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L'Enseignement Mathématique (2) 57 (2011), 3-21

A NOTE ON THE CHAS-SULLIVAN PRODUCT

by François Laudenbach

ABSTRACT. We give a finite-dimensional approach to the Chas-Sullivan product
on the free loop space of a manifold, which is not necessarily orientable or compact.

1. Introduction

Let M be an «-dimensional manifold with empty boundary; it is not

required to be either compact or orientable. Denote by LM its
free loop space. In a famous paper [4], in the case when M is an orientable
and closed manifold, M. Chas and D. Sullivan constructed a natural graded

algebra structure on the homology Z), more precisely a product

HSIM] Z) eg: Hj(LM; Z) —> Hl+j_n(LM] Z),

in the same intersection spirit as the usual intersection product on HJ,M] Z).
But their ideas remained not completely accomplished. A different approach

was considered by R. Cohen and J. Jones in [6]. According to their abstract,

they describe "a realization of the Chas-Sullivan product in terms of a ring
spectrum structure on the Thorn spectrum of a certain virtual bundle over the

loop space", a difficult technique indeed. Recently in [8], Y. Félix and J.-C.

Thomas put the String Topology into a broad homotopy theoretical setting;
they prove that the operations in string topology are preserved by homotopy
equivalence, at least in the 1-connected case. On the contrary, in the present
note we propose a finite-dimensional approach, very close in spirit to [4], based

on suitable transversality arguments. We also treat the case of a non-orientable
manifold using local coefficients instead of Z.
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4 F. LAUDENBACH

We do not think of LM as a topological space but as a simplicial set (except
in Section 4). A k-simplex in LM is a smooth map 2: A* x A1 —> M, where
A* is the standard ^-simplex. Let 0 be the base point of 51 R/Z. The

evaluation map evo: LM —¥ M is simplicial: evo(2) a where a: A* —y M
is the k-simplex of M defined by

<j(0 - 2(A 0).

It is easy to form a chain complex based on the simplices of LM and a

bi-complex based on bi-simplices (pairs of simplices). In order to take the

non-orientability into account, we limit ourselves to small simplices and bi-

simplices (see 2.1). To define an intersection product, we consider transverse

bi-simplices. By Thorn's transversality theorem, they generate a sub-bicomplex
which has the same homology as LM x LM. As we shall see, smallness (resp.

transversality property) will refer only to the image of simplices (resp. bi-

simplices) through the evaluation map.

Let us introduce the sub-bicomplex LM x LM of LM x LM made of
M

composable loops, namely pairs of loops having a common origin. Performing
the composition yields a well-defined map in homology LM xMa LM. The

M
intersection product is not defined on the chain level. But the intersection of
two transverse cycles in LM produces a "singular" smooth manifold W in
LM x LM, hence in LM after composing, which becomes a simplicial cycle

M
once W is triangulated. According to Whitehead [13], such a triangulation is

unique up to subdivision and isotopy. Therefore the product is well-defined at
the homology level.

In the last section it is shown that this definition of the free loop product
is not less efficient than the "infinite-dimensional" one when calculations are

performed in concrete geometric situations. Results due to several authors

(M. Goresky, N. Hingston in [9], D. Chataur, J.-F. Le Borgne in [5]) are

rewritten in this setting.

Acknowledgments. I had the privilege of attending Dennis Sullivan's lecture

on this subject on the occasion of his Doctorat Honoris Causa at the
École normale supérieure (Lyon) in December 2001. Later, I had fruitful
conversations with David Chataur and Hossein Abbaspour who gave me more
details. I feel indebted to all of them. I am also grateful to Jean-Claude

Thomas for comments on a preliminary version of this note and to Antoine
Touzé who helped me avoid a mistake in spectral sequences.

L'Enseignement Mathématique, t. 57 (2011)



A NÖTE ON THE CHAS-SULLIVAN PRODUCT 5

2. Simpleces and bi-simpuces at the manifold level

In this section we give a geometric approach to the intersection product in
the homology of M. The main point is that this is done in such a way that
the intersection product lifts immediately to the homology of LM through
the map induced by evo. This requires an appeal to Thorn's transversality
with constraints which is more powerful than the usual transversality which
is frequently used (see J. E. McClure [11] in the PL case or E. Castillo,
R. Diaz [3] in the smooth case).

2.1. The manifold M under consideration is equipped with an atlas A
of charts. A small ^-simplex is a smooth map

<?: A* -> M

whose image is contained in a chart from A. For each simplex o a particular
chart U(o) G A containing its image is chosen once and for all. A small
k-chain is a linear combination £ Yfn'ai °f finitely many small simplices

ai with coefficients n, G Z. The orientation twisted boundary is defined by
the formula

k

do-=y>(-i)'iv7;
1=0

where F-,o is the ilh face of o and e is the sign of the Jacobian of change of
coordinates from U(Fjo) to U(o) calculated at any point of the image of F,o.
The small chains with this boundary form a chain complex whose homology is
HAM', Zor), the homology with integer coefficients twisted by the orientation.

In the sequel, homotopy will mean smooth homotopy. Given a ^-simplex
cr, a homotopy ol\ Ak —ï M, t £ [0.1], with o° o, induces a homotopy
(Fo)' of each face Fo. So the following definition makes sense.

DEFINITION 2.2. Given a chain £ V mo,, a boundary-preserving
homotopy of £ is a one-parameter family Ç'.t G [0,1], £' n,o\, where

11—oj is a homotopy of cr,- into M (of — ot), and such that, if cr,- and oj
have a common face at time t 0, then the corresponding simplices o\ and

<jj still have a common face at any time.

For instance, if £ is a cycle then £' is a cycle for every t G [0,1]. When

we consider such a homotopy of small chain, we shall restrict ourselves to
the case when the homotopy is small, that is, each summand o\ has values

in U(oi). The following homotopy extension lemma is easy to prove.
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6 F. LAUDENBACH

LEMMA 2.3. Let r be a face of one of the summands of £. Any (small)
homotopy of r extends as a (small) boundary-preserving homotopy of 4L The

same statement holds for a family of homotopies with an extension depending

continuously on the parameter.

Definition 2.4. A (£>,<2)-bi-simplex of M x M is a pair (u,v), where u

is a p-simplex and v is a ^-simplex of M. It is said to be small when both
factors are small simplices of M.

It is convenient to use the notation u x v for a bi-simplex, considering the

map u x v : x AM M x M, (x,y) i-> (u(x), v(y)). The (small) bi-simplices
generate a bi-complex x M) whose elements are bi-chains, with two
boundary operators twisted by the orientation,

d\ (u x v) (du) xv, di(u x u) ux dv,

and a total boundary operator

D(u x v) du x v 4- (—Vfu x dv.

DEFINITION 2.5. A (small) bi-simplex u x v is said to be transverse when

the map u x v and all its faces (they are bi-simplices) are transverse to the

diagonal Am-

In what follows, we tacitly assume all transverse bi-simplices to be small.
The advantage of this is that W — (u x ?;)"' 1(Am) is a proper orientable

submanifold of codimension n (with corners) in Ap x Aq. Moreover, if we
use the charts U(u) and U(v), whose product contains the image of u x v,
W receives a canonical orientation.

Notice that, when u x v is a transverse bi-simplex, a small homotopy
of its factors keeps it transverse. The transverse bi-simplices generate a sub-

bicomplex C'ffM x M) of C**(M x M). A bi-chain is said to be transverse
when each of its bi-simplices is transverse. It is said to be a product bi-chain

if it has the form £ x r/ where both factors are chains in M.

LEMMA 2.6. Let 4 N I] be a product bi-chain. There exists an arbitrarily
C°° -small boundary-preserving homotopy f of 4° 4 such that £1 x i] is

transverse. Moreover, when df; X i] is transverse, the homotopy can be chosen

stationary on 0Ç x t]. The same statement holds for the second factor.
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A NÖTE ON THE CHAS-SULLIVAN PRODUCT 7

Considering the composition of loops we have in mind, it is very important
to have such approximation of bi-chains.

Proof. We first consider the case when £ x r; u x v is a bi-simplex. The
conclusion follows from Thorn's transversality theorem, not in its elementary
form but in the form known as transversality with constraints [12]. Indeed,

only the first factor is moved to guarantee that bi-simplices remain bi-simplices
during the deformation. We argue as follows. Let S be a small «-ball in the

vector space containing the chart U(u), so small that for any s S, the image
of iis : u -+- s is still contained in U(u). We introduce the family (us x v)
parametrized by S. It is transverse to Àm as well as its restriction to any
face of A? x At Therefore, according to Sard's lemma (used à la Thorn), for
almost every jcS, us x v is a transverse bi-simplex.

For the general case, it is useful to observe that, in the above argument,
the space S of parameters can be chosen arbitrarily small. When considering
a product bi-chain £ x •??, its /e-skeleton is the collection of all the k -faces of
the bi-simplices appearing in £ x r\. Arguing recursively, we may assume that

all bi-simplices in the &-skeleton are transverse. Let (u x v) be a (k+ 1)-bi-
simplex, which we endow with a family S of translations in U(u). According
to Lemma 2.3, the translation by any s E S extends as a boundary-preserving
homotopy of £ (ending at £5) and it can be chosen small enough so that
each bi-simplex of the k-skeleton remains transverse. Therefore, for almost

every s E S, £5 is transverse along its k-skeleton and us x v. Repeating this

process, we successively make all (k+ 1)-bi-simplices transverse.

For the relative version, we notice that if Fu is a face of u and Fu x v is

transverse, then u x v is automatically transverse to Am on a neighborhood
of the domain of Fu x v. In that case we can moderate the translation by 5

when approaching Fu x v, so that it becomes stationary along Fu x v (here, a

moderate translation has the form u + ps where p is a non-negative function
on the domain of u). The general relative version follows easily.

Let [£] and [rj] be two classes of respective degree p and q in H* (M; Zor).
According to Lemma 2.6, they can be represented by small cycles so that the

bi-cycle £ xr; is transverse. This bi-cycle is unique up to transverse homology,
more precisely we claim the following uniqueness lemma:

LEMMA 2.7. Let £ x q and £' x rf be two transverse bi-cycles in the

same bi-homology class ([£] [£'] and [r/] [rf]). There exists a transverse
bi-chain Q whose total boundary is DQ, £' x rf — £ x 7].
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8 F. LAUDENBACH

Proof. There exists a cycle homotopic to £, such that £" x q and

£" x rf are both transverse. Indeed, £ x r/ is already transverse and this

property is preserved under approximations of £. According to Lemma 2.6,
such an approximation exists, making £" x rf transverse.

If co is a (p + 1)-chain such that du; £ - £", there is a boundary-

preserving homotopy to'.t G [0,1], of co relative to its boundary such that
Co'1 x q is transverse. By the same argument, there is a (p-f 1)-chain cu' with
du>' 7} — rf such that £" x u/ is transverse. Finally, there exists u>" with
du;" £' - £" such that to" x rf is transverse. By concatenating the three

transverse homologies to1 x r/, £" x uj' and to" x rf, we obtain a transverse

homology1) joining the two given bi-cycles.

2.8. Intersection of cycles

We are now ready to define the intersection of cycles. To begin with, we
consider a transverse product bi-chain £ x q of degree (p. q), which is a sum

of transverse bi-simplices

£ x -7] YnijUi x Vj.

Let W-,j be the preimage of AM by u, x vj. As mentioned earlier, W-,j is an
oriented manifold with corners of codimension n. If F(u, x vf) is a face of
the bi-simplex, FWjj denotes the corresponding face of Wy.

According to Whitehead [13], Wq can be smoothly triangulated by a PL-
triangulation T,j. Moreover, if some faces have been already triangulated, then,

by using the relative version of Win tellead's theorem, TtJ can be chosen so

that the triangulated faces are subcomplexes. If two bi-simplices have common
faces F(u, x vf) F(uk x vg), then we have a canonical diffeomorphism
FWij —> FWff which we think of as an identification. The triangulations of
these faces are chosen accordingly. We consider the chain of Am — M,

£ r, - nfui X Vj)\(Wij: Tf),

which is called the intersection product. Of course, as a chain, this depends

on the chosen triangulations. But, since these triangulations are unique up to
subdivision and boundary-preserving isotopy (that is, smooth isotopy of each

simplex in W-tj preserving the triangulation property), the ambiguity is not
severe. The sign, which we call the Dold sign, will be commented upon later.

1 A homology from a cycle c to a cycle c' is a chain whose boundary is c' — c
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A NÖTE ON THE CHAS-SULLIVAN PRODUCT 9

LEMMA 2.9. When £ X r/ is a transverse bi-cycle, the intersection product
£ • rj is a cycle of degree p + q — n (with orientation twisted coefficients). If
£ x q is changed by a transverse homology (in the sense of Lemma 2.1), £ - T)

is changed by a homology. Finally, [£] • [r/] is well-defined in Zor).

Note that a change of triangulation of the Wffis may be thought of as a

special case of a change by a transverse homology.

Proof. As Wij is an oriented proper submanifold, Wq. T,f) is a relative

cycle in Ap x AT Thus, the total boundary of (m,- x Vj)\(Wij, Tf) is

(idud X + x (%))|(V%Ty).

By summing over ij we obtain the boundary of £•//. As £ and r/ are cycles,
each hyperface in the latter sum appears twice with opposite sign. The rest
of the statement is easy to prove.

Remark 2.10. In his book [7] (Chap. VIII, §13.3), A. Dold explains that
the chosen sign makes the intersection product on homology and the (unsigned)
cup-product on cohomology fit together via the Poincaré duality. Another

advantage of this sign is the following. Set H*(M; Zor) H*+n(M; Zor). This
regraded homology endowed with the above intersection product becomes a

commutative ring in the graded sense.

3. SlMPLICES AND BI-SIMPLICES AT THE FREE LOOP SPACE LEVEL

3.1. Recall the evaluation map evo: LM —> M. A simplex 2: À* xS1 -h- M
is said to be small when o evo(2) is so. The ith face of 2 is obtained by
restricting 2 to F,àk x S1. We have F,-(evo(2)) — evo(F(-2). The orientation
twisted boundary of 2 is

k

tf2=:^£(-l)':Zp2,
i=0

where s is the sign of the Jacobian of change of coordinates from U(qvo(F-2,))

to U(evo(2)). The small chains with this boundary form a sub-complex of
C*(LM), the singular chain complex of LM, whose homology is H*(LM\ Zor).
Indeed, this sub-complex is obtained from C*(LM) by two operations which
induce homotopy equivalences: subdivision and smoothing. The notion of
boundary-preserving homotopy is similar to that given in 2.1.
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10 F. LAUDENBACH

LEMMA 3.2. The evaluation map has the lifting property for boundary-
preserving homotopy of chains with any initial chain. Moreover, if the lifting
of the homotopy is given along some faces this partial lifting can be extended

to a global lifting.

Proof. It is clear for Ak x S1 x [0.1] retracts onto

A* x S1 x {0} U A* x {0} x [0,1] U F x S1 x [0,1]

where F is any union of faces in A*.

A (p, #)-bi-simplex u x v in LM x LM is a map

\p x Aq x S1 -A M x M,
(x. y, 0) H» (u(x. B), v(y, B')j.

It is said to be transverse when (ev0O), evo(v)) is a transverse bi-simplex of
M x M. In that case, the preimage of the diagonal A^ yields a submanifold
with corners W C A? x Al For each (x,y) G W, the loops u(x,—) and

v(y, —) are composable since they have common base points u(x,0) — v(y, 0).
Therefore, taking a triangulation of W and the Dold sign as in 2.8, we get a

(p -f- q —* n)-chain of composable loops, which we call the loop intersection

product :

u * v : (—l)n(-n~^(u x u)| W x A1.

Performing the composition (in the prescribed order, u before v yields a

(p 4- q — n)-chain in LM, called the Chas-Sullivan product or loop product
u yv. Of course, it depends on the choice of the triangulation of W. Here,

we see that the product structure of u x v is very important; without it we lose

the entries of the composition. Thus, when making a bi-simplex transverse, it
is crucial to do so by homotopy through bi-simplices. This is why we used

transversality with constraints.

This loop product extends linearly to the transverse bi-chains. When

performing it on a product bi-cycle, the result is a cycle in LM whose

homology class in Hp+q_n(LM; Zor) is well-defined. Strictly speaking, the

system of coefficients is eVg(Zor), which we write as Zor for brevity, and we
shall do so each time a loop space is in question. More precisely, we have

the following proposition.

PROPOSITION 3.3. Let [£] e Hp(LM]Zor) and [rß e Hq(LM\ Zor). These

classes may be represented by cycles in LM such that x q is a transverse

bi-cycle. The class of £ • q is uniquely defined in Hp+q-n(LM] Zor).
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A NÖTE ON THE CHAS-SULLIVAN PRODUCT 11

Proof. Starting with arbitrary representatives of the given homology classes

in LM, we apply Lemma 2.6. This produces a homotopy of their images by
the evaluation map, making them a transverse bi-cycle in M x M. The lifting
homotopy property (Lemma 3.2) allows one to make £xr/ a transverse bi-cycle
in LM x LM. For this representative, the loop product £

^ r/ is well-defined.

If another representative £' x rf is used, one can prove that £' x r/ and

£ x r) are joined by a transverse homology, that is, a transverse bi-chain in
LM x LM. This is simply a loop version of the uniqueness Lemma 2.7, which
can be deduced from the latter by applying the lifting homotopy property. As
a consequence the homology class of C ^7 1S well-defined.

Remark 3.4. Of course, the composition of smooth loops produces a

piecewise smooth loop only. There are two ways of correcting this problem.
One consists in doing a smoothing (boundaiy-preserving) homotopy. The other
consists in using LM C°(S1,M) equipped with a mixed simplicial structure :

a £-simplex will be a continuous map u : A* x A1 —> M whose restriction to
A* x 0 is smooth.

In what follows, we use the following simplified notation: (• //:= Ç : p,

which is defined when the bi-cycle £ x ?/ is transverse, and [£] • [•??] := [£ • ?/]

which is well-defined. Actually, there is a one-parameter family of compositions
— -s — s [0,1], defined as follows. Two loops u and v are said to be

s -composable when u(s) ;;(0) ; in that case the composed loop u-sv is made

of w|[0,1 — s] * v * u\[l — s, 1]. When s 0, it is the usual composition and

when 5=1 we have u-\ v vu. Notice that if two loops are 0-composable,

they are also 1-composable.

PROPOSITION 3.5. At the level of homology, the loop product is commutative

up to sign. Precisely, if 6 and rj are respectively a p-cycle and a
q-cycle of LM, then [£] • [??] (—l)L'~">L/-n)[^] _ jjie [00p product is
also associative.

If the regrading H* H«+n is applied, then WfLM. Zor) endowed with
the loop product becomes a graded commutative and associative ring.

Proof. We assume that the bi-cycle £ x r/ m LM x LM is transverse. We

first prove :

[£] • [j?] K -i v\
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12 F. LAUDENBACH

Writing £ x ?/ x t!/> one can make a boundary-preserving homotopy
of £ so that for every ij, the map

(x,y, s)e Ap x Aq x [0,1] i-> (m(x, s), vj(y, 0), s) 6 M x M x [0,1]

is transverse to AM x [0.1]. This transversality yields a (p + q — n +• 1)-chain
cc in LM whose boundary is Ôlo £ u // — £ • r/. Note that the loops in cc have

«(x,0) as base points; therefore, even when the loops in u are orientation

reversing, still no sign appears in the formula for duj.

Now, we are reduced to proving:

On both sides of this equality, the composition is the same. The difference

comes from the orientation of the manifold W-,j associated to each transverse

bi-simplex ut x vj appearing in £ x p. The permutation of the two factors in
this bi-simplex induces a sign (—1)" in the co-orientation of the diagonal Am,
and a sign (—iyq due to the order of the factors Ap and Aq in the source.

Moreover, the Dold sign 1S changed to (-1 )n(n~P>. Altogether, the

sign rule follows.
For associativity, consider three chains £, r/, Ç in LM of respective degrees

p.q.r. It is easy to define the transversality of the triple £ x p x £. If they
are cycles and if the triple is transverse, the triple composition [Ç] • [r/] • [(] is
well-defined in //p+.(?+r_2n(LM; Zor). Moreover, the following facts are easily
checked :

* £ x 7] is transverse;
* (£ * tf) x £ is transverse (where * stands for the loop intersection product);
* (£•??)•£ coincides with £•?/•£ up to a canonical reparametrization of

the circle.

The last item yields the associativity in homology once it is observed that the

same is true for the other bracketing.
Now the only question is how to make £ x r/ x £ transverse when it is

not. It is not sufficient to move one factor, as one factor in M x M x M is

not transverse to the small diagonal. It is necessary to move two factors, say
£ x t], while keeping the product structure, that is, moving through product
chains x rf. Again transversality with constraints is used.

Remark 3.6. Each free loop 7, 6 7(9), gives rise to a 1-cycle A(7)
of loops by rotating the source:

Ä(7)(O(0) 7it + 6)., tes1.
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A NÖTE ON THE CHAS-SULLIVAN PRODUCT 13

This map induces A: HfLM) —r H±+i(LM), with twisted coefficients when M
is not orientable. Arguing similarly as in Proposition 3.5, one could probably

prove the theorem of Chas-Sullivan that H#(LM), endowed with the loop
product and A, is a Batalin-Vilkovisky algebra.

4. A MULTIPLICATIVE SPECTRAL SEQUENCE

In this section, using our definition of the loop product, we discuss

multiplicative properties which were stated and proved by Mark Goresky and

Nancy Hingstonin [9], §12 (up to the system of coefficients2)). The setting is
the one that R. Bott first considered in his seminal paper [1], where he studied
the standard «-sphere, and that he extended in [2]. We summarize his results

as follows. Let M be an «-dimensional closed Riemannian manifold whose

primitive geodesies are all simple loops with the same length (=1, say).
Denote by A the space of loops parametrized proportionally to arc length.
The class of regularity is not very important here; a good class is the Sobolev
class /^(S1, M). Let t2 : A R be the length squared. Bott proved that this is
a nondegenerate function (now called a Morse-Bott function) and he calculated
the index of the critical points, which are the closed geodesies. For p G N, let
Ap be the subspace of loops of length < p and Hp be the space of geodesies

of length p. A geodesic in is just a primitive geodesic which is traversed p
times. As a manifold, 2o M and, for p > 1, UM, where UM stands

for the unit tangent space to M. Let ap be the index of the Hessian of ß2

at any point of ; obviously o;o 0. Bott proved the iteration formula:

ap pai + (p- 1)(« - 1).

Moreover he calculated (with Zz coefficients) the spectral sequence derived
from the filtration Aq c Ai c of A. We are going to consider the same

spectral sequence, up to some regrading.

DEFINITION 4.1. A spectral sequence {Epq,dr}r>i is said to be multiplicative

when it is endowed with a product Epq D Ep, q,
—> Ep+pl +q, such that:

1) dr is a derivation in the graded sense :

dfx y) dfx) • y 4- (-l)Hx • dfy),
where |-| stands for the total degree \x\ p + q when x Epq ;

2) the product on E[f} HfEf^,dr) is induced by that of the ideal ker dr.

2) The authors use Z2 -coefficients when M is non-orientable.
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14 F. LAUDENBACH

Following Chataur-Le Borgne in [5], we set

Ep.q — Ep,q+n Hp+q+ni/^-pt ^-p-1. ev0 (^W))

The differential d1 is the connecting homomorphism in the long exact sequence
of the triple (Ap.Ap_1.Ap_2). More generally, dr: EXSf —y Ex x is defined by
the usual algorithm associated to the filtration • • • Ap_i c Ap c Ap+i c • • • A
(see [10], Chap. 2). Notice that page 0 exists in this spectral sequence, but it
has no multiplicative structure.

PROPOSITION 4.2. The loop product endows {E^ *}r>i with a multiplicative

structure.

Proof. We first look at the desired properties on page r 1. When is

a relative /-cycle of the pair (Ap,Ap_i), r/ is a relative /-cycle of the pair

(Ap/, Ap/_i) and £ x r\ is transverse, then the loop intersection product * p
is a (i+j— n)-chain of composable loops. By performing the composition we

get a chain c of loops of length <p+p', since the length of the composed

loop is just the sum of the lengths of the entries. The boundary of c is a cycle
in Ap+p/_!. The class of [£] • [r;] is well-defined in Hi+j-n(Ap+p>, Ap+p>ui).
After regrading, this product behaves well with respect to the bi-degree. It
remains to check that d1 is a derivation.

We look first at a transverse bi-simplex u x v of bi-degree (/, /) in A x A.
Let W c A' x A-; be the preimage of the diagonal Am by evo(w) x evoOO. Its

boundary consists of two parts:

d\W W fi (<9A x A-0,

DzW:= WD (A'" x d\J).
Each part gives rise to an (i + j + n — 1 -chain in A which is a part of
d(u v). As in the proof of Lemma 2.9, the second chain is endowed with
the sign (—1)' according to the formula for the total boundary given after
Definition 2.4. Taking the Dold sign into account yields :

d(u v) (du) v + (—1 )"~'u (dv).

By summing such a formula over all bi-chains forming £ x r/, we get:

d(£ n) (do n + (-Drt-!'e • (dp).

After regrading, it becomes a derivation formula. When 4" and p are relative

cycles as above, •[//]) {^1[^])-[r/]+(—; hence, property 1

from Definition 4.1 holds for r 1.
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The product on E* „ is defined by taking £, a relative cycle of the

pair (Ap.Ap-z), and ij, a relative cycle in the pair (A#,',Ap/_2)I with £ x rj
transverse. Thus the chain of composed loops is a relative cycle of the pair
(Ap+p', Ap+p' -2) • It can be checked that elements in kerri1 are represesentable

by such cycles. Hence property 2 from Definition 4.1 holds for r 1.

The same argument applies for all r > 1 once one remembers the definition
of Ep .^

associated to the filtration of A. The product on E'^ is defined by
taking Ç, a relative cycle of the pair (Ap,Ap-r), and ?/, a relative cycle of
the pair (Ap>, AP> _r), where £ x // is transverse. The boundary operator dr is
induced by d and is not affected by the value of r. After regrading, dr, like
d1, becomes a derivation and the product which is induced on its homology
is the one given on E'ft1.

4.3. The Thom isomorphism

There is a Morse-Bott version of the famous Morse lemma. It yields a

"normal" form for a Morse-Bott function near a critical manifold. We are

going to apply it to the function ft : A —y R near the critical manifold Hp

whose index is ap. If one feels uncomfortable about applying this lemma

in infinite dimension, one can take a finite-dimensional approximation of A
near Hp by considering the space of geodesies polygons (still parametrized

proportionally to arc length) with Np edges of equal length, where 1 /N is
less than the injectivity radius. Let Ep be the vector bundle of rank ap over

Hp generated by the eigenvectors of the Hessian of ft (with respect to some
Riemannian metric on A) whose eigenvalues are negative; this is a sub-bundle

of TA\Hp. With notation borrowed from [9], let Hp exp(E~ denote the
unstable manifold of Hp with respect to the gradient of ft ; we are mainly
interested in its germ along the critical manifold. Finally A~ denotes the

open set of loops whose length is less than p. We have H~ \ Hp c A~ as a

consequence of the Taylor expansion.

The Morse-Bott lemma states that:

1. Ap retracts by deformation to Ap_i ;

2. Ap retracts by deformation to Ap-\ U H~

As a consequence, the inclusions of pairs induce the following isomorphisms

:

HftAp, Ap_0 HJAp,A~) ^ HJH-, H~ \ 2„).

Here the system of coefficients is cvq (Zor). Since the orientation of the fibre
bundle Ep is twisted exactly as eVg(Z) is (see [9], Prop. 12.2),we are ready
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16 F. LAUDENBACH

to apply the Thom isomorphism :

hp : HJZP, Z) ^ H*+ap (2~,27 \ 2P; ev^(Zor)).

For p > 0, this may be written as

hp : KAUM] Z) - H*+(Xp (Ap, Ap_p, ev*(Zor))

Also note that the Gysin morphism

HJM\ 'Lor) -> Ht+n-iiUM] Z)

makes Z) a H*(M\ Zor)-module for the intersection product. In the

next proposition the coefficients are omitted; they are meant as we just specified
them.

PROPOSITION 4.4 (Goresky-Hingston [9], Theorem 12.5). The Thom

isomorphisms carry the intersection product of H*(UM) into the loop product
of ©p>o//^+ap (Ap, Ap_i). Moreover, they carry the HfyW) -module structure

of H* (UM) to the H*(Ao)-module structure of Hi (Ap, Ap_ 1

The proof below mainly follows the same line as [9]. But it is based on
the notion of loop product that we introduced in the previous section.

Proof. There are several steps.

A) One can factorize the intersection product int of H*(UM) in the

following way:

H,(UM) © H/MM) —. Hi+:n(UM x UM)
M

int i

Hi+j-(2n-i)(UM) H+j.^fUM x UM).
UM

Indeed, starting with a transverse bi-cycle 6 x r/ we may first intersect it with
the fibered product UM x UM c UM x UM yielding a (i +j - n) -cycle

M
(this induces the morphism into), which, in turn, is transverse to the diagonal
&.um — UM x UM (this induces the morphism int\

UM

B) Since evo |2P is a smooth submersion, the fibered product ~S,P_P' :

2p x 2p> is a smooth manifold. A point of it is a pair of closed geodesies of
M

respective lengths p and p' which are composable as loops. In general the

composed loop is not a geodesic.
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Similarly, since is tangent to Ep which is a fibre bundle over
then evo [2~ is also a submersion onto M near Hp. Thus H~p, : ~ 2 ~ x 2y
is smooth near 2-py. The normal space to in H~p/ is the restriction to

Hpy of E~ x Ep.,, which is a vector bundle of rank ap + ay So we have a

Thorn isomorphism :

hp,p' ' H*(2-p,y) \ 2,p,p')

For small simplices, the Thorn isomorphism at the chain level is generated by
the following Thorn "extension": take a small simplex in the base of a disk
bundle (which hence is trivial over the considered small simplex) and take a

direct product with the fiber. If £ x p is a bi-cycle in Hp x 2y transverse to

Hpy then the Thorn extension fx?) is transverse to H~, and its intersection

with H~p/ is the Thorn extension of the intersection cycle in the base Hpy.
This proves that the Thorn isomorphism carries the loop intersection product

H&p) 1% HfiLp') —^ Hi+j-n(Xp,y) to the suitable relative version of the loop
intersection product Hi+(yp(Hp)^Hj+(Xpl(^y) -+ Hi+j+fyp+ay_n(Hpy). Note

that, after identification, the first morphism is nothing but into from A).

C) We observe that 2p+p' lifts (by a section of the composition map) as

a submanifold of codimension n — 1 in 2\p_y. Indeed, any smooth geodesic
of length p + p' splits uniquely into two geodesies of respective lengths p
and p'. Conversely, (7.7') Hpy belongs to this lifting of if and only
if the initial velocities ô(O) and y'(0) are positively proportional, which is a

condition of codimension n — 1. Thus, the composition is a map of pairs:

comp: (l'y,S'y x Hp+y) -+ (Ap+y,Ap+y \ 2p+y).

The normal bundle to Hp+p> in H~y, denoted by v, is the direct sum

E~ © E~, 0 Up,y, where vp_y denotes the normal bundle to Hp+y in 2\py.
The rank of v is ap + ap> + n — 1. According to Bott's iteration formula, it
equals ap+y, which is the rank of E~+p,.

If Ç is a relative cycle in (2!~p,. H~y \2lp_y) transverse to Hp+y its trace

in the pair (Xp y, Hpp, \2lp+y) is the Thorn extension of its intersection with
^p+p' In other words we have the following commutative diagram :

Hk(2p,p>) — - Hk_n+1(Xp+P')

Hk+ap+ap, 0*p,p' ^-p.y x ^-p-p') X Hk-n-\-l+a.p+p,(2p_y ^p.y \ ^p+p') 5
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18 F. LAUDENBACH

where the vertical arrows are the respective Thom isomorphisms. In order to
finish the proof we need to apply comp* and see that it commutes with the

Thom isomorphisms.

D) Some difficulty comes here from the fact that the composition map

comp : 1.pp, —> Ap+p> could be singular along X,p+p> in the direction of vpp
since comp maps Hp,p> into the critical level set of i whose value is p +p'.
We are going to construct the following two objects:

a) a linear embedding ip\ v TA|2P+P', over the identity of ^p+p>, such

that Hess(J2) o p is negative definite;

b) a homotopy from comp to exp o p o exp~l among the maps of pairs

^p,p'^p.p' X ~^ (-\+p' \+p' ^p+p'E

If these two objects exist,

comp*: H,i^.-p,, \ 2p+p.) -A HJAp+p<, Ap+p> \ Zp+p,)

commutes with the respective Thom isomorphisms, as it is true for p*. Indeed,

by a), p induces an isomorphism of fibre bundles u Ep+p/ over ~^p+p'

Hence, the proof of Proposition 4.4 is complete.

First, we choose Ep c TA\HP such that every vector V in (£"),.
corresponds to a vector field along 7 which vanishes at 7(0). This is easy as

the Jacobi fields in Ty1p generate T7(0)M. Thus, (E~
^

embeds canonically

into (TAp+p') _i:_ just by extending V by 0 along 7'. And similarly for

E~,. This allows us to choose p to be the identity of the factor E~ (D E~,.

Let (7,7') ~^P+P' C and A be a vector in (vp,p')^. 7,>-
This

vector indicates an infinitesimal deformation of (7,7') among the pairs
of composable closed smooth geodesies, a deformation which separates
the directions of their initial velocities. More precisely, there is a one-

parameter family (7«, 7^). u G [0. s), of pairs of closed geodesies such

that 7«(0) 7(0) 7'(0) 7/(0) and ^ (7„(0) - ]u=0
A (up to

a positive scalar); here we identify {yp.p>)(,y ^r}
with the fibre UM~.,(Q) Instead

of taking this deformation which leaves the length unchanged, we consider
the following shortening deformation made of geodesic triangles Tu : the first
edge in Tu is 7u(t), t G [0,1 — g], the second edge joins geodesically the point
7„(1 — z) to the nearby point 7/(e) and the third edge is 7'u(f), t G [z, 1] (the

triangle is parametrized proportionally to arc length). We define p(X) to be

the infinitesimal generator of this family. By estimating £(TU) it is easily seen

that Hess(£2)(p(X)) < 0. Moreover <p(X) is independent of Ep (D E~, since,

as a tangent field to M along the composed loop 7 * 7', it does not vanish
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at the junction point 7(1) 7/(0). This proves item a). In order to obtain
item b) it is sufficient to make c tend to 0.

When p > 0, taking the different regradings into account, the Thorn

isomorphism yields

E= Hp+q+/l-(Xp(Ep, Z) Hp+q+n_ap(UM. Z) Hp+q+n_(Vp_(2n-i)(UM, Z),

where Z) denotes the regraded intersection ring of the (2n — 1)-dimensional

manifold UM. Similarly, after regrading the Gysin morphism

H,(M\ Zor) ->• //*+rt_i(C/M; Z)

becomes a morphism of degree 0, H*(M; Zor) —» H*((/M;Z), giving
H*(l/M; Z) the structure of an H#(M; Zor) -module for the intersection product

The multiplicative structure on E*^ may be interpreted in terms of
H#(UM). The following statement is essentially due to Chataur-Le Borgne in
[5] (up to orientability assumption).

PROPOSITION 4.5. 1) There is an isomorphism of bigraded rings:

E^ H*(M; Zor) CD Hff UM] Z)[T]>i

Here E^ is endowed with the bigraded ring structure yielded by Proposition

4.2. The intersection rings H*(M) and HffUM) have bi-degree (0. *).
The new variable T has bi-degree (1, « 1 + n — 2) and appears with positive

powers. Regarding HffUM) as an WffM)-module, the right hand side has a
well-defined ring structure.

2) The differential dl on page 1 vanishes at every place.
3) The page 00 inherits the same isomorphism of bigraded rings as

page 1 :
E~ - H,(M; Zor) © HffUM] Z)[T\>i

Proof. 1) We read the first page of the spectral sequence, E'_+, via the

Thorn isomorphism, taking Proposition 4.4 into account. For instance, we have

(without writing the coefficients):

HAUM) H2n^WM) H^1+aiWM) =1

and T is simply the image of the unit p. Ho(UM) (that is, the fundamental

class of UM) through the Thorn isomorphism. Once the desired ring isomorphism

is specified on T it extends globally using the multiplicative property
of the Thorn isomorphism.
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20 F. LAUDENBACH

2) As H*(Ao) is a direct factor in H*(A), d1: E|^ -a Eq „ has to vanish.

In particular, dl(T) 0. Since d1 is a derivation (Prop. 4.2), it vanishes

everywhere.

3) As a consequence, page 2 of the spectral sequence is isomorphic to

page 1 as a bi-graded ring. Therefore the differential d2 vanishes for the same

reason as d1. Proceeding recursively through the successive pages yields the

conclusion.
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