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CONTINUA AS MINIMAL SETS OF HOMEOMORPHISMS OF S2

by Shigenori Matsumcto and Hiromichi Nakayama

ABSTRACT. Let / be an orientation preserving homeomorphism of S2 which has

a continuum X as a minimal set. Then there are exactly two connected components
of 5" \ X which are left invariant by / and all the others are wandering. The
Carathéodory rotation number of an invariant component is irrational.

1. Introduction

Let / be an orientation preserving homeomorphism of S2 which has a

continuum X as a minimal set. By a continuum we mean a compact connected

subset which is not a single point. There are a great variety of examples of
such homeomorphisms. The simplest one is an irrational rotation on S2, with
a round circle as a minimal set. Besides this, a pathological diffeomorphism
of S2 is constructed in [Ha] which has a pseudo-circle as a minimal set. See

also [He] for a curious diffeomorphism. Also a homeomorphism of S2 with
a minimal set homeomorphic to a variant of the Warsaw circle is constructed

in [W]. The fast approximation by conjugacy method is discussed in [FK],
which may produce such diffeomorphisms with various topological natures.

In all these examples the minimal sets X separate S2 into two domains.

So it is natural to ask if this is the case with any minimal continuum. It is well

known that for any n E N, there is a continuum X in S2 which separates S2

into n open domains U\,... .U„ such that the frontier of each U; coincides

with X ([K]).
A connected component U of S2 \ X is called an invariant domain if

f(J U, a periodic domain if fnJ U for some n > 1, and a wandering
domain otherwise.
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374 S. MATSUMOTO AND H. NAKAYAMA

THEOREM 1.1. Consider an orientation preserving homeomorphism of S2

which admits a continuum as a minimal set. Then there are exactly two
invariant domains and all the other domains are wandering. The Carathéodory
rotation numbers of both invariant domains are identical and irrational.

The overall strategy to prove Theorem 1.1 is to use the Carathéodory

prime end theory and to apply the Cartwright-Littlewood theorem. Sections 2

and 3 are expositions of the prime end theory and the Cartwright-Littlewood
theorem, which are included since they are short and self-contained, and some

special features pointed out in these sections are needed in the development
of Section 4, which is devoted to the proof of Theorem 1.1. Both Sections 2

and 3 concern simply connected domains of closed oriented surfaces of any

genus, and Section 4 solely orientation preserving homeomorphisms of the

sphere S2. In Section 5 we will construct a homeomorphism which actually
admits a wandering domain.

2. Pride ends

Denote by 2 a closed oriented surface equipped with a smooth Riemannian

metric g and the associated area form dvol. Let U c 2 be a hyperbolic
domain, i.e. an open simply connected subset such that 2\U is not a singleton.

(A nonhyperbolic simply connected domain exists only on the 2-sphere.) The

purpose of this section is to show that a homeomorphism of U which extends

to a homeomorphism of the closure U does extend to a homeomorphism of the

so called Carathéodory compactification U, a closed disc. Here we are only
concerned with a simply connected domain in 2. But there are generalizations
to more general domains, which can be found in [E] and [M]. As general
references of prime end theory, see also Sect. 17, [Mi] and Chapter IX, [T].
The proof of the main lemma here (Lemma 2.2) is taken from [E].

Let 0 U be a base point. A real line properly embedded in U and

not passing through 0 is called a cross cut. A cross cut c separates U

into two hyperbolic domains, as can be seen by considering the one point
compactification of U and applying the Jordan curve theorem. The one not
containing 0 is called the content of c and denoted by U(c). A sequence of
cross cuts is called a chain if c;+1 C £/(cf) for each i. Two chains {c,-}
and {c- } are called equivalent if for any i, there is a j such that cj c U(cf) and

Cj C U(c'j). An equivalence class of chains is called an end of U. (This is quite
different from the notion of ends for general noncompact spaces developed by
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Figure 1

Topological chains

H. Freudenthal et al., and set out e.g. in [E2].) A homeomorphism between

two hyperbolic domains induces in an obvious way a bijection between the

sets of ends. Given an end £, the relatively closed set C(£) n,(/(c,) is
independent of the choice of a chain {c,} from the end £, and is called the

content of £.

A chain {c,} is called topological if the closures c, of c, in 21 are mutually
disjoint and the diameter diam(c() converges to 0 as i oc. Examples of

topological chains, {c,-} and {cj}, are given in Figure 1. An end is called

prime if it admits a topological chain.

LEMMA 2.1. The content C(£) of a prime end £ is empty.

Proof. Assume the contrary and choose a point x from C(£). Consider

an arc 7 in U joining 0 to x. See Figure 2. Then the distance from a

point in 7 to 21 \ U is a continuous function on 7, and thus has a positive
minimum. This contradicts the assumption that £ is prime.
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376 S. MATSUMOTO AND H. NAKAYAMA

A positive valued continuous function p on U is called admissible if

/ p2dvol < oc
Ju

Given a subset c in U, p-diam(c) denotes the diameter of c with respect to
the Riemannian metric p2g. (Function theorists often denote the same metric

by p\dz\ -) An end £ is called conformai if for any admissible function p
there is a chain {c,-} representing £ such that p-diam (ci) —> 0.

If 4>: U —¥ V is a conformai equivalence and if p: V —y (0.oo) is
admissible, then the function a: U —> (0,oo) defined by a(z) p(J>(.z))\4>'(z)\

is admissible, and for c C V, we have p-diam(c) rr-diam(c6_1(c)). This
shows that & induces a bijection between the sets of the conformai ends of
the two hyperbolic domains.

LEMMA 2.2. An end £ is prime if and only if it is conformai.

Proof. First of all assuming that £ is a prime end which is represented

by a topological chain {c,}, we shall show that £ is a conformai end. By
passing to a subsequence one may further assume that ct converges to a

point xo. Since xo belongs to at most one c,, one may also assume that

xo ^ Cj for any i. Take polar coordinates (r,B) around xq. Let p be an

arbitrary admissible function on U, extended to the whole 2 by letting p 0

outside U. Then by the Schwarz inequality

(/ / p(r,ß)rdßdr)Z < ne2 p2dvol.
Jo Jo Jr<c

Since p is admissible, Jr<( p2dvol -AO as e —> 0, and we have

~ I P(r: 0)rd$dr —5- 0 (e —5-0).
f Jo Jo

Therefore we can find a sequence e* £ 0 such that

I P^Aki 0) tfcdO —y 0 (Je —-y oo).
Jo

Notice that the left-hand side above coincides with the p -length of the union

of arcs {r e*} fl U.
Now from the sequences {c,-} and {e-K}, let us construct subsequences

{c-} and {dk\ in the following fashion. See Figure 3. First define c[ ci
and choose to be any e-K from the sequence such that c\ Pi {r < } 0.
Then choose c'2 to be any c, from the sequence such that c'2 C {r < e'j [.
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Next choose t'2 such that c2 H {r < e'2} 0, c3 such that c3 c {r < ei,},
and so forth.

Then there is a connected component c" of {r e •} n U which separates
the cross cut c'i+1 from c\. To see this, construct a graph r ; the vertices are

connected components of U \ {r ej} and the edges connected components
of U fl {r e't) See Figure 4. By a transversality argument any two distinct
vertices can be joined by a finite edge path. Actually T is a tree, since U
is simply connected and any edge corresponds to a cross cut of U. Thus

Figure 4
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378 S. MATSUMOTO AND H. NAKAYAMA

there is a unique shortest edge path joining the two vertices corresponding
to the components, one containing c-, the other c-+1. The component c'(

of U fl {r c-} corresponding to any edge of a separates c'i+l from c\.
Clearly the chains {c-} and {c-'j are equivalent and the latter satisfies p-
diam(c") —> 0, showing that £ is conformai.

Next assume that £ is conformai. First of all if we choose an admissible
function po which is constantly equal to 1 on U, we can find a chain {ct}
such that diam(c() —»0 as i —» oc. Passing to a subsequence if necessary, one

may assume c(- —> xq Again let (r. 9) be the polar coordinates around xq
Define a function p by

-—- otherwise.
log 2

Computation shows that the restriction of p to U is admissible. Now for any
small e > S, the p-distance of the e -circle and the i)-circle is given by

which diverges to oc if we fix e and let <5 —> 0. Let c- be a chain

representing £ such that p-diam(c-) —» 0. Since p is bigger than a constant

multiple of p0, this implies also that diam(c-) —s* 0.

First consider the case where c- converges to xq (passing to a subsequence).
See Figure 5. The above computation shows that for i large enough c- is

p(r, 0)
—7-— if r < 1 /2

r log r
2

r= 1/2

Figure 5

U with the metric pg2 (p-diam c\ —> 0)
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a compact subset of {0 < r < 1/2} and we can take a subsequence such

that the closures c- are mutually disjoint Thus we obtain a topological chain

representing £.
In the remaining case, we may assume that c\ converges to a point xi

distinct from xq See Figure 6. We shall still use the polar coordinates (r, 9)

around xo. Recall that we have another chain {c,} converging to xq. The
chain {c,-} has no particularly good property other than diam(c() -A- 0. In
the worst case xq may belong to any c,. However passing to subsequences
of {c\} and {c,} (denoted by the same letters) and choosing a sequence of
positive numbers e,- 0, we may assume the following:

(1) the cross cut c, is contained in {r < q} ;

(2) all the c- are disjoint from {r < c\} ;

(3) the sequence c[, ci.c^ C2, • • • forms a chain.

Then there is a component c'/ of {r e,} HU which separates c,- from c-.
The chain {c-'j is the desired topological chain.

A cross cut c: R -¥ U is called extendable if the limits lim^-oo c(t) and

lim^.^c c(t) exist. Then c is either a compact arc or a Jordan curve in 2.
A topological chain {c,-} is called extendable if each c4- is extendable. The

proof of the above lemma also establishes the following lemma useful in the

sequel.

Figure 6
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LEMMA 2.3. A prime end is represented by an extendable topological
chain.

For a hyperbolic domain U of 2, denote by V{U) the set of prime ends

of U. The union U V U P(U), topologized in a standard way, is called
the Carathéodory compactification of U. Let us explain it in more detail.

A neighbourhood system in U of a point in U is the same as a given system
in U. Choose a point £ e 'P(U) represented by a topological chain -{c,}. The

set of points in the content t/(c,), together with the prime ends represented

by topological chains contained in U(cj) for each i, forms a neighbourhood
system of £.

Lemma 2.2 shows that a conformai equivalence é: U —> V extends to
a homeomorphism <p: U —> V. In particular U is homeomorphie to D by
the natural extension è of a Riemann mapping è\ U ^ D, and for D it
is clear that D is homeomorphic to the closed disc D U ci^D. Thus U
is homeomorphic to a closed disc for any hyperbolic domain U. On the

other hand by the definition of topological chains, a homeomorphism / of
U which extends to a homeomorphism of the closure U does extend to a

homeomorphism f of the compact disc U. Especially important is the rotation
number of the restriction of / to 'P(U), which is called the Carathéodory
rotation number.

A proper embedding 7: [0. 00) -A U is called a ray. A ray 7 is said to

belong to a prime end £ if £ is represented by a chain {c,} and for any i,
there is t > 0 such that 7[7 00) c L(c,). The ray 7 is called extendable if
the limit lim,-^ 7(0, called the end point of 7, exists. The end point of an

extendable ray in U belongs to the frontier Fr(U).
A prime end £ of U is called extendable if there is an extendable ray

belonging to £. Denote by EV(IJ) the set of extendable prime ends.

LEMMA 2.4. The end points of two extendable rays 7,- (i 1.2) belonging
to the same prime end £ coincide.

Proof. The end point of 7, is the limit point of any topological chain

representing £.

Lemma 2.4 enables us to define a natural map <I>: EV(U') -a Fr((/).

LEMMA 2.5. Any extendable ray belongs to some prime end.

L'Enseignement Mathématique, t. 57 (2011)
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Proof. Given an extendable ray 7 with end point x Fr(t/), one can
construct a topological chain from the concentric circles centered at x, by
much the same argument as in the proof of Lemma 2.2.

The above lemma says that a ray 7 extendable in U c 2 is extendable

in the closed disc U.

By an identification é ' V(U) -¥ d^D induced from a Riemann mapping

0: U —J* D, the Lebesgue measure on is transformed to a probability
measure on V(U). It depends upon the choice of the Riemann mapping &•
but its class (called the Lebesgue class) is unique.

LEMMA 2.6. The set ET(U) of extendable prime ends is conull with

respect to the Lebesgue class. Especially C'P(U) is dense in V(U).

Proof. Let 0: D —» U be the inverse Riemann mapping. Then another

application of the Schwarz inequality shows that

p2lt pi
/ / \w'{relH)\rdrdO < 00

Jo J1/2

That is, for Lebesgue almost all 90, we have

2 / Itp'(reido)\dr <4 I \'tp'(reiB°)\rdr < 00.
J1/2 ./1/2

Notice that the left-hand side is the length of the ray f{re'°: | 1 /2 < r < 1}.

REts'LARK 2.7. It is not the case that an extendable prime end always
admits a ray of finite length. See Figure 7.

I

u ]

ray^
1

* 1

r\
\ P
\ /
\ /

^
N

^

Figure 7
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382 S. MATSUMOTO AND H. NAKAYAMA

3. THE CARTWRIGHT-LlTTLEWOOD THEOREM

Let/: 2 —» 2 be an orientation preserving homeomorphism which leaves a

hyperbolic domain U in 2 invariant. Now / induces an orientation preserving
homeomorphism on the Carathéodory compactification, / : U —y U. The

purpose of this section is to give a proof of the following theorem due

to M. L. Cartwright and J. E. Littlewood ([CL]).

THEOREM 3.1. Let f and U be as above. Assume that there is no fixed
point in Fr(JJ) and that the Carathéodory rotation number of U is 0. Then

the restriction off to V(U) is Morse-Smale, and if £ V(JJ) is an attractor
(resp. repellor) of the restriction off to 'P( U), then £ is an attractor (resp.

repellor) of the homeomorphism f of U.

See Figure 8. One consequence of this is the famous Cartwright-Littlewood
fixed point theorem stated as Theorem 4.5 at the end of Section 4. Before

giving the proof, we shall give two examples of an invariant domain with
Carathéodory rotation number 0.

Example 3.2. There is a simple homeomorphism h of S2 which satisfies

the following conditions:

(1) the homeomorphism h preserves a continuum X ;

(2) there is no periodic point in X ;

(3) S2 \ X consists of three open discs U+, U- and V ;

L'Enseignement Mathématique, t. 57 (2011)
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CONTINUA AS MINIMAL SETS 383

(4) all three open discs are invariant by h ;

(5) the Carathéodory rotation number of V is 0.

To construct h, we start with a Morse-Smale diffeomorphism y of the

interval [0,1] whose fixed points are 0 and 1. Consider the suspension flow
of (I on the annulus S1 x [0,1]. Define h to be the time a map of the flow,
where a. is any irrational number. Choose an orbit Y from S1 x (0,1) and

let X S1 x {0,1} U Y and V S1 x [0,1] \ X. Finally extend h to S2 in an
obvious way. See Figure 9. Then the homeomorphism / on the Carathéodory
compactification V has two fixed prime ends.

Example 3.3. Let g be a Denjoy C1 diffeomorphism of S1 whose

minimal set is a Cantor set 91. We put the suspension T2 S1 x R/(x, y) ~
(g(x),y +1). For an irrational number a, we define /: T2 —> T2 by

/(IX j]) X+a, y] - Then the minimal set of / is 91 x R/ ~. Its complement U
is a simply connected invariant domain. For the same reason as in Example 3.2,
the Carathéodory rotation number of U is 0. See Figure 10.

Proof of Theorem 3.1. By the assumption on the Carathéodory rotation
number, the homeomorphism f has a fixed point Ç in V(U). Let -{Ci} be an

extendable topological chain representing £. Recall that the c, are mutually
disjoint in 2. Also a ray that is a half-ray in c, is extendable and therefore

belongs to some prime end by Lemma 2.5. This implies that the cross cut c(-

is extendable in the Carathéodory compactification U. The closure of c, in U
is denoted by ct. By Lemma 2.4 the c, are also mutually disjoint.
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Assume, by contradiction, that fct fl q / 0 for infinitely many i. Then

again by Lemma 2.4 we have fc-, Oc,- ^ 0. Since diam(cf-) —s- 0, the point
of accumulation of c(- must be a fixed point of /. Therefore we can assume

that / ci r Cj 0 for any i.
Let U{Cj) be the component of U \ ct not containing the base point

0 6 U. Notice that J(cf) U fl U(c,). Then we have for each large i either

fei c U(cj) or Ci c fU(ci) because £ is a fixed point of /. Assume, to fix
our ideas, that f c; c (J(cj) for any i, by passing to a subsequence.

Now let A be a neighbourhood of the frontier Fr(U) which does not
intersect the fixed point set Fix(/) of /. Then since r\,(J(cf) c Fr(U) in 2 by
Lemma 2.1, the closure of the domain C/(c<) for some large i is contained in
N. Fix once and for all such a c, and denote it by c. The two end points r/
and Ç of c determine an interval [r/, ("] in V(U) containing the prime end £,
a fixed point of /. On this interval we have

v <fv <f2v < </2C </C < C-

Assume that

(3.1) r?°° lim/"77 < C°° lim/"C •

See Figure 11. A contradiction will show that the map / is Morse-Smale

on V(U).

c

Figure 11

Hatched area is U \ U$

Consider a domain
U0 U\nnfnU(c)

and notice that Fix(/) D Fr(Lo) — 0, by the choice of c. The chain {fnc}
of U is also a chain of Uq, and each cross cut fnc is of course extendable.
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CONTINUA AS MINIMAL SETS 385

An important feature of Uo is that the intersection of the contents is empty,
i.e.

OC

(3.2) f]rUo(c) 0.
n=0

Let us denote by /o the homeomorphism induced by / on the Carathéodory

compact!fication Uo of Uo. Let r/o and (o be the prime ends in V(Uo)
corresponding to the end points of c. Then we have

m </oVo </o% < • • • </oCo </oCo < Co •

Let rjo° lim/qr/o and (,q° lim/q Co- It follows from the definition of
topological chains that there is an order preserving homeomorphism between

P((/)\[î7°°, C°°] and V(Uo)\[/j^\ Co°°] - Let us show that rjg° < Assuming
the contrary, we get an extendable topological chain c- representing r/o0 C/
Let Oq and // be the two prime ends in V(Uo) corresponding to c\. Then

clearly the sequences / q r/o and al0 have the same limit r//3 ((/. In other
words, they are cofinal, that is, for any i, there is an n such that a'0 < / g ^o
and for any n, there is an i such that //r/o < al0. Likewise 3q and f("(
are cofinal. Now c- is also an extendable topological chain of U joining a,
and ßi in V(U). Since 'PCL/) \ [r?00, C°°l and £Wo) \ b], C/l are order

preserving homeomorphic, we see that a,- and / "rj are cofinal and ßi and

f "C are cofinal. Since {c'} is also a topological chain of U, this shows that

7]°° C°°, against the assumption (3.1).
Since / is fixed point free on Fr(Uo) and the natural map <b: EV{Uo)

Fr(//o) is equivariant, $o/0 =/ot|)j the set of extendable ends EV(Uo) is

disjoint from Fix(/0). Lemma 2.6 implies that the fixed point set of /0 is
nowhere dense in V(Uq). Thus there is a point a in the interval [r//, (/']
which is not fixed by fo- See Figure 12.

Figure 12

To fix our ideas assume that fo(? > a and let /0 V ß r. Let {c-'} be an
extendable topological chain of Uq representing r. Denote by Uq(c'/) the
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content of d( in Uq. As before we have foie1/) n cf 0 if we pass to a

subsequence. But r is repelling on its right side. Therefore Uo(c'') C foUoic'/).
If we choose i large enough, we have Uo(c'/) C Uq(c) But this is contrary
to (3.2), concluding the proof that / is Morse-Smale on P(U).

Let us prove the last part of the theorem. Assume that £ is an attractor
of f\ p(U)- Choose an extendable topological chain {ct} representing £. Then

as before we can assume that fU(cj') c U(cf) and U(ct) n Fix(/) 0 for
any large i. Fix some such i and let c ct. Let U\ U\ r\n>ifnU(c). See

Figure 13.

Our purpose is to show that U\ U. Notice that this implies that £ is an

attractor of f. Denote the two end points of c in V(Ui) by ??i and (j and

let lim/ {li}i and lim/ where f i is the homeomorphism
of Ui induced by /. We have Cf° y/, for otherwise the same argument
as before yields a contradiction. Take an extendable topological chain {c-"}
representing this prime end in V{U{). It is also a topological chain for U
and we have

Since n,-£/(c-") — fW/c-") 0 by Lemma 2.1, this shows that U\ — U, as

required.

Let / be an orientation preserving homeomorphism of the 2-sphere S2

which has a continuum X as a minimal set. Recall that a connected

component U of S2 \ X is called an invariant domain if fU U. The

purpose of this section is to prove Theorem 1.1. We begin with the following
lemma.

Figure 13

No topological chain {c-"}

4. Minimal continuum

L'Enseignement Mathématique, t. 57 (2011)
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LEMMA 4.1. The Carathéodory rotation number ofan invariant domain U
is nonzero.

Before the proof, let us mention that Example 3.2 shows the necessity of
the minimality assumption and that Example 3.3 shows that Lemma 4.1 does

not hold for surfaces of nonzero genus.

Proof of Lemma 4.1. Denote by / the homeomorphism that / induces

on U. Assume, by contradiction, that the rotation number of f \v{U) is 0.

Then the conclusion of Theorem 3.1 holds. Let a and oj be adjacent repelling
and attracting fixed points on V(U) and choose an interval (a, uj) in V(U)
so that (a. -J) fl Fix(/) 0. By Lemma 2.6 there is a prime end £ G (a,a?)

belonging to the set V(U) of the extendable prime ends near to. Then one

can choose an extendable curve 7 joining £ and f £ such that 7 7 fi U
is contained in an open fundamental domain F of f. (Recall that tu is an

attractor of the homeomorphism f.) See Figure 14.

Figure 14

u

Notice that the natural map <E>: SV(,U) — X is equivariant, /o$ Oo/.
Therefore the closure 7 of the curve 7 in S2 joins a point, say p, with fp.
Notice that p G X. The cross cuts /"q in U (n G Z) are mutually disjoint
and its closure /"(7) joins a point fn(p) with fn+1(p).

Since X is minimal and p G X, there is an n > 0 such that/"/? is arbitrarily
near p. Consider a small disc B centered at p such that B C\f B 0. The
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connected component of /_17U7 that contains the point p divides B into
two domains. One of them, V, corresponding to V in Figure 14, is contained

in U (if we choose B small enough) and the point fnp can be chosen from
the component of 5\(/_17Ut) adjacent to V. Choose a small arc 6' in B

joining p with fnp which does not intersect /_17 U 7 except at p. Notice
that fS' n S' 0. See Figure 15.

Consider a long simple curve T+ Un>of"~- Let q be the first point of
intersection of r+ \ {/?} with 5' (possibly q — fnp) and let S be the subarc

of S' joining p and q. Notice that q is not from 7 since S' fl7 {/?}. The

tiny arc 5 together with the subarc F'i of r+ that joins p and q form a

Jordan curve J. See Figure 16.

Let D be the connected component of S2\J which contains fq. Then the

half open arc fS' \ {fp} cannot intersect ./ since q is the first intersection

point. Thus fö'\{ jp\ and in particular lis end point fn+1p is contained in D.
We also have / 7 C\ D 0. In fact f~l is an orientation preserving

homeomorphism mapping a neighbourhood of fp to a neighbourhood of p.
So the cyclic order of the three curves 7, fS, py emanating from the point//?
is the same as the cyclic order of the curves f~l7, 5, 7 emanating from p.
That is, the curve f~l7 tends towards outside of D, and thus 0.

Another long curve F_ Un<ofn~y must pass arbitrarily near the

point fn+1p which is in D, and therefore must intersect S. Let 5 be the

first intersection point of T_ \{/?} with ö. Then an open arc r/ in T_ with
end points p and s cannot intersect J and therefore r® fl D 0. By the

construction of S', s is not from /_17 and thus fs G r/. On the other hand

fs lies on fô and therefore belongs to D. A contradiction.

Figure 15
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Figure 16

The curve J

A closed disc D in S2 is called adapted if dD fl Fix(/) 0 and

D U fD ^ S2. Given an adapted disc D, choosing the point at infinity in
S2 \ (D UfD), one may consider D U fD to be contained in R2. Then the

degree of the map
id -/: 3D —» R2 \ {0}

is called the index of / with respect to D and is denoted by IndfD. An
application of the Lefschetz index theorem yields the following lemma.

LEMMA 4.2. Let D\..... Dr be mutually disjoint adapted discs such that
there is no fixed point off in the complement of Uj=1öy. Then we have

r

y=l

Let us return to the hypothesis of Theorem 1.1, that X is a connected

minimal set of /. Given an invariant domain U, we have Fix(/)fl U f 0 by
Lemma 4.1 and the Brouwer fixed point theorem applied to the Carathéodory
compactification U.

LEMMA 4.3. The invariant domains are finite in number.

Proof Assume there are infinitely many invariant domains and denote

them by U; (J 1,2....). Choose a fixed point x; from Ut. Then passing to
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a subsequence, Xj converges to a point x m S2, which must be a fixed point
of f. If x is contained in X, then X has a fixed point, which contradicts
the assumption. Otherwise, the (/,• coincide for large i. A contradiction.

Choose a closed disc D in U which contains Fix(/) n U in its interior.
Then D is adapted and its index Indy-D is independent of the choice of D.
Choose one of them and denote it by D(U).

LEMMA 4.4. For any invariant domain U, the index Ind.fD(U) is equal
to 1.

Proof. By Lemma 4.1, the Carathéodory rotation number of U is nonzero.
On U the region bounded by dD(U) and V(U) has no fixed point. Thus

one needs only compute the index of f with respect to the boundary
curve V{U).

Now let us conclude the proof of Theorem 1.1. Lemmata 4.2, 4.3 and 4.4

clearly show that there are exactly two invariant domains.

For any n > 1, the minimal set X is minimal for fn since it is connected.

Applying the above result to fn, one can show that there is no further invariant
domain of fn. Also the Carathéodory rotation number of an invariant domain

must be irrational, as is shown by applying Lemma 4.1 to the iterates of /.
Finally that both Carathéodory rotation numbers coincide follows from the

main results of [BG], The proof is complete.

Let us set out the Cartwright-Littlewood fixed point theorem.

THEOREM 4.5. Let f be an orientation preserving homeomorphism of S2.

Let X be a continuum invariant by f. Assume that U S2\X is connected.

Then f has a fixed point in X.

Proof. Assume the contrary. If the Carathéodory rotation number of U is

nonzero, then Lemma 4.4 shows that IndifD(U) 1. If the rotation number
is 0, Theorem 3.1 says that the homeomorphism f\-p{U) is Morse-Smale, with
2n (n > 1 fixed points. Moreover the attractors (resp. repellors) are attractors

(resp. repellors) of the whole map / In this case one can compute the index

just following the definition, with the result that Indif D(U) 1 — n. Both

cases contradict Lemma 4.2.
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5. Minimal continuum with wandering domain

In [Ha] a pathological C°° diffeomorphism is constructed which has a

pseudo-circle C as a minimal set. See also [He]. It is well known in continuum

theory that there are points x in C which are not accessible from both sides.

Blowing up x, as well as all the points of its orbit, we can construct a

homeomorphism which has a minimal continuum with wandering domain (see

[AO]). Conversely if there are wandering domains whose domains {(/,} satisfy
that {(/,} is a null-sequence of mutually disjoint discs, one can pinch each

domain to a point, which characterize the complement of wandering domains

(see [BNW]).
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