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ACTIONS LOCALEMENT LIBRES RIGIDES

DE GROUPES DE LIE NILPOTENT S

par Michel Belliart

1. INTRODUCTION

Soient G un groupe de Lie nilpotent, V une variété compacte, orientable

et sans bord, <E> une action localement libre de classe C°° de G sur V. Les

orbites de <ï> sont les feuilles d'un feuilletage T de V. Nous supposerons

que la codimension dim(V) — dim(G) de ce feuilletage est égale à 1. Sous

ces hypothèses, dans [GHM], il est montré ce qui suit:

THÉORÈME. Il existe dans G un sous-groupe N, contenant le groupe
dérivé de G, dont les orbites dans V sont compactes.

Outre qu'il contribue à l'élucidation de la topologie de V (qui, selon

[GHM], fibre sur le cercle et a le type d'homotopie d'un espace homogène
de groupe de Lie résoluble), ce résultat a l'intérêt de ramener au moins en

partie le problème de classification des actions possibles au cas où G est

abélien : en effet, induit une action localement libre <ï>' du groupe abélien
G' G/N sur la base V' de la fibration de V en N-orbites, et on a

dim(V') dim(G') +1 • Cependant, <£>' n'est pas une action quelconque, et on

pourrait espérer qu'en un sens approprié de cette expression, <E>' se souvînt
de son origine. Dans cet ordre d'idées, on montrera ici un peu plus que
le résultat suivant, qui peut être considéré comme un "échantillon" du plus
intéressant des trois théorèmes que contient cet article, qui seront énoncés une
fois construits les objets sur lesquels ils portent:
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350 M. BELLIART

THÉORÈME PRINCIPAL. Il existe un groupe de Lie nilpotent non-trivial G,
une variété compacte V de dimension dim(G) + 1 et une action localement

libre analytique <E> de G sur V tels que pour toute action localement libre M*

de classe C°° de G sur V, on puisse trouver un automorphisme r du groupe
de Lie G et un difféomorphisme a de classe C°° de V sur V tels que

oC¥(g,p)) <3>(r(g). <j(p.)) VgeG.VpeV.

La relation précédente entre actions <E> et W du même groupe sur la même

variété est une relation d'équivalence naturelle mais très forte; en ce sens, le
théorème principal affirme que le groupe G que nous construirons ne possède,
à conjugaison près pour celle-ci, qu'une seule action localement libre sur la
variété V que nous construirons en même temps que lui.

La classification orbitale et topologique obtenue dans [GHM] ne laissait pas

espérer un tel résultat: d'ailleurs, il est bien connu qu'aucun groupe abélien

non-trivial n'a la propriété de rigidité de notre groupe G (de manière précise,
une conséquence de [GHM] est que si G R" alors V fibre en tores à n

dimensions sur le cercle; en utilisant ce fait, par la technique de recollement
de cylindres décrite dans [GHM] on peut construire des actions localement
libres de R" sur V ayant un nombre fini arbitraire d'orbites compactes).

Tout comme les résultats de [GHM], ceux du présent article valent en fait
pour toute classe de conjugaison C avec r > 2 ; nous ne nous plaçons en
classe C°° que par souci de simplicité.

Le plan de cet article est le suivant: dans la seconde partie, on construira

une famille à deux paramètres de groupes Gx,y, une variété V et une action
de chaque GA.jy sur V (on utilisera en fait des notations autres que

Gh.y, mieux adaptées aux preuves des énoncés à venir). On mènera, dans

la troisième partie, l'étude des objets ainsi construits. En quatrième partie, on
énoncera sous une forme forte le théorème principal ainsi que deux résultats de

moindre intérêt. Un court appendice sert à montrer que l'hypothèse du troisième
de nos théorèmes (qui est de nature cohomologique) a génériquement lieu, ce

qui n'étonnera aucun spécialiste du sujet. On peut résumer les théorèmes à

venir en disant que si x et y sont rationnels, alors possède un ouvert non-
vide d'orbites compactes; que dans le cas restant, il existe un difféomorphisme

a de classe C00 de V sur V tel que l'action (g.p) —> <t(0(c;,<t_1 (/?))) ait
les mêmes orbites que <&x.y ; que dans ce cas, si le feuilletage de V par les

orbites de satisfait un certain critère cohomologique, les actions <l> et

<I>X_y elles-mêmes sont conjuguées.
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2. Construction des modèles

On construit ici les objets dont il s'agira de mener l'étude. Les bases de

la théorie des groupes et algèbres de Lie et celles du calcul différentiel sont

réputées connues (une référence solide est [Hel]). On notera

(ai,a2,a3,bi,b2,b3,ci,C2,c3,di,d2,d3,ei,e2.,e3)

les coordonnées naturelles sur R15. Par abus de notation, on admet de

remplacer l'indice dans "ai", par un nombre qui lui est égal modulo

3, et cet indice sera fréquemment noté % ou j. On définit dans R15 le sous-

espace vectoriel K comme le lieu où s'annulent les douze formes linéaires
suivantes :

ai, a.2, a3, b\, bz-, b3, ci, C2, C3, d\ — d2. d2~d^. 61+62 + ^3.

On nomme A le quotient de R15 par K. Les formes linéaires précédentes
constituent un système de coordonnées sur À. Nous posons par souci de

simplification d[ d2 — d$, d'2 d^ — d\, d'3 d\ — ö?2 et e e\ + e2 + «3.

Ensuite, nous définissons un certain nombre de sous-espaces vectoriels de A
au moyen d'équations linéaires:

DÉFINITION 1. Le sous-espace de A défini par ai 02 a-$ 0 est B.
Le sous-espace de B défini par b\ 62 bj, 0 est C. Le sous-espace
de C défini par ci C2 C3 0 est D. La droite de D définie par
d[ d'2 d^ 0 est E.

Pour tout plan n de A/B, la préimage de n dans A est An • Le sous-

espace de B défini par b%44 br+2 0 est B, Le sous-espace de C défini

par c.(+i cî+2 0 est Cz. Le plan de D défini par d'% 0 est D,.

CON\^ENTION 2. Il y a sur A/B un système de coordonnées naturelles

(ai,02,03). En vue de la proposition 5 à venir, nous excluons de la famille
An les objets particuliers pour lesquels le plan n contient l'un des trois axes
de coordonnées. Ceci revient à supposer que n admet une équation de la
forme 03 p,a\ -l- vci2 avec // et v non-nuls.

Considérons le réseau £ de R15 dont les points ont des coordonnées

entières, les trois premières coordonnées étant paires : ce réseau se projette
sur A en un réseau que nous noterons a (rappelons que dans un espace
vectoriel, un réseau est le sous-groupe discret engendré par une base). Nous
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noterons b, c, d, e, b*, c, et d, les intersections de a avec, respectivement:
B, C, D, E, B^, C,, et D,. Chacun des sous-groupes discrets b, c... est

un réseau dans le sous-espace vectoriel de A lui correspondant.

Nous allons maintenant modifier la loi de groupe additif de A pour en faire

un groupe de Lie nilpotent. Tous les sous-espaces vectoriels précédemment
construits deviendront des sous-groupes de Lie ; tous les sous-groupes discrets

précédemment construits demeureront des sous-groupes discrets (c'est à cet
effet que nous avons imposé aux trois premières coordonnées des éléments de

a d'être paires). Pour définir la nouvelle loi de A, nous construirons d'abord

l'algèbre de Lie de ses champs invariants par translations à droite.

Soit X' un champ de vecteurs sur R15 : il peut se produire que X' soit

projetable sur A ; c'est en particulier le cas si X' possède dans les coordonnées

choisies une forme analytique dans laquelle n'interviennent pas les variables

d\, dz,d3,ei, ^2,^3 • Nous pouvons alors noter X le projeté de X' sur A. Les

champs suivants sont clairement projetables:

3 3 3 b2; 3 3 3
Aj — b,— albl— —tt— B, ——|- bt+2 —

da-i
1

3c%
1

13dt 2 det ' 1
3b,_

1

ddl+1 '

d 3,0 3 3
' ~ "ô ^ a% ~XT ' "ô— ' < — "TT ' E., — —— •

de, 3d, de,, 3d, 3e,,,

Il est utile de noter que D\ + Dz -\- D$ 0 et que les Ez sont tous égaux (de

sorte que désormais nous omettrons l'indice). Les douze champs

Ai, A2, A3, B\. Ci,C2, Ç3. Di7D2, E

forment un parallélisme sur A. A présent, faisons décrire indépendamment
à A et à F la liste de ces champs, et déterminons à chaque fois la valeur
de [X, F] : comme le crochet de Lie est antisymétrique, il suffit de mener
le calcul lorsque F est à droite dans la liste; si nous nous dispensons de

mentionner ceux des crochets qui sont nuls, nous aboutissons par un calcul
direct à ces identités:

[Ai, B,~\ — C,, [Ai, CJ — D,,
[B,- Bl+1] Dl+2 [5j, Cz] E.

Ainsi, l'espace vectoriel A engendré par nos douze champs est stable par le
crochet de Lie; ou encore: est une algèbre de Lie.

Soit à nouveau un champ X' sur R15. Soit p un point de R15 et soit p'
l'image de p sous le flot de X' au bout du temps t. Supposons X' susceptible
d'une intégration explicite: l'écriture d'une formule donnant les coordonnées
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du point p' en fonction de celles de p se heurte au problème technique du

grand nombre de ces coordonnées; cependant, si certaines de celles-ci sont
invariantes sous le flot de X', on peut les omettre pour gagner de la place.
Avec ce système, en notant (ai,, ef) les coordonnées de p et (a'1;... ,e'3)

celles de p' :

t1 b2
X A'l=> a[ a% + tt c' c% - tbt, d[ dl - (att + -)bt, e[ e% - -j-t,

X B[ =>• b[ b, + t, d'l+1 dl+i H- bl+2t,

X C[ => c[ c,. + t, d[ — d-, + att, e\ — e% + b,t,

X D[ =p- d[ — dt + t. X — E[ e\ — et -T-1.

De là résulte que les champs précédents sont complètement intégrables (c'est-
à-dire, tangents à des groupes à un paramètre de difféomorphismes de R15).

Cette propriété est stable par projection et nous permet de considérer les flots

A{ de A%, B\ de B,, etc. Toujours à l'aide de nos formules, nous pouvons
déterminer sans peine la valeur des commutateurs [X1, F*] X'YSX~'Y~S où

t,s sont deux réels et X.Y deux champs pris dans la famille
ici encore, on peut prendre Y à droite de X dans la liste et omettre les

commutateurs triviaux; on obtient tous calculs faits

[A[. BsJ c;tsD-t2s/2E;tsll\ [Aj, CJ D~'s,

[B',,Bl+1]=D^2, [B{,Cl) E-'\
Soit maintenant G la famille des difféomorphismes de A ayant la forme :

Aa)Aa2lAfBb) Bb2B^C[l C22CÇDfDfEe

où les coefficients sont des réels quelconques. Ce que nous venons d'établir
en dit plus que la proposition suivante (non seulement elle est vraie, mais

nous venons de coder explicitement G par générateurs et relateurs):

PROPOSITION 3. L'ensemble G est un groupe de Lie de transformations
polynomiales de À qui agit simplement transitivement sur cet espace vectoriel.

Soit O l'origine de l'espace vectoriel A. A tout a G A, nous pouvons
associer l'unique élément g de G tel que g(ö) a et, au moyen de cette

application, transporter sur A la loi de G : alors Ö devient l'élément neutre
de A, que nous noterons désormais 1. Il est connu que A est l'algèbre des

champs de vecteurs invariants sur A par translations à droite (ce qui peut
d'ailleurs se retrouver par le calcul). Le résultat suivant est évident vus notre

codage explicite de G et notre définition de la structure du groupe de Lie A :
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PROPOSITION 4. Tous les sous-espaces vectoriels An, B... de A introduits

plus haut (désignés par des majuscules grasses affectées ou non d'indices)
demeurent des sous-groupes de Lie de A pour sa nouvelle loi de composition
interne.

Notons que sur C, les lois de sous-groupe de Lie et de sous-espace vectoriel
de A coïncident. A nos sous-groupes de Lie connexes de A correspondront
autant de sous-algèbres de Lie de A, que nous désignerons par la même

notation en remplaçant toutefois la majuscule grasse par une majuscule italique ;

il est aisé d'exhiber des bases de ces sous-algèbres de Lie. Par exemple, une
base de £>2 est Bz,C\,Cz,C5,D\,Dz,E\ une base de C\ est C\,D\,Dz,E.
Nous avons la proposition suivante, qui a pour corollaire direct la nilpotence
de A :

PROPOSITION 5. Soit X l'une des algèbres de Lie A ou Au. La suite
centrale ascendante de X est D. C, X. Tout idéal de X non contenu dans T>

contient E. Le transporteur de C dans E est B. Les B,, sont les sous-

algèbres de X contenues dans B, contenant strictement C et ne possédant

aucun élément dont la projection sur X jT> soit de rang supérieur ou égal
à 2. Enfin, Ct — \_X,Bj\ et D% [X, C,].

Preuve. Toutes ces assertions résultent de calculs élémentaires d'algèbre
linéaire. Prouvons juste celle-ci: «tout idéal de X non contenu dans V
contient E ». Considérons un idéal T de X ne contenant pas £, et soit l'un
de ses éléments que nous mettons sous la forme

X — a\Ai 4- azAz X 03-^-3 b\B\ + bzBz 4- £3^3 X c\C\ 4- C2C2 X C3C3 X D

avec D G V : puisque [[X, 15.J,23J atE, les a% sont nuls; alors

[X,CJ btE, donc les bt sont également nuls; enfin, [Br,X\ ctE, donc

les ct sont nuls, ce qui prouve que X C V.

Il est visible que A possède une certaine symétrie; explicitons-la
maintenant. Soit 1 -g j une permutation des indices 1,2,3 ayant la signature s :

on constate sans effort que l'application linéaire de A dans A qui, sur la
famille génératrice Ai D\, Dz-D^.E de A prend la forme

At —^ sAy, B —y Bj, C., —y sCy, D., —y D.j, E —y sE

d'une part est bien définie, d'autre part constitue un automorphisme de l'algèbre
de Lie A. Celui-ci en induit un autre du groupe de Lie A.
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DÉFINITION 6. Nous dirons d'un tel automorphisme de A qu'il est

circulaire.

Les automorphismes circulaires permutent entre eux les Bt, les C-t, les

préservent la classe des sous-groupes normaux de À ayant le type An, et on
a l'espèce de réciproque suivante:

PROPOSITION 7. Soit r un morphisme injectif de An dans A. Alors

l'image de r coïncide avec celle de Au par un certain automorphisme
circulaire de A.

Preuve. Rappelons que nous excluons de la famille An les objets pour
lesquels n contient l'un des axes de coordonnées du repère naturel de A/B.
Une équation de n est donc «3 pa\ + va2 où les réels p et v sont tous

deux non-nuls, et Au contient A[ Ai 4- pA$ et A'2 A2 + vAj,. Une fois
ceci noté, un calcul facile montre que la suite centrale descendante de An est

C,D,{0} : ainsi, r(C) C C et r(T>) c V \ par comparaison des dimensions,

on voit qu'il y a égalité. Soit maintenant X eC-D et soit Xx l'ensemble des

crochets [X, F] où Y décrit An : on vérifie facilement que les Xx ont pour
intersection £ ; de même lorsque Y décrit A, d'où il s'ensuit que r(£) £.
On en déduit l'existence d'un réel non-nul e tel que r(E) sE. Ensuite, que
ce soit dans An ou A, le transporteur de C dans £ est B : donc, r(B) B.
Dans ArnI'D comme dans A/'X, les éléments de B/X qui ont un adjoint de

rang au plus un sont proportionnels à l'un des trois B, modulo C ; donc, quitte
à composer r avec un automorphisme circulaire de A, on peut supposer qu'il
existe des constantes $1, $2, fh et des éléments Ui, U2.U3 de C tels que

r(Bt) — fi/B, + if-,. Considérant ensuite l'image de A G An par l'application
linéaire X -a- \X,B£\, on conclut qu'il existe des constantes 71.72,73 et des

éléments Vl, V2. V3 de V tels que r(C.j) 7tCl A Vt. Calculons maintenant,
modulo £ :

r(A+2) r([Bt,B,+1]) [r(B,A r(Bt+i)] AÄ+iA+2

mais de la contrainte D\ + D2 A D3 0 découle l'égalité des ß,li+1.&+2, puis
celle des 3l que nous noterons désormais sans indice. Calculons ensuite

sE t(E) r([Bt, C,]) [t(B£). r(Ct)J ß%E,

d'où l'égalité des 7,. que nous noterons désormais sans indice. Pour résumer:
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il existe des constantes 3.7 non-nulles et des éléments U% de C, V% de T>,

W} de 8 (les W% de somme nulle) tels que

r(B3 - ßBt+Ut, r(Ct) 7Ci+Vt, r(A) - /?Dt+Wt, r(E,) 07Ê,.

Considérons alors les égalités suivantes:

Ci, [A[,B2] =0, [Ai,S3] //C3

[i4i,Äi]=0, [4,S2]=C2, [A2,S3] z/C3,

et appliquons-leur r : nous aboutissons à l'existence d'éléments XlyX2 de

B pour lesquels r(A') 3~l-tA[ +Xt. De là vient facilement le résultat
voulu.

Signalons sans démonstration que la proposition 7 a lieu même pour les

plans n que nous avons exclus à la convention 2 (il ne nous a pas paru utile
d'en imposer la preuve, fastidieuse, au lecteur; celle-ci s'obtient par le même

genre de considérations, avec plus de peine du fait que la proposition 5 ne

reste vraie qu'en partie).

Préoccupons-nous maintenant de a. Définissons dans À les éléments :

a, exp(2A,), ßt exp(ß,), 7, exp(C?), <5t exp(D?), g exp(£).

Rappelons que a est la projection sur A d'un certain réseau C de R15.

PROPOSITION 8. Le sous-groupe de À engendré par les az, les ß%, les

7j les Si et z coïncide avec a.

Preuve. Tout comme on a défini G, on peut définir le groupe simplement
transitif G' des transformations polynomiales de R15 qui ont la forme

4"» A'pdpB'fä8|® :4*'OpCpçpOp opopEpjpW
puis constater que G est le quotient de G' par un certain sous-groupe
de dimension trois (qui coincide avec le groupe des translations de R15

parallèlement à K). On peut aussi définir des éléments a[ exp(2A'), etc.

qui relèvent les éléments a.,, etc. de A. Sur les calculs explicites que nous
avons menés des flots de A[, etc. il se voit sans peine que chacun des quinze
difféomorphismes aj...., z'3 de R15 préserve £, d'une part, et que d'autre

part tout point de £ est l'image de 0 G £ par un certain mot en les lettres

a[,... .z'3 : de ceci découle que le sous-groupe engendré par aj,....z'3 dans

G' est le stabilisateur de £ et qu'il est transitif sur cette partie de R15. Par

projection, le sous-groupe de G engendré par a1?... ,g est le stabilisateur de
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a et il est transitif sur cet ensemble. De la façon dont nous avons identifié A
à G, ceci revient à dire que a est le sous-groupe discret de A engendré par
les ai,.... s.

Nous admettons les résultats suivants, qui reposent uniquement sur le

calcul :

PROPOSITION 9. Le groupe dérivé a' de a est engendré par jf, q/f, qf,
ôi, 82 et s. Son centralisateur dans a est c. La suite centrale ascendante

de a est d, c,a.

Plutôt que d'invoquer la théorie générale des réseaux dans les groupes de

Lie nilpotents, nous préférons donner du fait suivant une preuve élémentaire :

PROPOSITION 10. La variété V A/a est compacte.

Preuve. Il est facile d'exhiber un domaine fondamental relativement

compact dans A pour cette variété quotient: précisément, ce domaine est

la projection sur A du "pavé" de R15 composé des points dont les trois

premières coordonnées sont dans [0,2[ et les autres dans [0,1[. Il suffit pour
le voir d'utiliser le codage explicite de G décrit plus haut.

Nous avons voulu éviter tout recours inutile à la théorie générale des

réseaux dans les groupes de Lie; nous dirons juste qu'un réseau r dans un

groupe de Lie nilpotent N est un sous-groupe discret (en topologie métrique)
tel que le quotient N/r soit compact: ainsi, chaque sous-groupe discret de

A désigné ici par une certaine minuscule grasse est un réseau dans le sous-

groupe connexe de A désigné par la majuscule grasse correspondante. Nous
devrons quand même recourir à l'important théorème suivant de Malcev, dont
la preuve se trouve dans [Ra] (théorème 2.11 et corollaires) et qui utilise
l'existence d'une structure de groupe algébrique unipotent sur tout groupe de

Lie réel nilpotent connexe et simplement connexe:

THÉORÈME (Malcev). Soit G un groupe de Lie réel nilpotent, connexe

et simplement connexe ; soit g un réseau de G ; soit ip un morphisme de g
dans un autre groupe de Lie réel nilpotent connexe et simplement connexe H :
alors 0 s'étend en un unique morphisme W de G dans H dont le graphe
est la clôture de Zariski de celui de </;, et si 1p est injectif W l'est aussi.
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COROLLAIRE. 11. Soit L un groupe de Lie réel nilpotent, connexe et

simplement connexe; soit I un réseau de L. Alors l'ensemble des sous-

groupes discrets de L qui sont isomorphes à I possède une structure d'espace

homogène G/g où G est un groupe de Lie et g un sous-groupe discret.

Justification. Soit 1' un sous-groupe discret de L isomorphe à 1. Soit

ip un isomorphisme de 1 sur 1'. Selon le théorème de Malcev, ip s'étend
d'une manière et d'une seule en un isomorphisme f de L sur lui-même.
Comme é est défini à composition près à droite par un automorphisme de 1,

on voit donc que l'espace des 1' est isomorphe au quotient du groupe des

automorphismes de L par le stabilisateur de 1 dans ce groupe de Lie.

Soit x l'un des sous-groupes discrets de À que nous avons construits

et nommés par des minuscules grasses affectées ou non d'indices. Pour tout
élément g de x, soit x(g) le sous-groupe gxg~1 de À. Parce que dans tous les

cas x est normal dans a, l'application g —> x(g) de À dans l'espace homogène
ad hoc (dont nous prenons x pour point-base) se factorise via la projection
naturelle À —^ V associant à g sa classe à droite pour a. Nous prenons

pour point-base po sur V la classe de l'élément neutre et définissons ainsi
des objets a(t?), ci (g)... que l'on peut voir comme des faisceaux localement

constants de groupes discrets ou bien comme des applications algébriques
entre variétés homogènes pointées, selon le point de vue. Dans la première
vision des choses, notons que a(p) s'identifie de manière naturelle au groupe
fondamental de V évalué en p (à l'élement a de a(p) correspond la classe

d'homotopie d'un lacet quelconque obtenu en projetant sur V un chemin qui
mène de g à ag dans À, où g est n'importe quel relevé de p).

Étant donné un plan n de A/B admettant une équation de la forme

a3 pa\ + ua2 où pu fi 0, nous noterons <£>n l'action localement libre
naturelle de An sur V par translations à gauche et Tu le feuilletage de V

par les orbites de cette action. De tels feuilletages sont bien connus: et l'on
sait que Tu est à orbites compactes si II est rationnel, à orbites denses dans

les autres cas. Nous voyons les <3>n comme des modèles auxquels comparer
d'autres actions localement libres peut-être plus complexes qui pourraient avoir
lieu sur V ; nous considérons une telle action localement libre <E> de classe

C°° de An sur V et allons maintenant l'étudier ainsi que le feuilletage T
qui lui correspond.
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3. ÉTUDE DE <Ê> ET DE T

Commençons par introduire le faisceau d'holonomie de Soit p un point
de V. Soit s(p) le stabilisateur de p dans An pour <ï>. Par équivariance,

nous avons s(<3>(x,/?)) — xs(p)x~1 pour tout x de An i la feuille Tp de T
qui passe par p s'identifie par ailleurs à l'espace homogène An/s(p) via

l'application x —? <£>(x,p) de An dans V, et le groupe fondamental de Tp
est donc isomorphe à s(p). L'application naturelle de s(p) dans a(p) qui, à

x G s(p), associe la classe d'homotopie d'un lacet t -¥ <&>(c(f),p) où c(t) est

n'importe quel chemin de 1 à x dans An est injective en vertu d'un théorème
de Novikov (cf. [Go], IV.3.10). La collection des images des s(p) dans a(p)
ne constitue pas en général un faisceau localement constant en sous-groupes
de a(p), parce que certaines sections ponctuelles x(p) de s(p) peuvent très

bien ne pas s'étendre à un voisinage de p dans V (autrement dit, T peut
avoir de l'holonomie); cependant, nous pouvons définir le sous-groupe n(p)
de a(p) composé des x qui sont dans l'image de s(p) et pour lesquels, pour
tout chemin p(t) dans V d'origine p p(0), il existe une section continue

t —! x(t) G a(p(J)) de a(p) pour laquelle x(j) soit constamment dans l'image
de s(p(t)) : de par sa définition, n(p) sera un faisceau localement constant

en sous-groupes normaux de a(p). Pour tout x G n(p), il existera un élément

bien défini k(x) du stabilisateur de p dans An pour <t» ; cet élément pourra
être étendu de manière unique en une section locale de s(p) au-dessus de

tout voisinage contractile de p dans V, et l'obstruction à étendre x en une
section globale de s(p) est purement topologique: pour qu'une telle section

globale existe, il faut et suffit que x soit central dans a(p). La preuve du

résultat suivant, fondamental pour la suite, va nous occuper un certain temps :

PROPOSITION 12. Ou bien la réunion des feuilles compactes de T dans

V est d'intérieur non-vide, ou bien b(p) C n(p), «(b(/>)) C B et chaque

feuille de T est dense dans V.

Signalons que la preuve donnée de cette proposition dans la première
version de cet article [Be] était défectueuse. Certaines idées de [Be] n'ont pas
été reprises ici (s'il était loisible de les faire apparaître dans une revue locale,
elles n'avaient pas leur place dans une publication "sérieuse").

Preuve de la proposition 12. Selon le théorème C de [GHM], si T est

sans feuille compacte alors c(p) c n(p). Selon la même source, si T possède

au moins une feuille compacte, les <E> -orbites du centre D de An sont les
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fibres d'une fibration localement triviale de V sur une certaine base W. En

ce cas, à tout p V, associons son stabilisateur S(p) dans D : puisqu'il
est central dans An, celui-ci est constant le long des feuilles de (F ; donc,
si S(p) n'est pas indépendant de p, le support de la différentielle de cette

intégrale première non-triviale de J~ sera un fermé de V d'intérieur non-
vide ne contenant que des feuilles compactes. C'est là le premier cas de

notre alternative, que nous écarterons désormais. Ainsi, Sip) est constant.
Chacun de ses éléments est donc l'image par k d'une section globale de

a(p), c'est-à-dire, d'un élément de d(p). De plus, le quotient de a(p) par
l'antécédent de Sip) est sans torsion (c'est en effet le groupe fondamental

d'une variété compacte de dimension 9 supportant une action localement libre
de An/D, donc c'est selon [GHM] un groupe polycyclique sans torsion).
On en tire aisément que d(p) c n (p). En appliquant le même raisonnement
à l'action de An/D sur W, on obtient ensuite l'inclusion c(p) c n(p).
Nous concluons qu'en l'absence d'intégrales premières non-constantes pour
T, le faisceau c(p) est inclus dans n(p) qu'il y ait des feuilles compactes

ou pas.

Dans e(p), il y a les sections globales 5t(p) et s(p) dont les évaluations

en po sont respectivement S., et e. L'application p —>• n(c(p)) de V dans

An satisfait par construction la condition d'équivariance /c(£(0(x, p)))
xK.(c(p))x~1, donc son image est une réunion de classes de conjugaison
dans An- Or, cette image est bornée (car V est compacte): on en déduit

que K(e(p)) est à valeurs dans le centre D de An, car aucune classe de

conjugaison non-centrale dans An n'est bornée (c'est un fait général de la
théorie des groupes de Lie nilpotents qui, dans notre cas, peut se prouver
par des calculs triviaux). Ainsi, n(e(p)) est une application constante le

long des feuilles de T : comme nous avons écarté le cas où T possède

des intégrales premières non-constantes, K(s(p)) est constant. De même, les

éléments K(S,(p)) de An sont centraux dans An et constants en tant que
fonctions de p. Ensuite, il existe trois sections globales 7t(p) du faisceau

quotient c/d(p) définies par leurs évaluations en po, égales à S, modulo D :

répétant l'argument, on constate que pour l'application quotient de e/d(p)
dans An/D induite par k, les images des 7t(p) sont dans le centre C de

An/D. Ainsi, /c(c(/?)) C C.
Comme c est isomorphe à Z6 et discret dans C qui est isomorphe à

R6, le sous-groupe k(c(/?)) est donc un certain réseau de C (qui dépend
de p). Considérons à présent le sous-groupe normal n? de a engendré

par 7k <5,. et e : il lui correspond un sous-faisceau n.,(p) de c(p) non
contenu dans d; l'image de nz(p) dans C par k possède pour clôture
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de Zariski un sous-espace vectoriel de dimension trois Nt(p) de C non
contenu dans D ; ce sous-espace satisfait par construction à la condition

d'équivariance NbC^C*,/?)) et on en tire immédiatement que
N%{p) est un idéal de An (en particulier, il ne dépend pas de p). Cet

idéal est non contenu dans D, donc il contient E en vertu de la proposition

5. Mais comme l'intersection des n.t(p) est le groupe monogène

engendré par e(p), celle des sous-espaces Nt de C doit être la droite
E et nous concluons que K-(c(p)) a la forme Ee pour un certain réel

non-nul e.

A tout p, associons maintenant le réseau £(p) de C/E obtenu en projetant
sur cet espace vectoriel le réseau k,(c(/?)) de C. Il est facile de voir que
l'espace T des réseaux de C/E qui coupent D/E en un réseau fixe et

se projettent sur C/D en un réseau fixe est un tore de dimension six sur

lequel l'action naturelle de An se fait par translations, le noyau de cette

action admettant B pour composante connexe (de sorte que les An-orbites

y sont des surfaces). Ces surfaces, ou bien sont des sous-tores parallèles, ou
bien sont denses dans des sous-tores de T de dimension supérieure ou égale
à 3.

Cela étant, le rang de l'application équivariante i de V dans T est constant
le long des -orbites; de plus, en tout point p de V, il vaut au maximum

dim(V) — dimOB) 3 et au minimum dim(A) — dimCB) 2 ; enfin, si ce rang
prend en au moins un point la valeur 2, alors les An-orbites dans T seront
des tores-surfaces. Or, le rang de t ne peut pas être 2 en tout point, car

l'application induite par t du groupe fondamental a de V en po dans celui
de T en £(po) peut se calculer sans grands efforts et son image est isomorphe
à a/b, groupe abélien libre de rang 3 qui ne saurait s'injecter dans le groupe
fondamental d'une surface. Nous concluons que le rang de l est 3 en au

moins un point de V : donc, s'il n'est pas constamment égal à 3, sur l'ouvert
<E>-invariant de V où l est de rang 3 les orbites de O seront les préimages

(compactes) des tores-surfaces orbites de An dans T. Mais nous avons écarté

ce cas de figure : nous concluons que i est une submersion feuilletée et que
les An-orbites sont denses dans le tore de dimension trois qui est l'image de

V (donc, les feuilles de T sont denses dans V). Les fibres de la submersion £

ont pour composantes connexes les B -orbites car elles les contiennent tout en

ayant la même dimension. Le réseau x(p) de B qui stabilise p est l'extension
de c(p) par un réseau de B/C, nécessairement isomorphe à Z3 et image par
k d'un sous-groupe normal de a(p) qui centralise c(p) modulo e(p) ; ainsi,

x(p) est l'image d'un sous-groupe y(p) de b(p) qui est de torsion dans ce
dernier: or, a/n(p) est libre, donc y(p) b(p).
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Il est logique de procéder maintenant par disjonction des cas:

PROPOSITION 13. Si Q possède une orbite compacte, alors FI est un plan
rationnel (c-à-d. que p et a sont rationnels).

Preuve. Si <î> possède une orbite compacte, on peut (quitte à conjuguer
<ï> par un difféomorphisme de V) supposer que celle-ci passe par le point-
base po de V. Soit an le stabilisateur de po pour <ï> : comme l'espace
homogène Àn/an est isomorphe à notre orbite compacte (donc lui-même

compact), le groupe an est un réseau de An ; de ce fait, l'injection naturelle

tp de an dans a — a(j?o) s'étend en une injection W de An dans A dont
le graphe est la clôture de Zariski de celui de ip. Nous avons vu que toute

injection de An dans A avait pour image An ou un groupe qui s'en déduit

par application d'un automorphisme circulaire. Les automorphism es circulaires
de A préservant clairement a, ils induisent des difféomorphismes de V ; de

sorte qu'en conjuguant éventuellement d> par un tel difféomorphisme, on peut

supposer W(An) An- Alors, comme An H a est un réseau dans An, le plan
n doit être rationnel.

PROPOSITION 14. Si est sans orbite compacte, après conjugaison
éventuelle de <t> par un automorphisme triangulaire approprié de V, il existera
des réels b et c non-nuls et pour tout indice % E {1,2,3} et tout point p de

V des éléments u,(p) de C, vt(p) de D, wt(p) de E tels que le stabilisateur
de p dans B soit engendré par les Bb u%, les Cctv%, les D\ w., et Ebc.

Preuve. Le faisceau quotient bfc(p) admet les trois sections constantes

ßt(p) dont les évaluations en po valent ßt. Par un argument déjà utilisé à

la preuve de la proposition 12, il existera des éléments constants de B/C
images des ßt(p). Dans B/D et pour i fixé, les éléments njßdp'j), «(71(p)),
/c(7'2(p)) et «(73 (p)) engendrent un réseau £(p) qui est variable mais dont
l'intersection avec C et la projection sur B/C sont constantes. Une fois fixées

cette intersection et cette projection, la variété T des réseaux possibles est

un tore de dimension trois sur lequel l'action naturelle de An se fait par
translations le long d'orbites dont la dimension est un ou deux : précisément,
cette dimension est un si K(ß.,(p)) est de la forme Bb pour un certain indice

j et un certain réel b. Mais l'image par t du groupe fondamental a de V en

po est monogène : donc, les An -orbites dans T ne peuvent pas êtres des tores
de dimension deux ou plus, de ce fait ce sont des cercles et K(ßt(p)) est de

la forme Bb' modulo C pour un certain réel bl et un certain indice j. Quitte
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à composer $ par un automorphisme circulaire de V, on pourra supposer

que j
Si la section globale ßfp) de a n'est pas bien déterminée modulo d(p),

c'est que ses diverses valuations diffèrent d'une puissance de %(p) ; et de

même, Bbp n'est déterminé modulo D qu'à un élément près du flot de Ct.
Il en découle directement que «(7,(/?)) a la forme Cf modulo D. Le même

argument montre, mutatis mutandis, que a la forme Ddp modulo
E. Mais on a dans le sous-groupe de a(p) engendré par les ôl(p) l'unique
contrainte Si(p)Ô2(p)ôs(p) 1, et dans l'algèbre de Lie T> l'unique contrainte
£>1 + D2 + Ö3 0 : on en tire l'égalité des constantes dl que l'on notera

donc sans indice. Appliquant ensuite k à l'identité suivante, valable modulo

e(p) [ßi(p)->ß%+i(p)~\ ^%+iip)~l, nous constatons que b,b,+l d\ il en
découle rapidement que les b% sont égaux. Appliquant enfin k à l'identité
[ß'i(p)-. "fi(p)] ct(p)~l, nous obtenons bct e, d'où l'égalité des c% et les

égalités d b2 et e bc.

4. Énoncés et preuves

Nous allons maintenant montrer les résultats suivants:

THÉORÈME A. Il existe une <$>-orbite compacte si et seulement si n est

rationnel, et dans ce cas les orbites compactes de <fi forment une famille
non-dénombrable.

THÉORÈME B. Si n est irrationnel, alors J- et J~n sont -conjugués
et <ï> préserve une forme de volume de classe C°°.

On aurait pu s'attendre, vu ce qui est connu du cas abélien (notamment
la classification des flots sur le tore : cf. [AA]) à ce qu'un critère d'existence
d'une conjugaison C°° de T à Tu sous l'hypothèse d'existence a priori d'une

conjugaison topologique dût contenir le terme "diophantien" (ou le nom d'une
notion voisine issue de l'approximation diophantienne), terme appliqué à un
invariant de T qu'il se serait agi de construire, du type "nombre de rotation";
de même pour le volume invariant lisse, qui n'existe pas nécessairement

dans le cas abélien même lorsque les orbites sont a priori supposées denses.

L'invariant "de type diophantien" dont nous venons d'évoquer l'existence se

dissimule en fait dans le premier groupe de cohomologie feuilletée de Tu,

achevé de composer le 22 décembre 2011 à 09:04



M. BELLIART

dont le lecteur trouvera la définition dans [Hei] et le calcul dans l'appendice
de cet article.

THÉORÈME C. Si l'application naturelle de H1 (An-, R) dans H1 {Tu., R)
est surjective, alors <t> et <E>n sont elles-mêmes C°° -conjuguées.

L'application naturelle dont notre théorème fait état est étudiée dans [MM] ;

nous rappellerons sa définition dans la preuve du théorème C. Il convient de

se demander si l'hypothèse du théorème C peut être satisfaite. Rappelons à

ce sujet que le nombre réel k est dit diophantien si l'on peut trouver des

constantes C > 0 et a telles que pour tout couple d'entiers non tous deux

nuls (p,q) on ait
|pK -q\> C(|/?| + |g|)a.

Rappelons que la classe des nombres réels non-diophantiens est négligeable

pour la mesure de Lebesgue.

THÉORÈME D. L'application naturelle de //ÈytmR) dans est

surjective dès que p, et v sont tous deux diophantiens.

Preuve des théorèmes A, B et C. Nous avons déjà obtenu une partie
du théorème A : si possède une orbite compacte, alors la réunion de ses

orbites compactes est d'intérieur non-vide et n est rationnel (propositions 12

et 13). En nous plaçant dans le cas restant, nous montrerons que n doit être

irrationnel et J~ conjugué à jFn. Nous obtiendrons ainsi tout le théorème A
et la première assertion du théorème B.

Le groupe de Lie B/D est abélien et il est utile de le voir comme un

espace vectoriel. Soit W la variété des réseaux de B/D qui coupent C/D
selon le réseau fixé c.cjd et se projettent sur B/C en le réseau fixé b. b/c
(les constantes b et c sont celles de la proposition 14). On n'a nulle peine
à voir que W est un tore affine de dimension 9. Le choix d'une origine
particulière O fait de ce tore affine un groupe de Lie : ce choix revient à celui
de trois éléments gi.gz,<?3 du réseau O de B/D se projetant respectivement
sur les classes modulo C de bß\, bßz, b&$. Pour tout autre élément O' de

W, il existera des réels u{ définis modulo 1 pour lesquels les éléments

()[, g'2. de O' se projetant eux-mêmes sur bßi,bßz,bß^ seront de la forme
g'i 9'. + cYßk=i ullr L'action naturelle 0 de A sur W se laisse aisément

déterminer: sa restriction à B est triviale et la différentielle de © transporte
le champ A,, sur A® a~1-£-r où a b~1c, de sorte que la A-orbite de O
est un tore T de dimension 3 isomorphe au quotient A/Ba" où a" est le
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réseau de A/B engendré par exp(aAi), expiai) et exp(aÂ3). Pour identifier
le groupe fondamental de T à Z3, on associera à (p. q, r) G Z3 le lacet

t -A ©(exp(patA® + qatA® + ratA®), O) de 7ri(T,0). Les An-orbites tracent

sur T un feuilletage en surfaces T^ qui, dans les coordonnées naturelles

(u\,U2,ul) sur T, est décrit par l'équation de Pfaff du\ — pdu\ + vdu\.
Définissons maintenant l'application £ de classe de V dans W qui
associe à tout point p la projection sur B/D de son stabilisateur dans B

pour <I> ; prenons pour origine O l'image par £ du point-base po de V ;

constatons que £ satisfait la condition d'équivariance é(4>(x,p)) — 0(x, £(p))

pour tout x An et tout p G V. Il s'ensuit déjà que £ est constante le long
des <E>(5)-orbites, que son image est compacte dans T et que le rang de £

est constant (car constant le long des -orbites, qui sont denses). Ce rang
n'est pas deux car l'image de a tti(V) dans tti(T), facile à calculer, est
27?. Il s'ensuit que £ se factorise sous la forme ?/o f' où v est l'isogénie
de T obtenue en multipliant par deux et £' une fibration localement triviale
de V sur T dont les fibres sont les O(B) -orbites. Le feuilletage T est ainsi

réalisé comme la préimage du feuilletage T^. De là découle que tous les T
possibles sont -conjugués les uns aux autres; on peut d'ailleurs décrire

leur construction sans faire référence à <ï> : ainsi, soit Q le feuilletage de la

variété X (B/b) x R3 dont les feuilles sont les produits des horizontales

B/b par les plans affines dont une équation est du type z px+vy+c; soient

ë'i, iL., les vecteurs de la base canonique de R3 ; soit a% le difféomorphisme
de X donné par a,(p,v) (r,(p),v + et) : les at commutent deux à deux et

engendrent un groupe abélien libre £ de difféomorphismes de X qui préserve
G ; par construction, l'espace feuilleté quotient de X par £ est une variété

feuilletée difféomorphe à (V, T).
Passons-en au volume invariant. La forme fermée du\ - p.dit] - vdu\ sur

T peut se tirer en arrière par l'application £ définie tout à l'heure pour nous
fournir une forme fermée non-singulière uj de classe C00 sur V et dont le

noyau est en tout point l'espace tangent à l'orbite de <ï> qui y passe. Soit Q

un élément de volume sur An qui soit invariant par translations à droite et
à gauche (un tel Q existe car An est nilpotent; cf. [Ra], I). Nous pouvons

pousser en avant la forme invariante à droite Q via la différentielle de O en

un champ [Q] de classe C°° d'éléments de volume feuilletés, et le produit
extérieur [Q] A co est le volume global invariant par <ï> souhaité.

Passons-en à la preuve du théorème C. Le théorème B nous permet de

supposer que T JAn. Rappelons qu'une 1 -forme feuilletée pour est

une 1-forme différentielle o; sur V qui n'est définie qu'en restriction au fibré

tangent TTn de ce feuilletage. On peut toujours étendre u? en une forme a
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sur V par le choix arbitraire de son évaluation sur un champ transverse à Tu ;

on montre alors que la restriction à TTu de la différentielle da ne dépend

que de co ; on appelle cette restriction différentielle feuilletée de to. On la
notera ici duto, et si elle est nulle on dira que to est Yl-fermée. S'il existe une

application / de V dans R dont la restriction à TTu de la différentielle vaut

to, on dira que to est Tl-exacte; on écrira to duf• On renvoie le lecteur
à [Hei] ou [MM] pour davantage d'explications. Soit d'autre part l'algèbre
de cohomologie ordinaire H*(Au,R) de l'algèbre de Lie Au ' on sait que
H1 (Au - R) s'identifie à l'espace des applications linéaires de Au dans R qui
sont nulles sur C. Nous noterons a l'élément spécial de H1 (Au-, R) qui vaut

fi sur A[, 1/ sur A'2 et s'annule sur B ; nous noterons 3 l'élément spécial
de H1 (Au, R) qui vaut 0 sur et est tel que ß(B3) — 1. Soit
ensuite X Lin - par la différentielle de <E>, on peut transporter X en un

champ de vecteurs X* sur V tangent au groupe à un paramètre O(X') de

difféomorphismes de cette variété (un tel champ est dit champ fondamental
de O). L'image (X±,.... X*n de toute base de Au par ce procédé fournit un

parallélisme sur TTu et si Y — f2k=ifk(p)X^ est une section quelconque de

ce fibré, si lo est une forme linéaire sur Lin, on peut ensuite associer à lo une
1-forme te* sur V en posant co*(Y)(p) i cette application
en induit une de H1 (Au, R) dans H1(Tu-, R) (celle dont l'hypothèse du

théorème C fait mention).
Nommons désormais W l'espace homogène des réseaux de B qui sont

isomorphes a b et l'application qui, au point p de V, associe son
stabilisateur dans B pour <ï> : comme nous l'avions fait pour l'ancienne £,

nous voyons sans peine que cette nouvelle t est une fibration localement
triviale dont les fibres sont cette fois-ci les <E>(D)-orbites tandis que la base X
en est une nilvariété de dimension 9 sur laquelle À agit transitivement. Cette

action de À sur X a elle-même des champs fondamentaux: et si Y 6 A,
nous noterons Y° le champ correspondant. Évidemment, pour Y Au, nous

avons d£(Y'*) Y°. Relevons le champ en un champ A3 sur V au

moyen d'une connexion arbitraire. Les champs AJ"... ,E° satisfont

aux mêmes relations de crochet que leurs antécédents dans A, et les trois
derniers de la liste (D\, Df et E°) sont de plus nuls: d'où la formule

[A3.X0] â(X)C% pour tout X dans A. En relevant ceci à V, on conclut

qu'il existe des 1-formes feuilletées toi, 102,103 sur V telles que

[A3,X*] - ß(X)C; +.ojfXADl + üjz<X)Di + LO5(X*)E*.

Écrivons maintenant 1 'identité de Jacobi :

[A3, [X\ Y*]] [[A3,X*]. Y*] + [X*, [A3, r]]
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et développons grâce à la formule précédente; nous trouvons tous calculs faits

coi([X\ Y*]) LX' ùJi(Y*) - Ly*loi(X*) + a(Y)ß(X) - a(X)ß(Y)

et deux autres équations qui, en termes de différentielle feuilletée, peuvent
s'énoncer

dy[U,'i — dy[Lù2 — — O:* A ß", djjiü^ — 0

Nous allons nous servir du volume invariant Q dont le théorème B fait
mention; nous le normalisons de sorte que fv Q 1. A toute forme feuilletée

uj nous pouvons maintenant associer sa moyenne [cv] jv uj(p)dQ(p) (on
voit ici Lo comme une application de classe C°° à valeurs dans l'algèbre
extérieure de .An)- Nous noterons j u;} — uj — [u]. Du fait que fv Q 1, on
a [[>']] — !>•] et [{u}] 0. Remarquons enfin que, de l'invariance de Q par
<ï>, il découle que pour tout X .An et toute application / de classe C°° de

V dans R, on a [Lx*f] 0. En particulier, considérons l'expression sur deux

champs fondamentaux de <3> de la différentielle feuilletée d'une 1 -forme :

dnw(.X*, Y*) lo([X\ h*]) - LX'Lo{Y*) + LY*u;(X*).

En passant à la moyenne, les deux derniers termes de la somme s'annuleront;

nous pouvons aussi bien écrire leurs moyennes nulles comme les dérivées de

constantes, soit Lx*[io(Y*)] et Ly- [a>(X*)] : ce qui nous mène finalement à

l'égalité
[dnwvr, m - mix*, ri)i (4iM)cr, n.

Ainsi: {^n^} — •
Ceci nous mène à conclure que du{u,} 0. Si

l'hypothèse du théorème C est satisfaite, il existera donc pour tout une

application f de V dans R de classe C°° telle que { } - dufi soit
une forme constante; mais comme sa moyenne est nulle, cette constante est

nulle, et } duf- Posons maintenant A3 +fiDi +f2,D2 +f$E et
üj® uj} — duf, Un calcul direct montre que pour tout X Ain,

[Al,X*] ß(X)C3 + 'Jl(X)D\ -b 4'(A)D2 + JZ.X)E,

où les coefficients sont constants. Ainsi, l'espace vectoriel de champs de

vecteurs engendré par An et sur V est une algèbre de Lie réelle de

dimension douze dont on n'a aucun mal à vérifier la nilpotence. Cette algèbre
s'intègre en un groupe de Lie nilpotent transitif G de difféomorphismes de

V qui contient un réseau isomorphe à a (groupe fondamental de V), donc

est isomorphe à À par le théorème de Malcev. Les plongements de An dans

À sont connus et à automorphisme triangulaire près, à composition près par
un automorphisme de An, il n'y en a qu'un. Ceci prouve que les actions <!>

et <I>n sont conjuguées.
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Appendice

Cette partie de notre travail, destinée à justifier que le théorème D a lieu,
ne contient aucune idée vraiment originale. Le résultat que nous avons en vue

ne figure certes pas explicitement dans [MM], mais les méthodes employées

sont les mêmes. On se placera en fait dans un contexte un peu plus général que
celui du théorème D. Soit G un groupe de Lie nilpotent; soit <I> une action
localement libre de G sur la variété fermée V telle que dim(V) — dim(G) + l ;

soit <p' un sous-groupe à un paramètre de G. On supposera que f est normal
dans G, inclus dans son sous-groupe dérivé, tel que t —¥ O(ç>0 soit une action

périodique de période 1. Alors les 0(<£>') -orbites dans V sont les fibres d'une
fibration principale tt et le groupe G' quotient de G par <pl agit localement
librement sur la base V' de celle-ci. Soient T et T' les feuilletages de V
et V' par les orbites des groupes G et G' respectivement: on peut voir T
comme le tiré en arrière de T' par 7r, d'où un morphisme tt* de

dans HlÇF, R) en cohomologie.

LEMMIE 15. Si d? préserve une forme de volume et si ses orbites sont

denses, le morphisme tt* est un isomorphisme.

Preuve. Soit lu une 1 -forme feuilletée et fermée pour T. Soit p un point
de V et tirons lu en arrière sur le cercle R/Z au moyen du paramétrage

t <$>((j)',p) de la (f -orbite de p. Nous obtenons une forme qui peut s'écrire

g(t)dt avec g une application de période 1 de R dans R. Il est connu

qu'il existe une et une seule constante c, une et une seule application / de

R dans R, de période 1, telles que jQf(t)dt 0 et (g(t) — c)dt df(t).
Cette / dépend différentiablement de p et on peut donc la voir comme

une application de V dans R. Si a est la forme feuilletée-fermée lu — dj?f
et A le champ de vecteurs tangent au flot O(0'), par construction, a(X)
sera constante le long des A-orbites. Ceci étant, en restriction aux feuilles
de T, les A-orbites sont homologues les unes aux autres, et lu(A) est la

période de la forme fermée lu sur leur classe: ainsi, lu(X) est une intégrale
première de T ; par densité des feuilles de ce feuilletage, cu(A) est donc une
constante.

A présent, soit Q le volume invariant par <3>. Puisque ô' est dans le

groupe dérivé de G, il existe dans l'algèbre de Lie de G des champs A*. Yk

tels que A Y][A/., Yk] ; nous avons donc

a(A) a([Xk, Yk]) ^ LXka(Yk) - Lyka(Xk),
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la seconde égalité étant due au fait que a est fermée. Mais en intégrant ces

fonctions contre le volume invariant Q, on obtient:

j olQOQ j (]TLXka(Yk) - LYka(Xk))Q

!>*(/aWàQ) "!>*(/°^)Q) 0,

donc la constante a(X) est nulle.

Puisque djrtxa — ixdjra 0, il existe 3 une forme J-'-feuilletée fermée
telle que a tt*3. Ceci prouve que toute forme J7-feuilletée fermée est

cohomologue à la préimage d'une forme T' -feuilletée fermée. Naturellement,

u est exacte (égale à drf si et seulement si 3 est exacte (égale à dj^g, où

g(j\(p)) f0 /(0(ç6',p))). Cela est clair, vu la construction.

Grâce à ce lemme, le calcul de N1(Jrn,R) se ramène à celui du

feuilletage de R6/Z6 par les hypersurfaces de niveau de la forme de Pfaff
da3 — fida\ — udaz. Plus généralement, soit <D une action localement libre de

Rn sur R*+i/z«+i du type

n

(1) ^((«î, • - • ,an).(xi,... ,xn+i)) {ai +x1; -\~xn, ^ Xkak +xrt+1),
k=l

où les Xk sont des constantes. Soit T le feuilletage correspondant.

Si une application p cp est donnée de Zn+l dans le corps des

complexes, nous la noterons formellement cp exp(2ùr(p, x}) sans attribuer

en général un sens à cette façon d'écrire; cependant, si désigne le

produit scalaire euclidien usuel de R"+1, si pour tout réel a il existe une

constante C > 0 telle que cp < C||/?||a pour tout p G Zn+1 - {0}, on sait

bien que la somme précédente converge vers une application de classe C°°
de R"+1/Z"+1 dont elle est la série de Fourier. Lorsque nous considérons

la "somme" précédente sans nous soucier de sa convergence, nous l'appelons
une série de Fourier formelle. Il est possible de définir la somme de deux

telles séries, leur produit par un scalaire et leur dérivée relativement à un
champ de vecteurs constant de manière purement formelle : précisément, pour
X G R"+1,

Lx 22 cp exP(2l^(p,x)) 2iix 2~^'J,p,X)cp exp(2in(p,x)).
p p
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Nous dirons qu'une série de Fourier (formelle) est sans terme constant si

co 0. De la formule ci-dessus découle immédiatement:

LEMME 16. Les conditions suivantes sont équivalentes : (a) les
coordonnées du champ constant X sont rationnellement indépendantes, (b) pour
toute série de Fourier formelle a sans terme constant il existe une et une
seule série de Fourier formelle ß sans terme constant telle que Lxß — «.

Soit 10 une forme fermée-feuilletée relativement à T. Au champ de vecteurs

X constant et tangent à T, associons le terme constant de la série de Fourier
de lo(X) : ceci définit une application linéaire 4, de R" (identifié à l'espace
des champs constants tangents à T) dans R. Si jamais co est feuilletée-

exacte, alors il existe une application a de classe C°° sur R"+1/Z"+1 telle

que Lxa £^(X) et ceci implique que t^(X) est nul. L'application linéaire
4> associée à co est donc une première obstruction à l'exactitude de cette

forme; elle peut être vue comme un élément de H1(RLR). Supposons cette

obstruction levée. Supposons également T à feuilles denses: on peut alors

facilement montrer qu'il existe un champ de vecteurs X tangent à T7 et ayant
des coordonnées rationnellement indépendantes. Résolvons Lxa — co(X) où a
est une série de Fourier formelle. Pour tout champ constant Y tangent à T7,

écrivons ce qui suit (la première égalité vient de ce que X commute à F et
de ce que co est feuilletée-fermée) :

Lxco(Y) Lyco(X) LyLxo. LXLyOi

En vertu du lemme 16, on a donc co(Y) Lytx. Ceci ayant lieu pour tout
champ constant Y, ces champs engendrant le fibré tangent à T7, on voit que
co est la différentielle feuilletée de la série de Fourier formelle a. Reste à

vérifier si a converge bien vers une fonction de classe C°°.

LEMME 17. Dans la formule (1), supposons que chacun des A* soit nul

ou diophantien, l'un au moins étant diophantien : alors a converge vers une

fonction de classe C°°

Preuve. Pour 1 < k < n, soit X* le champ de vecteurs d/dx^ +
Xß)/dxn+i, qui est tangent à T. Nous savons que formellement, Xka co(Xk).

Posons

a cp exp(2i7r(p. x)) uJ(Xk) 4 exP(2in{p,x)~).
p p
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Nous obtenons par un calcul direct

(Pk + \kpn+i)cpexp(2iiï(p,x)) ckexp(2i-n{p.x)),

où p désigne le multi-entier (pi,... ,pn+i)- En particulier, si A* est dio-

phantien, il existe des constantes C > 0 et a telles que pour pk et pn+1 non
tous deux nuls, on ait

\Cp\ \Pk + ^kPn+l\~l\ckp\ <C-HY, \Pi\)~a\ckp\

ce qui prouve que la sous-série de Fourier obtenue en supprimant de a. les

tennes dans l'indice desquels pk et pn+i sont tous deux nuls est convergente
de classe C°° car elle reste à décroissance rapide. Si \k est nul, le même

résultat a lieu en supprimant cette fois-ci tous les termes pour lesquels pk
est nul. De ces convergences partielles on déduit facilement la convergence
globale de a:.

L'application de cela au théorème D est directe.
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