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L’Enseignement Mathématique (2) 57 (2011), 281-301

DIRICHLET’S CALCULATION OF GAUSS SUMS

by Bill CASSELMAN )

INTRODUCTION

If we make a list of small odd primes p for which 5 is a square modulo p
we get

11,19,29,31.41,59,61,71,79,89, 101,109,131, 139,149, 151,179, 181, . ..

All the last digits in this list are either 1 or 9. So the pattern should be pretty
clear: we guess that 5 is a square modulo p precisely when p is either 1
or 9 modulo 10. No prime is congruent to 4 or 6 modulo 10, so we can
reformulate this to say that 5 is a square modulo p whenever p is congruent
to 1 or 4 modulo 5, which is to say a square modulo 5.

If we make a list of odd primes p for which 3 is a square modulo p,
we get

11,13.23,37,47,59,61,71,73,83,97,107,109, 131, 157,167,179, 181, . ..

but now the pattern is not so clear. It becomes clearer if we enhance this list:

p: 11 13 23 37 47 59 61 71 73 8 97 107 109 131 157 ...
pmod3: 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1...
pmod4: 3 1 3 1 3 3 1 3 131 3 1 3 1...

Now we can guess that 3 will be a square modulo p if and only if either
(a) p modulo 4 is 1 and p modulo 3 is a square; or ¢b) neither p modulo 4
nor p modulo 3 is a square. We can confirm these guesses by looking at
primes other than 3 and 5. Thus are we led to the law of quadratic reciprocity.

*) T wish to thank students attending a number theory seminar at Humboldt University (Berlin)
for listening to a first draft of this, and Henri Darmon for making it possible for me to find time
to write a nearly final draft during a visit to MecGill (Montreal).
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282 B. CASSELMAN

For p an odd prime, a relatively prime to p, let

(j) B 1 if ais a square modulo p,
" |=1 otherwise.

Since for odd p the map x > x* is a multiplicative homomorphism with kernel
{#£1}, this defines a multiplicative character. The following rule accounts for
everything we have guessed at:

THEOREM (Quadratic reciprocity). If p, g are odd primes then

where

£ =

1 if either p or q is 1 modulo 4,
—1  if both p and q are 3 modulo 4.

There are many, many proofs of quadratic reciprocity. Some of the most
intriguing among them reduce the theorem to a question of the sign of Gauss
sums. Gauss (in [Gaul], then [Gau2]) was the first to make the connection, and
Dirichlet followed him several years later ([Dir2]). In this note I will explain
— from a modem perspective — Dirichlet’s proof, which was a real rour de
Jorce in analytic number theory. It is commonly asserted that Dirichlet’s proof
is just a form of the Poisson summation formula. There is some truth to that,
but it does not tell the whole story, and more particularly it does not even
tell it the way Dirichlet likely saw it. There are a number of modern tools
one can use to understand what Dirichlet did, a true embarras de richesses.
What is to follow will offer an apparently new way to read Dirichlet’s paper.
But then the real moral, I suppose, is that it is impossible to put ourselves
inside Dirichlet’s mind and times.

I am going to try to follow Dirichlet very closely, but there will be two
significant departures. The first is very simple — Dirichlet did not use complex
numbers, but worked rather with real and imaginary parts separately — for
example, in the Fourier transforms. [ will not follow him in this. The second
difference is probably more confroversial, and is how my exposition differs
from other expositions of Dirichlet’s calculation of Gauss sums. Dirichlet
works throughout his paper with equations of integrals such as the one

3 N
s s =so
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DIRICHLET’S CALCULATION OF GAUSS SUMS 283

for f a suitably smooth function with period 1. I will replace this with the
equation of distributions
Z eZ?rinx s 50 .

This is not only convenient, but | think that it gives some insight into the way
Dirichlet actually thought. (For a friendly introduction to the modern theory
of distributions, I recommend [Schw].)

To give some first-hand flavour of Dirichlet’s writing, here is his main
result, in a translation of s own words:

The sum of the finite or infinite series
Fla)=co+crcoscx+ e cos2a + - - -

being known, one can always express in terms of the function F(o) the new
series

2 27
CO‘|‘CICUSIZ§+L’2COSZZ§—|—»--

and

« 227r . 221‘\'
cisinl” — 4+ esin2” — -4
n n

In addition, he finds an explicit evaluation of these series in terms of some
values of Fia).

1. GAUss SUMS

For n > 1 and a an integer modulo n, define the normalized Gauss sum
by the formula

~ _ L 2miad fn L 2miay/n
vala) = T Z e = 5 Z e vy,

xmod n y mod n

where v,(y) is the number of x in Z/n with 2% =y. It is a kind of Fourier
transform on Z/n.

It is relatively easy to show (and I shall say more about this later on) that
for p an odd prime, a prime to p

1 ifp=1 mod4
e .
-1 if p=3 mod4,
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284 B. CASSELMAN
so that ~,(a) is determined up to sign:

+1 ifp=1 mod4
Tpla) = .
+i if p=3 mod4.

Can we determine the sign? What does this have to do with quadratic
reciprocity ?

As for the first question, the following is one of the most celebrated results
of Gauss:

THEOREM (Gauss, 1805). For n> 1,

1+i f n=0 mod4d

(1)71+z””7 1 if n=1 mod4
T4 Yoo if n=2 mod4
i if n=3 mod4.

I will first say something about the elementary mathematical background
to this result, explain why it is interesting, say something about its history,
and finally explain Dirichlet’s approach to it.

Gauss sums

Go= Y xmemn
x mod r
can be attached to any primitive character of (Z/n)*. An argument about
Fourier transforms on Z/n tells us that its absolute value is 4/n. But there is no

general result about these higher-order sums analogous to Gauss” determination
of the sign of quadratic sums (see [B-E]).

2. FINITE FOURIER TRANSFORMS

Assion Z/n the measure according to which every point has mea-
sure 1/+/n. Thus the ‘integral” of f(x) over Z/n becomes the sum

% Z flx.

x mod n
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DIRICHLET’S CALCULATION OF GAUSS SUMS 285

Let C(Z/n) be the vector space of complex-valued functions on Z/n. For f
in C(Z/n), its Fourier transform is the function

f(y) s % Z f(x) e*ZTrixy/n R

x mod n

Since

”Z‘l s {0 if y£0 modn
e —

b n ify=0 modn,

it is easy to see here that, conversely,

1 7 iy /n
mpﬁ§jm¥”,

y mod r

thereby defining the inverse Fourier transform, and that

o

1 ~ -~
{Fif)= NG N Fwfon ={F.f).
This implies in turn that the L* norms of f and ? are the same (Plancherel
Sformula).

As we have seen, there is one very useful connection between the Fourier
transform and Gauss sums:

"f’n(a) _ % Z eZm‘ay/n Vn(y) ,

¥y mod n

where v,(y) is the number of x in Z/n with X2 = v. In other words, 7, is
the inverse Fourier transform of 1,. But there is another connection between
Gauss sums and the Fourier transform, one that will turn out to be particularly
relevant to Dirichlet’s paper. If fix) = it /7 then its Fourier transform is a
function I define to be

1) = Fo
= % Z eZ,-Tixz/nefZTrixy/n

x mod n

_ 1 i — )
=0 > e :

xmod n
which for y =0 gives
(1) = 0,(0) = F(O).
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286 B. CASSELMAN

Some other of these Fourier coefficients are variants of the original Gauss
sums. I recall that, if p is an odd prime, the Legendre symbol is the function
on Z/p defined by

1 if x is a square unit modulo p;
X
(1_’) =< —1 if xis a unit but not a square;

0 if x is not a unit.

Then

[y

if x=20
vy(x) = ¢ 0 if x is not a square
2 if x is a unit that is a square,
so v, =1+ ().
r
Thus, for @ 20 mod p,
1 2iax/ 1 X\ 2riax/,
ey = — e = (—)e z
4 N Z P Z

x mod p x mod p p
1 Z (x) 2riax/p (a) 1 Z (G‘-x) 2miax/p
= — - le =\=-}— — |e 3
\/Exmodp P = \/ﬁxmodp P

from which it follows that
: — {2 &
W w@ = (2) 7,

since « is a unit modulo p.

An easy calculation then shows, because the Fourier transform preserves
L?_norms, that |fyp(a)|2 = (@ v(—a) = 1 and hence y,(1F = (_?1) . More
explicitly,

e { 1 if p modulo 4 is 1,
—1 if p modulo 4 is 3.

The problem raised by Gauss is, which square roof 7 The surprising answer
is, the simplest guess.

L’Enseignement Mathématique, t. 57 (2011)



DIRICHLET’S CALCULATION OF GAUSS SUMS 287
3. GAUSS SUMS AND QUADRATIC RECIPROCITY
This matter of signs is related to quadratic reciprocity.

LEMMA 3.1. [f p £ q are two odd primes then
@) FaP) = Ypgl1)

Proof. By the Chinese Remainder Theorem we have

Tk P 2
pg(1) = Z £2mixipa Z p2mipatabypg

x mod pg a mod g
b mod p
.2 i
=3 NI =y (. O
a, b

From this lemma we can continue:

D= (Z}(2) 070

(5)(8) =2

Finally, from equation (1) and from Gauss’ theorem:

.
71

I :
— =1 it p=1 =3 mod4
E-{ T e
;. ﬁ— 1 if p=3,g=1 mod4,
1
i-

1 if p=1,g=1 mod4,

J—

— =-1 if p=3,¢g=3 mod4.

I

4.  HISTORICAL REMARKS

Gauss raised the question of the sign of these sums in Disquisitiones
Arithmeticae, asserting without proof the correct determination — not making
it quite clear, as Weil [We] mentions, whether he had proved this or was
merely conjecturing it. In the English franslation, from §356 of [Gaul]:

We observe that the upper signs always hold ... These theorems ... are on a
higher level of investigation, and we will reserve their consideration for another
occasion.
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288 B. CASSELMAN

It turns out that he did not have a proof at that time, but he did come up
with one in 1805, mentioning it at the time in a letter to his friend Clbers, and
published a complete account in 1811. His proof relied on some relatively
simple algebraic formulas (in the domain of what is now often known as
q-calculus), and used only algebra in their derivation, albeit algebra perhaps
suggested by the theory of ¥-functions. For n = p an odd prime, Gauss’
principal identity is

1+u;+ua4+---+w("_1)2 —w—w O e WPy

where w is any primitive p-th root of 1. This is essentially a product of
sines, and it is easy to calculate its sign. Gauss’ proof must have seemed
rather odd to his early readers, but later on one could see that it was in some
sense quite natural. The expressions involved suggest theta functions, which
arise in the discussion of functional equations of ¢- and L-functions, as do
Gauss sums. The book [Dav] is a great reference for this subject.

A very readable account of this history is contained in [Pat]. Gauss’ formula
was reproved many times in the nineteenth century by mathematicians applying
an astonishing range of techniques. Perhaps the most elegant account is that
of Schur [Schur], who starts with the observation that the Gauss sum is
essentially the trace of the Fourier transform.

Patterson observed that Gauss’ formula can be condensed to

TeLy=A +i" / 2 gy

and in a very short argument, following Dirichlet somewhat loosely in spirit,
he proves this directly. But instead of following Patterson, I want to look
more closely at what Dirichlet wrote.

In spite of much attention paid by others to Gauss™ number-theoretical
investigations, his calculation of the sign of ~ seems to have escaped much
attention until 1835, when Dirichlet gave a new proof by very different
methods. He says of Gauss’ result, perhaps expressing some degree of
ambivalence:

Parmi les conséquences nombreuses et inattendues que Mr. Gauss a tirées de sa

belle théorie des équations bindmes, il v en a une qui présente une singularité
trés remarguable. )

1) Among the numerous and unexpected consequences that Mr. Gauss has drawn from his
beautiful theory of binomial equations, there is one that presents a remarkable singular quality.
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DIRICHLET’S CALCULATION OF GAUSS SUMS 289

He also complains mildly about the lack of motivation in Gauss’ later
derivation. His own proof might equally well be said to present a remarkable
singularity. It is a clever application of Fourier series, perhaps not then used
in theoretical mathematics by anyone except him. It was Dirichlet, in fact,
who made the theory of Fourier series a rigorous subject and made as well
the first important applications to something outside mathematical physics.

Gauss™ evaluation of his sums went case by case, depending on how #
factored. Tt has the virtue of being elementary, if somewhat mysterious. Like
many of Gauss’ proofs, it seems to have descended directly from Heaven,
without having passed through the normal genesis. Dirichlet’s proof, on the
other hand, amounts to an explicit formula valid for all n at once, but is not
at all elementary. [ cannot say without reservation that it is well motivated,
but T can say that it offers intriguing connections between things not often
seen, especially in the early nineteenth century, to be connected.

5. FRESNEL INTEGRALS

In order to state Dirichlet’s formula, I need to recall the Fresnel integral

Ic :/ eiﬂ'mzd)(: 2/ eiﬁcxzdx
—a0 J0

for ¢ % 0 and real. It is best thought of as an analogue of the Gauss sum
for R.

FIGURE 1

Graphs of the real and imaginary parts of pis
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290 B. CASSELMAN

The integral is conditionally convergent, as can be seen by a change of
variables x* = y. It then becomes

o> eim:y

Joo Y

which is an alternating sum of decreasing terms, as Figure 1 shows more
directly.

The first reference to this integral (or rather to its real and imaginary parts
separately) that I know of is in a paper of Cauchy ([Cau]), who calculates
it along with several other definite integrals by a techmique I must confess
I do not follow. For him, this is just an exercise in calculus, without any
apparent link to other problems. The integral next occurs in the paper [Fre]
by the physicist Augustin Fresnel, who founded the theory of diffraction and
for whom this integral is crucial.

dy,

FIGURE 2

Cornu’s spiral, deservedly famous, shows the track of the path : — jO! el dx, as t — £oo

The Fresnel integral can be explicitly evaluated by a contour integral,
comparing it to the better known integral

/ gt

—
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We get
/"" gimed g 1 144
oo Vel NG)

with 4+ chosen to be the sign of ¢. The only difficulty is to show that the
integral over the arc from O to /4 has limit 0 as R — 2.

FIGURE 3

The contours for evaluating Fresnel’s integral

Fresnel shows in his note of 1818 that he knew an exact foermula for the
integral now named after him, but he does not indicate how he knew it. He
might have been aware of the slightly earlier work of Cauchy. One can also
speculate that he simply adapted without rigour the formula

oo, —
e™ dx =4/ —,
0 dex

well known at that time for o < 0, to the case where « is imaginary.
Fresnel’s note also included a table of values of the integral from O to x.
Later, Cauchy used Taylor series to reproduce Fresnel’s table with slightly
greater accuracy.

A consequence of this explicit formula is a closely related one, essentially
; il ;
for the Fourier transform of p.(x) = ™%, considered as a fempered
distribution on R:

;C}(y) s / P 6—2ﬁ1xydx - / P —Zwrxydx
DETe's) 4 —og

_ / girrc(xzfzxy/c) e e*iﬂ'zyZ/c / ei?rc(xzfzxy/cqtyz/cz)dx
—a —5c

X
_ e—a’(a.—/c)y2 / eim:xz dx = 1. e—i(?'r/n:)y2 )
—0
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292 B. CASSELMAN

This argument is still valid even if we do not know [, explicitly. This is
worthwhile keeping in mind, because the argument of Dirichlet’s that we are
going to follow will evaluate Gauss sums and the Fresnel integral at the same
time. So for now I just write:

-~
2) ;;C(y) - [ eivrcxzefhrixydx = 7 efi(ﬂ/.:)y’- ,

S —o0

where -
La= [ e x|
without specifying [, explicitly.

The underlying idea of Dirichlet, roughly speaking, is to show that the
calculation of Gauss sums and the calculation of the Fresnel integral are in fact
intimately related — in fact, fall out almost simultaneously. This, certainly, is
very satisfying.

6. ... AS PERIODIC DISTRIBUTIONS

The function ¢.(x) = €7

distribution on R, 1.e.

is bounded, hence determines a tempered

/  pdf e d

o — O
makes sense if f decreases sufficiently rapidly at +oc. But Dirichlet does
something more interesting, and explains how to interpret this integral when
f is periodic. In modemn terminology, he constructs from the function . (x)
a periodic distribution. This is not quite a straightforward matter.

If ¢, were itself of sufficiently rapid decay on R, we would just calculate
(with f periodic):

o n-+1
[ Pl frdx =Y [ () F00) dx

1
= / .0 f(x)dx,
J0

where

. 2
D=3 pulrebny= 3 eS0T,
Z Z
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DIRICHLET’S CALCULATION OF GAUSS SUMS 263

But of course €™ is not at all rapidly decreasing, so this does not
seem to work. What Dirichlet does comes in two stages: (1) he shows that if
s 2 . . .
we = 7% then (expressing things in modern terms) the sum

= wh 2
Pc(x) = Z 3 i
z

defines a distribution on R/Z; (2) he shows how to evaluate it in ¢lementary
terms for certain values of c.

To get a feel for how this works, I will look next at an analogous but
more familiar example.

7. CONVERGENCE OF FOURIER SERIES

A few years before, Dirichlet had given the first rigorous proof of the
fundamental result on Fourier series. The modern formulation is only slightly
different from his. Suppose f to be a smooth function on the closed interval
[0,1], i.e. one obtained by restriction to [0,1] of a smooth function on some
neighbourhood of [0,1]. Its Fourier series will converge to f in the interior
(0,1), and at the end points it will converge to the average value at those end
points, so that

N -1
z 15 —2mi
Jim Zme fhmz./o FOx) e~ 2mims gy

1 N
= lim /0 f(x)( S e‘”"’“") dx=L{floy+ 7).
4 m=—N

Here f, is the m-th Fourier coefficient of f. The important point is that the
sum is over a set of consecutive integers that in the limit covers Z.

Not too outrageously, one can formulate this nicely by writing (as T shall
do frequently without hesitation)

Zezm‘m = %(50 + 0.

Rigorously, this is to be taken as an equation involving a limit of distributions,
applied to smooth functions on the closed interval [0,1].

I will not prove Dirichlet’s result here, since it is (or used to be) standard
fare in calculus courses, but I will do something the texts rarely do — I will
try to make it plausible.
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204 B. CASSELMAN

Let g = e 2% Then since
i —2mims _ iqm _ qn+% == qf('”%) _ sin(2r + 1)wx '
qi’ — q*% sinwx
—n

-

Dirichlet’s ¢laim means to us that the sequence of functions mlan. - Liny

Sin X
converges as a distribution to dy. This is reasonable, since this function is

rapidly oscillating in the interior of [0,1] with spikes of height (2n + 1)
at 0 and 1. Integrated against a smooth function, the rapidly oscillating part
vanishes. As the spikes concentrate, they contribute the values of f at 0 and 1.

v

FIGURE 4

One of Dirichlet’s approximations to the Dirac distribution (n = 24),
scaled down to have maximum value 1 instead of (2 .24 + 1)

If we apply this to functions of period T, set T =1/n, and sum, we get
what might be called Dirichiet’s basic equation:

. 1 = -
Z menmx = E(%JO + ()1/,; s O(n—l)/n i %51) !

still as an equation of distributions on C*>[0,1]. Equivalently:

N

f(x)( Z eZTrinmx) e

m=—

.1
lim
N—roc 0

= %(%f(O)Jrf(%) +- (= L+ %f(l)) ‘
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So now we know that

ZQZm'nmx — %(%60 +61/n+ "‘+5(n—1)/ﬂ + %51):

and we want to find a similar formula for

Z 67:Ec(x+n)2

n

as a distribution on R/Z.

8. COMPUTING THE FRESNEL INTEGRAL

In a second interlude before explaining Dirichlet’s main theorem, we can
see how he calculated the Fresnel integral:

< N1 )
/ ™ dy— lim / &y

- N—oe [ N
N k41 .
= lim E e dx
Nox i
k_
N 1
2 5 2
= lim E e TETRT gy
N—oo )
k=—N
1 N
. ; imid 2xi
:th / e:ﬂxz ( § euk 62;.134() dx..
—r G
40

k=—N

In less formal terms:

o0 1
f eirrx2 s f em;? (Z eirkzlem’c) g
—00 Q r

The factor ¢™ is 1 if k is even, and —1 if it is odd, so we separate the
sum into two parts, setting & = 2¢ or k=2¢+ 1. We now get

T 1 i1
/ eirxz s / eiﬁ/tl Z e4ﬁi!‘xdx 4 / eiﬁ(,xl —22) Z 64ﬁ£fxdx .
o J0 ? 4] £
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296 B. CASSELMAN

From the basic formula of Dirichlet with » = 2, letting f(x) be first P
and then ¢ 29 we see that this is half of

%EITOZ 2 S’ K %eiﬁlz _ %eiw(okz.m (- %em(lzfz.l)
s %(60 _ 60) + (eﬁi/ll " 637”'/4) + %(em‘ - e—ﬂi) — 2ei‘ﬂ'/4 ,

giving ¢7/* for the integral. It seems just short of miraculous.
It would have been slightly simpler to have followed Patterson and

calculated
] 6217:412 dx ,

—2C
which would not have required a separation into even and odd, but I wanted
to make this calculation look like later ones.

9. DIRICHLET’S FORMULA

We want to define ™ as a periodic distribution, or in other words
evaluate

/«‘ ei?.'c f(x)dx.

where f(x) is a smooth periedic function. We shall do this in two different
ways for certain values of c.

I begin with the first step in Dirichlet’s argument, by far the easier half.
Suppose F(x) to be any smooth function on R. Formally, by expressing f in
terms of its Fourier series we get

/ "~ R feodx = / h F(x)(Z o ezm) dx

= me(‘/;& F(x)ezmmdx) = meﬁ(—m).

This is not difficult to justify in our case, and leads to the formula
oo
/ eﬁi's’gf(x)dx e= s (Z fmefi(ﬁ/r:)mz) -
o =00 "

Thus integration against e can always be defined as a distribution on R/Z,
no matter what real value ¢ takes, in terms of spectral data. In doing this,
Dirichlet became the first of many to use a trick that is still extraordinarily
fruitful.
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Now for Dirichlet’s second step, which is by far the more intricate. The
point now is to come up with a second way to evaluate the integral in the
last formula. I do not know if there are explicit formulas for arbitrary values
of ¢. I doubt it — these distributions smell chaotic to me if ¢ is, say, highly
irrational. But if we set ¢ = —n/2 we get, referring to equation (2),

- . 1
ey = (3 fuetm ), with 1 = \/§ .

which is a kind of infinite Gauss sum. That’s promising. It is especially
promising because the terms are periodic in m modulo n:

eZ’n’i(m+kn)2/n _ eZﬂi(m2+2kmn+k2n2) /n eZ'rrimE/n

What Dirichlet in effect proves, although of course stated very differently, is
this very general result:

THEOREM.  If Fatin = Fin for all k, the distribution
F =3 I b
Fit
on CX(R/Z) is equal to
n—1 .
Zak 5}(/” Wwith ay = ZFm€2kam/n '
0 g
In particular
T
ao = E ZFm .
=0

In our case, we have F,, = 1_,1/2327"'"2/”, and ap will be, up to a simple
factor, the Gauss sum.

Proof. Dirichlet works pretty hard to get this result, but modern terminol-
ogy makes it easier. The Fourier transform is an isomorphism of C™(R/Z)
with the space &(Z) of rapidly decreasing functions on Z. A distribution
on R/Z is a linear map from the space C*(R/Z) to C satisfying some mild
continuity condition. The Fourier transform is defined on distributions by the
equation R R

(B.5) = (@.F)
for £ in S(Z). The space of distributions is the dual of C™(R/Z), hence
isomorphic to the space of functions of moderate growth on Z.
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The Dirac distribution &, takes f to f(x). Its Fourier transform is the
sequence (e~27"%) If x = k/n then this is the sequence (e~2"*"/"} which
is periodic on Z with period n. Dimensions match. So those distributions
whose Fourier coefficients are of period » are those of support on %Z.

The m-th Fourier coefficient of 7~ a8/, is
Fn= Zake_zmkm.
x

In other words, the Fourier transform from the space spanned by the &, to
that spanned by the functions on Z of period » may be identified with that
on Z/n, except for the factor 1//n.

The inverse map takes the periodic function (F,) to

n—1 1 n—1
E arly/n,  Where a = 2 E e
k=0 =0

This concludes the proof of the theorem. |

So the effect of integration against ¢/™(+/2%

S af(d).

k mod n

is to take f to some sum

The coefficient ap will be up to some simple factor the Gauss sum. This
observation gives us, unfortunately, no practical idea of how to find the
coefficients a; explicitly. Dirichlet did find explicit expressions, and we shall
follow him in a moment.

To me the really remarkable thing about Dirichlet’s paper is that he saw
no difficulty in integrating one smooth function against another and getting a
finite sum like this.

Here is Dirichlet’s main result:

THEOREM. For n in N, x in R we have

n—1

3 et = [+ + 3 (Foln/m + Fatm/m) Yo

keZ m=1
with
. - 5
Fo(x) = 67!7((”/2),&2 and Fi(x) = efm(n/Z)(xA»l) .
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I postpone the proof for a moment. If we combine this theorem with the
previous result, looking only at the coefficient of &y, we get

L
Lt = Lpvim = 12 v,

V2
from which we deduce at last Gauss’ formula
1+:i"

R
concluding the proof of quadratic reciprocity.

O

10. DIRICHLET & PROOF

To prove the theorem, Dirichlet uses his “basic tool’ to calculate the integral
by the same technique we have used to evaluate the Fresnel integral.
With ¢ = —n/2 we get as the integral over R the limit of sums

1 N 5
] Z e*ifr(n/Z)(erk) f(x)dx

0 ——w

which we could write as a distribution pairing

<Z im0+ ’ f> )
[0,1]

x
But now we can write (without shame)
5 2 o 2
Zefm(n/Z)(/H»k) _ Z o /20 422k 41)
k k
_ —inta/D% {Z g—m(n/z)(zmkz)]
k
i 2 . 2 4
_ pmimln/2n {Ze—m(n/ak e—wmkx} ]
k
Cavalier but justifiable. We are looking at a limit sum of distributions on [0, 1] :

Z miT DGR _ —imn /21 {Z T/ 2 e—irnkx} .
% &

As before, the term e~ ™*/2% takes on a small number of different values.
If k is odd then &2 is 1 modulo 4 and this factor is e~ 27 while if &
is even then k* is 0 modulo 4 and the factor is 1. Separate the two cases,

k=2¢ and k=2641.
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The first (k& = 2€) is

n—1

e—irr(n/Z)xz i o {Ze—iﬂ%(’x} — %(%(1 N ZFO(m/”) 5m/n)
m=1

¢ =
with Folx) = e /2% The coefficient of & has been calculated as
%(efm(n/zyoz T efm(n/znz) )
The second (k=2£4+1)is

e*ir(n/Z)xz i I:Zefiﬁn(24?+l)xi| - e*iﬂ'(n/Z)xzfirnx O [Zefiﬂﬂnijl

£ b4
171 n—1
=£ (E(rn + Ddo + Z Fl(m/n)ém/n)
m=1
with
Fi(x) = eI DD
Summing the two contributions, even and odd, we get
s 1 n—1
3 i/’ - {(1 +i7% + > (Folm/n) +F1(m/n))5m/n]
k m=1
with
Fo(x) = efiw(n/Z)xz and Fl(x) = efi'rr(n/Z)(xﬁ»l)Z . D
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