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L’Enseignement Mathématique (2) 57 (2011), 349-372

ACTIONS LOCALEMENT LIBRES RIGIDES
DE GROUPES DE LIE NILPOTENTS

par Michel BELLIART

1. INTRCDUCTION

Soient G un groupe de Lie nilpotent, V une variété compacte, orientable
et sans bord, & une action localement libre de classe €™ de G sur V. Les
orbites de @ sont les feuilles d’un feuilletage F de V. Nous supposerons
que la codimension dim(V) — dim(G) de ce feuilletage est égale & 1. Sous
ces hypotheses, dans [GHM], il est montré ce qui suit:

THEOREME. [/ existe dans G un sous-groupe N, contenant le groupe
dérivé de G, dont les orbites dans V sont compactes.

Outre qu’il contribue a I’élucidation de la topologie de V (qui, selon
[GHM], fibre sur le cercle et a le type d’homotopie dun espace homogene
de groupe de Lie résoluble), ce résultat a I'intérét de ramener au moins en
partie le probleme de classification des actions possibles au cas oil G est
abélien: en effet, @ induit une action localement libre ®' du groupe abélien
G’ = G/N sur la base V' de la fibration de V en N-orbites, et on a
dim(V’') = dim(G")+1. Cependant, &’ n’est pas une action quelconque, et on
pourrait espérer qu’en un sens approprié de cette expression, @ se souvint
de son origine. Dans cet ordre d’idées, on montrera ici un peu plus que
le résultat suivant, qui peut &tre considéré comme un “échantillon” du plus
intéressant des trois théorémes que contient cet article, qui seront énoncés une
fois construits les objets sur lesquels ils portent:
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350 M. BELLIART

THEOREME PRINCIPAL. [f existe un groupe de Lie nilpotent non-trivial G,
une variété compacte V de dimension dim(G) + 1 et une action localement
libre analytique ® de G sur V tels que pour toute action localement libre W
de classe C™ de G sur V, on puisse trouver un automorphisme v du groupe
de Lie G et un difféomorphisme o de classe C° de V sur V tels que

a(Pg.p) = (g, o(p)) NVgeG.¥pecV.

La relation précédente entre actions @ et W du méme groupe sur la méme
variété est une relation d’équivalence naturelle mais trés forte; en ce sens, le
théoréme principal affirme que le groupe G que nous construirons ne posséde,
a conjugaison prés pour celle-ci, quune seule action localement libre sur la
variété V que nous construirons en méme temps que lui.

La clagsification orbitale et topologique obtenue dans [GHM] ne laissait pas
espérer un tel résultat: d’ailleurs, il est bien connu qu’aucun groupe abélien
non-trivial n’a la propriété de rigidité de notre groupe G (de maniére précise,
une conséquence de [GHM] est que si G = R" alors V fibre en tores a n
dimensions sur le cercle; en utilisant ce fait, par la technique de recollement
de cylindres décrite dans [GHM] on peut construire des actions localement
libres de R” sur V ayant un nombre fini arbitraire d’orbites compactes).

Tout comme les résultats de [GHM], ceux du présent article valent en fait
pour toute classe de conjugaison C” avec v > 2; nous ne nous plagons en
classe €™ que par souci de simplicité.

Le plan de cet article est le suivant: dans la seconde partie, on construira
une famille & deux paramétres de groupes G, une variété V et une action
@, , de chaque G,, sur V (on ufilisera en fait des notations autres que
Gy, Py y, micux adaptées aux preuves des énoncés a venir). On menera, dans
la troisieme partie, 1’étude des objets ainsi construits. En quatriéme partie, on
énoncera sous une forme forte le théorgme principal ainsi que deux résultats de
moindre intérét. Un court appendice sert a montrer que 1’hypothése du troisiéme
de nos théorémes (qui est de nature cohomologique) a génériquement lieu, ce
qui n’étonnera aucun spécialiste du sujet. On peut résumer les théorémes a
venir en disant que si x et y sont rationnels, alors ¥, , possede un ouvert non-
vide d’orbites compactes; que dans le cas restant, il existe un difféomorphisme
o de classe C°° de V sur V tel que Iaction (g,p) — o(d®(g, o (p)) ait
les mémes orbites que @, ; que dans ce cas, si le feuilletage de V par les
orbites de @, satisfait un certain critére cochomologique, les actions @ et
D, , elles-mémes sont canjuguées.
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2. CONSTRUCTION DES MODELES

On construit ici les objets dont il s’agira de mener 1’étude. Les bases de
la théorie des groupes et algébres de Lie et celles du caleul différentiel sont
réputées connues (une référence solide est [Hel]). On notera

(a1, az,a3,b1, bz, b3, 01,02, 05,d1,db, d3, €1, 62, €3)

les coordonnées naturelles sur RY. Par abus de notation, on admet de
remplacer 'indice dans “a;”, “b,7... par un nombre qui lui est égal modulo
3, et cet indice sera fréquemment noté + ou 7. On définit dans RY le sous-
espace vectoriel K comme le lieu oll s’anmulent les douze formes linéaires
suivantes

ay, ax, as, b1, b, b3, c1, 2, o3, di—dp, do—ds, e1t+extes.

On nomme A le quotient de R par K. Les formes linéaires précédentes
constituent un systéme de coordonnées sur A. Nous posons par souci de
sirnpliﬁcation d’i :dz—dg,, d; :d3 —dl, dg :dl —dz et e—e1+ex+tes.
Ensuite, nous définissons un certain nombre de sous-espaces vectoriels de A
au moyen d’équations linéaires:

DEFINITION 1. Le sous-espace de A défini par a; = @, = a3 = 0 est B.
Le sous-espace de B défini par by = b = b3 = 0 est C. Le sous-espace
de C défini par ¢y = ¢ = ¢3 = 0 est D. La droite de D définie par
di=dy=d, =0 est E.

Pour tout plan I1 de A/B, la préimage de Il dans A est Ar. Le sous-
espace de B défini par b,.1 = b, » =0 est B,. Le sous-espace de C défini
par ¢, = 2 = 0 est C,. Le plan de D défini par 4/ =0 est D,.

CONVENTION 2. 1l y a sur A/B un systtme de coordonnées naturelles
{a1,a2,a3). En vue de la proposition 5 & venir, nous excluons de la famille
Aq les objets particuliers pour lesquels le plan IT contient I'un des trois axes
de coordonnées. Ceci revient & supposer que IT admet une équation de la
forme a3 = pay + vap avec p et v non-nuls.

Considérons le réseau £ de R!® dont les points ont des coordonnées
entieres, les trois premiéres coordonnées étani paires. ce réseau se projette
sur A en un réseau que nous noterons a (rappelons que dans un espace
vectoriel, un résean est le sous-groupe discret engendré par une base). Nous
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352 M. BELLIART

noterons b, ¢, d, e, b,, ¢, et d, les intersections de a avec, respectivement :
B, C, D E, B, C, et D,. Chacun des sous-groupes discrets b, e¢... est
un réseau dans le sous-espace vectoriel de A lui correspondant.

Nous allons maintenant modifier 1a loi de groupe additif de A pour en faire
un groupe de Lie nilpotent. Tous les sous-espaces vectoriels précédemment
construits deviendront des sous-groupes de Lie; tous les sous-groupes discrets
précédemment construits demeureront des sous-groupes discrets (c’est i cet
effet que nous avons imposé aux trois premiéres coordonnées des éléments de
a d’étre paires). Pour définir 1a nouvelle loi de A, nous construirons d’abord
I’algebre de Lie de ses champs invariants par translations a4 droite.

Soit X' un champ de vecteurs sur R!® : il peut se produire que X’ soit
projetable sur A ¢’est en particulier le cas si X' posséde dans les coordonnées
choisies une forme analytique dans laquelle n’interviennent pas les variables
dy.dz. ds, €1, €2, e3. Nous pouvons alors noter X le projeté de X' sur A. Les
champs suivants sont clairement projetables:

R X D, D
Bz, ‘0 '8d, 2 O S By T
C’:i+a,i+bi D! e E s

“T Be, | ad, ' Oe, *T Bd,’ ©T Be,

Il est utile de noter que Dy + D+ D5 = 0 et que les E, sont tous égaux (de
sorte que désormais nous omettrons 1’indice). Les douze champs

A1, Az, A3, By By, By 01, Cr, Cs, Dy, D E

forment un parallélisme sur A. A présent, faisons décrire indépendamment
a X eta ¥ laliste de ces champs, et déterminons 4 chaque fois la valeur
de [X,Y]: comme le crochet de Lie est antisymétrique, il suffit de mener
le calcul lorsque Y est & droite dans la liste; si nous nous dispensons de
mentionner ceux des crochets qui sont nuls, nous aboutissons par un calcul
direct a ces identités:

[Azs B-r] = C’I . [A'L: C’I] = D? )
[B?)B‘L+1] — Dz+2 ’ [B.,,C1=E.

Ainsi, 1’espace vectoriel A engendré par nos douze champs est stable par le
crochet de Lie; ou encore: est une algébre de Lie.

Seit & nouveau un champ X’ sur RY. Soit p un peint de R et soit p/
I'image de p sous le flot de X’ au bout du temps ¢. Supposons X’ susceptible
d’une intégration explicite: 1’écriture d'une formule donnant les coordonnées
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du point p’ en fonction de celles de p se heurte au probleme technique du
grand nombre de ces coordonnées; cependant, si certaines de celles-ci sont
invariantes sous le flot de X', on peut les omettre pour gagner de la place.

Avec ce systéme, en notant (ap,...,es3) les coordommées de p et (af,...,e})
celles de p':

) ’ / ! ¢ ' b%
X=A =a =a,+t ¢c,=c,—th,, d,,:di—(ait—l—i)b?_, 67:61—75,
X=B=b=05b,+r, d vy =thyr+bigal,
X:C;=>Cft:cT+l, d;=d7+alt, ei:eter.,,t,
X=D.=d=d +1t, X=E =¢e =¢+t.

De 1a résulte que les champs précédents sont complétement intégrables (c est-
i-dire, tangents 4 des groupes & un paramétre de difféomorphismes de R!*).
Cette propriété est stable par projection et nous permet de considérer les flots
Al de A,, B! de B,, ete. Toujours a "aide de nos formules, nous pouvons
déterminer sans peine la valeur des commutateurs [X*, Y] = X' ¥*X 'Y ol
t,5 sont deux réels et X, Y deux champs pris dans la famille Ay,... E:
ici encore, on peut prendre Y a droite de X dans la liste et omettre les
commutateurs triviaux; on obtient tous calculs faits

[AiBf] — C“:fsl)':ng/ZL;[‘;.‘52/21 [Af, Cf] — D;L‘-‘"\

(BBl = D5, (B L=l 7,

Soit maintenant G la famille des difféomorphismes de A ayant 1a forme:
by pbs pis a1 1
Al AP ATB] BB CTC2CyY DY DR ES
ol les coefficients sont des réels quelconques. Ce que nous venons d’établir
en dit plus que la proposition suivante (non seulement elle est vraie, mais
nous venons de coder explicitement G par générateurs et relateurs):

PROPOSITION 3. L'ensemble G est un groupe de Lie de transformations
polynomiales de A qui agit simplement fransitivement sur cet espace vectoriel.

Soit O l'origine de ’espace vectoriel A. A tout @ € A, nous pouvons
associer ['unique élément g de G tel que ¢((?) = a et, au moyen de cette
application, transporter sur A la loi de G: alors @ devient ’élément neutre
de A, que nous noterons désormais 1. Il est connu que A est 1’algebre des
champs de vecteurs invariants sur A par translations a droite (ce qui peut
d’ailleurs se retrouver par le calcul). Le résultat suivant est évident vus notre
codage explicite de G et notre définition de la structure du groupe de Lie A :
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354 M. BELLIART

PROPOSITION 4. Tous les sous-espaces vecioriels A, B...de A introduits
plus haut (désignés par des majuscules grasses affectées ou non d’indices)
demeurent des sous-groupes de Lie de A pour sa nouvelle loi de composition
interne.

Notons que sur C, les lois de sous-groupe de Lie et de sous-espace vectoriel
de A coincident. A nos sous-groupes de Lie connexes de A correspondront
autant de sous-algébres de Lie de .4, que nous désignerons par la méme
notation en remplagant toutefois la majuscule grasse par une majuscule italique;
il est aisé d’exhiber des bases de ces sous-algébres de Lie. Par exemple, une
base de B> est B>, (,Cz,C3,D1.D-, E; une base de ¢y est C1,D1,D:,E.
Nous avons la proposition suivante, qui a pour corollaire direct la nilpotence
de A:

PROPOSITION 5. Soit X Dune des algébres de Lie A ou Apn. La suite
centrale ascendante de X est 'D,C, X . Tout idéal de X non contenu dans D
contient £. Le transportenr de C dans & est B. Les B, sont les sous-
algébres de X contenues dans B, contenant strictement C et ne possédant
aucun élément dont la projection sur X /D soit de rang supérieur ou égal

a 2. Enfin, C,=[X,B] et D, =[X.(].

Preuve. Toutes ces assertions résultent de calculs élémentaires d’algebre
linéaire. Prouvons juste celleci: «tout idéal de A non contenu dans D
contient £ ». Considérons un idéal 7 de & ne contenant pas £, et soit 1'un
de ses éléments que nous mettons sous la forme

X =gAl LA +azAs - b1B1 - baBs - bsBs 01 C1 +2C +o3Cs + D

avec D € D: pusque [[X,B],B] = «aF, les a, sont nuls; alors
[X,C,] = b,E, donc les b, sont également nuls; enfin, [B,,X] = ¢, E, donc
les ¢, sont nuls, ce qui prouve que ZC D. [

1 est visible que A posséde une certaine symétrie; explicitons-la main-
tenant. Soit ¢ — 7 une permutation des indices 1,2,3 ayant la signature z:
on constate sans effort que l’application linéaire de A dans A4 qui, sur la
famille génératrice 4y ...0D1,D;, D3, E de A prend la forme

A, —=¢eA,, B,—B,, C,—=eC,, D,=»D, E-=:E

d’une part est bien définie, d’autre part constitue un automorphisme de 17algébre
de Lie A. Celui-ci en induit un autre du groupe de Lie A.
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DEFINITION 6. Nous dirons d’un tel automorphisme de A qu’il est
circulaire.

Les automorphismes circulaires permutent entre eux les B,, les C,, les D,,
préservent la classe des sous-groupes normaux de A ayant le type Ajp, et on
a 1’espéce de réciproque suivante :

PROPOSITION 7. Soit T un morphisme injectif de An dans A. Alors
Uimage de v colncide avec celle de Ay par un certain automorphisme
circulaire de A.

Preuve. Rappelons que nous excluons de la famille A les objets pour
lesquels IT contient l'un des axes de coordonnées du repére naturel de A/B.
Une équation de IT est donc as = pa; + vax ol les réels p et v sont tous
deux non-nuls, et Ap contient A} = A; + pAs et A = A> + vAs. Une fois
ceci noté, un calcul facile montre que la suite centrale descendante de Ap est
C,D. {0} ainsi, 7€) € C et 7(DP) € D; par comparaison des dimensions,
on voit qu’il y a égalité. Soit maintenant X € C—1D et soit Zy ’ensemble des
crochets [X, ¥] ou ¥ décrit Ap : on vérifie facilement que les Zx ont pour
intersection £ ; de méme lorsque ¥ décrit A, d’ol1 il s’ensuit que 7(£) = £.
On en déduit 'existence d'un réel non-nul ¢ tel que 7(£) = ¢F. Ensuite, que
ce soit dans A ou A, le transporteur de C dans &£ est B donc, v(B)=B.
Dans Ap/D comme dans A/D, les éléments de B/D qui ont un adjoint de
rang au plus un sont proportionnels & 1’un des trois B, modulo C ; done, quitte
a composer 7 avec un automorphisme circulaire de .4, on peut supposer qu’il
existe des constantes 21, 5,3 et des éléments U, U, Us de C tels que
7(8,) = 3,B, + U,. Considérant ensuite ['image de X € Ay par ["application
lindaire X — [X, B,], on conclut qu’il existe des constantes i, 72,73 et des
éléments Vq, V5. V5 de D tels que (C,) =+ C, + V,. Calculons maintenant,
modulo £ :

T(D1+2) = T([B.',:BH»I]) = [T(B't,)s'_(BH»l)] — €f3ﬁ.{jfh+lD7+2

mais de la contrainte Dy + Dy + D5 = 0 découle 1’égalité des 3,413,12, puis
celle des ¥, que nous noterons désormais sans indice. Calculons ensuite

ek = 7(E) = 7([B,, C.]) = [7(B,), T(C)] = I,

d’ol ’égalité des ~, que nous noterons désormais sans indice. Pour résumer:
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il existe des constantes 3, non-nulles et des éléments &/, de C, V, de D,
W, de £ (les W, de somme nulle) tels que

T(B) = AB,AU,, T(CI=~C+Y,, T(D)=FD4W,, T(E)=ME,.

Considérons alors les égalités suivantes:

[A;-Bl] = Cl ) [AI]BZ] = O: [A'iaB?’] = I"‘C?! s
(A, B11=0,  [ALB]=Cs,  [AbBs] = vCs,

et appliquons-leur 7 : nous aboutissons a l’existence d’éléments X;,X, de
B pour lesquels 7(A’) = 3714A! + X,. De 12 vient facilement le résultat
voulu O

Signalons sans démonstration que la proposition 7 a lieu méme pour les
plans I1 que nous avons exclus 4 la convention 2 (il ne nous a pas paru utile
d’en imposer la preuve, fastidieuse, au lecteur; celle-ci s’obtient par le méme
genre de considérations, avec plus de peine du fait que la proposition 5 ne
reste vraie qu’en partie).

Préoccupons-nous maintenant de a. Définissons dans A les éléments:

iy — eXP(ZAz) . ;61 == eXp(Bz): T = eXp(CJ; 5a = EXP(DJ s, €= eXP(E) .

Rappelons que a est la projection sur A d’un certain réseau £ de RY.

PROPOSITION 8. Le sous-groupe de A engendré par les «,, les 3,, les
v, les 8, et & coinecide avec a.

Preuve. Tout comme on a défini G, on peut définir le groupe simplement

transitif G’ des transformations polynomiales de R qui ont la forme
A AN B B B O G O D Dy D R

puis constater que G est le quotient de G’ par un certain sous-groupe
de dimension trois (qui coincide avec le groupe des translations de R
parallglement & K). On peut aussi définir des éléments o), = exp(24]), etc.
qui relévent les éléments cx,, etc. de A. Sur les calculs explicites que nous
avons menés des flots de A, etc. il se voit sans peine que chacun des quinze
difféomorphismes of....,#5 de RY préserve £, d’une part, et que d’autre
part tout point de £ est I'image de 0 € £ par un certain mot en les lettres
ay. ..., &5 1 de ceci découle que le sous-groupe engendré par «f, ..., dans
G’ est le stabilisateur de £ et qulil est transitif sur cette partie de R . Par
projection, le sous-groupe de G engendré par «g,...,# estle stabilisateur de
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a et il est transitif sur cet ensemble. De la facon dont nous avons identifié A
a G, ceci revient & dire que a est le sous-groupe discret de A engendré par
les oq,...,s. O

Nous admettons les résultats suivants, qui reposent uniquement sur le
calcul :

PROPOSITION 9. Le groupe dérivé a’ de a est engendré par 3, ~5, 45,

81, 6y et €. Son centralisateur dans a est ¢. La suite centrale ascendanie
de a est d.c,a.

Plutét que d’invoquer la théorie générale des réseaux dans les groupes de
Lie nilpotents, nous préférons donner du fait suivant une preuve élémentaire:

PROPOSITION 10. La variété V = A/a est compacte.

Preuve. 11 est facile d’exhiber un domaine fondamental relativement
compact dans A pour cette variété quotient: précisément, ce domaine est
la projection sur A du “pavé” de R!® composé des points dont les trois
premigres coordonnées sont dans [0, 2[ et les autres dans [0, 1[. 1l suffit pour
le voir d’utiliser le codage explicite de G décrit plus haut. [

Nous avons voulu éviter tout recours inutile a la théorie générale des
réscaux dans les groupes de Lie; nous dirons juste quun résequ r dans un
groupe de Lie nilpotent N est un sous-groupe discret (en topologie métrique)
tel que le quotient N/r soit compact: ainsi, chaque sous-groupe discret de
A désigné ici par une certaine minuscule grasse est un réseau dans le sous-
groupe connexe de A désigné par la majuscule grasse correspondante. Nous
devrons quand mé&me recourir & 1'important théorgme suivant de Malcev, dont
la preuve se trouve dans [Ra] (théoréme 2.11 et corollaires) et qui utilise
P’existence d’une structure de groupe algébrique unipotent sur tout groupe de
Lie réel nilpotent connexe et simplement connexe:

THEOREME (Malcev). Soit G un groupe de Lie réel nilpotent, connexe
et simplemeni connexe; soit g un réseau de G ; soit ¢ un morphisme de g
dans un autre groupe de Lie réel nilpofent connexe et simplement connexe H :
alors + s'étend en un unique morphisme W de G dans H dont le graphe
est la cloture de Zariski de celui de «, et si ¢ est injectif, W ['est aussi.
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CORCLLAIRE 11. Soit L un groupe de Lie réel nilpotent, connexe et
simplement connexe; soit | un résean de 1.. Alors ['ensemble des sous-
groupes discrets de L qui sont isomorphes a | possede une structure d’espace
homogéne G/g oit G est un groupe de Lie et g un sous-groupe discret.

Justification. Soit I' un sous-groupe discret de L isomorphe & 1. Soit
% un isomorphisme de 1 sur I'. Selon le théoréme de Malcev, ¢ s’étend
d’une maniére et d’une seule en un isomorphisme ¥ de L sur lui-méme.
Comme 3 est défini a composition prés a droite par un automorphisme de 1,
on voit donc que 1’espace des 1’ est isomorphe au quotient du groupe des
automorphismes de L par le stabilisateur de 1 dans ce groupe de Lie. O

Soit x 1'un des sous-groupes discrets de A que nous avons construits
et nommés par des minuscules grasses affectées ou non d’indices. Pour tout
élément ¢ de x, soit x(¢) le sous-groupe gxg~! de A. Parce que dans tous les
cas X est normal dans a, l’application ¢ — x{¢) de A dans I’espace homogene
ad hoc (dont nous prenons X pour point-base) se factorise via la projection
naturelle A — V associant & g sa classe & droite pour a. Nous prenons
pour point-base pp sur V la classe de I’élément neutre et définissons ainsi
des objets a(g), e1(g)... que I"on peut voir comme des faisceaux localement
constants de groupes discrets ou bien comme des applications algébriques
entre variétés homogenes pointées, selon le point de vue. Dans la premigre
vision des choses, notons que a(p) s’identifie de mani¢re naturelle au groupe
fondamental de V évalué en p (a l'élement a de a(p) correspond la classe
d’homotopie d’un lacet quelconque obtenu en projetant sur V un chemin qui
mene de g & ag dans A, oll g est n'importe quel relevé de p).

Etant donné un plan IT de A/B admettant une équation de la forme
a3 = pdy + vax ot pr #£ 0, nous noterons P 1action localement libre
naturelle de Ap sur V par franslations a gauche et Fyy le feuilletage de V
par les orbites de cette action. De tels feuilletages sont bien connus: et 1’on
sait que Jpp est & orbites compactes si IT est rationnel, & orbites denses dans
les autres cas. Nous voyons les @ comme des modeles auxquels comparer
d’autres actions localement libres peut-étre plus complexes qui pourraient avoir
lieu sur V; nous considérons une telle action localement libre @ de classe
C* de A sur V et allons maintenant 1’étudier ainsi que le feuilletage F
qui lui correspond.
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3 ETUDEDE ® ET DE

Commengons par introduire le faisceau d holonomie de @ . Soit p un point
de V. Soit s(p) le stabilisateur de p dans Ap pour @. Par équivariance,
nous avons s(®(x,p)) = xs(p)x‘l pour tout x de Ap; la feuille 7, de F
qui passe par p s’identifie par ailleurs a l’espace homogéne Ap/s(p) via
I’application x — ®(x,p) de Ay dans V, et le groupe fondamental de 7,
est donc isomorphe & s(p). L’application naturelle de s(p) dans a(p) qui, &
x € s(p), associe la classe d’homotopie dun lacet ¢ — ®(e(s), p) ol e(#) est
n’importe quel chemin de 1 a x dans Ap est injective en vertu d’un théoreme
de Novikov (cf. [Go], TV.3.10). La collection des images des s(p) dans a(p)
ne constitue pas en général un faisceau localement constant en sous-groupes
de a(p), parce que certaines sections ponctuelles x(p) de s(p) peuvent tres
bien ne pas s’étendre & un voisinage de p dans V (autrement dit, F peut
avoir de 1’holonomie); cependant, nous pouvons définir le sous-groupe n(p)
de a(p) composé des x qui sont dans 1’image de s(p) et pour lesquels, pour
tout chemin p(f) dans V d’origine p = p(0), il existe une section continue
t = x(0) € a(p(r)) de a(p) pour laquelle x(¢) soit constamment dans 1’image
de s{p(r)): de par sa définition, n(p) sera un faisceau localement constant
en sous-groupes normaux de a(p). Pour tout x € n(p), il existera un élément
bien défini x(x) du stabilisateur de p dans Ap pour @ ; cet élément pourra
étre étendu de manigre unique en une section locale de s(p) au-dessus de
tout voisinage contractile de p dans V, et ’obstruction a étendre x en une
section globale de s(p) est purement topologique: pour qu'une telle section
globale existe, il faut et suffit que x soit central dans a(p). La preuve du
résultat suivant, fondamental pour la suite, va nous occuper un certain temps:

PRCPOSITION 12.  Ou bien la réunion des feuilles compactes de F dans
V' est d’intérieur non-vide, ou bien bip) C n(p), xb(p)) C B et chaque
feuille de F est dense dans V.

Signalons que la preuve donnée de cette proposition dans la premiére
version de cet article [Be] était défectueuse. Certaines idées de [Be] n’ont pas
été reprises ici (s7il était loisible de les faire apparaitre dans une revue locale,
elles n’avaient pas leur place dans une publication “sérieuse™).

Preuve de la proposition 12. Selon le théorgme C de [GHM], si F est
sans feuille compacte alors ¢{p) C n(p). Selon la méme source, si F possede
au moins une feuille compacte, les @ -orbites du centre D de Ap sont les
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fibres d’une fibration localement triviale de V sur une certaine base W. En
ce cas, a tout p € V, associons son stabilisateur S(p) dans D: puisqu’il
est central dans Ap, celui-ci est constant le long des feuilles de F ; donc,
si S(p) n’est pas indépendant de p, le support de la différentielle de cette
intégrale premiére non-triviale de J sera un fermé de V d’intérieur non-
vide ne contenant que des feuilles compactes. C'est 14 le premier cas de
notre alternative, que nous écarterons désormais. Ainsi, S(p) est constant
Chacun de ses éléments est donc l'image par x d’une section globale de
a(p), c’est-d-dire, d’un élément de d(p). De plus, le quotient de a(p) par
I'antécédent de S(p) est sans torsion (c’est en effet le groupe fondamental
d’une variété compacte de dimension 9 supportant une action localement libre
de Ap/D, donc c’est selon [GHM] un groupe polycyclique sans torsion).
On en tire aisément que d(p) < n{p). En appliquant le méme raisonnement
3 laction de Ap/D sur W, on obtient ensuite 'inclusion e(p) C n(p).
Nous concluons qu’en 1’absence d’intégrales premiéres non-constantes pour
F, le faisceau e(p) est inclus dans n(p) qu’il y ait des feuilles compactes
ou pas.

Dans e(p), il y a les sections globales 4,(p) et =(p) dont les évaluations
en pp sont respectivement &, et . L'application p — s(s(p)) de V dans
Ap satisfait par construction la condition d’équivariance m(s(D(x,p)y) =
xk(e(pyx~!, donc son image est une réunion de classes de conjugaison
dans Ap. Or, cette image est bornée (car V est compacte): on en déduit
que x(e(p)) est & valeurs dans le centre D de Agp, car aucune classe de
conjugaison non-centrale dans Ap n’est bornée (c’est un fait général de la
théorie des groupes de Lie nilpotents qui, dans notre cas, peut se prouver
par des calculs ftriviaux). Ainsi, s(&(p)) est une application constante le
long des feuilles de F: comme nous avons écarté le cas oli F possede
des intégrales premitres non-constantes, x(s(p)) est constant. De méme, les
éléments k(4 (p) de Ap sont centraux dans Ap et constants en tant que
fonetions de p. Ensuite, il existe trois sections globales ~,(p) du faisceau
quotient ¢/d(p) définies par leurs évaluations en pg, égales & &, modulo D :
répétant 1’argument, on constate que pour 'application quotient de e¢/d(p)
dans Apn/D induite par s, les images des ~,(p) sont dans le centre C de
An/D. Ainsi, sie(p)) C C.

Comme ¢ est isomorphe 3 Z° et discret dans € qui est isomorphe 2
R®, le sous-groupe x(e(p)) est donc un certain réseau de C (qui dépend
de p). Considérons & présent le sous-groupe normal n, de a engendré
par v, ¢ et =: il lui correspond un scus-faisceau n,(p) de ¢(p) non
contenu dans d; l'image de mn,(p) dans C par x posséde pour cldture
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de Zariski un sous-espace vectoriel de dimension trois N,(p) de C non
contenu dans D; ce sous-espace satisfait par construction a la condition
d’équivariance N,(®(x,p)) = xNL(p)x_l, et on en tire immédiatement que
N,(p) est un idéal de Ay (en particulier, il ne dépend pas de p). Cet
idéal est non contenu dans D), donc il contient E en vertu de la propo-
sition 5. Mais comme 1'intersection des n,(p) est le groupe monogéne
engendré par =(p), celle des sous-espaces N, de C doit &tre la droite
E et nous concluons que w(s(p)) a la forme E* pour un certain réel
non-nul e.

A tout p, associons maintenant le réseau £(p) de C/E obtenu en projetant
sur cet espace vectoriel le réseau x(e(p)) de C. Il est facile de voir que
I’espace T des réseaux de C/E qui coupent D/E en un réseau fixe et
se projettent sur C/I} en un réseau fixe est un tore de dimension six sur
lequel 1’action naturelle de Ap se fait par translations, le noyau de cette
action admettant B pour composante connexe (de sorte que les Agp-orbites
y sont des surfaces). Ces swrfaces, ou bien sont des sous-tores paralléles, ou
bien sont denses dans des sous-tores de T de dimension supérieure ou égale
a3

Cela étant, le rang de 1’application équivariante £ de V dans T est constant
le long des ®-orbites; de plus, en tout point p de V, il vaut au maximum
dim(V) — dim(8) = 3 et au minimum dim{A) — dim(B) = 2; enfin, si ce rang
prend en au moins un point la valeur 2, alors les A -orbites dans T seront
des tores-surfaces. Or, le rang de ¢ ne peut pas €tre 2 en tout point, car
I’application induite par £ du groupe fondamental a de V en pp dans celui
de T en £(py) peut se calculer sans grands efforts et son image est isomorphe
a a/b, groupe abélien libre de rang 3 qui ne saurait s’injecter dans le groupe
fondamental d’une surface. Nous concluons que le rang de £ est 3 en au
moins un point de V : done, sil n’est pas constamment égal i 3, sur ’ouvert
d-invariant de V ol ¢ est de rang 3 les orbites de @ seront les préimages
(compactes) des tores-surfaces orbites de A dans T. Mais nous avons écarté
ce cas de figure: nous concluons que £ est une submersion feuilletée et que
les Ap-orbites sont denses dans le tore de dimension trois qui est 'image de
V (dong, les feuilles de F sont denses dans V). Les fibres de la submersion ¢
ont pour composantes connexes les B-orbites car elles les contiennent tout en
ayant la méme dimension. Le réseau x(p) de B qui stabilise p est 1’extension
de e(p) par un réseau de B/C, nécessairement isomorphe & Z° et image par
# d'un sous-groupe normal de a(p) qui centralise e(p) modulo e(p); ainsi,
x(p) est I'image d’'un sous-groupe ¥(p) de bi(p) qui est de torsion dans ce
dernier: or, a/n(p) est libre, donc y(p) = b(p). O
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1l est logique de procéder maintenant par disjonction des cas:

PROPOSITION 13.  §i @ possede une orbite compacte, alors 11 est un plan
rationnel (c-a-d. que v et v sont rationnels).

Preuve. $i @ possede une orbite compacte, on peut (quitte a conjuguer
@ par un difféomorphisme de V) supposer que celle-ci passe par le point-
base pp de V. Soit ap le stabilisateur de pp pour ®: comme 1’espace
homogene Ar/ag est isomorphe a notre orbite compacte (donc lui-mé&me
compact), le groupe ap est un réseau de Aq ; de ce fait, I'injection naturelle
1 de app dans a = a(pp) s’étend en une injection W de Ap dans A dont
le graphe est la cl&ture de Zariski de celui de 4. Nous avons vu que toute
injection de A dans A avait pour image Ay ou un groupe qui s’en déduit
par application d’un automorphisme circulaire. Les automorphismes circulaires
de A préservant clairement a, ils induisent des difféomorphismes de V; de
sorte qu’en conjuguant éventuellement & par un tel difféomorphisme, on peut
supposer W(A) = Ap. Alors, comme ApMa est un réseau dans A, le plan
IT doit étre rationnel. [

PROPOSITION 14. §i &® est sans orbite compacte, aprés conjugaison
éventuelle de ® par un automorphisme trianguiaire approprié de V, il existera
des réels b et ¢ non-nuls et pour iout indice + € {1,2,3} et tout point p de
V des éléments u,(p) de C, v, (p) de D, w.(p) de K tels que le stabilisateur
de p dans B soit engendré par les Bf’u“ les Ciw,, les Df’z w, et E.

Preuve. Le faisceau quotient h/e(p) admet les trois sections constantes
S(p) dont les évaluations en pg valent ,. Par un argument déja utilisé a
la preuve de la proposition 12, il existera des éléments constants de B/C
images des 4,(p). Dans B/D et pour + fixé, les éléments x(3,(p)), s(n(p)),
£ln(p)) et K(w(p)) engendrent un réseau f(p) qui est variable mais dont
I’intersection avec C et la projection sur B/C sont constantes. Une fois fixées
cette intersection et cette projection, la variété T des réseaux possibles est
un tore de dimension trois sur lequel ’action naturelle de Ap se fait par
translations le long d’orbites dont la dimension est un ou deux: précisément,
cette dimension est un si «(;3,(p)) est de la forme B’JJ pour un certain indice
7 et un certain réel b. Mais 1'image par £ du groupe fondamental a de V en
po est monogene: done, les Ap-orbites dans T ne peuvent pas étres des tores
de dimension deux ou plus, de ce fait ce sont des cercles et x(3,(p)) est de
la forme B?” modulo C pour un certain réel b, et un certain indice ). Quitte
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a composer @ par un automorphisme circulaire de V, on pourra supposer
que 3 =1.

Si la section globale 3,(p) de a n’est pas bien déterminée modulo d(p),
c’est que ses diverses valuations différent d’une puissance de ~,(p); et de
méme, B2 n’est déterminé module T qu’a un élément pres du flot de C,.
Il en découle directement que w(v,(p)) a la forme €S+ modulo D. Le mé&me
argument montre, mutatis mutandis, que k(4,(p)) a la forme Dj”ﬁ modulo
E. Mais on a dans le sous-groupe de a(p) engendré par les §,(p) 1unique
contrainte §;(p)d(pids(py = 1, et dans 1’algébre de Lie D 1’unique contrainte
Dy + D>+ D3y = 0: on en tire ’égalité des constantes 4, que 1’on notera
donc sans indice. Appliquant ensuite & 2 'identité suivante, valable modulo
e(p): [, 3(p)] = <5z+2(p)*1, nous constatons que b,b,4 = d; il en
découle rapidement que les b, sont égaux. Appliquant enfin & a 1'identité
[3,(p). %.(p)] = c,(p)~ !, nous obtenons bc, = e, doll ’égalité des c, et les
égalités d = b* et e = be.

4. ENONCES ET PREUVES
Nous allons maintenant montrer les résultats suivants:

THEOREME A. [l existe une ®-orbite compacte si et seulemeni si T est
rationnel, et dans ce cas les orbites compactes de © forment une familie
non-dénombrable.

THEOREME B.  8§i 11 est irrationnel, alors F et F soni C* -conjugués
et © préserve une forme de volume de classe C°°.

On aurait pu s’attendre, vu ce qui est connu du cas abélien (notamment
la classification des flots sur le tore: cf. [AA]) & ce qu’un critere d’existence
d’une conjugaison C>° de F a Fip sous 'hypothése d’existence a priori d’une
conjugaison fopologique diit contenir le terme “diophantien” (ou le nom d’une
notion voisine issue de 1'approximation diophantienne), terme appliqué a un
invariant de F qu’il se serait agi de construire, du type “nombre de rotation™;
de mé&me pour le volume invariant lisse, qui n’existe pas nécessairement
dans le cas abélien mé&me lorsque les orbites sont a priori supposées denses.
L’'invariant “de type diophantien™ dont nous venons d’évoquer 1’existence se
dissimule en fait dans le premier groupe de cohomologie feuilletée de Fip,
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dont le lecteur trouvera la définition dans [Hei] et le caleul dans 1’appendice
de cet article.

THEOREME C.  Si ["application naturelle de H'(Ag, R) dans H'(F1,R)
est surjective, alors ® et O sont elles-mémes C™ -conjuguées.

L’application naturelle dont notre théoréme fait état est étudiée dans [MM];
nous rappellerons sa définition dans la preuve du théoréme C. 11 convient de
se¢ demander si 1’hypothése du théoréme C peut &tre satisfaite. Rappelons a
ce sujet que le nombre réel « est dit diophantien si 1’on peut trouver des
constantes C > 0 et o telles que pour tout couple d’entiers non tous deux
nuls (p,g) on ait

pr — gl = C(p| + g™

Rappelons que la classe des nombres réels non-diophantiens est négligeable
pour la mesure de Lebesgue.

THEOREME D.  L’application naturelle de H'(An, R) dans HY(J1,R) est
surjective dés que i et v sont tous deux diophantiens.

Preuve des théoréemes A, B et C. Nous avons déja obtenu une partie
du théoréme A: si @ posséde une orbite compacte, alors la réunion de ses
orbites compactes est d'intérieur non-vide et TT est rationnel (propositions 12
et 13). En nous plagant dans le cas restant, nous montrerons que TT doit étre
irrationnel et F conjugué a2 F. Nous obtiendrons ainsi tout le théoréme A
et la premiére assertion du théoréme B.

Le groupe de Lie B/D est abélien et il est utile de le voir comme un
espace vectoriel. Soit W la variété des réseaux de B/D qui coupent C/D
selon le réseau fixé c.e/d et se projettent sur B/C en le réseau fixé b.bh/c
(les constantes b et ¢ sont celles de la proposition 14). On n’a nulle peine
a voir que W est un tore affine de dimension 9. Le choix d'une origine
particuligre O fait de ce tore affine un groupe de Lie: ce choix revient a celui
de trois éléments g1, 42, g5 du réseau O de B/D se projetant respectivement
sur les classes modulo C de 551,53, b3 . Pour tout autre élément O/ de
W, il existera des réels u! définis modulo 1 pour lesquels les éléments
¢), 95,95 de O se projetant eux-mémes sur b, b, b3 seront de la forme
¢ =g+ cZi:Iu{ﬁy. L’action naturelle @ de A sur W se laisse aisément
déterminer: sa restriction & B est triviale et la différenticlle de ® transporte
le champ A, sur AY = a7 !'-2 ott a = b~ 'c, de sorte que la A-orbite de O

i)uf

est un tore T de dimension 3 isomorphe au quotient A/Ba” ol a’ est le
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réseau de A/B engendré par exp(ad;), expladz) et explads). Pour identifier
le groupe fondamental de T & Z°, on associera a (p.q,r) € Z° le lacet
t — Ofexp(patAd + qarAS + ratAd), 0) de m(T,0). Les Ap-orbites tracent
sur T un feuilletage en surfaces F3 qui, dans les coordonnées naturelles
(i}, 03,03y sur T, est décrit par 1’équation de Pfaff did = pdul + v,
Définissons maintenant 'application £ de classe C* de V dans W qui
associe & tout point p la projection sur B/D de son stabilisateur dans B
pour @ ; prenons pour origine O l'image par ¢ du point-base py de V;
constatons que ¢ satisfait la condition d’équivariance &(®(x,p)) = Ox, £(p))
pour tout x € Arp et tout p € V. 1l s’ensuit déja que ¢ est constante le long
des ®(B)-orbites, que son image est compacte dans T et que le rang de £
est constant (car constant le long des @-orbites, qui sont denses). Ce rang
n’est pas deux car 1'image de a = « (V) dans «(T), facile & calculer, est
277 . 11 s’ensuit que ¢ se factorise sous la forme v o ¢’ ol v est I'isogénie
de T obtenue en multipliant par deux et # une fibration localement triviale
de V sur T dont les fibres sont les @(B)-orbites. Le feuilletage F est ainsi
réalisé comme la préimage du feuilletage J3}. De 13 découle que tous les J
possibles sont C™ -conjugués les uns aux autres; on peut d’ailleurs décrire
leur construction sans faire référence 2 @ : ainsi, soit § le feuilletage de la
variété X = (B/b) x R® dont les feuilles sont les produits des horizontales
B/b par les plans affines dont une équation est du type z = px—+ry+c; soient
&1, &, €3 les vecteurs de la base canonique de R?; soit o, le difféomorphisme
de X donné par o,(p,7) = ((p), ¥+ &,): les o, commutent deux & deux et
engendrent un groupe abélien libre £ de difféomorphismes de X qui préserve
G ; par construction, ’espace feuilleté quotient de X par £ est une variété
feuilletée difféomorphe a (V, F).

Passons-en au volume invariant. La forme fermée di — pdul — vdié sur
T peut se tirer en arriere par ’application ¢ définie tout 4 1’heure pour nous
fournir une forme fermée non-singuliere « de classe C°° sur V et dont le
noyau est en tout point 1’espace tangent a [’orbite de @ qui y passe. Soit &2
un €lément de volume sur Ay qui soit invariant par translations 2 droite et
a gauche (un tel Q existe car Ay est nilpotent; of. [Ra], I). Nous pouvons
pousser en avant la forme invariante & droite €2 via la différentielle de @ en
un champ [RQ] de classe C™ d’éléments de volume feuilletés, et le produit
extérieur [Q2] A w est le volume global invariant par @© souhaité.

Passons-en 3 la preuve du théortme C. Le théoréme B nous permet de
supposer que F = JFp. Rappelons qu'une 1-forme feuilletée pour JFp est
une 1-forme différentielle w sur V qui n’est définie qu’en restriction au fibré
tangent T/ de ce feuilletage. On peut toujours étendre w en une forme «
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sur V par le choix arbitraire de son évaluation sur un champ transverse & Jpg;
on montre alors que la restriction & T/ de la différentielle da ne dépend
que de w; on appelle cette restriction différentielle feuilletée de w. On la
notera ici drw, et si elle est nulle on dira que w est IT-fermée. S7il existe une
application f de V dans R dont la restriction & 7.7 de 1a différentielle vaut
w, on dira que w est Tl-exacte; on écrira w = dpf. On renvoie le lecteur
a [Hei] ou [MM] pour davantage d’explications. Soit d’autre part 1’algebre
de cohomologie ordinaire H*( A, R) de 1’algébre de Lie Ap: on sait que
H'(Ap, R) s’identifie & 1’espace des applications linéaires de Ap dans R qui
sont nulles sur €. Nous noterons ¢ 1’élément spécial de H'(An, R) qui vaut
iosur A}, o sur Ab et s'anmule sur B nous noterons 4 1"élément spécial
de H'(An,R) qui vaut 0 sur A}, A5, By, B, et est tel que 3(B3) = 1. Soit
ensuite X € Ap : par la différentielle de @, on peut transporter X en un
champ de vecteurs X* sur V tangent au groupe 2 un paramétre ®(X%) de
difféomorphismes de cette variété (un tel champ est dit champ fondamental
de @). Limage (X7,...,X{;) de toute base de Ag par ce procédé fournit un
parallélisme sur T/ etsi ¥ = 2;1:1 J(p)X] est une section quelconque de
ce fibré, si w est une forme linéaire sur Ay, on peut ensuite associer & w une
1-forme w* sur V en posant w*(¥i(p) = ilzlﬁ((p)w(Xk); cette application
en induit une de H'(Ag,R) dans H'(Fp, R) (celle dont I'hypothese du
théorgme C fait mention).

Nommons désormais W 1’espace homogéne des réseaux de B qui sont
isomarphes & b et £ Dapplication qui, au point p de V., associe son
stabilisateur dans B pour & : comme nous ’avions fait pour 1’ancienne £,
nous voyons sans peine que cette nouvelle £ est une fibration localement
triviale dont les fibres sont cette fois-ci les ®(D)-orbites tandis que la base X
en est une nilvariété de dimension 9 sur laquelle A agit transitivement. Cette
action de A sur X a elleméme des champs fondamentaux: et si ¥ € A,
nous noterons ¥° le champ correspondant. Evidemment, pour ¥ € Ap, nous
avons d(Y") = ¥°. Relevons le champ AZ en un champ A; sur V au
moyen d’une connexion arbitraire. Les champs A7,A7,A3,...,E° safisfont
aux mémes relations de crochet que leurs antécédents dans A, et les trois
derniers de la liste (D], Dj et E°) sont de plus nuls: d’ou la formule
[A3,X°] = #00OCS pour tout X dans A. En relevant ceci 3 V, on conclut
qu’il existe des 1-formes feuilletées wy,ws.ws sur V telles que

[43, X*] = B0OCE + w1 (XD} 4 wn(X5D5 + ws(XHE".
Berivons maintenant identité de Jacobi:

[4s, [X". ¥™1] = [[As, X", Y71 + [X7, [As, Y]
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et développons grice a la formule précédente; nous trouvons tous caleuls faits
wi{[X*, YD) = Ly w1(Y™) — Ly-w1(X) + a(¥)0(X) — oY)

et deux autres équations qui, en termes de différentielle feuilletée, peuvent
s’énoncer
dnwy = dpan = —a* A 57, dipes = 0.

Nous allons nous servir du volume invariant & dont le théoreme B fait
mention; nous le normalisons de sorte que fVQ = 1. A toute forme feuilletée
w, nous pouvons maintenant associer sa moyenne [w] = jv wi(p)dQ(p) (on
voit ici w comme une application de classe €™ a valeurs dans 1’algtbre
extérieure de Ap). Nous noterons {w} = w — [w]. Du fait que fVQ =1, on
a [[w]] = [w] et [{w}] = 0. Remarquons enfin que, de 'invariance de £ par
@, il découle que pour tout X € Agp et toute application f de classe C*° de
V dans R, on a [Lx+f] = 0. En particulier, considérons 1’expression sur deux

champs fondamentaux de & de la différentielle feuilletée d’une 1-forme:
dnw(X*, Y = wi(X*. YD) — Ly-w(¥Y™) + Ly w(X™).

En passant & 1a moyenne, les deux derniers termes de la somme s annuleront;
nous pouveons aussi bien écrire leurs moyennes nulles comme les dérivées de
constantes, soit Lyx-[w(¥Y*)] et Ly-[w(X*)]: ce qui nous mene finalement a
1’égalité
[dnwX™, Y] = [w(X", Y] = daleDE", .

Ainsi: {dpw} = dp{w}. Ceci nous méne & conclure que dpfw,} = 0. 81
I’hypothese du théoréme C est satisfaite, il existera donc pour tout 2 une
application f; de V dans R de classe C™ telle que {w,} — dnf, soit
une forme constante; mais comme sa moyenne est nulle, cette constante est
nulle, et {w,} = dpf,. Posons maintenant A} = As + fiDy + D2 + KE et
Wl =, — dif,. Un caleul direct montre que pour tout X € Ay,

[43,X*] = B0 4 wJC0D) + w3(X0D2 + W5 (XE

ou les coefficients sont constants. Ainsi, [’espace vectoriel de champs de
vecteurs engendré par Ap et Af sur V est une algtbre de Lie réelle de
dimension douze dont on n’a aucun mal a vérifler la nilpotence. Cette algebre
s’intégre en un groupe de Lie nilpotent transitif G de difféomorphismes de
V qui contient un réseau isomorphe 2 a (groupe fondamental de V), donc
est isomorphe 2 A par le théoréme de Malcev. Les plongements de Ap dans
A sont connus et 3 automorphisme triangulaire prés, a composition prés par
un automorphisme de Ap, il n’y en a quiun. Ceci prouve que les actions @
et @ sont conjuguées.
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APPENDICE

Cette partie de notre travail, destinée a justifier que le théorgme D a lieu,
ne contient aucune idée vraiment originale. Le résultat que nous avons en vue
ne figure certes pas explicitement dans [MM], mais les méthodes employées
sont les mémes. On se placera en fait dans un contexte un peu plus général que
celui du théoréme D. Soit G un groupe de Lie nilpotent; soit & une action
localement libre de G sur la variété fermée V telle que dim(V) = dim(G)+1 ;
soit ¢ un sous-groupe & un paramétre de G. On supposera que &' est normal
dans @G, inclus dans son sous-groupe dérivé, tel que ¢ — ®(d) soit une action
péricdique de période 1. Alors les ®(¢')-orbites dans V sont les fibres dune
fibration principale = et le groupe G’ quotient de G par ¢ agit localement
librement sur la base V' de celle-ci. Soient F et F' les feuilletages de V
et V' par les orbites des groupes G et G’ respectivement: on peut vair JF
comme le tiré en arrigre de F' par «, d’oll un morphisme 7* de HY(F',R)
dans H'(F,R) en cohomologie.

LEMME 15, §i @ préserve une forme de volume et si ses orbites sont
denses, le morphisme w* est un isomorphisme.

Preyve. Soit w une 1-forme feuilletée et fermée pour F. Soit p un point
de V et tirons w en arriére sur le cercle R/Z au moyen du paramétrage
t — ®(d', p) de la ¢ -orbite de p. Nous obtenons une forme qui peut s’écrire
gitidt avec g une application de péricde 1 de R dans R. Il est commu
qu’il existe une et une seule constante ¢, une et une seule application f de
R dans R, de période 1, telles que Jblf(t)dt =0 et (g(&) — o)dt = df (D).
Cette f dépend différentiablement de p et on peut donc la voir comme
une application de V dans R. Si « est la forme feuilletée-fermée w — def
et X le champ de vecteurs tangent au flot ®(¢"), par construction, a(X)
sera constante le long des X-orbites. Ceci étant, en restriction aux feuilles
de F, les X-orbites sont homologues les unes aux autres, et w(X) est la
période de la forme fermée w sur leur classe: ainsi, w(X) est une intégrale
premiére de F ; par densité des feuilles de ce feuilletage, w(X) est donc une
constante.

A présent, soit Q le volume invariant par ®. Puisque ¢ est dans le
groupe dérivé de G, il existe dans 1’algébre de Lie de G des champs Xj, ¥y
tels que X = > [X;, ¥}]; nous avons donc

aX) =Y ol i) = Y Ly, o¥e) — Lo,
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la seconde égalité étant due au fait que « est fermée. Mais en intégrant ces
fonctions contre le volume invariant €2, on obtient:

/. (y(X)Q = /(Z L;(k(,y(Y;() — LYKQ«(XI())Q
= ZLXk(/CI(Yk)Q) — ZLYk (/ cy(Xk)Q) = O,

donc la constante a(X) est nulle.

Puisque drixe = ixdra =0, il existe 3 une forme F' feuilletée fermée
telle que o = n*3. Cecl prouve que toute forme F-feuilletée fermée est
cohomologue & la préimage dune forme F'-feuilletée fermée. Naturellement,
w est exacte (6gale & dxf) si et seulement si (7 est exacte (égale & drrg, ol
gl (p)) = folf(cb(q')f,p))). Cela est clair, vu la construction. L

5

Grice 2 ce lemme, le caleul de HY(F7.R) se raméne 2 celui du
feuilletage de R®/Z° par les hypersurfaces de niveau de la forme de Pfaff
das — pday — vday . Plus généralement, soit @ une action localement libre de
R? sur R*TL1/Z7+L du type

(1) (D((ala s :an): (xlz s 7xn+1)) — (al + X1, y +xn: Z )\kak +xn+1):

k=1

ol les A; sont des constantes. Soit F le feuilletage correspondant.

S$i une application p — ¢, est donnée de Z"*! dans le corps des
complexes, nous la noterons formellement ), ¢, exp(2im{p,x}) sans attribuer
en général un sens & cette fagon d’écrire; cependant, si {.,.) désigne le
produit scalaire euclidien usuel de R™*!, si pour tout réel a il existe une
constante € > 0 telle que ¢, < C||p||” pour tout p € Z"F1 — [0}, on sait
bien que la somme précédente converge vers une application de classe C°°
de R™1/Zt! dont elle est la série de Fourier. Lorsque nous considérons
la “somme” précédente sans nous soucier de sa convergence, nous 1’appelons
une série de Fourier formelle. 11 est possible de définir la somme de deux
telles séries, leur produit par un scalaire et leur dérivée relativement a un
champ de vecteurs constant de maniére purement formelle: précisément, pour
X e Rn—&-l,

Ly Y cpexp(in(p,x)) = 2ir » (p,X)c, exp(2in{p,x)).
I 7
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Nous dirons qu'une série de Fourier (formelle) est sans ferme constant si
cg = 0. De la formule ci-dessus découle immédiatement :

LEMME 16. Les conditions suivantes sont équivalentes: (a) les coor-
données du champ constant X sont rationnellement indépendantes, (b) pour
toute série de Fourier formelle o sans terme constant il existe une et une
seule série de Fourier formelle 3 sans terme constant telle que Lx3 = «.

Soit w une forme ferméefeuilletée relativement a2 F . Au champ de vecteurs
X constant et tangent a F, associons le terme constant de la série de Fourier
de w(X): ceci définit une application linéaire £, de R” (identifié & I’espace
des champs constants tangents a ) dans R. Si jamais w est feuilletée-
exacte, alors il existe une application ¢ de classe C sur R*™T/Z7! telle
que Lya = £,(X) et cecl implique que £,(X) est nul. L'application linéaire
£, associée 3 w est donc une premigre obstruction & 1’exactitude de cette
forme; elle peut &tre vue comme un élément de H'(R",R). Supposcns cette
obstruction levée. Supposons également F i feuilles denses: on peut alors
facilement montrer qu’il existe un champ de vecteurs X tangent a JF et ayant
des coordonnées rationnellement indépendantes. Résolvons Lya = w(X) oll a
est une série de Fourier formelle. Pour tout champ constant ¥ tangent a F,
écrivons ce qui suit (la premicre égalité vient de ce que X commute a ¥ et

de ce que w est feuilletée-fermée):
L)(s.u‘(Y) = Lyw‘(X) = LyL)((l‘ = LxLy(]: =

En vertu du lemme 16, on a done w(¥) = Lya. Ceci ayant lieu pour tout
champ constant ¥, ces champs engendrant le fibré tangent & F, on voit que
w est la différentielle feuilletée de la série de Fourier formelle «. Reste a
vérifier si o converge bien vers une fonction de classe C™.

LEMME 17, Dans la formule (1), supposons que chacun des Ay soif nul
out diophantien, ['un au moins étant diophantien : alors « converge vers une
Jonciion de classe C™ .

Preuve. Pour 1 < k < n, soit X; le champ de vecteurs 0/dx +
M /x40, qui est tangent & F. Nous savons que formellement, Xpor = w(X;).
Posons

a=3 c,expQin{p,x)),  wXp) =Y cexpin(p.x)).
7 P
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Nous obtenons par un calcul direct

(Pr 4 AePry1)cp expQRin (p,x)) = C exp(2im{p, x}),

oll p désigne le multi-entier (pi,...,p.41). En particulier, si A est dio-
phantien, il existe des constantes C > 0 et « telles que pour py et p,y1 non
tous deux nuls, on ait

leol = 12x + Mpura| 7Yk | €O mil) €],

ce qui prouve que la sous-série de Fourier obtenue en supprimant de o les
termes dans 1'indice desquels py et p,.y1 sont tous deux nuls est convergente
de classe C™ car ¢lle reste & décroissance rapide. Si A; est nul, le m&me
résultat a lieu en supprimant cette fois-ci tous les termes pour lesquels py
est nul. De ces convergences partielles on déduit facilement la convergence
globale de «x. [OJ

L’application de cela au théorgme D est directe.
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