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L’Enseignement Mathématique (2) 57 (2011), 117-153

SUR LERGODICITE DU FLOT GEODESIQUE
EN COURBURE NEGATIVE OU NULLE

par Yves COUDENE

RESUME. Cet article est consacré i la dynamique du flot géodésique sur les
variétés 4 courbure négative ou nulle. Apres avoir détaillé quelques résultats de
dynamique topologique, on étudie les propriétés ergodiques du flot géodésique sur
les vaniétés de rang un, de trois points de vue différents: d’abord relativement & la
mesure riemannienne, ensuite par une approche entropique, enfin par des techniques
de généricité.

INTRODUCTION

Ces notes sont issues d'un cours donné a 1'université de Tours, dans le
cadre du groupement de recherche Platon, en janvier 2010. Elle constituent
un survol des résultats concernant 1'ergodicité du flot géodésique en courbure
négative ou nulle, de rang un.

Les variétés a courbure négative ou nulle sont celles qui sont les plus
proches des espaces 4 courbure strictement négative. On s’attend donc 2 ce
que le flot géodésique ait un comportement fortement stochastique sur ces
variétés. 11 existe plusieurs approches décrivant le caractére “chaotique™ du
flot, d’un point de vue guantitatif.

— On peut chercher & étudier le probleme de 1'ergodicité relativement au
volume riemannien. Lorsque la variété est compacte, 1a mesure de Liouville,
définie sur le fibré unitaire de la variété, est une mesure finie invariante
par le flot géodésique. Cest sans doute la mesure naturelle du point de
vue géométrique.

— On peut voulcir au contraire étudier les trajectoires du flot qui sont les
plus désordornmées possibles, au sens probabiliste du terme. I1 s’agit dans
ce cas de construire une mesure invariante qui maximise 1 entropie.
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118 Y. COUDENE

— Enfin, on peut se demander si ’ergodicité est une propriété typique des
mesures invariantes par le flot. C’est le point de vue générique. [ ’ensemble
des mesures invariantes est muni d’une topologie naturelle, et il s agit de
montrer que 1'ensemble des mesures ergodiques de support total est un
“gros” ensemble, au sens de Baire.

11 nous a semblé intéressant de confronter ici ces trois approches, dans
la mesure ou elles font appel 2 des méthodes de nature assez différente, et
pourtant s’éclairent mutuellement.

Du reste, on ne saurait comprendre les propriétés quantitatives du flot
géodésique, sans s’intéresser tout d’abord 2 ses propriétés qualitatives, ¢’est-
a-dire & sa récurrence topologique et & sa transitivité.

Pour cette raison, les deux premiéres parties de cet article sont consacrées
a des questions de dynamique topologique. La situation est relativement bien
comprise sur les variétés compactes, mais il y a peu de résultats en présence
de trajectoires errantes. On a surtout cherché 4 mettre en valeur les différences
qui existent entre la courbure strictement négative et la courbure négative ou
nulle.

Les deux derni¢res parties portent sur les propriétés quantitatives du flot
géodésique, défini sur une variété de rang un. On présente trois points de vue:
d’abord les travaux de Y. Pesin concernant 'ergodicité du flot relativernent
au volume; ensuite les résultat de G. Knieper relatifs a 1’entropie; enfin
I"approche générique que nous avons adoptée dans un travail en commun avec
B. Schapira.

On a donné quelques preuves afin d’illustrer les méthodes et les idées
les plus intéressantes. Certaines de ces preuves sont nouvelles, d’autres au
contraire sont classiques et jouent un role important dans la théorie. Enfin ce
texte est parsemé de questions ouvertes, certaines sans doute faciles, d autres
plus difficiles, dans 1’espoir qu’elles suscitent 1’intérét du lecteur pour un sujet
qui recele bien des mysteres.

1. QUELQUES PROPRIETES DE LA COURBURE NEGATIVE OU NULLE

1.1 NOTATIONS

5

Dans la suite, M est une variété riemannienne > commexe compléte &
courbure négative ou nulle, de dimension supérieure ou égale a deux. Son
fibré unitaire est noté X ou T'M en fonction du contexte. Le revétement
universel de M est noté M. Enfin, X est le fibré unitaire de M.
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SUR LERGODICITE DU FLOT GEODESIQUE 119

La métrique riemannienne sur M induit une métrique sur son fibré
unitaire X, appelée métrique de Sasaki et définie comme suit: étant donné un

vecteur X’ € TX et une cowbe V: ]—&,s[ — X tangente 2 ce vecteur en O,
la norme de & est donnée par la formule
12115 = [le’@I[* + [| Ver V(O]
oll ¢ est la courbe obtenue en projetant V' sur M et V. V(0) est la dérivée
covariante de V le long de ¢ en 0. Pour cette métrique, les fibres de la
projection de X sur M sont totalement géodésiques, tandis que la courbe
formée par les vecteurs unitaires tangents a une géodésique de M est une
géodésique de X.
Nous dirons que la courbure est striciement négative (K < 0), si toutes les
courbures sectionnelles, en tout point de la variété, sont strictement négatives.

7

On parlera de courbure négative pincée si les courbures sectionnelles sont
toutes comprises entre deux nombres strictement négatifs.

Nous allons étudier la dynamique du flot géodésique ¢,: X — X. Pour
alléger les notations, le relevé du flot 3 M est aussi noté g,. Le terme
“géodésique” est utilisé aussi bien pour désigner les orbites du flot géodésique
sur X que leurs projections sur M.

1.2 VARIETES DE HADAMARD

Rappelons quelques propriétés élémentaires des variétés de courbure
négative ou nulle.

THEOREME 1.1 (J. Hadamard). Soit xg € M ; ["application exponentielle
exp: T, M — M est un revétement.

Une variété riemannienne connexe compléte a4 courbure négative ou
nulle est appelée variété de Hadamard si elle est simplement connexe. Le
résultat précédent montre que toute variété de Hadamard de dimension # est
difféomorphe & R”.

Le revétement universel M de M est une variété de Hadamard, et il
peut étre identifié & T, M ou TXDM par le biais de 1'application exponentielle.
Comme les géodésiques issues de xp se relevent en des droites de T,q]!l} , Nous
voyons que par deux points distincts de M passe une unique géodésique.

1.3 CONVEXITE

Introduisons la notion de sous-ensemble convexe d une variété de Hadamard.
Un sous-ensemble C C M est convexe si pour tous peints x, y distinets de C,
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120 Y. COUDENE

la géodésique qui relie x & y est incluse dans C.

On dispose d’un théoréme de projection sur les convexes fermés: soit C
un convexe fermé dans une variété de Hadamard et x un point extérieur a ce
convexe, alors il existe un unique point dans € qui réalise la distance de x
a €. Ce point est appelé projection de x sur C, et la géodésique qui relie
x 4 son projeté est orthogonale au convexe. La fonction distance entre deux
géodésiques est aussi convexe:

THEOREME 1.2, Soient ¢1,c2: R — M deux géodésiques dans une variété
de Hadamard M. Alors la fonction

t = d(c1(D), c2(0)

est COnvexe.

Le comportement asymptotique d'une fonction convexe & 1'infini est re-
lativement simple, si bien que ce théoréme permet de déduire des infor-
mations sur les géodésiques de M. Soient ¢i,c;: R = M deux géodésiques
géométriquement distinctes, ¢’est-a-dire telles que ¢;(R) # e2(R). Considérons
la fonction ¢ — d{c1(f). c2(t)). Cette fonction:

— a un unique minimum: les deux géodésiques ont au plus un point en
commun; si ci{R) N e (R) est vide, il y a une géodésique de longueur
minimale qui relie ¢; a ¢z, elle est orthogonale 2 ¢; et ¢; aux points
d’intersection ;

— est constante (ou bornée sur R): les deux géodésiques bordent une sous-
variété 4 bord euclidienne totalement géodésique isométrique & [0,a] x R
(théoréme de la bande plane) [BGS8S5, p.17]. La courbure sectionnelle
s’annule donc sur les plans tangents A cette sous-variété et ce cas est
exclu en courbure strictement négative;

— n'a pas de minimum :

— la borne inférieure est nulle: si cette borne inférieure est atteinte en
4o, la fonction dic1(t), cx(8)) déeroit vers O lorsque ¢ tend vers
+oc. On dit alors que €((0) est sur la variété stable de ¢5(0). Dans
le cas contraire, elle décroft vers 0 quand ¢ tend vers —oo, et ¢1(0)
est sur la variété instable de ¢5(0). Ce cas ne se produit pas si la
courbure est nulle partout;

— la borne inférieure est strictement positive :  la situation est plus com-
plexe. A reparamétrage pres, on peut &tre dans la situation
précédente. Ou encore, les deux géodésiques peuvent se rapprocher
d’une bande plane lorsque ¢ tend vers 1'infini. Voici un petit exercice
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SUR LERGODICITE DU FLOT GEODESIQUE 121

en dimension deux qui traite le cas oll une des deux géodésiques
est périodique dans un certain quotient de M ;

et ces cas sont mutuellement exclusifs.
> T g e T
/ /

EXERCICE. On se place dans le dernier cas considéré: r— d(c1(6), c2(6))
n'a pas de minimum sur R et sa borne inférieure est non nulle. Supposons
M de dimension deux. $’il existe un réel [+ 0 et une isométrie v de M
telle que ~v(c2(N)) = (¢ + D) pour tout r € R, alors ¢; est sur la feuille stable
d’une géodésique qui borde une bande plane avec ¢;.

Dans ce cas, I'image de la bande plane dans M/{~) est un cylindre ou
un ruban de Moebius. La situation est plus subtile en dimension supérieure.

EXEMPLE. Considérons une isométrie v de M=R:xR qui est le
produit d’une rotation irrationnelle par une translation. La droite verticale

— {0} x R passant par I’origine de M se projette dans M/({~) sur une
geodemque périodique. Considérons maintenant une autre droite verticale dans
M elle délimite avec D une bande plane dans M mais sa projection n’est
pas périodique, elle est dense dans un tore de la forme S! x St

Du point de vue du flot géodésique sur le fibré unitaire de M/(~) il y a
trois types d’orbites: les deux orbites périodiques qui passent par 1’origine, les
orbites 1ssues des vecteurs verticaux qui sont récurrentes, et les aufres orbites,
qui partent toutes a 1'infini, aussi bien pour les temps positifs que pour les
temps négatifs.

Remarquons que dans le quotient M/~), I'ensemble des géodésiques
fermées n’est pas dense dans ’ensemble des géodésiques récurrentes.

2. DIFFERENCES ENTRE K < 0 BT K <0

Les premieres différences entre la courbure strictement négative et la
courbure négative ou nulle apparaissent au niveau des variétés stables.
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122 Y. COUDENE

2.1 VARIETES STABLES: DEFINITION DYNAMIQUE

Soit © un point de X ou X. La variété stable de v est définie par:
W) = {w € X | dig,(v), g(w)y — 0 quand § — +oc }.

Cette définition n’est pas spécifique au flot géodésique, elle reste valide pour
n’importe quel flot défini sur un espace métrique. De maniére abusive, on
parlera de feuilletage stable pour désigner la partition de X en feuilles stables.
[lustrons par un exemple comment utiliser ce concept de variété stable pour
étudier la dynamique du flot.

APPLICATION.  Transitivité du flot.

Nous allons voir que si les feuilles stables et instables couvrent suffisam-
ment d’espace, alors le flot g; posséde une orbite dense dans X. Rappelons
la définition dun point récurrent sous 1’action d’un flot continu g¢; défini sur
un espace métrique X.

DEFINITION.  Nous dirons que v € X est posifivement (resp. négativement)
récurrent, si on peut trouver £, — +oc (resp. —oc) tel que g, (v) — v. Nous
dirons que © est récurrent s’il est a la fois positivement et négativement
récurrent.

PROPCSITICON 2.1.  Soif g; un flot continu défini sur un espace métriqie,
soit U un ouvert invariant par g, ef v un point de U qui est récurrent. Alors
la feuille stable de v est incluse dans U : W) C U.

Preuve. Soit w € W*(w). Alors
d(gy,(w),v) — 0.

On peut trouver n tel que g (w) est dans U/, et
comme 1'ouvert U/ est invariant par g, le point w
est dans /. La proposition est démontrée.

Avec un peu de régularité sur W*, on démontre un résultat plus précis.
Pour cela, nous avons besoin de quelques rappels élémentaires sur les relations
d’équivalence.

Le feuilletage stable définit une relation d’équivalence sur X : deux points
sont équivalents si 1'un est sur la feuille stable de 1’autre. Le samré dun
ensemble par cette relation d’équivalence est 1'union de toutes les feuilles
stables qui rencontrent cet ensemble. Nous dirons que le feuilletage stable
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SUR LERGODICITE DU FLOT GEODESIQUE 123

définit une relation d’équivalence ouverfe si pour tout ouvert &/ de X, le
saturé de &/ est ouvert. Cette propriété est vérifiée, par exemple, si X est une
variété et si les feuilles stables définissent un authentique feuilletage continu.

Les relations d’équivalence ouvertes possédent la propriété suivante: le
saturé de ’adhérence d’un ensemble quelconque est contenu dans ’adhérence
de son saturé. Cette propriété est laissée en exercice, elle permet de démontrer
la proposition suivante:

PROPOSITION 2.2, Soit ¢, un flot confinu défini sur un espace métrique X .
On suppose que la relation d’équivalence associée au feuilletage stable est
ouverte, et que les points récurrents sont denses dans X. Soit U un ouvert
de X invariant par g;. Alors 'adhérence de U est saturée par les feuilles
stables: Yo e U, W) C .

Preuve. Notons R 1’ensemble des points récurrents, et pour tout A C X,
notons R(A) le saturé de A par les feuilles stables: R(A) = W*(p). On
a alors:

vCA

RIOH=RUNR)CRUNTK) CU.

La proposition est établie.

Renversons maintenant le sens du temps. La feuille instable d™un point
v € X est définie comme suit:

W) = {w e X | dig{v), gw)) — 0 quand ¢ — —o0 }.

Supposons que la relation associée au feuilletage instable est ouverte, et que
les points négativement récurrents sont denses dans X. Alors 1’adhérence de
tout ouvert invariant par g; contient toutes les feuilles instables qui intersectent
cet ouvert.

Suppesons de plus qu’en tout point # € X, on peut
trouver un voisinage dont tous les points peuvent &tre
reliés & » par un chemin composé d’un nombre fini
de morceaux, chacun inclus dans une feuille stable, une
feuille instable ou une orbite du flot.

Alors 1"adhérence de tout ouvert invariant non vide
U/ est un ensemble ouvert. Si X est connexe, on en déduit que I/ est dense
dans X : c’est la transitivité du flot sur X.
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124 Y. COUDENE

RAPPEL. Soit X un espace métrique séparable possédant la propriété
de Baire, g;: X — X un flot continu. Supposons que tout ouvert non vide
invariant par le flot est dense dans X. Alors il existe un point dont I'orbite
sous {’action du flot est dense dans X.

Preyve. Les points dont 'orbite est dense sont précisément les éléments
de I’ensemble:

m {gtw)|v e U, t e R}
v

ol1 ’intersection a lieu sur toutes les boules ouvertes ¢/ non vides, de rayon
rationnel, avec un centre appartenant & une partie dénombrable dense fixée a
I"avance. Comme chacun des gg(l/) est dense, on peut appliquer le théoréme
de Baire. Ceci termine la preuve.

Revenons au cas du flot géodésique, défini sur le fibré unitaire X = 7'M
de M. Les hypotheses précédentes s’appliquent des cque la variété M est a
courbure strictement négative pincée. On retrouve un théoréme bien connu.

THEOREME 2.3. On suppose que M est @ courbure strictement négative
pincée, et que les vecteurs récurrents sous [action du flor géodésique sont
denses dans T'M . Alors le flotr géodésique est transitif.

La densité des points récurrents est par exemple vérifiée en volume fini,
¢’est une conséquence du théoréme de récurrence de Poincaré. En courbure
constante, volume fini, la transitivité du flot géodésique remonte aux travaux
de E. Artin, J. Nielsen, P Koebe, F. Lobell et M. Morse dans les années trente.

2.2 HOROSPHERES : DEFINITION GEOMETRIQUE

Commencons par définir le concept d’horosphére. Considérons un vecteur
v € X, et notons #: X — M la projection du fibré unitaire sur la variété.

L horoboule basée en ¢ est le sous-ensemble de M union de
toutes les boules ouvertes de rayon ¢ centrées en w(g,(v)) :
HB(v») = U Blw(g,(v). 0.
120
C’est un ensemble convexe dont le bord contient ().

De manidre générale, le bord d’un convexe posséde une certaine forme
de régularité. Par exemple, en dimension deux, il est forcément continu, avec
une dérivée a gauche et a droite en chacun de ses points, et ces deux dérivées
coincident hormis en un nombre dénombrable de points.

LEnseignement Mathématique, t. 57 (2011)



SUR LERGODICITE DU FLOT GEODESIQUE 125

Une étude plus détaillée montre que la convergence des boules est en
fait C!' [BGS85, 3.4], et méme C* [H-IH77] (mais pas mieux [BBB87]),
si bien que le bord de I’horoboule est une sous-variété lisse en tout point:
c’est ["horosphére associée au vecteur ». Cette horosphere se releve au fibré
unitaire X de M : I"horosphére stable basée en v est composée de tous les
vecteurs de X basés sur le bord de I’horoboule, qui sont orthogonaux 2 ce
bord, et orientés vers 1'intérieur de 1’horoboule. On la note HorT (). On peut
projeter ces horospheres sur X pour obtenir un feuilletage, dont la régularité
n'est & priori pas meilleure que C°.

Lhorosphére instable basée en un point v € X est définie en considérant
I’horoboule associée & —u et en prenant les vecteurs de X qui sont orthogonaux
au bord de cette horoboule, dirigés vers 1’extérieur de 1’horoboule.

wov) = Hort(y)

% Mttt

v ¥

Hor t(v) = Hor™ (v}

W v} = Hor™ {v)
K=-1 K=0

Décrivons briévement ces horospheres dans le cas dune variété de courbure
constante. Si la courbure est strictement négative, on peut se placer dans le
modele de la boule de Poincaré; les horospheres sont des sphéres qui sont
tangentes au bord de la boule. Dans 1"espace euclidien, les horospheres sont
des hyperplans. Dans ces deux cas, ce sont des objets réguliers qui définissent
un feuilletage C>. C’est une situation exceptionnelle:

THECREME 2.4 (G. Besson, G. Courtois, $. Gallot [BCG95]). Seit M
une variété compacte C™ a courbure strictement négative, telle que les
feuilletages horosphérigues stables et instables somt C™. Alors M est
localement symétrique.

Omn verra pourquoi la question de la régularité du feuilletage horosphérique
est importante, lorsqu’on abordera le probleme de 1'ergodicité du flot
géodésique.

Remarquons pour terminer qu’en courbure strictement négative, les
horospheres stables et instables sont transverses. En courbure nulle, par con-
tre, 1"horospheére stable et 1’horosphére instable basée en un point quelconque
de M coincident.
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126 Y. COUDENE

APPLICATION.  Densité des horosphéres.

Nous allons illustrer, a partir de la définition géométrique des horospheres,
comment on peut étudier le probleme de leur densité. Introduisons deux
nouveaux concepts.

Une géodésique ¢: R — M est guasi-minimisante $i on peut trouver une
constante C > 0 telle que pour tout £ > 0, d(c(0), (D)) >t —C.

Soit I' le groupe fondamental de M, iden-
tifié & un sous-groupe des isométries de M:
M/T ~ M. Une géodésique & R — M n’est
pas de type horosphérique si on peut trouver un
o = 0 tel que T.&0)NHor (&%) = @. Un
vecteur v € X est dit de npe horosphérique
il admet un relevé & X qui engendre une
géodésique de type horosphérique, auquel cas
tous ses relevés engendrent de telles géodésiques.
Le théoreme suivant est valide en courbure négative ou nulle.

THEOREME 2.5 (P. Eberlein [Eb73]). Une géodésique de M est quasi-
minimisante si et seulement si son relevé a M n’est pas horosphérique.

Preuve.
Non horosphérique < Vi 0, TL.eONBER+H,H =9,
& Y20, ¥Yyel, dE0), el +0) >t sur M,
& V20, dieO) et >t —1y sur M.

Ceci termine la preuve.

En courbure strictement négative pincée, sous la condition que les orbites
récurrentes du flot géodésique sont denses dans X, on démontre que tout
vecteur de type horosphérique est sur une horosphére qui est dense dans X.
Ce résultat est d@t & P. Eberlein [Eb73], on trouvera des généralisations dans
I’article de F. Dal’bo [D0O0] et dans [C05]. En résumé,

THECREME 2.6.  Supposons que M est & courbure sirictement négative
pincée et que les orbites récurrentes du flot géodésique sont denses dans
X = T'M . Considérons un vecteur v € X. Alors I"horosphére stable basée en
v est dense dans X si ef seulement si la géodésique sur M engendrée par
ce vecteur n’est pas quasi-minimisante.
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SUR LERGODICITE DU FLOT GEODESIQUE 127

Ce résultat implique par exemple que le feuilletage horosphérique est
minimal (i.e. toutes les horospheres stables sont denses dans M) si et seulement
si M est compact.

EXERCICE. Construire une surface 3 courbure négative pincée, et un vecteur
sur cette surface, tels que 1’horosphére stable associée i ce vecteur est dense
dans la surface, mais le vecteur part a 1’infini sous 1’action du flot géodésique.

2.3 VARIETES STABLES ET HOROSPHERES

De manigére générale, 1’horosphere stable basée en un vecteur v € X
contient toujours la variété stable de v: W*(v) C Hort (). De plus, variétés
stables et horosphéres stables coincident en courbure strictement négative:
W33(y) = Hort(v). Par contre elles sont en général distinctes si la courbure
s’annule. Donnons quelques exemples.

Pour les variétés a courbure nulle comme le tore plat R?/Z? les feuilles
stables sont réduites & des points tandis que les horosphéres sont localement
des hyperplans. Horospheres stables et instables coincident, si bien qu'on ne
peut pas joindre deux points quelconques de la variété par un chemin composé
de morceaux de feuilles stables, de feuilles instables et de géodésiques. Le
flot géodésique n’est du reste pas transitif.

Plagons nous maintenant sur une surface & courbure négative ou nulle qui
contient un cylindre euclidien [0, 1] x S!. Les feuilles stables associées aux
vecteurs qui engendrent une géodésique périodique contenue dans 1'intérieur
du cylindre sont triviales (i.e. W*(w) = {v}). De fait, la géodésique engendrée
par un vecteur qui se trouve sur la feuille stable d'un tel point, doit rester
dans le cylindre a partir d'un temps suffisamment grand. Mais seules les
géodésiques périodiques dans le cylindre posstdent cette propriété, toutes les
autres traversent le cylindre de part en part. Pour ce qui est des horospheres
stables associées aux vecteurs dont la trajectoire est périodique, contenues
dans le cylindre, ce sont des sous-variétés immergées de dimension un. Les
horospheres instables coincident avec les horospheres stables dans un voisinage
du vecteur, et ne se différencient de celles-ci qu'a la sortie du cylindre.
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Donnons un exemple ol 1a feuille stable est non triviale, sans pour autant
coincider avec 1’horosphere stable. Considérons une géodésique périodique
définie sur une surface orientable, qui borde dun ¢6té un cylindre euclidien,
et telle que la courbure soit strictement négative de 1’autre ¢bté, au voisinage
de la géodésique. Soit v un vecteur sur cette géodésique. Au voisinage de v,
la feuille stable de v coincide avec la partie de [’horospheére qui se trouve du
cbté ou la courbure est strictement négative. La feuille est donc égale a une
demi-horosphére.

24 LIEN AVEC LES SYSTEMES HYPERBOLIQUES

Un flot géodésique défini sur le fibré unitaire d'une variété compacte de
courbure strictement négative est un flor d’Anosov: le fibré tangent TX estla
somme directe de trois fibrés EU, E°, E* invariants par la différentielle du
flot, qui satisfont pour des constantes C. A > 0,

— EY est tangent & la direction du flot,

- Yu € E V>0, ||dgo| < Ce™|u|,

- Yv €E* V>0, ||dg_n| £ Ce||v].

Dans le cas du flot géodésique, les espaces E° et E* sont les espaces tangents
aux horospheéres stables et instables. On parle d hyperbolicité uniforme pour
qualifier ce genre de propriétés. La plupart des propriétés dynamiques du flot
géodésique en courbure strictement négative découle de cette hyperbolicité
uniforme.

11 existe des variétés compactes, a courbure négative ou nulle, sur lesquelles
le flot géodésique est encore Anosov. Dans ce cas, le flot posséde des propriétés
similaires a celles observées en courbure strictement négative. La distinction,
du point de vue dynamique, n’est pas tant entre courbure strictement négative
et courbure négative ou nulle, mais plutdt entre flot géodésique Anosov et
non Anosov.

A quelles conditions sur la courbure, le flot géodésique estil Anosov ?

Donnons tout d’abord une obstruction élémentaire & la propriété d’ Anosov.
Les flots d’Anosov possédent en chaque point des variétés stables et instables
qui forment des sous-variétés de dimension non nulle transverses i la direction
du flot. Par conséquent, si un vecteur posséde une variété stable triviale
(W= ) = {v}), le flot géodésique ne peut pas étre Anosov.

Considérons une surface compacte & courbure négative ou nulle qui contient
un compact isométrique & un cylindre euclidien [0,1] % §'. Les vecteurs dans
le cylindre qui sont verticaux, c’est-a-dire, qui sont tangents 4 un méridien
{x} x S, ont une variété stable triviale. De fait, une trajectoire asymptotique
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a un tel vecteur doit rester dans le cylindre pour tous les temps suffisamment
grands. Mais dans le cylindre, les trajectoires sont des droites euclidiennes,
elles traversent donc le cylindre de part en part, hormis pour celles qui sont
verticales. Le flot ne peut donc pas &tre Anosov.

Le critére suivant, dd a2 P. Eberlein, donne des exemples de surfaces ol la
courbure s’annule, mais pour lesquelles le flot géodésique est Anosov.

THEOREME 2.7 (P Eberlein). Soit M une surface compacte i courbure
négative ou nulle. Le flot géodésique défini sur T*M est Anosov si et seulement
si on peut trouver sur chaque géodésique un poini de courbure non nulle.

N

On peut aussi chercher & établir de 1’hyperbalicité uniforme dans le cas
non compact. Les zones qui posent probleme sont alors celles constituées par
des géodésiques récurrentes le long desquelles la courbure est toujours nulle.

EXERCICE. Calculer la courbure de la surface:
{G6, 7,2 € R J(2xZy | cos(x) + cos(y) + cos(z) = 0}.

En déduire que le flot géodésique, défini sur le fibré unitaire de cette swrface,
est Anosov. Donnez un exemple de surface admettant des points ol la courbure
est strictement positive, mais pour laquelle le flot géodésique est Anosov.

2.5 ENSEMBLE NON ERRANT

On s’intéresse maintenant au cas ol les points récurrents ne sont pas denses
dans la variété. Rappelons la définition de 1’ensemble non errant.

DEFINITION.  Soit g, X — X un flot défini sur un espace métrique. Son
ensemble non errant est défini comme suit:

Q={xeX|¥c>0, 3t =+ tel que g, (Blx, )N Bk, F# &}

Voici quelques propriétés générales de 1’ensemble non errant £2.

— L’ensemble non errant est fermé, invariant par le flot.

— Les points récurrents appartiennent & Q.

— Les mesures de probabilité invariantes ont leurs supports inclus dans €.

Considérons le cas du flot géodésique défini sur le fibré unitaire d’une
variété a courbure négative ou nulle. Lorsque la courbure est strictement

Achevé de composer te 28 juin 2001 & 15:18



130 Y. COUDENE

négative, on a le résultat suivant:

THECREME 2.8. Supposons M & courbure striciement négative. Alors les
géodésiques fermées sont denses dans ensemble non errant. Supposons de
plus que Q contient plus de deux géodésiques périodiques. Alors le flot
géodésique g, est transitif en resiviction & cet ensemble : il existe un vecteur
v e Q tel que {gv) |t € R} est dense dans Q.

Le cas d'un cylindre 4 courbure —1 donne un exemple pour lequel €
contient exactement deux orbites périodiques; ces orbites sont engendrées par
un vecteur et son opposé. Le flot n'est bien sQr pas transitif sur € dans ce
cas.

Le théoreme précédent est pris en défaut en courbure négative ou nulle.
On a donné un exemple d’un cylindre de dimension trois possédant une seule
géodésique périodique (deux en comptant le sens de parcours), et une infinité
de géodésiques récurrentes.

Décrivons un exemple non trivial de surface a courbure négative ou nulle,
sur laquelle le flot géodésique n’est pas transitif en restriction & 1’adhérence
des orbites périodiques. Cette surface est difféomorphe au tore privé dun
point. Elle admet une géodésique périodique ¢ qui sépare la surface en
deux parties. La partie qui se trouve & gauche sur le dessin est compacte
a courbure strictement négative. La partie droite est isométrique & un demi-
cylindre euclidien [0, ~oo[ x5!,

>o I

KeO K=0

11 existe trois types différents d’orbites sur le fibré unitaire de cette surface.
— les orbites périodiques contenues dans le cylindre euclidien,

— les orbites qui restent dans la partie 4 courbure strictement négative,

— les orbites qui croisent la géodésique c¢. Elles admettent un voisinage

constitué de vecteurs dont la trajectoire tend vers +oo, pour les temps
positifs ou pour les temps négatifs. Ces orbites sont errantes.
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L ensemble non errant €2 contient toutes les orbites périodiques. Son inter-
section avec le demi-cylindre est composé exactement des orbites périodiques
contenues dans le cylindre. Une trajectoire qui approche une de ces orbites
périodiques sans &tre elle méme périodique doit &tre errante, elle ne peut donc
pas &tre récurrente ni dense dans Q. Le flot n'est pas transitif en restriction &
2, mé&me si les orbites périodiques sont denses dans 1’ensemble non errant.

QUESTIONS.

— Quelles sont les surfaces 2 K < 0 pour lesquelles le flot géodésique est
transitif sur €2 7

— Quelles sont les surfaces & K < 0O pour lesquelles les géodésiques
périodiques sont denses dans €2 7

On connalt la réponse & ces questions lorsque @ = X. Le théoréme suivant
traite le cas de la dimension deux.

THEOREME 2.9 (P. Eberlein [Eb96]). Soit M une surface & courbure
négative ou nulle, avec au moins un point de courbure strictement négative,
relle que Q = T'M . Alors les orbites périodiques sont denses dans T'M et
le flot géodésique est transitif sur T'M .

Le cas de la dimension supérieure sera mentionné plus loin.

En courbure négative ou nulle, il existe peu de résultats sur la dynamique
topologique du flot géodésique, dans le cas oli €2 # X. On peut quand méme
énoncer un théoréme en relation avec la transitivité. Pour cela nous avons
besoin du concept d’orbite périodique hyperbolique pour un flot C.

DEFINITION.  Soit X une variété différentielle, ¢,; X — X un flot
C! et v € X un point périodique de période [ # 0. La différentielle
dyg: T,X — T,X est une application linéaire qui admet une valeur propre
égale 4 un; cette valeur propre est associée a la direction du flot. Nous
dirons que l'orbite de v est hyperbolique si les seuls vecteurs propres de
cette application qui sont associés a des valeurs propres de module un sont
proportionnels a la direction du flot.

En cowrbure strictement négative, toutes les orbites périodiques du flot
géodésique sont hyperboliques. Sur une surface 2 courbure négative ou nulle,
une géodésique périodique est hyperbolique si et seulement s7il existe un point
de courbure strictement négative sur la géodésique.
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On peut & présent énoncer un résultat valide méme si €2 est différent de X.

THEOREME 2.10 (Y. Coudéne, B. Schapira [CS10]). Soit M une variété
a courbure négative ou nuile. On suppose que I'ensemble non errant confient
plus de deux géodésiques périodiques hyperboliques. Alors le flot géodésique
est transitif en restriction a I'adhérence des orbites périodiques hyperboliques.

QUESTION.  Pour quelles variétés a cowbure négative ou nulle les
géodésiques périodiques hyperboliques sont-elles denses dans € 7

Revenons au cas de la surface avec un bout cylindrique euclidien discuté
plus haut. Les géodésiques périodiques hyperboliques sont toutes contenues
dans la partie a courbure négative ou nulle, et le flot est transitif en restriction a
I"adhérence de ces géodésiques. La géodésique qui borde le cylindre euclidien
peut-elle &tre approchée par des géodésiques périodiques hyperboliques 7

PROPOSITION 2.11. La géodésique qui borde la partie de la surface a
courbure strictement né gative est dans ['adhérence des géodésiques périodiques
hyperboliques.

Preyve. Identifions le groupe fondamental de M i un sous-groupe I' du
groupe d’isométries de M et considérons son action sur le bord du revétement
universel.

Plagons nous sur 1’espace des demi-géodésiques r: Ry — M afin de définir
fe bord de M. On identifie deux demi-géodésiques r,rz si elles restent a
distance bornée 1'une de 1'autre: 3C > 0 tel que d(ri(s). () < C pour
tout £ > 0. L’espace quotient obtenu est le bord idéal de M. Fixons un point
X0 € M. Le bord idéal 9M est homéomorphe au cercle unité par le biais de
I’application de Tjjﬂn/f dans AM qui associe au vecteur v € TA}DA} le point du
bord correspondant a la demi-géodésique issue de .

Considérons 1’orbite de xp dans M U OM et définissons {ensemble limite
de T par la formule: AT = Txp N dM. G. Link, M. Peigné et J.-C. Picaud
[LPPO6] montrent que les extrémités des relevés des géodésiques périodiques
hyperboliques de M sont denses dans AT x AT'. Attention, on a vu que les
géodésiques périodiques hyperboliques ne sont pas denses dans £2.

Fixons un relevé ¢ de la géodésique périodique ¢ qui borde la partie a
courbure strictement négative. On note ¢~ et ¢t ses deux extrémités dans
ATl. Solent &, une suite de géodésiques de M qui se projettent sur des
géodésiques périodiques hyperboliques de M, et dont les extrémités ¢, et ¢
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convergent vers ¢~ et ¢*. Quitte & passer A une sous-suite, on peut supposer
que la convergence a lieu de fagon monotone au voisinage de ¢~ et de ¢™.
Paramétrons ¢, de fagon a ce que la distance de &, a &0) soit réalisée
en &,(0).

Les géodésiques &, et ¢ se trou-
vent de part et d’autre de la géodésique
€,11, Sl bien que la suite d(&,(0), &)
est décroissante. Soit v une valeur
d’adhérence de la suite ¢,(0). La géodé- &t
sique engendrée par ce vecteur a pour
extrémités ¢~ et ¢T, elle délimite donc
une bande plane avec ¢. Comme elle
est dans 1'adhérence des (relevés des)
géodésiques périodiques hyperboliques,
elle doit coincider avec c et la proposi-
tion est démontrée.

'

QUESTION. La feuille stable du vecteur £'(0), qui engendre la géodésique
périodique sur le bord du cylindre euclidien, est-elle dense dans €2 7

On pourra consulter [$10] pour des résultats concernant la densité des
demi-horocycles en courbure strictement négative.

En résumé, on peut espérer retrouver les propriétés de la courbure
strictement négative si on se restreint & un sous-ensemble de T'Af sur lequel
on a suffisamment d’hyperbolicité.

3. VARIETES DE RANG 1

Cecl nous amene a chercher un ensemble sur lequel la dynamique est de
nature hyperbolique.

3.1 DEFINITION DU RANG D'UNE VARIETE

Commengons par généraliser le concept de géodésique hyperbolique au cas
non périodique. Considérons une géodésique c: R — M définie sur une variété
a courbure négative ou nulle. On dit qu'un champ de vecteurs J(f): R — TM
est défini le long de la géodésique c¢ si pour tout ¢ € R, J(f) appartient
a T.nM. Un tel champ est paralléle si sa dérivée covariante le long de la
géodésique est nulle: J'(f) = V..J(t) = O, pour tout z € R.
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DEFINITION.  Le rang de la géodésique ¢ est égal & 1, plus la dimension
de I'espace vectoriel des champs de vecteurs définis le long de ¢, paralleles,
orthogonaux 2 la direction de la géodésique, et tels que la courbure s’annule
dans le plan déterminé par le champ de vecteurs et la direction de la
géodésique:

rang(c) = 1 +dim{J | {/(n, () =0, J'(H =0, KUJ@), (1) =0},

Une variété est dite de rang un si elle est connexe compléte & courbure
négative ou nulle, et si elle admet une géodésique de rang un. Si une telle
variété n’admet pas de géodésique de rang un, on dit qu'elle est de rang
supérieur.

Cette définition peut se formuler a 1’aide de la notion de champ de Jacobi.
Un champ de vecteurs J(z) défini le long d'une géodésique cp est un champ
de Jacobi 1l satisfait |’équation:

JE) + K (S0, (D) ch(y = 0,

I'expression K(.,.) désignant ici le tenseur de courbure. Dun point de
vue géométrique, ces champs s obtiennent en faisant varier les géodésiques:
I’équation précédente est satfisfaite si et seulement si on peut trouver une
famille €' de géodésiques c,(r) telle que %(r)‘fzo =Ji.

Le rang d’une géodésique est alors égal & la dimension de 1’espace vectoriel
des champs de Jacobi paralleles le long de la géodésique.

3.2 VARIETES DE RANG UN

Sur une surface, une géodésique est de rang un si et seulement si on peut
trouver un point de courbure strictement négative sur la géodésique. Dans le
cas contraire, elle est de rang deux.

Une surface 2 courbure négative ou nulle est de rang un si et seulement s’il
existe un point ol la courbure est non nulle. Dans le cas compact orientable,
cela est équivalent & dire que le genre est supérieur strict & un, ou encore que
la surface n’est pas homéomorphe a 1a sphére ou au tore; ¢’est une application
de la formule de Gauss-Bonnet.

En dimension plus grande, une géodésique qui passe par un point oll toutes
les courbures sectionnelles sont strictement négatives, est une géodésique de
rang un. Mais il peut arriver qu’une géodésique de rang un ne passe par aucun
point ot toutes les courbures sectionnelles sont strictement négatives.

Rappelons qu'une sous-variété est dite totalement géodésique si toute
géodésique qui part d’un point de la sous-variété, en lui étant tangente, reste
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dans la sous-variété pendant un intervalle de temps strictement positif. On
peut maintenant donner la définition dun plar: il s’agit d’une sous-variété
(éventuellement a bord) totalement géodésique dont la courbure est nulle
pour la métrique induite. L'exemple le plus simple de plat est donné par
une portion de cylindre euclidien plongé dans une surface. L.e rang d’une
géodésique incluse dans un plat est au moins égal a la dimension du plat.

EXERCICE. Construire une variété compacte de rang 1 qui posséde un
sous-groupe de son groupe fondamental isomorphe 3 Z*. Une telle variété ne
porte pas de métrique riemannienne & courbure strictement négative.

Le rang est bien lié & la nature hyperbolique de la dynamique du
flot géodésique. Nous pouvons a présent donner les énoncés généraux de
P. Eberlein.

THEOREME 3.1 (P. Eberlein). Sur une variété compacte & courbure négative
ou nulle, le flot géodésique est Anosov si et seulement si toutes les géodésiques
sont de rang un.

Soit M une variété de rang un. On suppose que tous les vecteurs de
TM sont non erranis sous Paction du floi géodésique : Q = T'M . Alors
les géodésiques périodiques hyperboliques sont denses dans T'M, et le flot
géodésique est transifif.

Remarquons enfin qu’en dimension deux, les géodésiques de rang un sont
celles sur lesquelles il existe un point oll la courbure est strictement négative.
Comme la courbure est une fonction continue, ces géodésiques forment un
sous-ensemble ouvert de 7'M . Ce résultat est vrai en toute dimension:

PROPOSITION 3.2 (P Eberlein). Soit M une variété de rang un. Alors les
vecieurs de rang un forment un ouvert invariant dans T'M . §i Q = M, cef
ouvert est dense.

3.3 VARIETES DE RANG SUPERIEUR

On va se restreindre dans la suite aux variétés de rang un. Ce sont celles
sur lesquelles le comportement du flot géodésique est le plus proche de celui
observé en courbure strictement négative. Avant cela, donnons tout de méme
quelques informations sur le rang supérieur.
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En rang supérieur, le flot géodésique n’est pas ergodique relativement au
volume, ni transitif [BBE]. On peut avoir en téte 1'exemple du tore plat
Rz/ 77 sur le fibré unitaire du tore, I’angle que forme un vecteur avec la
verticale est préservé au cours du mouvement.

On peut, d’un certain point de vue, classer les espaces de rang supérieur.

THEOREME 3.3 (W. Ballmann [B83]). Soit Ky > 0, soit M une variéié
riemannienne connexe, compléte, de volume fini, dont les courbures section-
nelles sont touies dans Uintervalle [—Ky,0]. On a alternative suivanie :

— M est de rang un,
— M est réductible (i.e. c’est un produit riemannien M x M, ),

— M est un espace localement symétrique (irréductible, de rang > 2).

Le cas réductible comprend par exemple le tore plat. Quant aux espaces
localement symétriques, ce sont des quotients de groupes de Lie {connexes,
irréductibles, de type non compact, de rang supérieur). A dimension donnée, il
n’existe qu'une liste finie de tels groupes. Voici les plus classiques: SL,1(R)
(n>1) SO,,R) (min{p,q} > 1), Sp2n(R) (n > 1)

L’espace symétrique irréductible (connexe, simplement connexe, complet,
a courbure négative ou nulle, de dimension > 1) de plus petite dimension est
SL3(R)/SO5(R). Les espaces symétriques sont homogenes et tout point dans
un tel espace est inclus dans un plat dont la dimension est égale au rang de
I’espace. On renvoie & la monographie [Eb96] pour plus de détails. Remarquons
pour terminer que le théoréme de W. Ballmann admet des généralisations au
cas Q= T'M [B93].

4. ERGODICITE DU FLOT GECDESIQUE SUR LES VARIETES DE RANG 1

Considérons un flot ¢g;: X — X mesurable préservant une mesure de
probabilité . D aprés le théoreme ergodique de Birkhoff, pour toute fonction
f: X = R de carré intégrable, on a la convergence :

1T
pp. x€X, T[ Jg:(x)) dt g Pf@x)
Jo 0

oll Pf estla projection L% de f sur le sous-espace des fonctions invariantes
par g;. Le flot est ergodique relativement & la mesure j si la limite Pf est
constante, auquel cas elle vaut [ f dy: les moyennes temporelles de f le long
de presque toute trajectoive du flot, coincident avec ses moyennes spatiales.
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4.1 L’ARGUMENT DE HOPF

La démonstration de 1’ergodicité du flot géodésique sur une variété de
courbure négative constante et de volume fini est due & E. Hopf [Ho36].
LJargument mis au point par E. Hopf a ensuite été généralisé dans de
nombreuses directions, jusqu'a devenir un principe de théorie ergodique qui
ne fait plus référence au flot géodésique.

On va présenter cet argument en détail. Rappelons comment on a défini
les feuilletages stables et instables d’un flot sur un espace métrique:

W) = {w € X | dgi(v), g(w)) — 0 quand ¢ — +o0 |,
W) = {w € X | digdv), gw)) — 0 quand ¢t — —oc }.

On dira qu'une fonction f est invariante par le feuilletage stable, ou encore
W* -invariante, si elle est constante le long des feuilles stables du flot:
Vo,w € X, w € W¥(v) implique flw) = f(¢). On dira qu'une fonction
est W¥-invariante mod 0 si elle comcide avec une fonction W* -invariante
hors d’un ensemble négligeable.

L’ARGUMENT DE HOPF. Soit X un espace métrique, g;- X — X un flot
borélien qui préserve une mesure de probabilité borélienne. Alors toute fonction
1% invariante par le flot est W* -invariante mod 0.

Preuve. Supposons pour commencer que f: X — R est Lipschitzienne
bornée. Soit Xy C X le sous-ensemble des points de X de mesure totale sur
lequel on a:

1 i
YuveXr, ?[Of(.qs(t’))df e B

olt Pf est la projection orthogonale de f sur {h € [? |VtER, hoy,=h}.
Soit K la constante de Lipschitz de f. Pour tout v,w € X, tels que
w € W),

1 of 1 of K o i
?]Of(gs(z,'))ds—?/of(gs(u,'))ds & ?/0 d(gs(v), gs(udds TJMC? 0.

Ceci implique: Vu,w € Xy tels que w € W), Pf(u) = Pf(u).

Toute fonction f € [? peut &tre approchée par une suite de fonctions
lipschitziennes f, en norme L. Par continuité, Pf, converse ennorme L7 vers
Pf. Quitte & passer 4 une sous-suite, on peut supposer que cette convergence
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a lieu sur un ensemble X, de mesure totale. Posons X' = XoM[), X, .
Si f est g,-invariante, on obtient, pour tout 2.1 € X' :

Var € W),  flu) = Pf(v) = lim Pf,(v) = lim Pf,(w) = Pf(u) = flw).
On définit alors

f( ) 0 g WonNX =g,
) =
flw)  avec w € W¥(w)N X' sinon.

Cette fonction est W* -invariante et coincide avec f sur X’. Ceci termine
la preuve.

EXERCICE. Scit A C X un ensemble mesurable invariant par le flot
Montrez que A coincide, i un ensemble de mesure nulle prés, avec un ensemble
saturé par le feuilletage stable: 3/ C X tel que p (A AU W”(‘v)) =0. Aton

vl

pour autant u( U W= \A) =07
nEA

L’argument précédent admet des généralisations lorsque la mesure est
infinie. On renvoie a [CO7] pour plus de détails. Démontrons maintenant un
lemme qui va s’avérer crucial pour la suite.

LEMME.  Soient (X,T,u), (¥,5,1) deux espaces probabilisés et soit
f: X %Y >R une fonction I*. On suppose qu’il exisie p1: X — R ef
w2 ¥ — R deux fonctions mesurables, Z C X X Y un sous-ensemble de
1 & v-mesure totale, tels que :

Yooy eZ, fly) =@, [y =ey.
Alors f est constante presque parfout.

Preuve. D’aprés le théoréme de Fubini, il existe ¥y C Y de mesure totale
et xg € X tels que {xo} X Yo € Z. Pour tout (x,¥) € ZNX % ¥p), le point
(xp,y) est dans Z, ce qui implique: i1(xo) = @2y} = f(x,y). Le lemme est
démontré.

Considérons maintenant un flot sur un espace métrique, préservant une
mesure de probabilité, tel que les feuilletages stables et instables forment
localement un systéme de coordonnées dans lequel la mesure est équivalente
2 une mesure produit. Formalisons cela par une définition ad hoc.

LEnseignement Mathématique, t. 57 (2011)



SUR LERGODICITE DU FLOT GEODESIQUE 139

DEFINITION.  Soit X un espace métrique, g,: X — X un flot borélien
qui préserve une mesure de probabilité p borélienne. On dira que pu est
absolument continue relativement aux feuilletages stables et instables si, pour
tout v € X, on peut trouver un ouvert &/ contenant ¢, un § > 0 et un
homéomorphisme ¢: R* x R! — {/ tels que, pour tout (x,3) € RF x R/,

— d({x} « R) C WH(o(x, m),
— SR x {y}) T gr_s,a W (Sx, 7)),
— @"(jy) est équivalente & une mesure produit ju & gz,

gws[w"'m’(x.y)) W ey

Supposons cette définition satisfaite, et considérons une fonction invariante
par le flot. D aprés 1'argument de Hopf, elle est W* -invariante. Elle coincide
donc presque partout, dans la carte donnée par ¢, avec une fonction qui ne
dépend que de la premiere coordonnée. En renversant la direction du flot,
elle coincide également avec une fonction qui ne dépend que de la seconde
coordonnée. Par le lemme, elle est (presque) localement constante, et si le
support de la mesure est connexe, on obtient 1’ergodicité du flot.

THEOREME 4.1. Soif X un espace métrique connexe, soit g.- X — X
un flot qui préserve une mesure de probabilité de support total, absolument
continue par rapport aux feuilietages stables er instables. Alors le flor est
ergodique relativement a cette mesure.

Revenons au cas du flot géodésique défini sur une variété a courbure
strictement négative. Si la courbure est constante, 1’absclue continuité se
vérifie immédiatement dans un modgle algébrique pour le flot. Cest 1’argument
original de E. Hopf, qu établit par ce biais ’ergodicité du flot géodésique
relativement au volume, dans un article fameux datant de 1936 [Ho36].

Si les feuilletages stables et instables sont C!, 1’absolue continuité est une
conséquence du théorgme du changement de variables. E. Hopf montre que
les feuilletages sur les surfaces compactes & courbure négative pincée sont
bien C! et en déduit 1’ergodicité du volume en dimension deux.
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La question de 1’absolue continuité en dimension supérieure reste ouverte
jusqu’au début des années 60. D. V. Anosov résout finalement la question pour
une classe générale de systémes qui porte maintenant son nom.

THEOREME 4.2 (D. V. Anosov [An67]). Soit ¢ X — X un flot d’Anosov
C? défini sur une variété riemannienne compacte connexe. On suppose que
g: préserve le volume. Alors le volume est absolument continu relafivement
aux feuilletages stables et instables du flot.

COROLLAIRE 43 (D. V. Anosov [An67]). Le flot géodésique défini sur le
fibré unitaire d’une variété riemannienne C3 connexe compacte & courbure
strictement négative est ergodique relativement au volume.

Ce résultat est encore vrai dans le cas non compact, en supposant la variété
compléte, le volume fini et les dérivées partielles premigres des courbures
sectionnelles bornées.

La démonstration de 1’absolue continuité donnée par D. V. Anosov est assez
technique et cinquante ans plus tard, il n’y a pas réellement de simplification
dans la preuve. Pour ce qui est de la régularité des feuilletages stables et
instables, Hirsch et Pugh montrent en 1975 qu'ils sont C' si les courbures
sectionnelles sont comprises strictement entre —4 et —1. Ils ne sont en général
pas C™>, comme on 1’a mentionné plus haut.

42 COMPORTEMENT RELATIF AU VOLUME

On considére le flot géodésique sur une variété de rang un compacte a
courbure négative ou nulle, et on se demande s’il est ergodique relativement
au volume. Mé&me dans le cas des surfaces, la question est ouverte.

(QQUESTION. Soit M une swface compacte connexe orientable a courbure
négative ou nulle, de genre supérieur ou égal & deux. Le flot géodésique défini
sur le fibré unitaire de M est-il ergodique relativement au volume ?

On va présenter les travaux de Y. Pesin sur cette question. L approche
consiste a généraliser autant que possible 1"argument de Hopf. Un ingrédient
clef dans la preuve d’Anosov de 1’absolue continuité des feuilletages, est la
confraction/dilatation uniforme le long des feuilles stables et instables. Afin de
récupérer un peu d'uniformité, il va falloir étudier les exposants de Lyapounov
du flot.
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DEFINITION.  Soit ¢;: X — X un flot €' défini sur une variété rieman-
nienne compacte et préservant une mesure de probabilité j: borélienne. Soit
veX, £ eT,X. Posons:

. 1
X(fUz &) — zl}iﬂx ? In Hdivfh(f)” '

V. Oseledets [O68] montre que cette limite existe pour p-presque tout
v € X et pour tout £ € T,X. On parle d’exposants associés au flot, et on dit
que le flot n’a pas d’exposants nuls en ¢ (hormis dans la direction du flot),
si dim{¢ € T,X | x(v,) =0} =1.

Les exposants ne sont pas définis partout en général.

(QUESTION. Considérons le cas d'un flot géodésique sur une variété
compacte & courbure négative ou nulle. Supposons que la limite définissant
y(u, ) existe en tout point v € X. Peut-on en déduire que M est localement
symétrique ?

Mlustrons le concept d’exposants avec un point ¢ périodique de période
! sur le fibré unitaire X d’une surface de rang un. Supposons par exemple
que la géodésique engendrée par ce vecteur est dans un cylindre a courbure
constante K plongé dans la surface. Un calcul explicite donne:

eVIEIL g 0
dog = 0 1 0
0 0 e VIKI

On obtient +/|K |1, —\/WI et 1 comme valeurs possibles pour (. &), quand
& varie dans T,X. Les exposants sont non nuls (hormis dans la direction du
flot) si la géodésique engendrée par v est hyperbolique. Ils sont tous nuls si
la géodésique périodique est dans un cylindre euclidien.

On veut maintenant travailler sur un ensemble ol tous les exposants du
flot sont non nuls (hormis dans la direction du flot).

THEOREME 4.4 (Y. Pesin [P77b]). Soif M une surface orientable connexe
compacte i courbure négative ou nulle, de genre strictement supérieur a un.
Notons y, le flor géodésique défini sur le fibré unitaire X de cette surface et

posons
g1

—_ 1
A={veX| i_l}ﬂloc ?/0 K{gv)}ds <0}
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Alors :

Pensemble A est invariant par le floi géodésique,

le volume de A est non nul,

Uensemble A est dense et ouvert (mod Q),

Vu €A, les exposants sont non nuls (hormis dans la direction du flot),

le flot est ergodique en restriction a A, relativement au volume.

Expliquons brigvement comment se démontre le théoréme. Seul le dernier

point est propre 4 la mesure de Lebesgue. Les autres points sont satisfaits
relativemnent a toute mesure p invariante de support total.

Le premier point est clair.

Le second découle du théoréme ergodique; si A est de mesure nulle, la
limite dans le théoreme ergodique doit &tre positive presque partout. Ce
n’est pas possible car son intégrale est égale a fMK dp < 0.

Comme les orbites périodiques hyperboliques sont denses dans M (cf. plus
haut) et contenues dans A, 1’ensemble A est bien dense dans X. Vérifions
que A est (presque) ouvert. Tout vecteur v dans A admet un voisinage
dont I'image par gr, pour un certain 7 > 0, est contenu dans une boite
de flot sur laquelle la courbure est majorée par —e, pour un certain € > 0.
Drapres le théoréme ergodique de Birkhoff appliqué & ¢, presque tous les
points de la boite reviennent dans la bofte avec une fréquence strictement
positive. Ces points sont dans A.

Le lien entre courbure et exposants se fait par le biais des champs de
Jacobi. Dans un systtme de coordonnées bien choisi, la différentielle du
flot se met sous la forme d, g, = (J(O.J'(£)), ol J est un champ de vecteurs
le long de la géodésique engendré par v qui satisfait J'(#) = —K{g,2)J(#).
De 1a on vérifie que les exposants sont non nuls sur A.

Pour démontrer 1’ergodicité, on fait appel a la théorie des systemes non

uniformément hyperboliques.

THECREME 4.5 (Y. Pesin [P77a]). Seit X une variété riemannienne

compacte, ;- X — X un flot C1 qui préserve le volume. Notons A I'ensemble

des poinis sans exposants nuls (hormis dans la direction du flot). On suppose

vol(A) > 0. Alors, on peut trouver des ensembles A;, en nombre au plus

dénombrable, disjoints deux i deux, de volume non nul, dont 'union est égale

a A a un ensemble négligeable prés, ef tels que ¢, est ergodique relativement
ait volume en restriction a chacun des A;.
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Donnons un bref apercu de la preuve. Il s’agit de récupérer de la
contraction/dilatation uniforme le long des feuilles stables afin de montrer
1’absclue continuité. Posons:

— 1
W) ={weX| i_l)linx ?lnd(g,(u), glw)) < 0}

Grice a la non nullité des exposants, on montre que pour presque tout point
de A, ces ensembles forment des courbes C! immergées. Ces courbes ne
varient pas continfiment en fonction du point. En utilisant le théortme d’Egorov,
on peut tout de méme obtenir des sous-ensembles de mesure positive sur
lesquels on récupere la continuité et une contraction uniforme sur les W3 (v).
Ces sous-ensembles ne sont pas invariants; on fait malgré tout fonctionner
la preuve de 1’absolue contimiité pour ces feuilletages et un passage a la
limite donne un ensemble invariant de mesure positive sur lequel le flot est
ergodique. L’ensemble A est de mesure finie, il ne peut donc contenir qu’un
nombre dénombrable d’ensembles disjoints de mesure strictement positive.

Revenons au flot géodésique. Pour obtenir 1"ergodicité en restriction & A,
il faut démontrer que les ensembles A; sont ouverts (mod 0). Lingrédient
crucial dans cette dernigre étape de la preuve est 'inclusion:

W2, (0) € W) C Hor " ().

Comme les horospheres varient continiment en fonction du point, on récupére
un peu de régularité sur les W7, ce que la théorie générale ne fournissait pas.
De 13, on montre que les A; sont des sous-ensembles ouverts (mod O) et on
conclut par transitivité. En corollaire, on obtient 1’égalité W;"ip(v) = Hor T (1)
pour presque tout v € A. On pourra consulter [BPOZ] pour plus de détails.
Remarquons pour finir que si l'ensemble des vecteurs de rang un est de
volume total, alors pour presque tout » € T'M, on peut trouver # € R tel
que K(g{w)) < 0. Le lemme suivant, qui découle du théoréme ergodique de

Birkhoff, montre alors que 1’ensemble A est de volume total.

LEMME. Soit X un espace méfrique, g0 X — X un flot continu qui
préserve une mesure de probabilité p, er - X — Ry une fonction continue
intégrable positive. Alors, pour presque tout x € X, ['existence d'un t € R
tel que flgx) > 0 implique existence d’une limite stricfement posifive pour

%ﬁ)Tf(.(hX) dt quand T — 0o,
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L’ergodicité du volume se ramene donc & la question suivante:

QUESTION. Soit § une surface connexe orientable compacte de rang un.
L’ensemble des vecteurs de rang deux est-il de volume nul 7

Cette question admet une réponse positive lorsque la surface et sa métrique
sont réelles-analytiques, ou encore lorsque 1’ensemble des points de courbure
strictement négative posséde un nombre fini de composantes connexes [BPO6,
§17].

43 1.A MESURE D ENTROPIE MAXIMAIE

LE CAS DE LA COURBURE STRICTEMENT NEGATIVE. Le volume n’est pas
la seule mesure invariante par le flot géodésique qui présente un intérét.
A partir des années soixante, une autre mesure va jouer un rdle important
dans la description de la distribution des géodésiques périodiques. 11 s’agit de
la mesure de Bowen-Margulis.

La construction de Margulis [M70] passe par les feuilletages stables et
instables. Soit g, X — X un flot d’Anosov C! transitif défini sur une
variété compacte connexe. G. Margulis montre qu’il existe une famille de
mMesures jiws(y supportées par les feuilles stables fortes, qui est contractée
exponentiellement par le flot:

—hi
Gralbws) = € [LWss(g () -

La difficulté ici est de définir précisément ce qu’est 1’espace des mesures
portées par les feuilles, I'existence et 'unicité découlent du théoréme du point
fixe contractant. De la m&me fagon, il existe une famille de mesures peww(x)
portées par les feuilles instables faibles gr W**(x) qui est dilatée par le flot.

On peut alors faire le produit de ces deux mesures dans un systeme de
coordonnées données par les feuilles stables et instables. La mesure obtenue est
la mesure de Margulis. Comme elle est par construction absclument confinue
relativement aux feuilletages stables et instables, son ergodicité découle de
I"argument de Hopf.

L’approche de Bowen est de nature différente. 11 considére des moyennes
de mesures de Dirac sur les orbites périodiques de période inférieure & un
certain réel T donné, et montre que ces moyennes convergent lorsque T tend
vers 1'infini. Notons P 1'ensemble des orbites périodiques du flot, et () la
période d’une orbite périodique ¢ dans X.
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THEOREME 4.6 (R. Bowen [B72], [B74]). Soit g; un flot d’Anosov transitif
défini sur une variété compacte connexe. Alors il existe une mesure p telle que :
1
dc  re— M

#HeeP | Ko<t} ce’[—’%l(c)gt oo

L’entropie de cette mesure est égale a Uentropie topologique du flot, et toutes
les autres mesures de probabilités invariantes onf une entropie strictement
inférieure a celle de .

La preuve consiste 2 calculer explicitement 1’entropie des points d’accumu-
lation des moyennes qui viennent d’étre décrites. Ce calcul est basé sur deux
propriétés du flot connues sous le nom d’expansivité et de spécification. La
propriété de spécification est en fait suffisante pour montrer qu’il existe au plus
une mesure dont 1’entropie coincide avec 1'entropie topologique. 11 n’y a donc
qu'un seul point d’accumulation possible et les moyennes sont convergentes.
L’ergodicité de 1a mesure d’entropie maximale est une conséquence immédiate
de son unicité et de la convexité de 1’entropie.

Il faut mentionner que la mesure d’entropie maximale est tout d’abord
construite par W. Parry [P64] dans le contexte des décalages sur les chafnes
de Markov. A cette date, on connait un certain nombre de variétés a courbure
négative sur lesquelles le flot géodésique est conjugué 2 une suspension d’une
chafne de Markov; c’est le cas par exemple pour les surfaces compactes &
courbure constante négative. 1. existence et 1'unicité de la mesure d’entropie
maximale est donc connue des 1964 pour ces variétés.

LE CAS DES VARIETES DE RANG UN. (. Knieper [Kn98] parvient en 1998 3
généraliser le théoréeme de Bowen aux flots géodésiques définis sur les variétés
M compactes de rang un. Les moyennes doivent porter sur les géodésiques
périodiques hyperboliques; on a alors convergence de ces moyennes vers
I"unique mesure d’entropie maximale. Présentons bri¢vement les travaux de
(. Knieper.

La construction de la mesure d’entropie maximale passe par le bord du
revétement universel, suivant une idée due a S. Patterson [P76]. Rappelons
comment est défini le bord idéal de M. On introduit une relation d’équivalence
sur I’ensemble des demi-géodésiques ¢: Ry — M comme suit: deux demi-
géodésiques sont dites asymprotiques si elles sont & distance bornée 1'une
de 1'autre pour tout temps positif. Le bord OM est I’ensemble des classes
d’équivalence associées 4 cette relation. Dans le cas du disque de Poincaré, ce
bord idéal s’identifie au cercle unité. Paramétrer les géodésiques par le biais
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de leurs extrémités sur le bord du disque est une idée qui remonte au début
du vingtitme sigcle; on parle parfois de coordonnées de Hopf.

Notons I' le groupe du revétement M — A . Il se plonge naturellement
dans le groupe d’isométries de M et M s’identifie au quotient M /T Fixons
un point p € M et notons hwp entropie topelogique du flot. La mesure sur
le bord est construite & partir de limites faibles de la forme:

—sdip.y
Dover €° T

o er € )

(. Knieper montre que la série au dénominateur est convergente pour s < fy,,
et diverge pour s > hy,. Lorsque s converge vers A, les moyennes
convergent vers une mesure i, portée par le bord, qui est de support total.

Il s’agit maintenant de récupérer une mesure sur T'M. Pour cela, on
considére la projection P: T'M — OM % OM qui associe & un vecteur les
deux extrémités de la géodésique qu’il engendre. Seuls les couples de points
du bord qui peuvent étre effectivement joints par une géodésique sont dans
I’'image de P. Les lignes de niveau de P sont constituées de géodésiques ou
de plats; on munit ces ensembles de la mesure de Lebesgue A. On définit
alors une mesure ;¢ sur 7'M en posant:

) = [ AAPYE N AD hE, ) dpy©ddpeyin)
J (T M)

N

avec h une densité bien choisie de maniére & obtenir une mesure invariante
par le flot. L'ergodicité de ¢+ s’obtient a 1"aide de 1’argument de Hopf et du
lemme élémentaire suivant:

LevMe 47, Soit v un vecteur de T'M récurrent de rang un. Alors
W) = Hort o).

Preuve. On travaille dans T'M et on note encore ¢ un relevé de v &
T'M . Considérons un point w € Hor(v) qui n’appartient pas 3 W*(u). On
peut trouver € > 0 tel que:

V>0, C<d(g,gw) < dv,w.

Par récurrence, il existe ~, € I', #, — +oc tels que (g, (v)) = v. On a
donec pour tout s > —i,,

C =< dlgs, 1500, s () = d(gsyng, (0, g5ra s, () < v, w).

Quitte 2 passer a une sous-suite, on peut supposer que la suite -,q, (1)
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converge vers une limite «’. On a alors, pour tout s £ R,
C < dlg), gt < dlu, u).

Le vecteur v est sur le bord d’une bande plate, il est donc de rang plus grand
que un. Ceci termine la preuve.

Le calcul de 'entropie de p s’inspire de la méthode mise au point par
R. Bowen. Le flot géodésique sur une variété de rang un n’est pas expansif
en général, mais il satisfait une propriété plus faible appelée k-expansivité.
De méme, le flot ne posséde plus la propriété de spécification, mais on a tout
de m&me un produit local en restriction aux vecteurs de rang un. Il devient
alors possible de montrer que les mesures invariantes singuligres par rapport &
4 ont une entropie plus petite que celle de p. On renvoie a [B74] et [Kn02]
pour un apergu des calculs.

(QUESTION.  Estdil possible de généraliser les considérations précédentes
au cas des variétés non compactes ?

VOLUME ET MESURE D’ENTRCPIE MAXIMALE. En courbure négative con-
stante, la mesure d’entropie maximale coincide avec le volume riemannien.
En courbure négative variable, par contre, elles sont en général distinctes:

THEOREME 4.8 (A. Katok [K82]). Soit S une surface compacte connexe
a courbure strictement négative. La mesure d’entropie maximale et le volume
riemannien coincident si et seulement si la courbure est constante.

La question est ouverte en dimension supérieure.

44 LE POINT DE VUE GENERIQUE

On peut se demander si 1’ergodicité est une propriété typique des mesures
de probabilités invariantes par le flot géodésique.

En courbure strictement négative, K. Sigmund ¢étudie la question sous
I"angle de la généricité. Rappelons qu'un sous-ensemble d’un espace métrique
est un Gy -dense si ¢’est une intersection dénombrable d’ouverts denses. Si le
théoreme de Baire est valide dans X, alors un tel ensemble est lui-mé&me dense;
en particulier, il est non vide. Remarquons qu’une intersection dénombrable
de Gs-denses est encore un (Gy-dense. Pour cette raison, ces ensembles sont
parfois considérés comme un analogue topologique des ensembles de mesure
totale en théorie de la mesure.
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On dit qu'une propriété associée & certains points d'un espace métrique
X est générigue si ’ensemble des points qui satisfont cette propriété contient
un sous-ensemble Gy-dense.

Le flot géodésique en courbure négative posseéde de nombreuses mesures
de probabilités ergodiques, par exemple tous les Diracs portés par des orbites
périodiques. On construit également facilement des mesures de support total.
On peut par exemple considérer une somme de tels Diracs: 32774, ; des
que les orbites périodiques ¢; forment un ensemble dense dans X, 1a mesure
obtenue est de support total (mais pas ergodique).

La complexité inhérente & la preuve de 1’ergodicité du volume ou i la
construction de la mesure d’entropie maximale pourrait laisser penser que peu
de mesures invariantes sont ergodiques.

THECREME 4.9 (K. Sigmund [S$i72]). Soit g,: X — X wun flor d’Anosov
transitif défini sur une variété compacte C'. Alors 'ensemble des mesures
invariantes ergodiques de support total est un Gy -dense dans ['ensemble de
toutes les mesures de probabilités boréliennes invariantes définies sur X.

Ici, on a muni 1I’ensemble M'(X) des mesures de probabilités boréliennes
invariantes sur X de la topologie associée a la convergence étroite . une suite
de mesures de probabilités p, convergent vers g si pour toute fonction f
continue bornée, [ fdjt, converge vers [ fdy. Quand X est un espace métrique
séparable complet, ’espace AMI(X) est lui aussi métrisable et complet pour
une certaine distance qui redonne la topologie.

Rappelons que les mesures de probabilités invariantes sont toutes supportées
par I’ensemble non errant du flot. Si on veut un énoncé valide dans le cas non
compact, il faut donc se restreindre a 1’ensemble des mesures de probabilités
supportées par cet ensemble.

Remarquons de plus que 1’existence dune mesure de probabilité invariante
ergodique de support total dans € implique la transitivité du flot en restriction
a €. On a vu plus haut un exemple de surface de rang un non compacte sur
laquelle cette propriété n’était pas satisfaite.

THECREME 4.10 (Y. Coudéne, B. Schapira [CS101). Soit M une variété
de rang un telle que tous les vecteurs de T'M sont non errants sous Uaction
du flot géodésique : Q@ = TIM. Soit Ry C T'M Pouvert des vecteurs de rang
un. Alors Uensemble des mesures définies sur Ry qui sont invarianies par le
flot, ergodiques, de support total dans Ky, est un Gg-dense dans 'ensemble
de foutes les mesures de probabilités invariantes définies sur Ry .
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Sous les hypotheses du théoréme, 1’ouvert R est dense dans T'M, si bien
que les mesures données par le théoréme sont aussi des mesures ergodiques
invariantes de support total dans T'M. De plus I'ouvert Ry est non vide
invariant, si bien que toute mesure ergodique de support total dans T!'M est
supportée par ;.

Meéme en courbure constante —1, 'existence d’une mesure de probabilité
ergodique de support total est non triviale. En général, sur les variétés non
compactes, le volume est totalement dissipatif et “la” mesure de Bowen-
Margulis n’est pas définie.

COROLLAIRE 4.11.  Soit M une variété de rang un telle que Q = T'M.
Alors il existe une mesure de probabilité invariante par le flot géodésique,
ergodique et de support fotal.

Cependant, les mesures ergodiques de support total ne forment pas toujours
un sous-ensemble dense dans 1’ensemble de toutes les mesures de probabilités
invariantes.

PROPOSITION 4.12.  Soit M une surface compacie admettant un cylindre
euclidien piongé. Alors les Diracs supporiés par les orbites périodiques a
Uintérieur du cylindre ne sont pas dans 'adhérence des mesures de probabilités
invariantes ergodiques de support total.

Preuve. Soit ¢c R — M une géodésique périodique a l'intérieur du
cylindre. Considérons un voisinage tubulaire de ¢ dans le cylindre isométrique
4 1-3e.3e[xSt.

Soit # €]0, %[. Considérons 1'ouvert I/, constitué de tous les vecteurs
tangents & ]—c,c[xS! et faisant un angle avec la verticale compris dans
I'intervalle 1—8,8[.

Les orbites du flot géodésique sont des droites dans le cylindre, si
bien qu'une trajectoire qui rentre dans /. au temps # et qui en sort au
temps £, a dii passer d’abord un temps au moins égal & #; — fy dans un
des cylindres 1—3¢, —¢] x §' ou [£,3[xS!. Par conséquent, la quantité:
%)\{t €10,7] | g:v) € U-} est inférieure ou égale a % pour tout T > 0 et
tout « € 7'M extérieur au cylindre.

Soit ;1 une mesure ergodique de support total; si elle est suffisamment
proche du Dirac porté par la géodésique ¢, on a: p(l:) > % Appliquons le
théoréme ersodique. On peut trouver une orbite v € T'M hors du cylindre
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telle que:
1
T /\({f € [0, 7] | gilw) € Us}) g p(le),

ce qui donne une contradiction. La proposition est démontrée.

QUESTION. Peut-on caractériser les variétés compactes de rang un pour
lesquelles les mesures ergodiques de support total forment un (5-dense dans
I’ensemble de toutes les mesures de probabilité invariantes ?

Dans le cas ol il existe des vecteurs errants, on peut quand méme démontrer
la généricité des mesures ergodiques de support total, si on se restreint a
I'ensemble R; ME& des vecteurs de rang un non errants. Ceci implique en
particulier:

THEOREME 4.13 (Y. Coudéne, B. Schapira [C810]). Soit M une variété
connexe compléte a courbure négative ou nulle. On suppose que I'ensemble
non ervant du flot géodésique contient plus de deux orbites périodiques
hyperboliques. Alors il existe une mesure de probabilité invariante ergodique
doni le support contient toutes les géodésiques périodiques hyperboliques.

Expliquons brigvement comment se démontrent ces théorémes. La preuve
de K. Sigmund est basée sur la propriété de spécification. Celle-ci ne peut &tre
satisfaite que si 1’espace ambiant est compact, et semble difficile 4 obtenir en
I’absence d’hyperbolicité uniforme.

Nous sommes parvenu a montrer la densité des mesures ergodiques de
support total en nous basant sur deux propriétés du flot a priori plus faibles
que la spécification: 1existence d une structure de produit local et le lemme de
fermeture. Ces propriétés ne nécessitent & priori pas d hypothese de compacité
sur 1’espace ambiant, et ne reposent que sur une forme faible d’hyperbolicité.
1 a été possible de les établir dans le contexte des variétés de rang un.

Pour cela, il faut se restreindre a un sous-ensemble de la variété sur lequel
on observe les phénoménes de dilatation/contraction propres 4 la courbure
strictement négative. Nous nous sommes placés sur 1’ensemble €2y des vecteurs
de rang un non errants, pour lesquels variétés stables et horosphéres stables
coincident. On récupere sur cet ensemble la structure de produit local et le
lemme de fermeture.

Cet ensemble £2; contient les vecteurs de rang un récurrents, d’aprés le
lemme de G. Knieper mentionné plus haut. I1 est donc de mesure totale pour
toute mesure de probabilité invariante portée par les vecteurs de rang un,
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d’apres le théorgme de récurrence de Poincaré. Ce qui se passe hors de €
est invisible du point de vue des mesures invariantes, et le flot se comporte de
maniére suffisamment proche d™un flot hyperbolique sur €2, pour qu’on puisse
obtenir la généricité en restriction & ;. Enfin, le lemme de fermeture montre
que les géodésiques périodiques de rang un sont denses dans 1’ensemble des
vecteurs de rang un non errants, ce qui permet de conclure a la densité de
Q dans T'M si Q =T'M.
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