*+iü
dT; E

_A=1

1

(k-l)\
\sZ'(0)

+ c'(0). Z(mi\0). • Z(m'\0)

çrt+l
-z^+fifO)!

40

O + l)!

fZ'CO) + sZ"(0) + • • • + 4z<"+1)(0)l
L MI
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A FROBENIUS THEOREM FOR CARTAN GEOMETRIES 65

0

d«+l

d

ds

«+i

JLsi«»
p/!+l

k=0
n+1

(n+1)!

sn+l

Z^l\0)]k.(p
c(0)

k=0
(«4-1)!

Z<"+1>(0)
<#>)

Now
exp(exp(è>; tX), tY) exp(&. C,b(tX. tY)) expb(Z(t)).

for Z(f) /F). Note that Z^TO) F). Corollary 2.3 gives

_d_
d?* T-(expfc Z(0) ^ Jfc!

r.l n.l r.r. A
0 m+«=A:

On the other hand, Lemma 2.4 gives for the same derivative

JL
dtk

dk
?(expb Z(f)) E 2 F®

L«=o

frZ^(O)]
k\

With these two formulas, the coefficients Z^(0) Zk(X, Y) can be

recursively computed in terms of products of X and Y. Of course, these

formulas hold in the group G with the usual exponential map, so they yield
the same expressions, actually involving brackets of X and Y, for (X. Y)
and Zk(X, Y).

3. FROBENIUS THEOREM

Throughout this section, (M. B, oj) is a Cartan geometry modeled on (g, P).
Soon we will impose the assumption that (M, B. co) is Cw.

The exponential map of (M, B, lo) satisfies the following P-equivariance
relation, which is an easy consequence of part 3 of Definition 1.1 :

exp(i»p-1,X) exp(&, (Adp~1)X)p~1.

The curvature of a Cartan geometry is a g-valued 2-form on B defined

by

Q(X, Y) duj(X, F) + [iü(X). u;(F)].

If X E p, then Q(X,Y) vanishes [15, 5.3.10]. Let

y (A%/PT) 0 g •
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66 K. MELNICK

The form ai gives an identification TB B x g, under which the curvature

corresponds to a function K \ B V

K : b H- (a*"1 o aY'Qf

where a is any linear section g/p —> g.
The group P acts on V linearly by

(p.<p)(u, v) — (Adp o £>)((Adp~l)u, (Adp~l)v),

where Ad is the quotient representation of AdP on g/p. The curvature map
is F-equivariant [15, 5.3.23]:

K(bp~1)=p.K(b).

For m <E N, define the co -derivative of order m of K

DmK : B —> Hom(0mg, V)

DmK(b) : Xi —> (Xi... Xm K)(b)

where, as above, X is the a;-constant vector field on B with value X. Note that

DmK(b) is not a symmetric homomorphism, because the u;-constant vector
fields X do not come from coordinates on B. Neither can it be interpreted
as a tensor on B, because DmK(b) is not linear over the ring of functions

C^iB). It does suffice, however, to determine the m-jet fl'K, because any
vector field on B is a C0C(5)-linear combination of u-constant vector fields.

PROPOSITION 3.1. The lo -derivative is P-equivariant for each m> 0 :

DmK(bp~1') =p o DmK(b) o Adm p~l,
where Adm is the tensor representation on (gm0 of Ad P.

Proof. The assertion holds for m 0 by the equivariance of K cited
above. Suppose it holds for all m < r. Then for any X\,... ,Xr+i g,

(X1...Xr+1.K)(bp-1)= ^ (X2...Xr+l.K){QXV{bp-\tXf))
o

,-utV \„-i-(Xz Xr+1. K')(ßxp(b, (Adp l')tXi)p l)
o

p o (DrA'(exp(^, (Adp~1)tXi))((Adp~1)X2,(Ad/?_1)Ar+1))
o

p o (Dr+1 K(b)((Adp~1)Xi,.. .XMp-^Xr+if)
so by induction it is true for all m > 0.
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DEFINITION 3.2. For m > 1, two points b,b' of B are m-related if

DrK(b) DrK(b')

for all 1 < r < m. They are oo-related if they are m-related for all m.

For Lp E Hom(S''"0, V) and X E 0, the contraction p^X Hom(i8:'"_10, V)
is given by

(<piJO(XU ,XHl) - p{X,Xu.. ..Xr-i)

DEFINITION 3.3. For m > 1, the Killing generators of order m at b E B,
denoted Killm(b), comprise all A E g such that, for all 1 < r < m, the

contraction

DrK(b)tA 0 Hom(^'"~10, V).

The Killing generators at b £ B are

Kill00a?) p| Kill'" (^).
m

Note that Killm(b) is a subspace of g for all m E N U {cc}. Moreover,

Kil\m(bp~l) (AdpXKiir^)).

Then define

km(x) — dim Kill'n(b). and k(x) — dim Kill00^),

for any b E 7r~1 (x). Note that for each m, the function km(x) is lower semi-

continuous — that is, each x E B has a neighborhood U with km(y) < km(x)

for all y E U. The same is true for k(x).

The goal is to show that m -related points, for m sufficiently large,

are actually related by local automorphisms, and that Killing generators of

sufficiently high order give rise to local Killing fields.

DEFINITION 3.4. A local automorphism between points b and b' of B

is a diffeomorphism / from a neighborhood of b to a neighborhood of
b' such that /* UJ — 10. A local automorphism between x and x' in M is

a diffeomorphism from a neighborhood U of x to a neighborhood U' of
x' inducing an isomorphism of the Cartan geometries (U,7ï~1(U):lc) and
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68 K. MELNICK

Definition 3.5. A local Killing field, near b e B is a vector field A

defined on a neighborhood of b such that the flow along A, where it is
defined, preserves cc. A local Killing field near x £ M is a vector field A

near x such that the flow <p'A along A, if it is defined on a neighborhood
U x (—e, e) of (x, 0), gives an isomorphism of the restricted Cartan geometry
on U with the restricted Cartan geometry on *fA(U) for all t £ (—c, c).

Note that a local automorphism between x.x' £ M lifts to a local

automorphism from any b £ tt-1(x) to some b' £ tt-1(x'). Similarly, a local

Killing field near x £ M lifts to a local Killing field near any b £ 7r-1(x).
Local automorphisms and Killing fields on B also descend to M ; further, the

resulting correspondences are bijective, as the next two propositions show.

PROPOSITION 3.6. Let f be a nontrivial local automorphism between

points b and b' of B. Then f descends to a nontrivial local automorphism

f between 7v(b) and Tc(b') in M.

Proof. Denote by P° the identity component of P. In order to ensure that

/ commutes with P, we assume it is defined on a connected neighborhood
U of b with U n UP Ç UP0. The P°-action is generated by flows along the

u! -constant vector fields X* with X £ p. Because f preserves all u> -constant

vector fields, it commutes with the P0-action. Now there is a well-defined
extension of / to UP with fiqp) f(q)p for any q £ B, p £ P. Note that
the extended / still preserves oj : if q £ U, p £ P, then

Xfitp) °f*qp ^f(q)p ° (Rpf °f*q ° (Rp)*1

(Ad/?-1) o Lcf(q) of*q o (.Rp)~l

(Ad/?-1) o o (RpX1

&qp

Now / descends to a diffeomorphism / on tt(U') C M, and this diffeomor-

phism is a local automorphism carrying ir(b) to ~(b').
Suppose that / were the identity on tt(U). Then / would have the form

f(b) b (p o t-)(b)

for p: 7t(U) —ï P. Let N be the subgroup of P generated by the image of p.
We will show N is a normal subgroup of G contained in P, contradicting
the global assumptions on G and P.
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On one hand, f* UJ ÜJ while also

Cf*v)b — (Ad op o 7r)(i>)-1 o ujb + (p o 7r)*

(see [15, 3.4.12]). Then for any F g and x G 7r(U),

Y ((Adop)(x)rlY + (p o tt)*Y.

So (Ad g)(Y) — Y en, the Lie algebra of N, for all g e IV. Since G is
connected, it follows that hgh~l e N for all h e G, g N.

Similarly, because local Killing fields in B commute with u;-constant
vector fields, they commute with the P°-action and descend to M. The local

Killing fields near Hß or x e M are finite-dimensional vector spaces, and

will be denoted Kill/oc(&) and Kill/oc(x), respectively. Let

l(x) dimKill?0C(jc).

Proposition 3.7. For x 7r(b),

Kill loc(b) Killtoc(x).

Moreover, each x M has a neighborhood Ux such that l(y) > l(x) far all
y £ Ux-

Proof. It was observed above that a local Killing field near x lifts to a

unique local Killing field near any b 7r-1(x), and it is clear that this map is
linear. It was also noted above that local Killing fields on B descend to M.
This map is linear, and it is injective by an argument essentially the same as

that in the proof of Proposition 3.6 above. The desired isomorphism follows.
To prove the second statement of the proposition, take a countable nested

sequence of neighborhoods Ut of x with f](- U-, {x}. Let Killf"c(x) be the

subspace of local Killing fields defined on J,. Because Killfc(x) Ç Kill^qQO
and (J, Kill-oc(x) Kill/oc(x), these subspaces eventually stabilize to the finite-
dimensional space Kill/oc(x). Set Ux Uj once Killfc(x) Kill/oc(x).

For any y E Ux, every A e Killtoc(x) determines an element of Kill/ûC(y).

If A Kill/oc(x) has trivial germ at y, then the lift A to B has trivial germ
at any b G 7r_1(j), in which case it is trivial everywhere it is defined. Thus
the map Kill/oc(x) —r Kill/oc(y) is injective for all y G Ux, so l(y) > l(x).

PROPOSITION 3.8. Let (M. B. id) be real-analytic. For any compact subset

L C B, there exists m m(L) such that whenever b,b' EL are m-related,
then there is a unique local automorphism sending b to b'.
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Proof. For each m > 1, denote by 7Zm the Cw subset of B x B consisting
of pairs (b,b') with DmK(b) DmK(b'). Note that 1Zm+1 C 7e"1. By
the Noetherian property of analytic sets, there exists m m(L) such that
7Zk C\(L x L) 7Zm D (L x L) for all k > m.

Now let b,b' L be m-related, so they are in fact oc-related. Recall that

an automorphism is determined by the image of one point, so an automorphism
carrying b to b' is unique. Define a map / from an exponential neighborhood
of b to a neighborhood of b' by

f(expb Y) expè, Y.

Note that f(b) — b' and (f*co)b u>t. For Y 6 g, denote by Y the

corresponding tu -constant vector field on B. Now / is a local automorphism
if for all X, Y g and sufficiently small t,

f*(Y(exp(b, tX))) Y(exp(b'. tX)).

This equation is equivalent to

d

di1

d

Because M is Cw, it suffices to show that for all k> 0,

(1)
_d_

dtk

_d

ds v cf(<p~tp~b) il
dtk

_d

di1

By the BCH formula (Proposition 2.1), the right-hand side is

il
dtk

d

di1

1

0 (k + 1)!
;b>(ak+i(tX,sY)).

Each ak+i(tX,sY) is a sum of (k + l)-fold brackets of X and Y with
coefficients t'sk+1~'/cj, where i is the multiplicity of X, and cf- an integer.
Then

Ü
dtk

_d

d^

k\
ak+1(tX,sY) — [X,... ,X,Y]

o

and the right-hand side of equation (1) is

1

(k+ 1) • ck
u>v[Xy...tX,Y\t

where X appears k times in the iterated bracket.

The left-hand side can be written

Ü
d tk

d

dj flogb' 0 / ° exPfc) ° loghivfyfi'x b~)= ffk
d

ds
Ib^yp'x '
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which, by the BCH formula again, equals

1

Y].
(k + 1) • ck

So it remains to show that these brackets are the same when b and b' are

oo-related. The following lemma completes the proof.

Lemma 3.9. Let

Ak(b) [X,..X, Y] — Lüb [X, ...,X, Y],

where X occurs k times in each iterated bracket. Then A^ obeys the recursive

formula for all k > 1

Ak+1(b) Kb(X, [X,...,X, Y] - Ak(b)) - (X.Ak)(b) + [X, A*(*)].

If b and b' are oo-related, then

{X Ak)(b) (Xr. Ak)(b'~) for all r > 0.

If A is a Killing generator at b, then

(A.Xr. Ak)(b) 0 for all r >0.

Proof We begin with the recursive formula for A* when k 1 :

Afb) [X,Y] — a>h\X, Y]

Kb(X, Y).

For any r > 0 and oo -related b and b',

(Xr. Ai)(b) (Xr. KUX, Y)

(DrKb(X,...,X))(X, Y)

(DrKb'(X,... ,X))(X, Y)

(Xr.A1)(b'),

where X occurs r times in (X,... ,X).
Similarly, if A is a Killing generator at b, then

(A.Xr. Ai)(b) ((Dr+1Kb^A)(X,... ,X))(X, Y) 0.
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Next suppose the recursive formula for Aft holds up to step k. At the next
step,

Ak+1(b) [X, [X,... .X, F]] - ub[X, [X,...,X, F]]

[X, [X,..., X, Y]] - ujb[X, [X, F^X, F]] + tob[X, to'1 o A*]

Kb{X, [X,... ,X, F]) + Wfc[X, uT1 o Aft]

~ Kb(X, [X.... ,X, F]) - Kb(X, Aft(£»)) + (X. Ak)(b) + [X, A*(*)]

Xft,(X, [X,... ,X, F] — Aft(è)) + (X. Ak)(b) + [X, Aft(i?)]

as desired.

Suppose (X Aft)(£>) (X Ak)(b') for all r > 0. Compute

(Xr. Aft+1)(è) Xr. MX, [X,... ,X, Y] - Ak))(b)

+ (Xr+1.Ak)(b) + [X,(Xr.Xk)(b)].

Compute inductively

XX (MX, [X,... ,X, Y] — Ak))(b) (Xr. KUX, [X,... ,X, F] — Aft(è))

r

-^(Xr"'.X),(XT(X'.Aft)(6)).
1=1

By the induction hypothesis on x'.Aft, and because & and 6' are oc-related,
each term in the above sum is the same at b as at b'. Therefore

Xr. MX, [X,... ,X, Y] - Aft))(i?) F. MX, [X,... ,X, F] — A* ))(*>')

and

(F. Ak+1)(b) F. MX, [X,... ,X, F] — Aft))(6')

+ (Xr+1. Aft)(è') + [X, (F. Ak)(b')] (F. Aft+i)(b').

We leave to the reader the verification that if (A .X Ak)(b) 0 for all r > 0

and A is a Killing generator at b, then

(A .X Aft+i)(£>) — 0. for all r > 0.

Here is the analogue of Proposition 3.8 relating Killing generators and

local Killing fields.

PROPOSITION 3.10. Suppose that (M,B,uj) is real-analytic. Then for all
b G B, there exists m m(b) such that each Killing generator of order m at
b determines a unique local Killing field near b.
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d

dtk

Proof. The subspaces Kill (b) eventually stabilize, so there is m
such that Killr(£>) Kill00(b) for all r > m. Let A G Kill°°(£>), so

DrK(b)cA 0 for all r > 1.

Let A(b) — u)flA. Now define A near b by flowing along u;-constant

vector fields: let

A(^yb) <f'yJA(b)).

This vector field is well-defined in an exponential neighborhood of b. Further,

for all F g, the bracket [A, Y](b) — 0.

To show that [A, F] 0 in a neighborhood of b for all F G g, it suffices

to show

(logfc)*([A,K](exp(fc,dO)) 0

for all X G 0 and t sufficiently small. Because M is (W, it suffices to show

ik
(logfr)* ([A, Y](exp(b, tXf)) 0

o

for all k > 0.

As in the proof of Proposition 3.8 above, this equation follows from the

BCH formula and Lemma 3.9. The reader is invited to refer to the proof
of Theorem 6.3 and to complete the present proof. As in Proposition 3.8,

uniqueness follows from freeness of automorphisms on B.

THEOREM 3.11. Let (M, B, u>) be a compact Cw Cartan geometry modeled

on (g,F). There exists m E N such that any Killing generator at any b B

of order m gives rise to a unique local Killing field around b.

Proof Recall that Killm(bp~1) Adp)(Kill'" (£>)). Then Proposition 3.10

above, together with Proposition 3.7, implies that for all x G M, there exists

m(x) such that any Killing generator of order m(x) at any b G 7r_1(x)

determines a unique local Killing field near x in M.
Let Ux be the neighborhood given by Proposition 3.7, on which all

local Killing fields near x can be defined. Shrink Ux if necessary so that

km(x)(y) < km(x)(x) for all y G Ux. We wish to show that m(y) m(x). First,

l(x) l(y) A km(x)(y) ^ km(X)(x).

But l(x') — km(X){x), so /(y) — km(xfy). A local Killing field A near b G tt (y)
is determined by the value iO(A(b)), so Kill?oc(6) maps injectively to Killm(£?)

for any m. If these spaces have the same dimension for m m(x), then

this map is an isomorphism — in other words, every Killing generator of
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order m(x) at any b tx 1(y) gives rise to a local Killing field near y, and

m(y) m(x).
Now take UXl,, UXn a finite subcover of the covering of M by the

neighborhoods Ux. Set m max,- m(x,).

It is well known that for any Cw manifold B equipped with a Cw framing,
a local Killing field for the framing near any b0 B can be extended uniquely
along curves emanating from bo (see [1]). The same is then true in the base

of a Cw Cartan geometry M, because any local Killing field near x0 M
has a unique lift to B, and local Killing fields in B project to local Killing
fields in M. If two local Killing fields of M have the same germ at a point,
then they coincide on their common domain of definition. It follows that if
M is simply connected, then extending a local Killing field along curves from

some xo gives rise to a well-defined global Killing field on M. Then we have

the following corollary.

COROLLARY 3.12. Let (M,B,u>) be a compact, simply connected C
Cartan geometry. There exists m N such that for all b B, every Killing
generator at b of order m gives rise to a unique global Killing field on M,
which in turn gives rise to a 1-parameter flow of automorphisms of M.

4. Stratification theorem in the analytic case

The Kill/oc -relation is the equivalence relation on M with x ~ y if y can
be reached from x by flowing along a finite sequence of local Killing fields.
The Killloc -orbits are the equivalence classes for the Killtoc -relation. The next
result describes the configuration of these orbits in M ; it is a version of
Gromov's stratification theorem for compact Cw Cartan geometries.

The Rosenlicht stratification theorem says that when an algebraic group P

acts algebraically on a variety W, then there exists a P-invariant filtration

U0 C • • • C Uk W

such that Ui is Zariski open and dense in (J/>; Uj and the quotient (/,• -A U-,/P
is a submersion onto a smooth algebraic variety (see [13], [9, 2.2]).

Let W HomK&^g, V), and define O: B -4 W to be the P-equivariant

map sending b to the cv -derivative DmK(b). When (M,B,u,>) is of algebraic

type, the Rosenlicht stratification of VL gives rise to a Kill/oc-stratification
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of M. Recall that a simple foliation on a manifold V is one in which the

leaves are the fibers of a submersion from V to another manifold U.

THEOREM 4.1. Let (M.B.uj) be a C"' Cartan geometry of algebraic
type modeled on (g, P). Suppose that M is compact. Then there exists a
stratification by Killloc -invariant sets

Vo C • • • C Vk M

such that each V-, is open and dense in Up, Vj, and the Killloc -orbits in Vt

are leaves of a simple foliation.

Proof. Let m be given by Theorem 3.11, so that every Killing generator of
order m on B gives rise to a local Killing field on M. Take V-, — 7r(<E>-1 (£/,•)),

where U-, are the pieces of the Rosenlicht stratification for the P-action on
the Zariski closure of <$>(B) in W Hom(&mg, V). Then [J Vt M and

each Vt is open in Up.. Vj. Since <l> is analytic and each Up, Uj is Zariski

closed, Up,- Vj is 811 analytic subset of Up;V/'- Therefore, V, is also dense

in Up,- vj-

The map <E> descends to <$>: M —> W/P. Each quotient U;jP Xt is a

smooth variety. There is the following commutative diagram:

B W

i ^

M W/P
U U

V,- —> Xi.

The fibers of the submersion V,- —> X,- are analytic submanifolds, and the

components of the fibers of <l> foliate V,. Let X[ be the leaf space of this
foliation. The map X\ —> X, is a local homeomorphism, so X\ admits the

structure of a smooth manifold for which the quotient map V, —» X\ is a

submersion.

Now it remains to show that the leaves of these foliations — that is, the

components of the fibers of <l> — are Killtoc-orbits. Let T — O-1(?r0 c B

for w W. Note that T —> tc(T) is a principal bundle, with fiber P(w), the

stabilizer in P of w. For w the projection of w in W/P, each component

of <E> (w) in M is the image under tt of a component of T.
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If each component C of T is a Kill;°c-orbit in B, then each component
7r(C) is a Kill/oc-orbit in M. The tangent space TbC —

1 (Kill'"(&)) for all
b E C. On the other hand,

o^CKiir^)) {X(b) : X 6 Killfoc(£)}

Thus the Killtoc-orbit of b is contained inC.A point b G C has a neighborhood
Nb C C such that any b' Nb equals <fyb for some Y 6 Killtoc(£>). Then

given a C, connect Ho a by a path and cover this path with finitely many
such neighborhoods to reach a from b by flowing along finitely many local

Killing fields.

5. Gromov representation

Let be a compact Cartan geometry of algebraic type modeled

on (q,P). The Frobenius theorem gives local Killing fields from Killing
generators of sufficiently high order. A slight extension of the main theorem

of [2] gives Killing generators of sufficiently high order in p from big groups
H < Aut M. This latter theorem is a version of Zimmer 's embedding theorem

— see [18], [9, 5.2.A] — in the setting of Cartan geometries.

Combining local Killing fields that arise from the embedding theorem with
certain Killing fields from H gives rise to local Killing fields that centralize

fj in Theorem 5.4 (compare [9, 5.2.A2], [20, 4.3]). Local Killing fields that
centralize lift to the universal cover of M and extend to global Killing
fields. The fundamental group T of M preserves this centralizer c, and the

representation of T on c is related to the adjoint representation of H in
Theorem 5.9, a version of Gromov's representation theorem [9, 6.2.D1], In

our centralizer theorem, the group H < Aut M is not assumed to preserve a

finite volume. In neither the centralizer nor the representation theorem is it
assumed simple; see [11] for some related statements on existence of Gromov

representations for simple H without a finite invariant measure, in the setting
of Gromov's rigid geometric structures.

5.1 Embedding theorem

If H is a Lie subgroup of AutM, then the Lie algebra t) can be viewed

as an algebra of global Killing fields on B. If b e B and A is a nontrivial

Killing field on B, the evaluation X(b) t 0. There are therefore for each

b G B linear injections ib f) —^ S defined by

ib(X) ujb{X).
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The embedding theorem relates the adjoint representation of H on f) with
the representation of a certain subgroup of P on /,&(ft). The key ingredient in
the proof of the embedding theorem is the Borel density theorem. It essentially

says that a finite measure on a variety that is invariant by an algebraic action
of a group S is supported on S-fixed points. One must take care, however,
that S has no nontrivial compact quotients.

Definition 5.1. Let H be a Lie group. A Lie subgroup S < H is

discompact if the Zariski closure Zar(Ad(} S) has no nontrivial compact
algebraic quotients.

The following statement is a consequence of the Borel density theorem
and appears in [2, 3.2].

THEOREM 5.2 (see [7, 2.6] and [14, 3.11]). Let tp: S -4 AuttL for S a

locally compact group and W an algebraic variety, and assume that Zar(L(5))
has no nontrivial compact algebraic quotients. Suppose S acts continuously
on a topological space M preserving a finite Borel measure p Assume
d>: M —> W is an S-equivariant measurable map. Then d>(x) is fixed by
ZarO/'OS)) for p.-almost-every x G M.

Now we can state the embedding theorem that will be needed.

THEOREM 5.3. Let (M, B, to) be a Cartan geometry of algebraic type
modeled on (q,P). Let H < Aut M be a Lie group and S < H a discompact
subgroup preserving a probability measure p on M. Denote by S the Zariski
closure of Adj, S. For any m > 0, there exists À C B with p(M \ ?r(A)) 0,
such that to every b A corresponds an algebraic subgroup Sb < Adg P with

(1) Sb(Lbm Lb(t));

(2) the representation of Sb on /,&(()) is equivalent to S on t) ;

(3) Sb fixes DrK(b) for all 0 < r < m.

The proof is the same as in [2], except that we apply Theorem 5.2 to
strata in the P-quotient of the variety

W Mon({). g) x V x • • • x Horn(0^0, V),

where Mon(f), g) consists of the injective linear transformations from I) to g.
The variety W is the target of the F-equivariant map

ô(b)=(tb,K(b\...,DmK(b)).
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The action of S on W is by

'j(pj PO-, • • • ; pm) — (p ° 0 • POi Pm)

The action of p E P on Mon(t),g) is by post-composition with Adp. Then

p acts on the first factor of W by this action, and on the remaining factors

by the actions defined in Section 3 above: for p E HomCG^g. V),

p - P p o p o Admp~l.

Note 6 is P-equivariant.

Let 41. M —> W/P be the map induced by 6] it is 5-equivariant. By
Theorem 5.2, for p-almost-every x, the point 6(x) is fixed by S. Let x be

such a point, and let b E 7r_1(x). Then define

Sb {p £ AdgF : p. 6(b) g. 6(b) for some g S}

Then Sb satisfies conditions (1 )—(3) of Theorem 5.3.

5.2 Centralizer theorem

The group Sb gives rise, via the Frobenius theorem, to elements of the

stabilizer of 7-(b), which in turn give local Killing fields commuting with t).

Denote by M the universal cover of M and by q the covering map. Denote by
c the Lie algebra of global Killing fields on M commuting with the algebra
f) of Killing fields lifted from the //-action on M. Let s be the Lie algebra
of S. Given a point y of a manifold N and an algebra u of vector fields,
denote by u(y) the subspace of TyN consisting of values at y of elements

of u.

THEOREM 5.4. Let (M. B.: Oj) be a compact Cw Cartan geometry of
algebraic type. Let H < Aut M be a Lie group and S < H a discompact
subgroup preserving a probability measure p on M. Then for p, -almost-every

x E M, for every x E q~1(x), the subspace £>(x) C c(x).

Proof. The ideas of the proof are the same as Zimmer 's [20]. Let m be

given by Theorem 3.11, so that any Killing generator of order m at any b E B

gives rise to a unique local Killing field. Let x belong to the full-measure set

A as in the embedding theorem 5.3, and let b E tt~1(x). Denote by s the

Lie algebra of Sb, and by pb the Lie algebra homomorphism of s onto s,
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the Lie algebra of S. For any X es and 0 < r < m,

DrK(b\X (X*. D'-1 K)(b) -X. (Dr~lK(b)) 0

by P-equivariance of Dr~1K. Therefore s C KilT"(&). Now the Frobenius

theorem guarantees, for each X e s, a local Killing field X* near b with
u,'t,(X*) X. Because X*(b) is tangent to the fiber over x, the local Killing
field near x induced by X* fixes x.

Let Kef), viewed as a Killing field on B. Compute

duXJT, Y) r.w(F) - (Lyu>)(X*)

X*.oj(Y)

(Lx*üj)(Y) + LÜ[X*,Y]

io[X\Y].

On the other hand, since tob(X*) e p, the curvature Q,b(X*, Y) 0, so

Lüb[X*, Y] dcob(X\ Y)

[u>b(X%ojb(Y)]=[X,tb(Y)]

ib((pbX)(Y)) tüb((pbX)(Y)).

Both [X*, Y] and (pbX)(Y) are local Killing fields. They are detennined by
their values at any point of B, so they must be equal. We conclude that for
all Kef),

[X*,n=(pbX)(Y).

Now, given X e s and x M satisfying the conclusion of the embedding
theorem, choose any b e n~1(x) and let F* be the local Killing field on M
fixing x with (pb o ub)(Y*) ad^X. Then define Xe X — Y*. It is a local

Killing field near x satisfying

• WO) ~ X(x) - K*Oc) X(x)
• for all W e Ï),

[Xe, W] [X- Y*, [X, W] - ((pb o u>b)(Y*))(W) 0.

Now Xe lifts to a local Killing field near any x e M. Because M is real-

analytic and simply connected, there is a unique global extension of Xe to
M, which will also be denoted Xe. Now Xe e c, and Xe(x) X(x). Such an
Xe exists for any X e s, so the theorem is proved.
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5.3 GROMOV REPRESENTATION

We first review Zimmer's notion of the algebraic hull of a measurable

cocycle. Two references on this subject are [19] and [8].

Definition 5.5. Let S be a locally compact group acting on a topological

space M preserving an ergodic probability measure p. Let L be a topological

group. An L-valued measurable cocycle for the 5-action on M is a measurable

map a: S x M —> L satisfying

a(gh.x) a(g,hx)a(h,x)

for all g.h e S and almost-every x M.

Definition 5.6. Let 5 be a locally compact group acting by automorphisms

of a V-vector bundle E over a topological space M. Suppose that S

preserves an ergodic probability measure p on M. A measurable trivialization
of £ is a measurable map t: E —» M x V of the form t(x. v) — (x, txv), where

tx is a linear isomorphism Ex -x V for almost-every x.

A measurable trivialization t gives rise to a GL(V)-valued measurable

cocycle at where

t(g(x, v)) (gx, a(g,x)(tx u)).

Definition 5.7. Let S, M, g, V, and E be as in the previous definition. The

algebraic hull of the S-action is the minimal algebraic subgroup L < GL(V)
for which there exists a measurable trivialization t of E with at(S x M) Ç L.

The algebraic hull is well defined up to conjugacy in GL(V) ; this is a

consequence of the Borel density theorem. See [19].
We will need the following fundamental facts about the algebraic hull. A

virtual epimorphism of algebraic groups is a homomorphism a: L\ —> Lz for
which a(Li) is a Zariski dense subgroup of L2 of finite index.

PROPOSITION 5.8. Let S,M,p,V, and E be as above.

(1) Let M be the universal cover of M, T tti(M), and S the connected

group of lifts of S to M. Let p: T —> GL(L) be a representation and let
E M Xp V. Then S acts by automorphisms of E, and the algebraic hull is

contained in Zar(p(r)).
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(2) Let Eq be an S-invariant subbundle of E. There is a virtual
epimorphism from the algebraic hull of S on E to the algebraic hull of
S on Eq.

(3) Let Eq be as above, and let E' EjEq There is a virtual epimorphism
from the algebraic hull of S on E to the algebraic hull of S on EJ.

(4) Suppose there is a trivialization t of E in which afy.x) p(y) for
p: S -H GL(V) a homomorphism. Then the algebraic hull of the S-action is

Zar

Proof For (1), note that S commutes with F, so the S-action on M x V

by y(x, v) (yx.v) commutes with the F-action on the product. Then the

5-action on M x V descends to E. The rest is Proposition 3.4 of [20], or
Exercise 6.5.3 of [8] ; it involves straightforward arguments with measurable

cocycles.
Items (2), (3), and (4) are straightforward; they appear as Propositions 3.3

and 3.5 of [20]. See also Lemma 6.5.4 of [8].

Let S < AutM be as above. Denote by 5X the Lie algebra of the stabilizer
in S of x M. Suppose that sx is an ideal so <1 s. Then denote by
J(S.x) Zar(Ad5), where Ad is the representation of S on s/so obtained

as a quotient of the adjoint representation.

THEOREM 5.9. Let (M, B, cc) be a compact Cu Cartan geometry of
algebraic type. Let S < Aut M be discompact, and suppose that S preserves
a probability measure p on M. Then for p-almost-every x E M, O 5,
and there is a representation p of ir\(M) T for which Zar(p(r)) contains

a subgroup with a virtual epimorphism to J(S,x).

Proof. By decomposing p. into ergodic components if necessary, we may
assume that p is ergodic.

We first present the standard argument due to Zimmer that almost every
stabilizer is an ideal. Let Gr*(s) denote the Grassmannian of dimensional

subspaces of s, and define

The group S acts on W Grs via Ad5, and Zar(Ad5) has no compact algebraic

quotients by the discompactness assumption. The map ip is 5-equivariant.
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The Borel density theorem 5.2 thus applies, and for -aimost-every x, the

stabilizer sx is Ad S-fixed — in other words, it is an ideal so-

Now suppose that sx So <1 s and in addition that x satisfies the conclusion

of the centralizer theorem 5.4, so s(x) c c(x) for every x 6 q~1(x). Because

the Killing fields of s on M are lifted from M, they commute with F.
Therefore the centralizer c is normalized by F. Let p be the representation
of T on c. By Proposition 5.8(1), the algebraic hull of S on E M xp c is
contained in Zar(p(r)). Note that in fact the 5-action on E factors through S,
because any element of SDT ker(5 —> S) centralizes c.

Denote by TO the tangent bundle to S -orbits in M

TO {(x, F(x)) : xGM. Fes}.
There is an obvious measurable trivialization t : TO —> M x s/so in which
the cocycle for the .5-action is a(g, x) Ad g. Then by Proposition 5.8(4),
the algebraic hull of S on TO equals J(S,x).

The evaluation map e: Mxc^ TM with e(x. Y) F(x) descends to an

5-equivariant map t\E—> TM. The kernel Eq is an S -invariant subset of E,
in which each fiber (Eq)x is a vector subspace of Ex. The dimension of (Eo)x
is S -invariant, so we may consider Eq a subbundle of E. The algebraic hull
of S on E virtually surjects onto the algebraic hull of S on E' E/Eq by
Proposition 5.8(3).

The map e factors through an isomorphism almost-everywhere from
E' E/Eq to an S -invariant subbundle ~(E) of TM, so the algebraic hulls on
these two are isomorphic. But Z(E) also contains the S-invariant subbundle

TO, so the algebraic hull of S on ?(£) virtually surjects onto the algebraic
hull of S on TO by Proposition 5.8(2).

We conclude that the algebraic hull of S on E, which is contained in

Zar(p(r)), virtually surjects onto J(S,x), as desired.

COROLLARY 5.10. Let S < Aut M be semisimple with no compact local

factors. Suppose that S preserves a finite volume form on M. Then there is

a representation p of 7Ti(M) T for which Zar(p(r)) contains a subgroup
with a virtual epimorphism to Zar(AdS).

Proof. Let p be the finite measure determined by the S -invariant volume

form on M. There are only finitely-many nontrivial ideals of s. For each

nonzero ideal sx, the fixed set has empty interior (see [2, 7.1]). The

5-action is thus locally free — that is, sx 0 — almost everywhere. Then

J(S.x) Zar(Ad5). Since also S is discompact, the corollary follows from
Theorem 5.9.
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6. FROBENIUS AND OPEN-DENSE RESULTS IN SMOOTH CASE

The analytic Frobenius theorem says that a Killing generator at any x 6 M
gives rise to a local Killing field. In this section we show that Killing generators
of smooth Cartan geometries still give rise to local Killing fields on an open
dense subset of M, consisting of the regular points. Recall that k(x), for
x G M is the dimension of Kill°°(&) for any b G 7r_1(x).

DEFINITION 6.1. Let (M,B,oj) be a C°° Cartan geometry. The regular
points of M are those x G M for which k(x) is locally constant.

Because k(x) is lower semicontinuous, the regular points are an open,
dense subset of M.

PROPOSITION 6.2. Suppose that, for X G g, the curve 7(f) — exp(b,tX)
consists of regular points for all t G [—1,1]. Then there exists m such that

Kill'"(7(0) Kill00'(7(0) for all t G [—1,1]. Moreover, for any b G B and
A G Kill00(b),

co^ip'^A) G Kill°°(7(0)

for all t G [ — 1,1] •

Proof. Let m(b) be such that kr(b) k(b) for all r > m(b). For all t
sufficiently small,

k<MO) < km(b}fft)) < km(b)(by k(b).

The regularity assumption means k(y(t)) k(b), so km(b)(y(t)) k(y(t))
for all t sufficiently small. Now repeating the argument along the compact
curve 7 shows that km(b)(y(t)) — k(y(t)) for all t G [—1,1], and KjILiSL)) —

Kill00(7(0) for all r > m(b).
Let as above V /\2(g/p)* <8> 0, and for r G N, let

W 0 HomC^'g, V),
i=0

where we set C|O0 R. For leg and (Ko,..., Kr) G W, write

(K0,Kr)iJi (ATilX, Kr\_X) G W~l -

Now denote as usual by K the curvature function B —> V. For b G B, let

VK(b) (K(b),... ,DrK(b)) e W
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and

Crb: 9 —» Wr_1

X I—> VrK(bXX.

The kernel of Crb is KiH'(è). By the discussion in the previous paragraph,
ker C'"^ ker for all t. Therefore, the functionals on g appearing

in the decomposition of in terms of a basis of Wm(b) are linear

combinations of the functionals appearing in any decomposition of in
terms of any basis of

Denote A(t) and by A the corresponding vector field

along 7. Then, for each 1 < r < m(b),

^ (DrK(MOXA(t)) (x.A.Dr~lK) (7(0)

(A.X.Dr~lK) (7(0)

(D'+1Ä'(7(0)LA(0) lX

using that [X,A] 0. There results a system of ODEs

as r ranges from 1 to m(b). At t 0, all Cf/(0)(A.(0)) 0. Then

C;(0G4(0) WK(7(t)XA(t) 0

is the unique solution for all 1 < r < m(b) 4- 1, and A(0 Killm(&)(7(0)
Kill00 (7(0) for all t.

THEOREM 6.3. Let be a C°° Cartan geometry and let U Ç M
be the set of regular points. For each component Uq Ç J, there exists

m m(Uo) such that every Killing generator of order m at any b G ir~1(Uo)

gives rise to a unique local Killing field near 7\(b).

Proof. Let b G Uq, and let m be such that Kill"1 (6) Killoc(i?). Then

by Proposition 6.2, for all b' Uq, there is also Killm(b') Kill00(b'). So it
suffices to show that any Killing generator at a point lying over the regular
set determines a local Killing field.

Let A G Killx(b) for b G 7r-1(£/). As in the proof of Proposition 3.10,

we define a vector field A in an exponential neighborhood of b by
A(exp(b,tX)) pL A. By Proposition 6.2, tc(A) is a Killing generator

X *
everywhere it is defined.
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To show that A descends to a local Killing field near 7-(b), it suffices

to show it is a local Killing field near b. Then we must show that for any
Y.X g and sufficiently small T, the bracket

[A F](exp(fc, TX)) 0.

We will show that, in the chart logfc, this field satisfies the ODE

logfc* ([A, F](exp(M*))) =0.

Because the initial value at t 0 is zero, this will imply vanishing for all t.
Let b(J) exp(b, TX) and W7 (logfe o expfc(7})*. Then

[A, F](exp(M*))) ^ log»* [A Y](exp(b.,(T + t)X))

So it suffices to show that for each T

d

d/

Now

Q¥t o logKT)A{[A, Y](exp(b(T),tX))

log*7> [[A,Y](exp(b(T\tX))) =0.

SKT)*(Ia> y](^p(KT)JX))) s~SA(<plfb(T))) - A{if^b(jy)b(7j*

d_

ds
,~.s A

ib(T)* A'yA'X*

where

Z(u s) (logb(T) o ^)(b(T)) Çb(T)(tX, sY)

as in the BCH formula. Write Ar A(b(T)). Now

(2) 1o8&(7> ~ ^t,s)S^T\
d

(3)
du

dogHT) °TSy 0 ^~)(^(T))1 - (logwri o<plt JJAr).b(T) rz(t,sy

Let c(u) ip~b(T) • The first term of (3) can be written

(4)

(5)

d_

du
~{(}ogb(T) o expc(t()) o (logc(K) o<p'? o pL)) (c(u))}

d

du
(logiKT) 0 exp^«)) (ZQ(M)) + —

du
Zu(t, s),
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where Zo(t,s) Z(t,s), and

Zu(.t, s) 0-Ogc(u) ops~ o <p~Xc(u)) CC(u)(tX, sY).

Now the first term of (5) is

d

du
(logb(T) o QXpc(u)) cz0(t,s))= -f-

du
0ogKT) °

(logwnov4. J*(Ar).
Thus the first term of (5) cancels with the second term of (3), and we are

left to show

d d d

d/ o d* o du

d d d

d o d* q du

We have

d d d d (d d

d?
o d* 1

3l"Ö
o o V dr o d*

Cc(u)(tX, sY) 0.

C^b(T)(tX.,sY)
1 0 0

*

~^b(T)[X, Y]

[X, Y] - K^KT){X, Y)

d

du 0

_
1 d

2 du

XkÀ.K)bina,Y) &,

because A(b(T)) is a Killing generator.

THEOREM 6.4. Let (M, B, uj) be a C^- Cartan geometry of algebraic

type. Suppose that M contains a dense Kill oc -orbit. Then M contains an

open, dense, locally homogeneous subset.

Proof. Let Ö C M be a dense Kill'**-orbit. Because the regular set U
is open and Kill?oc-invariant, it contains O. Because O is connected, (J has

only one component. Let m be such that for all b ir~1(U), any Killing
generator of order m at b gives rise to a local Killing field near iv(b) (such

m exists by Theorem 6.3).
The map <E>: B —y Homfcg^g, V) gives rise to a stratification as in

Theorem 4.1,

V1c---CVk=M,
such that O is a smooth map of each V, onto a smooth variety. Because

V\ is open and Killtoc-invariant, it contains Ö. Therefore, V\ fi U is open
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and dense. The same argument as for Theorem 4.1 shows that components
of fibers of <0 in VlD U are Kill?oc -orbits, and they are closed in Vfi. Then

O ö n Vi n u Vi n u,

so Ö is an open, dense, locally homogeneous subset of M.

QUESTION 6.5. This question is asked in [6, Section 7.3] : Can the

conclusion of Theorem 6.4 above be strengthened to say that M is locally
homogeneous

The forthcoming corollary gives a positive answer in a very special case.

For (M.B.to) a Cartan geometry modeled on (g. F), the tangent bundle TM
can be identified with B xP(g/p) (see [15, 4.5.1]). The Cartan geometry
will be called unimodular when the representation of P on g/p has image
in SL(g/p). In this case, there is a volume form on (M.B.uj) preserved by
AutM.

COROLLARY 6.6 (see [2, 1.8]). Let {M.B.uj) be a compact, simply
connected, unimodular, C'*° Cartan geometry ofalgebraic type. Let H < AutM
be a connected Lie subgroup. If H has a dense orbit in M, then M is

homogeneous : there exists H' < Aut M acting transitively.

Proof. If H has a dense orbit in M, then there is a dense Killloc-orbit
in M. By Theorem 6.4, there is an open dense Killloc -orbit U Ç M. But
all local Killing fields on M extend to global ones because M is C0J and

simply connected (see [1]), and they are complete because M is compact.
Then the volume-preserving automorphism group of M has an open orbit.
The conclusion then follows from Theorem 1.7 of [2],
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