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CONTINUA AS MINIMAL SETS OF HOMEOMORPHISMS OF §?

by Shigenori MATSUMOTO and Hiromichi NAKAYAMA

ABSTRACT. Let f be an orientation preserving homeomorphism of $2 which has
a continuum X as a minimal set. Then there are exactly two connected components
of §° \ X which are left invariant by f and all the others are wandering. The
Carathéodory rotation number of an invariant component is irrational.

1. INTRCDUCTION

Let f be an orientation preserving homeomorphism of §% which has a
continuum X as a minimal set. By a confinuum we mean a compact connected
subset which is not a single point. There are a great variety of examples of
such homeomorphisms. The simplest one is an irrational rotation on §2, with
a round circle as a minimal set. Besides this, a pathological diffeomorphism
of §% is constructed in [Ha] which has a psendo-circle as a minimal set. See
also [He] for a curious diffeomorphism. Also a homeomorphism of §% with
a minimal set homeomorphic to a variant of the Warsaw circle is constructed
in [W]. The fast approximation by conjugacy method is discussed in [FK],
which may produce such diffeomorphisms with various topological natures.

In all these examples the minimal sets X separate §° into two domains.
So it is natural to ask if this is the case with any minimal continuum. It is well
known that for any » € N, there is a continuum X in §% which separates §7
into n open domains /y,..., U, such that the frontier of each U; coincides
with X ([K]).

A connected component & of $%\ X is called an invariant domain if
fU = U, a periodic domain if f?U = U for some n > 1, and a wandering
domain otherwise.
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374 S, MATSUMOTO AND H. NAKAYAMA

THEOREM 1.1. Coensider an orientation preserving homeomorphism of §°
which admits a continuum as a minimal set. Then there are exactly two
invariant domains and all the other domains are wandering. The Carathéodory
rotation numbers of both invariant domains ave identical and irrational.

The overall strategy to prove Theorem 1.1 is to use the Carathéodory
prime end theory and to apply the Cartwright-Littlewood theorem. Sections 2
and 3 are expositions of the prime end theory and the Cartwright-Littlewood
theorem, which are included since they are short and self-contained, and some
special features pointed out in these sections are needed in the development
of Section 4, which is devoted to the proof of Theorem 1.1. Both Sections 2
and 3 concern simply connected domains of closed oriented surfaces of any
genus, and Section 4 solely orientation preserving homeomorphisms of the
sphere S%. In Section 5 we will construct a homeomorphism which actually
admits a wandering domain.

2. PRIME BENDS

Denote by Z a closed oriented surface equipped with a smooth Riemannian
metric ¢ and the associated area form dwvol. Let I/ C T be a hyperbolic
domain, 1.e. an open simply connected subset such that Z\ U/ is not a singleton.
(A nonhyperbolic simply connected domain exists only on the 2-sphere.) The
purpose of this section is to show that a homeomorphism of &/ which extends
to a homeomorphism of the closure 7 does extend to a homeomorphism of the
so called Carathéodory compactification U, a closed disc. Here we are only
concerned with a simply connected domain in Z. But there are generalizations
to more general domains, which can be found in [E] and [M]. As general
references of prime end theory, see also Sect. 17, [Mi] and Chapter IX, [T].
The proof of the main lemma here (LLemma 2.2) is taken from [E].

Let O € U/ be a base point. A real line properly embedded in &/ and
not passing through 0O is called a cross cutr. A cross cut ¢ separates U
into two hyperbelic domains, as can be seen by considering the one point
compactification of ¥ and applying the Jordan curve theorem. The one not
containing O is called the confent of ¢ and denoted by Ulc). A sequence of
cross cuts {c;}2°; is called a chain if c;41 C Ule) for each i. Two chains {c;}
and {c!} are called equivalent if for any i, there is a j such that ¢} C U{g;) and
c; C Utel). An equivalence class of chains is called an end of U. (This is quite
different from the notion of ends for general noncompact spaces developed by
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FIGURE 1

Topological chains

H. Freudenthal et al., and set out e.g. in [EZ].) A homeomorphism between
two hyperbolic domains induces in an obvious way a bijection between the
sets of ends. Given an end &, the relatively closed set C(&) = M;Ulc;) is
independent of the choice of a chain {¢;} from the end £, and is called the
conteni of £.

A chain {c;} is called topological if the closures ¢; of ¢; in = are mutually
disjoint and the diameter diam(c;) converges to 0 as { — oc. Examples of
topological chains, {c;} and {c/}, are given in Figure 1. An end is called
prime if it admits a topological chain.

LEMMA 2.1. The content C(£) of a prime end { is empty.

Proof. Assume the contrary and choose a point x from C(£). Consider
an arc  in ¢ joining O to x. See Figure 2. Then the distance from a
point in + to =\ U/ is a continuous function on <, and thus has a positive
minimum. This contradicts the assumption that £ is prime. [

&
Cr

FIGURE 2
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376 S, MATSUMOTO AND H. NAKAYAMA

A positive valued continuous function g on [/ is called admissible if

[ prdvol < oc.
Ju

Given a subset ¢ in U, p-diam(c) denotes the diameter of ¢ with respect to
the Riemannian metric p?g. (Function theorists often denote the same metric
by pldz].) An end £ is called conformal if for any admissible function p
there is a chain {¢;} representing ¢ such that p-diam (¢;) — 0.

If ¢: U/ — V is a conformal equivalence and if p: V — (0,00) is
admissible, then the function o: ¥ — (0, oc) defined by &(z) = p(d(z)|¢'(2)]
is admissible, and for ¢ C V, we have p-diam(¢) = o-diam (¢ e)). This
shows that ¢ induces a bijection between the sets of the conformal ends of
the two hyperbolic domains.

LEMMA 2.2, An end £ is prime if and only if it is conformal.

Proof. First of all assuming that £ is a prime end which is represented
by a topological chain {c;}, we shall show that £ is a conformal end. By
passing to a subsequence one may further assume that ¢; converges to a
point xp. Since xp belongs to at most one ¢;, one may also assume that
xg & & for any i. Take polar coordinates (r,6) around xg. Let p be an
arbitrary admissible function on U, extended to the whole X by letting p = 0
outside {/. Then by the Schwarz inequality

w€  p2r 2
(/ ] o, Q)rdé‘drjz < et / prdvol .
0 Jo r<e

Since p is admissible, [

r

<. Prdvol = 0 as e — 0, and we have

€ 27T
l / / plr Brdfdr — 0 (e = 0).
€ Jo Jo

Therefore we can find a sequence ¢ | O such that

2w
/ p(tk, H)Ekdg — 0 (k — o).
v

Notice that the left-hand side above coincides with the p-length of the union
of arcs {r=e}NU.

Now from the sequences {c;} and {e}, let us construct subsequences
{¢}} and {¢} in the following fashion See Figure 3. First define ¢f = ¢y
and choose €] to be any € from the sequence such that TN {r <ej} = 2.
Then choose ¢, to be any ¢; from the sequence such that & C {r < €|}
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FIGURE 3

Next choose ¢, such that & N {r < &} = @, ¢ such that & C {r < &},
and so forth.

Then there is a connected component ¢’ of {r = ¢/} MU which separates
the cross cut ¢/, from ¢}. To see this, construct a graph I'; the vertices are
connected components of &/ \ {r = ¢/} and the edges connected components
of UN{r=¢}. See Figure 4. By a transversality argument any two distinct
vertices can be joined by a finite edge path. Actually T is a tree, since I/
is simply connected and any edge corresponds to a cross cut of U. Thus

FIGURE 4
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378 S, MATSUMOTO AND H. NAKAYAMA

there is a unique shortest edge path joining the two vertices corresponding
to the components, one containing ¢, the other ¢, The component ¢
of UN{r = c} corresponding to any edge of & separates ¢}, from c].
Clearly the chains {c!} and {c!} are equivalent and the latter satisfies p-
diam(c) — 0, showing that £ is conformal.

Next assume that £ is conformal. First of all if we choose an admissible
function pp which is constantly equal to 1 on U/, we can find a chain {¢;}
such that diam{¢;) — 0 as { — oc. Passing to a subsequence if necessary, one
may assume ¢ — xp. Again let (r,#) be the polar coordinates around xg.
Define a function p by

1
- h rlogr
plr.0) = 2
log2

if r<1/2,

otherwise.

Computation shows that the restriction of p to / is admissible. Now for any
small € > &, the p-distance of the ¢-circle and the #-circle is given by

® dr
_,/5 - = log(logd/loge),

which diverges to oc if we fix ¢ and let § — 0. Let ¢ be a chain
representing ¢ such that p-diam(¢)) — 0. Since p is bigger than a constant
multiple of pg, this implies also that diam(c!) —+ 0.

First consider the case where ¢! converges to xp (passing to a subsequence).
See Figure 5. The above computation shows that for i large enough ¢ is

r=1/2

A0

FIGURE 5

U with the metric pg®  (p-diam ¢ — 0)
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CONTINUA AS MINIMAL SETS 379

a compact subset of {0 < r < 1/2} and we can take a subsequence such
that the closures ¢, are mutually disjoint. Thus we obtain a topological chain
representing &.

In the remaining case, we may assume that ¢f converges to a point x;
distinct from xq. See Figure 6. We shall still use the polar coordinates (r,&)

C]

~
i :
.XU) GXI
r =0
FIGURE 6

around xp. Recall that we have another chain {¢;} converging to xg. The
chain {c;} has no particularly good property other than diami{c;) — 0. In
the worst case xp may belong to any ¢;. However passing to subsequences
of {c!} and {¢;} (denoted by the same letters) and choosing a sequence of
positive numbers ¢; | 0, we may assume the following:

(1) the cross cut ¢; is contained in {r < ¢} ;

(2) all the ¢ are disjoint from {r < ¢} ;

(3) the sequence ¢, c1,ch.c2,--- forms a chain.

Then there is a component ¢/’ of {r = ¢;}MN¥U which separates ¢; from cf.
The chain {c!'} is the desired topological chain. [

A cross cut ¢: R — U is called extendable if the limits lim, , .. c(f) and
lim, . cf) exist. Then ¢ is either a compact arc or a Jordan curve in X.
A topological chain {¢;} is called extendable if each ¢; is extendable. The
proof of the above lemma also establishes the following lemma useful in the
sequel.
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380 S, MATSUMOTO AND H. NAKAYAMA

LEMMA 23. A prime end is represented by an extendable topological
chain.

For a hyperbolic domain & of I, denote by P(U) the set of prime ends
of U. The union U = U/ U P(L), topologized in a standard way, is called
the Carathéodory compactification of U. Let us explain it in more detail.
A neighbourhood system in U ofa point in ¥/ is the same as a given system
in U. Choose a point £ € P(U) represented by a topological chain {¢;}. The
set of points in the content U{c;), together with the prime ends represented
by topological chains contained in U{c;) for each i, forms a neighbourhood
system of £.

Lemma 2.2 shows that a conformal equivalence ¢: U/ — V extends to
a homeomorphism ¢ U > V. In particular U is homeomorphic to D by
the natural extension ¢ of a Riemann mapping ¢: U — D, and for D it
is clear that D is homeomorphic to the closed disc D U 8., D. Thus U
is homeomorphic to a closed disc for any hyperbolic domain [/. On the
other hand by the definition of topological chains, a homeomorphism f of
U/ which extends to a homeomorphism of the closure ¥/ does extend to a
homeomorphism f of the compact disc U. Especially important is the rotation
number of the restriction of f to P(LN, which is called the Carathéodory
rotation number.

A proper embedding ~: [0, 00) — U/ is called a ray. A ray ~ is said to
belong to a prime end & if & is represented by a chain {¢;} and for any i,
there is ¢ > 0 such that ~[¢#,0c) € Ule))y. The ray ~ is called extendable if
the limit lim, .. v(#), called the end point of ~, exists. The end point of an
extendable ray in &/ belongs to the frontier Fr({/).

A prime end £ of U is called extendable if there is an extendable ray
belonging to £. Denote by EP(U) the set of extendable prime ends.

LEMMA 2.4, The end points of two extendable rays ~; (i = 1,2) belonging
to the same prime end & coincide.

Proof. The end point of ~; is the limit point of any topological chain
representing £. [

Lemma 2.4 enables us to define a natural map ®: EP(U) — Fr(U).

LEMMA 2.5. Any extendable ray belongs to some prime end.
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Proof. Given an extendable ray ~ with end point x € Fr{l/), one can
construct a topological chain from the concentric circles centered at x, by
much the same argument as in the proof of Lemma 2.2. []

The above lemma says that a ray ~ extendable in &/ C X is extendable
in the closed disc /.

By an identification é 1 PUU) — DD induced from a Riemann mapping
¢: U/ — D, the Lebesgue measure on 4,.D is transformed to a probability
measure on P(U). It depends upon the choice of the Riemann mapping ¢,
but its class (called the Lebesgue class) is unique.

LEMMA 2.6. The set EPUY of extendable prime ends is conull with
respect to the Lebesgue class. Especially EP(U) is dense in P(U).

Proof. Let 4. D — U be the inverse Riemann mapping. Then another
application of the Schwarz inequality shows that

2T 1
/ / \'gl"(rei8)|rdrd0 < 00.
Joo J12

That is, for Lebesgue almost all 8y, we have

1 a1
2/ \@'f’(rem“)\dr <4 / |'alg’,"(re“9“)\rdr < 0.
1/2 J1/2

Notice that the left-hand side is the length of the ray ¢{re’® | 1/2 <r<1}. O

REMARK 2.7. It is not the case that an extendable prime end always
admits a ray of finite length. See Figure 7.

)
[
L
ray (! !
: ;
Y
\
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382 S, MATSUMOTO AND H. NAKAYAMA
3. THE CARTWRIGHT-LITTILEWCOOD THEOREM

Let f: £ — X be an orientation preserving homeomorphism which leaves a
hyperbolic domain & in X invariant. Now f induces an orientation preserving
homeomorphism on the Carathéodory compactification, f O — U. The
purpose of this section is to give a proof of the following theorem due
to M. L. Cartwright and I E. Littlewood ([CL]).

THEOREM 3.1. Let f and U be as above. Assume that there is no fixed
point in Fr(l) and that the Carathéodory roiation number of U is 0. Then
the restriction off fo P(U) is Morse-Smale, and if £ € P(L) is an attractor
{(resp. repellor) of the restriction off to P(U), then & is an attractor (resp.
repelior) of the homeomorphism f of U.

FIGURE 8

See Figure 8. One consequence of this is the famous Cartwright-Littlewood
fixed point theorem stated as Theorem 4.5 at the end of Section 4. Before
giving the proof, we shall give two examples of an invariant domain with
Carathéodory rotation number 0.

EXAMPLE 3.2. There is a simple homeomeorphism A of §% which satisfies
the following conditions :

(1) the homeomorphism # preserves a continuum X ;

(2) there is no periodic point in X ;

3) 5% \ X consists of three open discs UL, U/_ and V;

L’Enseignement Mathématique, t. 57 (2011)



CONTINUA AS MINIMAL SETS 383

(4) all three open discs are invariant by #;

(5) the Carathéodory rotation number of V is 0.

To construct h, we start with a Morse-Smale diffeomorphism g of the
interval [0, 1] whose fixed points are 0 and 1. Consider the suspension flow
of ¢ on the anmilus S§! x [0,1]. Define 4 to be the time « map of the flow,
where « is any irrational mumber. Choose an orbit ¥ from S! x (0,1) and
let X=58"%x{0,1}UY and ¥V = 8! x[0,1]\ X. Finally extend # to §% in an
obvious way. See Figure 9. Then the homeomorphism f on the Carathéodory
compactification V has two fixed prime ends.

FiGuRe @ FIGURE 10

EXAMPLE 33. Let g be a Denjoy C! diffeomorphism of §' whose
minimal set is a Cantor set 9t. We put the suspension T2 = §! x R/(x,¥) ~
(¢(x),y + 1). For an irrational number ¢, we define f: 7° — 7% by
fUx,¥) = [x+«, y]. Then the minimal set of f is xR/ ~. Its complement U/
is a simply connected invariant domain. For the same reason as in Example 3.2,
the Carathéodory rotation number of ¢/ is 0. See Figure 10.

Proof of Theorem 3.1. By the assumption on the Carathéodory rotation
number, the homeomorphism f has a fixed point § in P(U). Let {¢;} be an
extendable topological chain representing &. Recall that the ¢; are mutually
disjoint in X. Also a ray that is a half-ray in ¢; is extendable and therefore
belongs to some prime end by Lemma 2.5 This implies that the cross cut ¢;
is extendable in the Carathéodory compactification U. The closure of ¢; in U
is denoted by &;. By Lemma 2.4 the ¢ are also mutually disjoint.
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384 S, MATSUMOTO AND H. NAKAYAMA

Assume, by contradiction, that f%; N¢ # @ for infinitely many ¢. Then
again by Lemma 2.4 we have fg; NE; £ @. Since diam(c;) — 0, the point
of accumulation of ¢; must be a fixed point of f. Therefore we can assume
that fé,—ﬂ&i =@ for any i.

Let U(C,) be the component of U \ & not containing the base point
0 e . Notlce that U(c) =Un U(cf) Then we have for each large i either
fct C U(c,) or ct CfU(c) because £ is a fixed point of f Assume, to fix
our ideas, that f & ¢ Uley for any i, by passing to a subsequence.

Now let N be a neighbourhood of the frontier Fr({/) which does not
intersect the fixed point set Fix(f) of f. Then since M; Ule) € Fr(l)) in X by
Lemma 2.1, the closure of the domain U(e;) for some large ¢ is contained in
N. Fix once and for all such a ¢; and denote it by ¢. The two end points »
and { of & determine an interval [#. (] in P(U/) containing the prime end &,
a fixed point of f On this interval we have

n<fn<fi<---<fU <fC<.
Assume that
(3.1 P> =limf "y < = limf *C.

See Figure 11. A contradiction will show that the map f 1s Morse-Smale
on P,

FIGURE 11
Hatched area is &\ Uy

Consider a domain
Up = U\ N f"Ule)

and notice that Fix(f) N Fr(ly) = &, by the choice of ¢. The chain {f"c}
of U is also a chain of U/, and each cross cut f#¢ is of course extendable.
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CONTINUA AS MINIMAL SETS 385

An important feature of {j is that the intersection of the contents is empty,
ie.

3.2) [ £"Vole) =

Let us denote by j?o the homeomorphism induced by f on the Carathéodory
compactification U/ of &/y. Let n and (p be the prime ends in P(Uy)
corresponding to the end points of ¢. Then we have

o < Fomo < Fimo < - <F§ < Folo < .

Let ng* = 1imf(’f'r,ao and (§° = limf(’f(o. It follows from the definition of
topological chains that there is an order preserving homeomorphism between
PUNNG, ¢™] and PCUD\[G7, 571 Let us show that 55° < (5. Assuming
the contrary, we get an extendable topological chain ¢f representing 75 = {§*°.
Let o and /% be the two prime ends in P(Uy) corresponding to cf. Then
clearly the sequences fo o and «f have the same limit 7° = ¢5°. In other
words, they are cofinal, that is, for any i, there is an n such that o) <f’Q o
and for any r, there is an ¢ such that fo770 < o Likewise 3, and fJ¢
are cofinal. Now ¢! is also an extendable topological chain of U joining
and 3; in P(U). Since PN [7°,¢™] and P(Us) \ [15%, 571 are order
preserving homeomorphic, we see that «; and f”r} are cofinal and 4; and
f ¢ are cofinal. Since {c!} is also a topological chain of ¢/, this shows that
1™ = (°, against the assumption (3.1).

Since f is fixed point free on Fr(lU;) and the natural map @: EP(Uy) —
Fr(l/y) is equlvanant lon} ofo =f o, the set of extendable ends E?D(Uo) is
disjoint from Fix( f o). Lemma 2.6 implies that the fixed point set of f o 1s
nowhere dense in P({/p). Thus there is a point o in the interval [n~, (5~]
which is not fixed by fo. See Figure 12.

~i @

FiGURE 12

To fix our ideas assume that foo > ¢ and let f, "o | r. Let {c/} be an
extendable topological chain of Iy representing 7. Denote by Uplc!) the
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386 S, MATSUMOTO AND H. NAKAYAMA

content of ¢ in 4. As before we have fo(cf’) Nel = @ if we pass to a
subsequence. But T is repelling on its right side. Therefore (el Cfo (e,
If we choose i large enough, we have Upl(e!) C Up(c). But this is contrary
to (3.2), concluding the proof that f is Morse-Smale on P(L).

Let us prove the last part of the theorem. Assume that & is an attractor
of f“p(m. Choose an extendable topological chain {c;} representing £. Then
as before we can assume that fU(c,) C Ule) and Ule) NFix(f) = @ for
any large ¢. Fix some such ¢ and let ¢ = ¢;. Let U; = U\ My 1 f7U(c). See
Figure 13.

P
' (25

FIGURE 13

No topological chain {e!'}

Our purpose is to show that {/; = {/. Notice that this implies that £ is an
attractor of f Denote the two end points of ¢ in P(U/;) by m and ¢ and
let n~ = limfl"m and {7 = limfl”ql, where fl is the homeomorphism
of U, induced by f. We have (7 = #{°, for otherwise the same argument
as before yields a contradiction. Take an extendable topological chain {c/”}
representing this prime end in P(U;). It is also a topological chain for &/
and we have

UNUE = 0\ U™y
Since MUy = Mili(e!”) = @ by Lemma 2.1, this shows that /; = U/, as
required. [

4. MINIMAIL CONTINUUM

Let f be an orientation preserving homeomorphism of the 2-sphere S§2
which has a continuum X as a minimal set. Recall that a connected
component &/ of §%\ X is called an invariant domain if fUU = U. The
purpose of this section is to prove Theorem 1.1. We begin with the following
lemma.

L’Enseignement Mathématique, t. 57 (2011)



CONTINUA AS MINIMAL SETS 387

LEMMA 4.1. The Carathéodory rotation number of an invariant domain U
is nonzero.

Before the proof, let us mention that Example 3.2 shows the necessity of
the minimality assumption and that Example 3.3 shows that Lemma 4.1 does
not hold for surfaces of nonzero genus.

Proof of Lemma 4.1. Denote by f the homeomorphism that f induces
on [/. Assume, by contradiction, that the rotation number of f|p(U) is O.
Then the conclusion of Theorem 3.1 holds. Let o and « be adjacent repelling
and attracting fixed points on P({/) and choose an interval (o, w) in P{L)
so that (a,w) ﬂFiX(f) = @. By Lemma 2.6 there is a prime end £ € (a, w)
belonging to the set £P(L)) of the extendable prime ends near w. Then one
can choose an extendable curve 4 joining £ and f £ such that ~ =4nNU
is contained in an open fundamental domain F of f (Recall that w is an
attractor of the homeomorphism f.) See Figure 14.

Notice that the natural map @: EP(U) — X is equivariant, fod = @ Of.
Therefore the closure & of the curve + in 5% joins a point, say p, with fp.
Notice that p € X. The cross cuts f*v in U/ (n € Z) are mutually disjoint
and its closure f"(¥) joins a peint f*(p) with f*(p).

Since X is minimal and p € X, there is an # > 0 such that f"p is arbitrarily
near p. Consider a small disc B centered at p such that BNfB8 = &. The
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388 S, MATSUMOTO AND H. NAKAYAMA

connected component of f~'% U that contains the point p divides B into
two domains. One of them, V, corresponding to V in Figure 14, is contained
in U @(f we choose B small enough) and the point f"p can be chosen from
the component of B\ (f =) adjacent to V. Choose a small arc &' in B
joining p with #p which does not intersect f~'% U7% except at p. Notice
that f& Mé&’ = &. See Figure 15.

FIGURE 15

Consider a long simple curve I'} = U, f"%. Let g be the first point of
intersection of T'y \ {p} with ¢’ (possibly g = f"p) and let & be the subarc
of 4 joining p and ¢. Notice that ¢ is not from ¥ since §' N5 = {p}. The
tiny arc & together with the subarc Fﬂ’r of T'y that joins p and g form a
Jordan curve J. See Figure 16.

Let D be the connected component of §2Y ./ which contains f7. Then the
half open arc f&' \ {fp} cannot intersect J since ¢ is the first intersection
point. Thus £6\{ fp} and in particular its end point f*+1p is contained in D.

We also have f~'4v MDD = @. In fact f~! is an orientation preserving
homeomorphism mapping a neighbourhood of fp to a neighbourhood of p.
So the cyclic order of the three curves 7, f&, 7 emanating from the point fp
is the same as the cyclic order of the curves f~1%, § ¥ emanating from p.
That is, the curve f~'% tends towards outside of D, and thus f~'~ND = &.

Another long curve ' = U,-of"™ must pass arbitrarily near the
point f*Tlp which is in D, and therefore must intersect §. Let s be the
first intersection point of I'_\ {p} with §. Then an open arc ['* in I'_ with
end points p and s cannot intersect J and therefore T M D = @. By the
construction of &, 5 is not from F~'% and thus fs € I . On the other hand
5 lies on f¢ and therefore belongs to D. A contradiction. O
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FIGURE 16

The curve J

A closed disc D in §* is called adapted if 9D N Fix(f) = @ and
DUFD + 8§ Given an adapted disc D, choosing the point at infinity in
S?\ (DUFD), one may consider D UfD to be contained in R?. Then the
degree of the map

id —f: 8D — R*\ {0}
is called the index of f with respect to D and is denoted by Ind,D. An
application of the Lefschetz index theorem yields the following lemma.

LEMMA 4.2, Let Dy,...,D, be mutually disjoini adapied discs such that
there is no fixed point of f in the complement of \J'_D;. Then we have

,
> Ind; Dy =2.
=1

Let us retwrn to the hypothesis of Theorem 1.1, that X is a connected
minimal set of f. Given an invariant domain {/, we have Fix(f)NU # & by
Lemma 4.1 and the Brouwer fixed point theorem applied to the Carathéodory
compactification i.

LEMMA 4.3. The invariant domains arve finite in number.

Proof. Assume there are infinitely many invariant domains and denote
them by U; (i =1,2,...) Choose a fixed point x; {rom ;. Then passing to
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a subsequence, x; converges fo a point x in §%, which must be a fixed point
of f. If x is contained in X, then X has a fixed point, which contradicts
the assumption. Otherwise, the U; coincide for large ¢. A contradiction.  []

Choose a closed disc D in U/ which contains Fix(f) N I/ in its interior.
Then D is adapted and its index Indy D is independent of the choice of D.
Choose one of them and denote it by D(I/).

LEvMA 4.4, For any invariant domain U, the index Indy D(U) is equal
to 1.

Proof. By Lemma 4.1, the Carathéodory rotation number of {/ is nonzero.
On U the region bounded by 4D(L/) and P(U) has no fixed point. Thus
one needs only compute the index of f with respect to the boundary
curve P, [

Now let us conclude the proof of Theorem 1.1. Lemmata 4.2, 4.3 and 44
clearly show that there are exactly two invariant domains.

For any n > 1, the minimal set X is minimal for f" since it is connected.
Applying the above result to f7, one can show that there is no further invariant
domain of f”*. Also the Carathéodory rotation number of an invariant demain
must be irrational, as is shown by applying Lemma 4.1 to the iterates of f.

Finally that both Carathéodory rotation numbers coincide follows from the
main results of [BG]. The proof is complete.

Let us set out the Cartwright-Littlewood fixed point theorem.

THEOREM 4.5. Let f be an orientation preserving homeomorphism of S*.
Let X be a continuum invariant by f. Assume that U = §*\ X is connected.
Then [ has a fixed point in X .

Proof. Assume the contrary. If the Carathéodory rotation number of €/ is
nonzero, then Lemma 4.4 shows that Ind; D(U) = 1. If the rotation number
is 0, Theorem 3.1 says that the homeomorphism f|p(m is Morse-Smale, with
2n (n > 1) fixed points. Moreover the attractors (resp. repellors) are attractors
(resp. repellors) of the whole map f In this case one can compute the index
just following the definition, with the result that Ind; D{{/) = 1 — n. Both
cases contradict Lemma 4.2 O
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5. MINIMAL CONTINUUM WITH WANDERING DOMAIN

In [Ha] a pathological C*° diffeomorphism is constructed which has a
pseudo-circle C as a minimal set. See also [He]. It is well known in continuum
theory that there are points x in € which are not accessible from both sides.
Blowing up x, as well as all the points of its orbit, we can construct a
homeomorphism which has a minimal continuum with wandering domain (see
[AO]D). Conversely if there are wandering domains whose domains {U/;} satisfy
that {T/;} is a mull-sequence of mutually disjoint discs, one can pinch each
domain to a point, which characterize the complement of wandering domains

{see [BNW]).
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