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SUR L'ERGODICITÉ DU FLOT GÉODÉSIQUE

EN COURBURE NÉGATIVE OU NULLE

par Yves CotlDÈNE

RÉSUMÉ. Cet article est consacré à la dynamique du flot géodésique sur les
variétés à courbure négative ou nulle. Après avoir détaillé quelques résultats de

dynamique topologique, on étudie les propriétés ergodiques du flot géodésique sur
les variétés de rang un, de trois points de vue différents: d'abord relativement à la
mesure riemannienne, ensuite par une approche entropique, enfin par des techniques
de généricité.

Introduction

Ces notes sont issues d'un cours donné à l'université de Tours, dans le

cadre du groupement de recherche Platon, en janvier 2010. Elle constituent

un survol des résultats concernant l'ergodicité du flot géodésique en courbure

négative ou nulle, de rang un.
Les variétés à courbure négative ou nulle sont celles qui sont les plus

proches des espaces à courbure strictement négative. On s'attend donc à ce

que le flot géodésique ait un comportement fortement stochastique sur ces

variétés. Il existe plusieurs approches décrivant le caractère "chaotique" du

flot, d'un point de vue quantitatif.

- On peut chercher à étudier le problème de l'ergodicité relativement au
volume riemannien. Lorsque la variété est compacte, la mesure de Liouville,
définie sur le fibré unitaire de la variété, est une mesure finie invariante

par le flot géodésique. C'est sans doute la mesure naturelle du point de

vue géométrique.

- On peut vouloir au contraire étudier les trajectoires du flot qui sont les

plus désordonnées possibles, au sens probabiliste du terme. Il s'agit dans

ce cas de construire une mesure invariante qui maximise l'entropie.
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118 Y. COUDÈNE

- Enfin, on peut se demander si l'ergodicité est une propriété typique des

mesures invariantes par le flot. C'est le point de vue générique. L'ensemble
des mesures invariantes est muni d'une topologie naturelle, et il s'agit de

montrer que l'ensemble des mesures ergodiques de support total est un

"gros" ensemble, au sens de Baire.

Il nous a semblé intéressant de confronter ici ces trois approches, dans

la mesure où elles font appel à des méthodes de nature assez différente, et

pourtant s'éclairent mutuellement.

Du reste, on ne saurait comprendre les propriétés quantitatives du flot
géodésique, sans s'intéresser tout d'abord à ses propriétés qualitatives, c'est-
à-dire à sa récurrence topologique et à sa transitivité.

Pour cette raison, les deux premières parties de cet article sont consacrées

à des questions de dynamique topologique. La situation est relativement bien

comprise sur les variétés compactes, mais il y a peu de résultats en présence
de trajectoires errantes. On a surtout cherché à mettre en valeur les différences

qui existent entre la courbure strictement négative et la courbure négative ou
nulle.

Les deux dernières parties portent sur les propriétés quantitatives du flot
géodésique, défini sur une variété de rang un. On présente trois points de vue :

d'abord les travaux de Y. Pesin concernant l'ergodicité du flot relativement

au volume; ensuite les résultat de G. Knieper relatifs à l'entropie; enfin

l'approche générique que nous avons adoptée dans un travail en commun avec

B. Schapira.

On a donné quelques preuves afin d'illustrer les méthodes et les idées

les plus intéressantes. Certaines de ces preuves sont nouvelles, d'autres au
contraire sont classiques et jouent un rôle important dans la théorie. Enfin ce

texte est parsemé de questions ouvertes, certaines sans doute faciles, d'autres

plus difficiles, dans l'espoir qu'elles suscitent l'intérêt du lecteur pour un sujet
qui recèle bien des mystères.

1. Quelques propriétés de la courbure négative ou nulle

1.1 Notations

Dans la suite, M est une variété riemannienne C3 connexe complète à

courbure négative ou nulle, de dimension supérieure ou égale à deux. Son

fibre unitaire est noté X ou TlM en fonction du contexte. Le revêtement
universel de M est noté M. Enfin, X est le fibré unitaire de M.
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SUE. L'ERGODIOTÉ DU FL-OT GÉODÉSIQUE 119

La métrique riemannienne sur M induit une métrique sur son fibré
unitaire X, appelée métrique de Sasaki et définie comme suit: étant donné un
vecteur X G TX et une courbe V : —> X tangente à ce vecteur en 0,
la norme de X est donnée par la formule

11*11! lk'(0)ll2 + yvc,v(0)||2,

où c est la courbe obtenue en projetant V sur M et Vc> K(0) est la dérivée

covariante de V le long de c en 0. Pour cette métrique, les fibres de la

projection de X sur M sont totalement géodésiques, tandis que la courbe

formée par les vecteurs unitaires tangents à une géodésique de M est une

géodésique de X.
Nous dirons que la courbure est strictement négative (K < 0), si toutes les

courbures sectionnelles, en tout point de la variété, sont strictement négatives.
On parlera de courbure négative pincée si les courbures sectionnelles sont
toutes comprises entre deux nombres strictement négatifs.

Nous allons étudier la dynamique du flot géodésique gt : X -m X. Pour

alléger les notations, le relevé du flot à M est aussi noté gt. Le terme

"géodésique" est utilisé aussi bien pour désigner les orbites du flot géodésique

sur X que leurs projections sur M.

1.2 Variétés de Hadamard

Rappelons quelques propriétés élémentaires des variétés de courbure

négative ou nulle.

THÉORÈME 1.1 (J. Hadamard). Soit xo EM; l'application exponentielle

exp: TXqM —» M est un revêtement.

Une variété riemannienne connexe complète à courbure négative ou
nulle est appelée variété de Hadamard si elle est simplement connexe. Le
résultat précédent montre que toute variété de Hadamard de dimension n est

difféamorphe à R"
Le revêtement universel M de M est une variété de Hadamard, et il

peut être identifié à TX;M ou TXoM par le biais de l'application exponentielle.
Comme les géodésiques issues de xq se relèvent en des droites de Tx; M, nous

voyons que par deux points distincts de M passe une unique géodésique.

1.3 Convexité

Introduisons la notion de sous-ensemble convexe d'une variété de Hadamard.

Un sous-ensemble C C M est convexe si pour tous points x, y distincts de C,
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120 Y. COUDÈNE

la géodésique qui relie x à y est incluse dans C.
On dispose d'un théorème de projection sur les convexes fermés: soit C

un convexe fermé dans une variété de Hadamard et x un point extérieur à ce

convexe, alors il existe un unique point dans C qui réalise la distance de x
à C. Ce point est appelé projection de x sur C, et la géodésique qui relie

x à son projeté est orthogonale au convexe. La fonction distance entre deux

géodésiques est aussi convexe:

THÉORÈME 1.2. Soient c\,c2: R —> M deux géodésiques dans une variété
de Hadamard M. Alors la fonction

t i-y d(ci(t),c2(t))

est convexe.

Le comportement asymptotique d'une fonction convexe à l'infini est
relativement simple, si bien que ce théorème permet de déduire des

informations sur les géodésiques de M. Soient ci,C2: R —> M deux géodésiques

géométriquement distinctes, c'est-à-dire telles que ci(R) f C2(R). Considérons

la fonction 11-^ c2(t)). Cette fonction:

- a un unique minimum: les deux géodésiques ont au plus un point en

commun; si ci(R) n C2(R) est vide, il y a une géodésique de longueur
minimale qui relie c\ à. c2, elle est orthogonale à c\ et C2 aux points
d'intersection;

- est constante (ou bornée sur R) : les deux géodésiques bordent une sous-
variété à bord euclidienne totalement géodésique isométrique à [0,a] x R
(.théorème de la bande plane) [BGS85, p. 17]. La courbure sectionnelle
s'annule donc sur les plans tangents à cette sous-variété et ce cas est

exclu en courbure strictement négative;

-n'a pas de minimum:

- la borne inférieure est nulle : si cette borne inférieure est atteinte en

+oc, la fonction d(c\(t), c2(t)) décroît vers 0 lorsque t tend vers

-foc. On dit alors que cj(0) est sur la variété stable de c'2(0). Dans

le cas contraire, elle décroît vers 0 quand t tend vers — oo, et cj(0)
est sur la variété instable de c^CO). Ce cas ne se produit pas si la
courbure est nulle partout;

- la borne inférieure est strictement positive : la situation est plus com¬

plexe. A reparamétrage près, on peut être dans la situation

précédente. Ou encore, les deux géodésiques peuvent se rapprocher
d'une bande plane lorsque t tend vers l'infini. Voici un petit exercice

L'Enseignement Mathématique, t. 57 (2011)



SUE. L'ERGODIOTÉ DU FL-OT GÉODÉSIQUE 121

en dimension deux qui traite le cas où une des deux géodésiques
est périodique dans un certain quotient de M ;

et ces cas sont mutuellement exclusifs.

Exercice. On se place dans le dernier cas considéré: t d(c\(t). 02(f))
n'a pas de minimum sur R et sa borne inférieure est non nulle. Supposons

M de dimension deux. S'il existe un réel / 7^ 0 et une isométrie 7 de M
telle que y(cz(t)) ciU + 0 pour tout t G R, alors c 1 est sur la feuille stable

d'une géodésique qui borde une bande plane avec cz-

Dans ce cas, l'image de la bande plane dans M/(7} est un cylindre ou

un ruban de Moebius. La situation est plus subtile en dimension supérieure.

Exemple. Considérons une isométrie 7 de M R2 x R qui est le

produit d'une rotation irrationnelle par une translation. La droite verticale
T> {0} x R passant par l'origine de M se projette dans M/{7) sur une

géodésique périodique. Considérons maintenant une autre droite verticale dans

M ; elle délimite avec V une bande plane dans M, mais sa projection n'est

pas périodique, elle est dense dans un tore de la forme S1 x S1.

Du point de vue du flot géodésique sur le fibré unitaire de M/(7), il y a

trois types d'orbites: les deux orbites périodiques qui passent par l'origine, les

orbites issues des vecteurs verticaux qui sont récurrentes, et les autres orbites,

qui partent toutes à l'infini, aussi bien pour les temps positifs que pour les

temps négatifs.

Remarquons que dans le quotient M/(7}, l'ensemble des géodésiques
fermées n'est pas dense dans l'ensemble des géodésiques récurrentes.

Les premières différences entre la courbure strictement négative et la
courbure négative ou nulle apparaissent au niveau des variétés stables.

2. Différences entre K < 0 et K < 0

Achevé de composer le 28 juin 2011 à 15 :18



122 Y. COUDÈNE

2.1 Variétés stables: définition dynamique

Soit v un point de X ou X. La variété stable de v est définie par:

{w X | d(gflv), gt(w)) —> 0 quand t —> +oc }.

Cette définition n'est pas spécifique au flot géodésique, elle reste valide pour
n'importe quel flot défini sur un espace métrique. De manière abusive, on

parlera de feuilletage stable pour désigner la partition de X en feuilles stables.

Illustrons par un exemple comment utiliser ce concept de variété stable pour
étudier la dynamique du flot.

Application. Transitivité du flot.
Nous allons voir que si les feuilles stables et instables couvrent suffisamment

d'espace, alors le flot gt possède une orbite dense dans X. Rappelons
la définition d'un point récurrent sous l'action d'un flot continu gt défini sur

un espace métrique X.

DÉFINITION. Nous dirons que v X est positivement (resp. négativement)
récurrent, si on peut trouver tn —y +oc (resp. — oc) tel que gln(v) -A v. Nous

dirons que v est récurrent s'il est à la fois positivement et négativement
récurrent.

PROPOSITION 2.1. Soit gt un flot continu défini sur un espace métrique,
soit U un ouvert invariant par gt et v un point de U qui est récurrent. Alors
la feuille stable de v est incluse dans U : VL"'(?;) C U.

Preuve. Soit w VPVv). Alors

d(gtn(w), v) —> 0.

On peut trouver n tel que g(n(w) est dans U, et

comme l'ouvert U est invariant par gt, le point w
est dans U. La proposition est démontrée.

Avec un peu de régularité sur IL", on démontre un résultat plus précis.
Pour cela, nous avons besoin de quelques rappels élémentaires sur les relations

d'équivalence.
Le feuilletage stable définit une relation d'équivalence sur X : deux points

sont équivalents si l'un est sur la feuille stable de l'autre. Le saturé d'un
ensemble par cette relation d'équivalence est l'union de toutes les feuilles
stables qui rencontrent cet ensemble. Nous dirons que le feuilletage stable
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SUE. L'ERGODIOTÉ DU FL-OT GÉODÉSIQUE 123

définit une relation d'équivalence ouverte si pour tout ouvert U de X, le

saturé de U est ouvert. Cette propriété est vérifiée, par exemple, si X est une
variété et si les feuilles stables définissent un authentique feuilletage continu.

Les relations d'équivalence ouvertes possèdent la propriété suivante : le

saturé de l'adhérence d'un ensemble quelconque est contenu dans l'adhérence
de son saturé. Cette propriété est laissée en exercice, elle permet de démontrer
la proposition suivante:

PROPOSITION 2.2. Soit gt un flot continu défini sur un espace métrique X.
On suppose que la relation d'équivalence associée au feuilletage stable est

ouverte, et que les points récurrents sont denses dans X. Soit U un ouvert
de X invariant par gt. Alors l'adhérence de U est saturée par les feuilles
stables : M v G U, Wss(v~) C U.

Preuve. Notons 1Z l'ensemble des points récurrents, et pour tout A c X,
notons R(A) le saturé de A par les feuilles stables : R(A) U,.eA VPLv). On
a alors:

R(i7) R(u n il) c R(U n 11) c U.

La proposition est établie.

Renversons maintenant le sens du temps. La feuille instable d'un point
v X est définie comme suit:

VV"SM(c) { w G X | d(gfv), gfw)) —» 0 quand t —> —oo }.

Supposons que la relation associée au feuilletage instable est ouverte, et que
les points négativement récurrents sont denses dans X. Alors l'adhérence de

tout ouvert invariant par gt contient toutes les feuilles instables qui intersectent

cet ouvert.

Supposons de plus qu'en tout point v G X, on peut
trouver un voisinage dont tous les points peuvent être

reliés à v par un chemin composé d'un nombre fini
de morceaux, chacun inclus dans une feuille stable, une

feuille instable ou une orbite du flot.

Alors l'adhérence de tout ouvert invariant non vide

U est un ensemble ouvert. Si X est connexe, on en déduit que U est dense

dans X : c'est la transitivité du flot sur X.
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124 Y. COUDÈNE

RAPPEL. Soit X un espace métrique séparable possédant la propriété
de Baire, gt'. X —¥ X un flot continu. Supposons que tout ouvert non vide

invariant par le flot est dense dans X. Alors il existe un point dont l'orbite
sous l'action du flot est dense dans X.

Preuve. Les points dont l'orbite est dense sont précisément les éléments

de l'ensemble:

où l'intersection a lieu sur toutes les boules ouvertes U non vides, de rayon
rationnel, avec un centre appartenant à une partie dénombrable dense fixée à

l'avance. Comme chacun des <j-r(U) est dense, on peut appliquer le théorème

de Baire. Ceci termine la preuve.

Revenons au cas du flot géodésique, défini sur le fibré unitaire X TlM
de M. Les hypothèses précédentes s'appliquent dès que la variété M est à

courbure strictement négative pincée. On retrouve un théorème bien connu.

THÉORÈME 2.3. On suppose que M est à courbure strictement négative

pincée, et que les vecteurs récurrents sous l'action du flot géodésique sont
denses dans TlM. Alors le flot géodésique est transitif.

La densité des points récurrents est par exemple vérifiée en volume fini,
c'est une conséquence du théorème de récurrence de Poincaré. En courbure

constante, volume fini, la transitivité du flot géodésique remonte aux travaux
de E. Artin, J. Nielsen, P. Koebe, F. Löbell et M. Morse dans les années trente.

2.2 Horosphères : définition géométrique

Commençons par définir le concept d'horosphère. Considérons un vecteur

v X, et notons tt: X —» M la projection du fibré unitaire sur la variété.

L'horoboule basée en v est le sous-ensemble de M union de :

toutes les boules ouvertes de rayon t centrées en it:
C'est un ensemble convexe dont le bord contient tt(v).

De manière générale, le bord d'un convexe possède une certaine forme
de régularité. Par exemple, en dimension deux, il est forcément continu, avec

une dérivée à gauche et à droite en chacun de ses points, et ces deux dérivées

coïncident hormis en un nombre dénombrable de points.

H 1^0') I ?•' F U, t£R}
u
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Une étude plus détaillée montre que la convergence des boules est en
fait C1 [BGS85, 3.4], et même C2 [H-IH77] (mais pas mieux [BBB87]),
si bien que le bord de l'horoboule est une sous-variété lisse en tout point:
c'est l'horosphère associée au vecteur v. Cette horosphère se relève au fibré
unitaire X de M : Y horosphère stable basée en v est composée de tous les

vecteurs de X basés sur le bord de l'horoboule, qui sont orthogonaux à ce

bord, et orientés vers l'intérieur de l'horoboule. On la note Hor+(v). On peut
projeter ces horosphères sur X pour obtenir un feuilletage, dont la régularité
n'est à priori pas meilleure que C°.

Vhorosphère instable basée en un point v G X est définie en considérant

l'horoboule associée à —v et en prenant les vecteurs de X qui sont orthogonaux
au bord de cette horoboule, dirigés vers l'extérieur de l'horoboule.

Wa(v) » Hor+(v)

\ )"W Hor+(v) Hor" (v)

'--2,^ Ww(v) Hor"{v)

K -1 K 0

Décrivons brièvement ces horosphères dans le cas d'une variété de courbure

constante. Si la courbure est strictement négative, on peut se placer dans le
modèle de la boule de Poincaré; les horosphères sont des sphères qui sont

tangentes au bord de la boule. Dans l'espace euclidien, les horosphères sont
des hyperplans. Dans ces deux cas, ce sont des objets réguliers qui définissent

un feuilletage C°°. C'est une situation exceptionnelle:

THÉORÈME 2.4 (G. Besson, G. Courtois, S. Gallot [BCG95]). Soit M
une variété compacte C°° à courbure strictement négative, telle que les

feuilletages horosphériques stables et instables sont C°°. Alors M est

localement symétrique.

On verra pourquoi la question de la régularité du feuilletage horosphérique
est importante, lorsqu'on abordera le problème de l'ergodicité du flot
géodésique.

Remarquons pour terminer qu'en courbure strictement négative, les

horosphères stables et instables sont transverses. En courbure nulle, par contre,

l'horosphère stable et l'horosphère instable basée en un point quelconque
de M coïncident.
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APPLICATION. Densité des horosphères.

Nous allons illustrer, à partir de la définition géométrique des horosphères,

comment on peut étudier le problème de leur densité. Introduisons deux

nouveaux concepts.

Une géodésique c: R —¥ M est quasi-minimisante si on peut trouver une
constante C > 0 telle que pour tout t > 0, d(c(0), c(t)) > t — C.

Soit T le groupe fondamental de M, identifié

à un sous-groupe des isométries de M :

M/T ~ M. Une géodésique c: R —> M n'est

pas de type horosphérique si on peut trouver un
to > 0 tel que T. c(0) fl Hor+(c'(to)) 0. Un
vecteur v E X est dit de type horosphérique
s'il admet un relevé à X qui engendre une

géodésique de type horosphérique, auquel cas

tous ses relevés engendrent de telles géodésiques.
Le théorème suivant est valide en courbure négative ou nulle.

THÉORÈME 2.5 (P. Eberlein [Eb73]). Une géodésique de M est quasi-
minimisante si et seulement si son relevé à M n'est pas horosphérique.

Preuve.

Non horosphérique V t > 0. T.c(0) fl B(c(to +1). t) 0,
4A V t > 0. V7 G T, d(yc(0). c(to 4- t)) > t sur M.
yy V* > 0, d(c(0). c(t)) > t — to sur M.

Ceci termine la preuve.

En courbure strictement négative pincée, sous la condition que les orbites

récurrentes du flot géodésique sont denses dans X, on démontre que tout
vecteur de type horosphérique est sur une horosphère qui est dense dans X.
Ce résultat est dû à P. Eberlein [Eb73], on trouvera des généralisations dans

l'article de F. Dal'bo [D00] et dans [C05]. En résumé,

THÉORÈME 2.6. Supposons que M est à courbure strictement négative

pincée et que les orbites récurrentes du flot géodésique sont denses dans

X — TlM. Considérons un vecteur v E X. Alors l'horosphère stable basée en

v est dense dans X si et seulement si la géodésique sur M engendrée par
ce vecteur n'est pas quasi-minimisante.
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Ce résultat implique par exemple que le feuilletage horosphérique est

minimal (i.e. toutes les horosphères stables sont denses dans M) si et seulement
si M est compact.

Exercice. Construire une surface à courbure négative pincée, et un vecteur

sur cette surface, tels que l'horosphère stable associée à ce vecteur est dense

dans la surface, mais le vecteur part à l'infini sous l'action du flot géodésique.

2.3 Variétés stables et horosphères

De manière générale, l'horosphère stable basée en un vecteur v G X
contient toujours la variété stable de v : C Hor+(v). De plus, variétés

stables et horosphères stables coïncident en courbure strictement négative:
Wss(v) Hor+(v). Par contre elles sont en général distinctes si la courbure

s'annule. Donnons quelques exemples.

Pour les variétés à courbure nulle comme le tore plat R2/Z2, les feuilles
stables sont réduites à des points tandis que les horosphères sont localement
des hyperplans. Horosphères stables et instables coincident, si bien qu'on ne

peut pas joindre deux points quelconques de la variété par un chemin composé
de morceaux de feuilles stables, de feuilles instables et de géodésiques. Le
flot géodésique n'est du reste pas transitif.

Plaçons nous maintenant sur une surface à courbure négative ou nulle qui
contient un cylindre euclidien [0,1] x S1. Les feuilles stables associées aux
vecteurs qui engendrent une géodésique périodique contenue dans l'intérieur
du cylindre sont triviales (i.e. VF"0;) — {?;}). De fait, la géodésique engendrée

par un vecteur qui se trouve sur la feuille stable d'un tel point, doit rester
dans le cylindre à partir d'un temps suffisamment grand. Mais seules les

géodésiques périodiques dans le cylindre possèdent cette propriété, toutes les

autres traversent le cylindre de part en part. Pour ce qui est des horosphères
stables associées aux vecteurs dont la trajectoire est périodique, contenues
dans le cylindre, ce sont des sous-variétés immergées de dimension un. Les

horosphères instables coïncident avec les horosphères stables dans un voisinage
du vecteur, et ne se différencient de celles-ci qu'à la sortie du cylindre.
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Donnons un exemple où la feuille stable est non triviale, sans pour autant
coïncider avec l'horosphère stable. Considérons une géodésique périodique
définie sur une surface orientable, qui borde d'un côté un cylindre euclidien,
et telle que la courbure soit strictement négative de l'autre côté, au voisinage
de la géodésique. Soit v un vecteur sur cette géodésique. Au voisinage de v,
la feuille stable de v coïncide avec la partie de l'horosphère qui se trouve du

côté où la courbure est strictement négative. La feuille est donc égale à une

demi-horosphère.

2.4 Lien avec les systèmes hyperboliques

Un flot géodésique défini sur le fibré unitaire d'une variété compacte de

courbure strictement négative est un flot d'Anosov : le fibré tangent TX est la

somme directe de trois fibrés E°, Es, E" invariants par la différentielle du

flot, qui satisfont pour des constantes C, X > 0,

- E° est tangent à la direction du flot,

- Vu G Es, V? > 0, < Ce_Ai||t<j|,

- Vu G Eu, Vf > 0, |J^_,u|| < Ce~xt||u||.

Dans le cas du flot géodésique, les espaces Es et E" sont les espaces tangents

aux horosphères stables et instables. On parle d'hyperbolicité uniforme pour
qualifier ce genre de propriétés. La plupart des propriétés dynamiques du flot
géodésique en courbure strictement négative découle de cette hyperbolicité
uniforme.

Il existe des variétés compactes, à courbure négative ou nulle, sur lesquelles
le flot géodésique est encore Anosov. Dans ce cas, le flot possède des propriétés
similaires à celles observées en courbure strictement négative. La distinction,
du point de vue dynamique, n'est pas tant entre courbure strictement négative
et courbure négative ou nulle, mais plutôt entre flot géodésique Anosov et

non Anosov.

A quelles conditions sur la courbure, le flot géodésique est-il Anosov

Donnons tout d'abord une obstruction élémentaire à la propriété d'Anosov.
Les flots d'Anosov possèdent en chaque point des variétés stables et instables

qui forment des sous-variétés de dimension non nulle transverses à la direction
du flot. Par conséquent, si un vecteur possède une variété stable triviale

WSi(tO {t'} le flot géodésique ne peut pas être Anosov.

Considérons une surface compacte à courbure négative ou nulle qui contient

un compact isométrique à un cylindre euclidien [0.1] x S1. Les vecteurs dans

le cylindre qui sont verticaux, c'est-à-dire, qui sont tangents à un méridien

{x}- x S1, ont une variété stable triviale. De fait, une trajectoire asymptotique
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à un tel vecteur doit rester dans le cylindre pour tous les temps suffisamment

grands. Mais dans le cylindre, les trajectoires sont des droites euclidiennes,
elles traversent donc le cylindre de part en part, hormis pour celles qui sont
verticales. Le flot ne peut donc pas être Anosov.

Le critère suivant, dû à P. Eberlein, donne des exemples de surfaces où la
courbure s'annule, mais pour lesquelles le flot géodésique est Anosov.

THÉORÈME 2.7 (P. Eberlein). Soit M une surface compacte à courbure

négative ou nulle. Le flot géodésique défini sur TXM est Anosov si et seulement

si on peut trouver sur chaque géodésique un point de courbure non nulle.

On peut aussi chercher à établir de l'hyperbolicité uniforme dans le cas

non compact. Les zones qui posent problème sont alors celles constituées par
des géodésiques récurrentes le long desquelles la courbure est toujours nulle.

Exercice. Calculer la courbure de la surface:

{(v.y, z) R3/(2ttZ)3 | cos(x) + cos(y) -f cos(z) 0}.

En déduire que le flot géodésique, défini sur le fibré unitaire de cette surface,

est Anosov. Donnez un exemple de surface admettant des points où la courbure

est strictement positive, mais pour laquelle le flot géodésique est Anosov.

2.5 Ensemble non errant
On s'intéresse maintenant au cas où les points récurrents ne sont pas denses

dans la variété. Rappelons la définition de l'ensemble non errant.

DÉFINITION. Soit gt: X —,> X un flot défini sur un espace métrique. Son

ensemble non errant est défini comme suit:

Q {xGA|Vc>0, 31„ —> +oo tel que gtn(B(x, c)) fl B(x, c) 0}.

Voici quelques propriétés générales de l'ensemble non errant Q.

- L'ensemble non errant est fermé, invariant par le flot.

- Les points récurrents appartiennent à Q.

- Les mesures de probabilité invariantes ont leurs supports inclus dans Q.

Considérons le cas du flot géodésique défini sur le fibré unitaire d'une
variété à courbure négative ou nulle. Lorsque la courbure est strictement
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négative, on a le résultat suivant:

THÉORÈME 2.8. Supposons M à courbure strictement négative. Alors les

géodésiques fermées sont denses dans l'ensemble non errant. Supposons de

plus que Q contient plus de deux géodésiques périodiques. Alors le flot
géodésique gt est transitif en restriction à cet ensemble : il existe un vecteur

v (E Q tel que [gflv) \ t R) est dense dans Q,.

Le cas d'un cylindre à courbure -1 donne un exemple pour lequel Q
contient exactement deux orbites périodiques; ces orbites sont engendrées par
un vecteur et son opposé. Le flot n'est bien sûr pas transitif sur Q dans ce

cas.

Le théorème précédent est pris en défaut en courbure négative ou nulle.
On a donné un exemple d'un cylindre de dimension trois possédant une seule

géodésique périodique (deux en comptant le sens de parcours), et une infinité
de géodésiques récurrentes.

Décrivons un exemple non trivial de surface à courbure négative ou nulle,

sur laquelle le flot géodésique n'est pas transitif en restriction à l'adhérence
des orbites périodiques. Cette surface est difféomorphe au tore privé d'un
point. Elle admet une géodésique périodique c qui sépare la surface en
deux parties. La partie qui se trouve à gauche sur le dessin est compacte
à courbure strictement négative. La partie droite est isométrique à un demi-

cylindre euclidien [0,-t-oofx^1.

K < 0 K 0

Il existe trois types différents d'orbites sur le fibré unitaire de cette surface.

- les orbites périodiques contenues dans le cylindre euclidien,

- les orbites qui restent dans la partie à courbure strictement négative,

- les orbites qui croisent la géodésique c. Elles admettent un voisinage
constitué de vecteurs dont la trajectoire tend vers +oo, pour les temps
positifs ou pour les temps négatifs. Ces orbites sont errantes.
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L'ensemble non errant Q contient toutes les orbites périodiques. Son
intersection avec le demi-cylindre est composé exactement des orbites périodiques
contenues dans le cylindre. Une trajectoire qui approche une de ces orbites

périodiques sans être elle même périodique doit être errante, elle ne peut donc

pas être récurrente ni dense dans Q. Le flot n'est pas transitif en restriction à

Q, même si les orbites périodiques sont denses dans l'ensemble non errant.

Questions.

- Quelles sont les surfaces à K < 0 pour lesquelles le flot géodésique est

transitif sur Q

- Quelles sont les surfaces à K < 0 pour lesquelles les géodésiques

périodiques sont denses dans Q

On connaît la réponse à ces questions lorsque Q X. Le théorème suivant

traite le cas de la dimension deux.

THÉORÈME 2.9 (P. Eberlein [Eb96]). Soit M une surface à courbure

négative ou nulle, avec au moins un point de courbure strictement négative,
telle que Q TlM. Alors les orbites périodiques sont denses dans TlM et

le flot géodésique est transitif sur TlM.

Le cas de la dimension supérieure sera mentionné plus loin.
En courbure négative ou nulle, il existe peu de résultats sur la dynamique

topologique du flot géodésique, dans le cas où On peut quand même

énoncer un théorème en relation avec la transitivité. Pour cela nous avons
besoin du concept d'orbite périodique hyperbolique pour un flot C1.

DÉFINITION. Soit X une variété différentielle, gt: X —) X un flot
C1 et v G X un point périodique de période l 0. La différentielle
dvQi : TVX —> TVX est une application linéaire qui admet une valeur propre
égale à un; cette valeur propre est associée à la direction du flot. Nous
dirons que l'orbite de v est hyperbolique si les seuls vecteurs propres de

cette application qui sont associés à des valeurs propres de module un sont

proportionnels à la direction du flot.

En courbure strictement négative, toutes les orbites périodiques du flot
géodésique sont hyperboliques. Sur une surface à courbure négative ou nulle,
une géodésique périodique est hyperbolique si et seulement s'il existe un point
de courbure strictement négative sur la géodésique.
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On peut à présent énoncer un résultat valide même si Q est différent de X.

THÉORÈME 2.10 (Y. Coudène, B. Schapira [CS10]). Soit M une variété

à courbure négative ou nulle. On suppose que l'ensemble non errant contient

plus de deux géodésiques périodiques hyperboliques. Alors le flot géodésique
est transitif en restriction à l'adhérence des orbites périodiques hyperboliques.

Question. Pour quelles variétés à courbure négative ou nulle les

géodésiques périodiques hyperboliques sont-elles denses dans Q

Revenons au cas de la surface avec un bout cylindrique euclidien discuté

plus haut. Les géodésiques périodiques hyperboliques sont toutes contenues

dans la partie à courbure négative ou nulle, et le flot est transitif en restriction à

l'adhérence de ces géodésiques. La géodésique qui borde le cylindre euclidien

peut-elle être approchée par des géodésiques périodiques hyperboliques?

PROPOSITION 2.11. La géodésique qui borde la partie de la surface à

courbure strictement négative est dans l'adhérence des géodésiques périodiques
hyperboliques.

Preuve. Identifions le groupe fondamental de M à un sous-groupe T du

groupe d'isométries de M et considérons son action sur le bord du revêtement
universel.

Plaçons nous sur l'espace des demi-géodésiques r: R+ —¥ M afin de définir
le bord de M. On identifie deux demi-géodésiques r\, ri si elles restent à

distance bornée l'une de l'autre: 3C > 0 tel que d(r\(t). rzit)) < C pour
tout t > 0. L'espace quotient obtenu est le bord idéal de M. Fixons un point
xo M. Le bord idéal dM est homéomorphe au cercle unité par le biais de

l'application de T^M dans dM qui associe au vecteur v Tj-QM le point du

bord correspondant à la demi-géodésique issue de v.
Considérons l'orbite de xq dans M U dM et définissons l'ensemble limite

de T par la formule: Ar Leo H QM. G. Link, M. Peigné et J.-C. Picaud

[LPP06] montrent que les extrémités des relevés des géodésiques périodiques
hyperboliques de M sont denses dans Ar x Ar. Attention, on a vu que les

géodésiques périodiques hyperboliques ne sont pas denses dans Q.
Fixons un relevé c de la géodésique périodique c qui borde la partie à

courbure strictement négative. On note c~ et c+ ses deux extrémités dans

Ar. Soient cn une suite de géodésiques de M qui se projettent sur des

géodésiques périodiques hyperboliques de M, et dont les extrémités c~ et cf
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convergent vers c~ et c+. Quitte à passer à une sous-suite, on peut supposer

que la convergence a lieu de façon monotone au voisinage de c~ et de c+.
Paramétrons cn de façon à ce que la distance de cn à c(0) soit réalisée

en cn(0).
Les géodésiques cn et c se trouvent

de part et d'autre de la géodésique

cn+1, si bien que la suite d(cn(0),c(0))
est décroissante. Soit v une valeur

d'adhérence de la suite c'n(0). La géodésique

engendrée par ce vecteur a pour
extrémités c~ et c+, elle délimite donc

une bande plane avec c. Comme elle
est dans l'adhérence des (relevés des)

géodésiques périodiques hyperboliques,
elle doit coïncider avec c et la proposition

est démontrée.

Question. La feuille stable du vecteur c'(0), qui engendre la géodésique

périodique sur le bord du cylindre euclidien, est-elle dense dans Q

On pourra consulter [S10] pour des résultats concernant la densité des

demi-horocycles en courbure strictement négative.
En résumé, on peut espérer retrouver les propriétés de la courbure

strictement négative si on se restreint à un sous-ensemble de TlM sur lequel

on a suffisamment d'hyperbolicité.

3. Variétés de rang 1

Ceci nous amène à chercher un ensemble sur lequel la dynamique est de

nature hyperbolique.

3.1 DÉFINITION DU RANG D'UNE- VARIÉTÉ

Commençons par généraliser le concept de géodésique hyperbolique au cas

non périodique. Considérons une géodésique c: R —» M définie sur une variété
à courbure négative ou nulle. On dit qu'un champ de vecteurs J(J) : R -a TM
est défini le long de la géodésique c si pour tout t G R, J(t) appartient
à TC(t)M. Un tel champ est parallèle si sa dérivée covariante le long de la

géodésique est nulle: J'(t) Vc>J(f) 0, pour tout ?gR.
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DÉFINITION. Le rang de la géodésique c est égal à 1, plus la dimension
de l'espace vectoriel des champs de vecteurs définis le long de c, parallèles,

orthogonaux à la direction de la géodésique, et tels que la courbure s'annule
dans le plan déterminé par le champ de vecteurs et la direction de la

géodésique :

rang(c) 1 + dim{/ | {J(t),c'(t)) 0, j'(t) 0, K(J(t),c'(j)) 0}.

Une variété est dite de rang un si elle est connexe complète à courbure

négative ou nulle, et si elle admet une géodésique de rang un. Si une telle
variété n'admet pas de géodésique de rang un, on dit qu'elle est de rang
supérieur.

Cette définition peut se formuler à l'aide de la notion de champ de Jacobi.

Un champ de vecteurs J(J) défini le long d'une géodésique co est un champ
de Jacobi s'il satisfait l'équation:

A0 + AT(7(0,cJ(0) 4(0 0,

l'expression désignant ici le tenseur de courbure. D'un point de

vue géométrique, ces champs s'obtiennent en faisant varier les géodésiques:

l'équation précédente est satisfaite si et seulement si on peut trouver une

famille C1 de géodésiques cs(t) telle que p=o J(t)
Le rang d'une géodésique est alors égal à la dimension de l'espace vectoriel

des champs de Jacobi parallèles le long de la géodésique.

3.2 Variétés de rang un

Sur une surface, une géodésique est de rang un si et seulement si on peut
trouver un point de courbure strictement négative sur la géodésique. Dans le

cas contraire, elle est de rang deux.

Une surface à courbure négative ou nulle est de rang un si et seulement s'il
existe un point où la courbure est non nulle. Dans le cas compact orientable,
cela est équivalent à dire que le genre est supérieur strict à un, ou encore que
la surface n'est pas homéomorphe à la sphère ou au tore ; c'est une application
de la formule de Gauss-Bonnet.

En dimension plus grande, une géodésique qui passe par un point où toutes

les courbures sectionnelles sont strictement négatives, est une géodésique de

rang un. Mais il peut arriver qu'une géodésique de rang un ne passe par aucun

point où toutes les courbures sectionnelles sont strictement négatives.

Rappelons qu'une sous-variété est dite totalement géodésique si toute

géodésique qui part d'un point de la sous-variété, en lui étant tangente, reste
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dans la sous-variété pendant un intervalle de temps strictement positif. On

peut maintenant donner la définition d'un piaf, il s'agit d'une sous-variété

(éventuellement à bord) totalement géodésique dont la courbure est nulle

pour la métrique induite. L'exemple le plus simple de plat est donné par
une portion de cylindre euclidien plongé dans une surface. Le rang d'une

géodésique incluse dans un plat est au moins égal à la dimension du plat.

Exercice. Construire une variété compacte de rang 1 qui possède un

sous-groupe de son groupe fondamental isomorphe à Z2. Une telle variété ne

porte pas de métrique riemannienne à courbure strictement négative.

Le rang est bien lié à la nature hyperbolique de la dynamique du

flot géodésique. Nous pouvons à présent donner les énoncés généraux de

P. Eberlein.

THÉORÈME 3.1 (P. Eberlein). Sur une variété compacte à courbure négative
ou nulle, le flot géodésique est Anosov si et seulement si toutes les géodésiques

sont de rang un.

Soit M une variété de rang un. On suppose que tous les vecteurs de

TlM sont non errants sous l'action du flot géodésique: Q, TlM. Alors
les géodésiques périodiques hyperboliques sont denses dans TlM, et le flot
géodésique est transitif.

Remarquons enfin qu'en dimension deux, les géodésiques de rang un sont
celles sur lesquelles il existe un point où la courbure est strictement négative.
Comme la courbure est une fonction continue, ces géodésiques forment un
sous-ensemble ouvert de TlM. Ce résultat est vrai en toute dimension:

PROPOSITION 3.2 (P. Eberlein). Soit M une variété de rang un. Alors les

vecteurs de rang un forment un ouvert invariant dans TlM. Si Q M, cet

ouvert est dense.

3.3 Variétés de rang supérieur

On va se restreindre dans la suite aux variétés de rang un. Ce sont celles

sur lesquelles le comportement du flot géodésique est le plus proche de celui

observé en courbure strictement négative. Avant cela, donnons tout de même

quelques informations sur le rang supérieur.

Achevé de composer le 28 juin 2011 à 15 :18



136 Y. COUDÈNE

En rang supérieur, le flot géodésique n'est pas ergodique relativement au

volume, ni transitif [BBE]. On peut avoir en tête l'exemple du tore plat
R2/Z2 ; sur le fibré unitaire du tore, l'angle que forme un vecteur avec la
verticale est préservé au cours du mouvement.

On peut, d'un certain point de vue, classer les espaces de rang supérieur.

THÉORÈME 3.3 (W. Ballmann [B85]). Soit Ko > 0, soit M une variété
riemannienne connexe, complète, de volume fini, dont les courbures section-
nelles sont toutes dans l'intervalle [—A"o,0]. On a l'alternative suivante:

— M est de rang un,

— M est réductible (i.e. c'est un produit riemannien M\ x M2),

— M est un espace localement symétrique (irréductible, de rang >2).

Le cas réductible comprend par exemple le tore plat. Quant aux espaces
localement symétriques, ce sont des quotients de groupes de Lie (connexes,

irréductibles, de type non compact, de rang supérieur). A dimension donnée, il
n'existe qu'une liste finie de tels groupes. Voici les plus classiques: SLn+i(R)
(n > 1), SÔPA(R) (min{p,g} > 1), Sp2n(R) («>!)-

L'espace symétrique irréductible (connexe, simplement connexe, complet,
à courbure négative ou nulle, de dimension > 1 de plus petite dimension est

SL3ÇR.)/SO$(R). Les espaces symétriques sont homogènes et tout point dans

un tel espace est inclus dans un plat dont la dimension est égale au rang de

l'espace. On renvoie à la monographie [Eb96] pour plus de détails. Remarquons

pour terminer que le théorème de W. Ballmann admet des généralisations au

cas Q TXM [B95].

4. Ergodicité du flot géodésique sur les variétés de rang 1

Considérons un flot gt : X —> X mesurable préservant une mesure de

probabilité p.. D'après le théorème ergodique de Birkhoff, pour toute fonction

f: X —> R de carré intégrable, on a la convergence :

où Pf est la projection L2 de / sur le sous-espace des fonctions invariantes

par (}t- Le flot est ergodique relativement à la mesure p si la limite Pf est

constante, auquel cas elle vaut / / dp, : les moyennes temporelles de f le long
de presque toute trajectoire du flot, coïncident avec ses moyennes spatiales.
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4.1 L'ARGUMENT DE HOPF

La démonstration de l'ergodicité du flot géodésique sur une variété de

courbure négative constante et de volume fini est due à E. Hopf [Ho36].
L'argument mis au point par E. Hopf a ensuite été généralisé dans de

nombreuses directions, jusqu'à devenir un principe de théorie ergodique qui

ne fait plus référence au flot géodésique.

On va présenter cet argument en détail. Rappelons comment on a défini
les feuilletages stables et instables d'un flot sur un espace métrique :

Wss(v) -{ w E X | gfw)) 0 quand t —> +oo }.
Wsu(v) { w E X | d(gt(v),gt(iL>)) -4 0 quand t -a —oo }.

On dira qu'une fonction / est invariante par le feuilletage stable, ou encore

Wss-invariante, si elle est constante le long des feuilles stables du flot:
dv, w EX, w E implique f(w) — f(v). On dira qu'une fonction
est Wss -invariante mod 0 si elle co'incide avec une fonction Wss -invariante
hors d'un ensemble négligeable.

L'ARGUMENT DE Hopf. Soit X un espace métrique, gt : X —, X un flot
borélien qui préserve une mesure de probabilité borélienne. Alors toute fonction
L2 invariante par le flot est Wss -invariante mod 0.

Preuve. Supposons pour commencer que /: X —» R est Lipschitzienne
bornée. Soit Xj c X le sous-ensemble des points de X de mesure totale sur

lequel on a :

où Pf est la projection orthogonale de / sur {h E L2 | W R, hogt h}
Soit K la constante de Lipschitz de /. Pour tout v. w E Xj tels que

w E Wss(v),

Ceci implique: Vv, w E Xj tels que w Wss(v), Pf(v) Pf(w).
Toute fonction f E L2 peut être approchée par une suite de fonctions

lipschitziennes fn en norme L2. Par continuité, Pfn converge en norme L2 vers

Pf. Quitte à passer à une sous-suite, on peut supposer que cette convergence

- / f(fis(vï)ds-- I f(gs(w))ds < — / d(gs(v), gs(w))ds 0.
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a lieu sur un ensemble Xq de mesure totale. Posons X' — Xq f! P|„ Xjn

Si / est gt -invariante, on obtient, pour tout v.w G X' :

Vw G VPpiO. f(v) Pf(v) lim Pfn(v) lim Pfn(w) Pf(w) =f(w).

On définit alors

m [o si vp^ï-f)nr 0,
[/(«;) avec w G VPpu) fl X' sinon.

Cette fonction est Wss -invariante et coïncide avec / sur X'. Ceci termine
la preuve.

Exercice. Soit A c X un ensemble mesurable invariant par le flot.
Montrez que A coïncide, à un ensemble de mesure nulle près, avec un ensemble

saturé par le feuilletage stable : 3/ c X tel que p(A A U PPO) 0. A-t-on
vE/

pour autant /i( \J VFp;) \ A) 0
\>E,4

L'argument précédent admet des généralisations lorsque la mesure est

infinie. On renvoie à [C07] pour plus de détails. Démontrons maintenant un
lemme qui va s'avérer crucial pour la suite.

LEtvIME. Soient (X, T. ji), (F. S, u) deux espaces probabilisés et soit

/: Xx F-) R une fonction L2. On suppose qu'il existe ip\ : X —» R et

ip2 - y —^ R deux fonctions mesurables, Z C X x Y un sous-ensemble de

p, O v-mesure totale, tels que :

V (x, y) G Z, f(x.y) ipi(x), f(x, y) p2{y).

Alors f est constante presque partout.

Preuve. D'après le théorème de Fubini, il existe Yo C Y de mesure totale

et xq G X tels que {xq} x Yo C Z. Pour tout (x,y) G Z fl (A x Fo), le point
<Ao,y) est dans Z, ce qui implique: ^i(.xo) — y?2(y) — f(x,y). Le lemme est
démontré.

Considérons maintenant un flot sur un espace métrique, préservant une

mesure de probabilité, tel que les feuilletages stables et instables forment
localement un système de coordonnées dans lequel la mesure est équivalente
à une mesure produit. Formalisons cela par une définition ad hoc.
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DÉFINITION. Soit X un espace métrique, gp. X —> X un flot borélien

qui préserve une mesure de probabilité g borélienne. On dira que p est

absolument continue relativement aux feuilletages stables et instables si, pour
tout V e X, on peut trouver un ouvert U contenant v, un 5 > 0 et un

homéomorphisme <p: Rk x —> U tels que, pour tout (x.y) f R1 x R1,

- 4>({x} x Rl) c Wss(é(x,y)),

- cKRk x {y}) C gisMWWw)),
- <P*(/i'\u) esl équivalente à une mesure produit fi\ O pz •

Supposons cette définition satisfaite, et considérons une fonction invariante

par le flot. D'après l'argument de Hopf, elle est Wss-invariante. Elle coïncide
donc presque partout, dans la carte donnée par è, avec une fonction qui ne

dépend que de la première coordonnée. En renversant la direction du flot,
elle coïncide également avec une fonction qui ne dépend que de la seconde

coordonnée. Par le lemme, elle est (presque) localement constante, et si le

support de la mesure est connexe, on obtient l'ergodicité du flot.

THÉORÈME 4.1. Soit X un espace métrique connexe, soit gg. X —> X
un flot qui préserve une mesure de probabilité de support total, absolument

continue par rapport aux feuilletages stables et instables. Alors le flot est

ergodique relativement à cette mesure.

Revenons au cas du flot géodésique défini sur une variété à courbure
strictement négative. Si la courbure est constante, l'absolue continuité se

vérifie immédiatement dans un modèle algébrique pour le flot. C'est l'argument
original de E. Hopf, qui établit par ce biais l'ergodicité du flot géodésique
relativement au volume, dans un article fameux datant de 1936 [Ho36].

Si les feuilletages stables et instables sont C1, l'absolue continuité est une

conséquence du théorème du changement de variables. E. Hopf montre que
les feuilletages sur les surfaces compactes à courbure négative pincée sont
bien C1 et en déduit l'ergodicité du volume en dimension deux.

Achevé de composer le 28 juin 2011 à 15 :18



140 Y. COUDÈNE

La question de l'absolue continuité en dimension supérieure reste ouverte

jusqu'au début des années 60. D. V. Anosov résout finalement la question pour
une classe générale de systèmes qui porte maintenant son nom.

THÉORÈME 4.2 (D. V. Anosov [An67]). Soit gt: X —y X un flot d'Anosov
C2 défini sur une variété riemannienne compacte connexe. On suppose que

gt préserve le volume. Alors le volume est absolument continu relativement

aux feuilletages stables et instables du flot.

COROLLAIRE 4.3 (D. V. Anosov [An67]). Le flot géodésique défini sur le

fibré unitaire d'une variété riemannienne C3 connexe compacte à courbure

strictement négative est ergodique relativement au volume.

Ce résultat est encore vrai dans le cas non compact, en supposant la variété

complète, le volume fini et les dérivées partielles premières des courbures

sectionnelles bornées.

La démonstration de l'absolue continuité donnée par D. V. Anosov est assez

technique et cinquante ans plus tard, il n'y a pas réellement de simplification
dans la preuve. Pour ce qui est de la régularité des feuilletages stables et

instables, Hirsch et Pugh montrent en 1975 qu'ils sont C1 si les courbures

sectionnelles sont comprises strictement entre —4 et — 1. Ils ne sont en général

pas C00', comme on l'a mentionné plus haut.

4.2 Comportement relatif au volume

On considère le flot géodésique sur une variété de rang un compacte à

courbure négative ou nulle, et on se demande s'il est ergodique relativement
au volume. Même dans le cas des surfaces, la question est ouverte.

Question. Soit M une surface compacte connexe orientable à courbure

négative ou nulle, de genre supérieur ou égal à deux. Le flot géodésique défini

sur le fibré unitaire de M est-il ergodique relativement au volume

On va présenter les travaux de Y. Pesin sur cette question. L'approche
consiste à généraliser autant que possible l'argument de Hopf. Un ingrédient
clef dans la preuve d'Ànosov de l'absolue continuité des feuilletages, est la
contraction/dilatation uniforme le long des feuilles stables et instables. Afin de

récupérer un peu d'uniformité, il va falloir étudier les exposants de Lyapounov
du flot.
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DÉFINITION. Soit g, : X —> X un flot C1 défini sur une variété rieman-
nienne compacte et préservant une mesure de probabilité p borélienne. Soit

v E X, £ G TVX. Posons:

X(v, £) lim 7 In |\dvgt(0 \\.
t-ï+ac t

V. Oseledets [068] montre que cette limite existe pour p.-presque tout
v X et pour tout £ TVX. On parle d'exposants associés au flot, et on dit

que le flot n'a pas d'exposants nuls en v (hormis dans la direction du flot),
si dim{£ G TVX | x(v,£) 0} 1.

Les exposants ne sont pas définis partout en général.

Question. Considérons le cas d'un flot géodésique sur une variété

compacte à courbure négative ou nulle. Supposons que la limite définissant

X(v, 0 existe en tout point v X. Peut-on en déduire que M est localement

symétrique

Illustrons le concept d'exposants avec un point v périodique de période
/ sur le fibré unitaire X d'une surface de rang un. Supposons par exemple

que la géodésique engendrée par ce vecteur est dans un cylindre à courbure

constante K plongé dans la surface. Un calcul explicite donne :

d„9i —

(*y/W\l

\

0 0

1 0

0 m 7

Ooôbtieïit \/,K / \/ K 1 et 1 comme valeurs possibles pour \{v.Q, quand

£ varie dans TVX. Les exposants sont non nuls (hormis dans la direction du

flot) si la géodésique engendrée par v est hyperbolique. Ils sont tous nuls si

la géodésique périodique est dans un cylindre euclidien.

On veut maintenant travailler sur un ensemble où tous les exposants du

flot sont non nuls (hormis dans la direction du flot).

THEOREME 4.4 (Y. Pesin [P77b]). Soit M une surface orientable connexe

compacte à courbure négative ou nulle, de genre strictement supérieur à un.
Notons <g le flot géodésique défini sur le fibré unitaire X de cette surface et

posons
1 f'

A {?; G X I lim - K (gs(i»)) ds < 0 }.
i^+oo t jo
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Alors :

— l'ensemble A est invariant par le flot géodésique,

— le volume de A est non nul,

— l'ensemble à. est dense et ouvert (mod 0),

— Vv <E A, les exposants sont non nuls (hormis dans la direction du flot),
— le flot est ergodique en restriction à A, relativement au volume.

Expliquons brièvement comment se démontre le théorème. Seul le dernier

point est propre à la mesure de Lebesgue. Les autres points sont satisfaits

relativement à toute mesure p invariante de support total.

— Le premier point est clair.

— Le second découle du théorème ergodique; si A est de mesure nulle, la

limite dans le théorème ergodique doit être positive presque partout. Ce

n'est pas possible car son intégrale est égale à fMK dp. < 0.

— Comme les orbites périodiques hyperboliques sont denses dans M (cf. plus
haut) et contenues dans A, l'ensemble A est bien dense dans X. Vérifions

que A est (presque) ouvert. Tout vecteur v dans A admet un voisinage
dont l'image par Qt, pour un certain T > 0, est contenu dans une boîte

de flot sur laquelle la courbure est majorée par —e, pour un certain e > 0.

D'après le théorème ergodique de Birkhoff appliqué à g\, presque tous les

points de la boîte reviennent dans la boîte avec une fréquence strictement

positive. Ces points sont dans A.

— Le lien entre courbure et exposants se fait par le biais des champs de

Jacobi. Dans un système de coordonnées bien choisi, la différentielle du

flot se met sous la forme dvgt (J(t),J'(t)), où J est un champ de vecteurs
le long de la géodésique engendré par v qui satisfait J"(t) — K(gtv)J(t).
De là on vérifie que les exposants sont non nuls sur A.

Pour démontrer l'ergodicité, on fait appel à la théorie des systèmes non
uniformément hyperboliques.

THÉORÈME 4.5 (Y. Pesin [P77a]). Soit X une variété riemannienne

compacte, gt : X —> X un flot C1 qui préserve le volume. Notons A l'ensemble
des points sans exposants nuls (hormis dans la direction du flot). On suppose
vol(A) > 0. Alors, on peut trouver des ensembles A,-, en nombre au plus
dénombrable, disjoints deux à deux, de volume non nul, dont l'union est égale
à A à un ensemble négligeable près, et tels que gt est ergodique relativement

au volume en restriction à chacun des A,-.
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Donnons un bref aperçu de la preuve. Il s'agit de récupérer de la

contraction/dilatation uniforme le long des feuilles stables afin de montrer
l'absolue continuité. Posons:

W£p(v) {m G X [ ïîin i- ln*%(*0; gt(w)) < 0 }.
t OC t

Grâce à la non nullité des exposants, on montre que pour presque tout point
de A, ces ensembles forment des courbes C1 immergées. Ces courbes ne

varient pas continûment en fonction du point. En utilisant le théorème d'Egorov,
on peut tout de même obtenir des sous-ensembles de mesure positive sur

lesquels on récupère la continuité et une contraction uniforme sur les Wsesxp(fo).

Ces sous-ensembles ne sont pas invariants; on fait malgré tout fonctionner
la preuve de l'absolue continuité pour ces feuilletages et un passage à la
limite donne un ensemble invariant de mesure positive sur lequel le flot est

ergodique. L'ensemble A est de mesure finie, il ne peut donc contenir qu'un
nombre dénombrable d'ensembles disjoints de mesure strictement positive.

Revenons au flot géodésique. Pour obtenir l'ergodicité en restriction à A,

il faut démontrer que les ensembles A; sont ouverts (mod 0). L'ingrédient
crucial dans cette dernière étape de la preuve est l'inclusion:

C Wss(v)CHor+(v).

Comme les horosphères varient continûment en fonction du point, on récupère

un peu de régularité sur les W^p, ce que la théorie générale ne fournissait pas.
De là, on montre que les A,- sont des sous-ensembles ouverts (mod 0) et on
conclut par transitivité. En corollaire, on obtient l'égalité Wfxp(v) Hor+(v)
pour presque tout v A. On pourra consulter [BP02] pour plus de détails.

Remarquons pour finir que si l'ensemble des vecteurs de rang un est de

volume total, alors pour presque tout v TlM, on peut trouver t R tel

que K(gflv)) < 0. Le lemme suivant, qui découle du théorème ergodique de

Birkhoff, montre alors que l'ensemble A est de volume total.

LEMME. Soit X un espace métrique, gt: X —> X un flot continu qui
préserve une mesure de probabilité p, et f : X —¥ R+ une fonction continue

intégrable positive. Alors, pour presque tout x X, l'existence d'un I 6 R
tel que f(ptx) > 0 implique l'existence d'une limite strictement positive pour

7 Jof(d'x) dt quand T —> oc.
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L'ergodicité du volume se ramène donc à la question suivante:

Question. Soit S une surface connexe orientable compacte de rang un.

L'ensemble des vecteurs de rang deux est-il de volume nul

Cette question admet une réponse positive lorsque la surface et sa métrique
sont réelles-analytiques, ou encore lorsque l'ensemble des points de courbure
strictement négative possède un nombre fini de composantes connexes [BP06,
§17].

4.3 La mesure d'entropie maximale

Le cas de la courbure strictement négative. Le volume n'est pas
la seule mesure invariante par le flot géodésique qui présente un intérêt.

A partir des années soixante, une autre mesure va jouer un rôle important
dans la description de la distribution des géodésiques périodiques. Il s'agit de

la mesure de Bowen-Margulis.
La construction de Margulis [M70] passe par les feuilletages stables et

instables. Soit gt : X -? X un flot d'Anosov C1 transitif défini sur une
variété compacte connexe. G. Margulis montre qu'il existe une famille de

mesures jiwHx) supportées par les feuilles stables fortes, qui est contractée

exponentiellement par le flot:

fh * ßWss(x) — e
hl

ßws\y,(x))

La difficulté ici est de définir précisément ce qu'est l'espace des mesures

portées par les feuilles, l'existence et l'unicité découlent du théorème du point
fixe contractant. De la même façon, il existe une famille de mesures ßwu(x)

portées par les feuilles instables faibles gnWsu(x) qui est dilatée par le flot.

On peut alors faire le produit de ces deux mesures dans un système de

coordonnées données par les feuilles stables et instables. La mesure obtenue est

la mesure de Margulis. Comme elle est par construction absolument continue
relativement aux feuilletages stables et instables, son ergodicité découle de

l'argument de Hopf.

L'approche de Bowen est de nature différente. Il considère des moyennes
de mesures de Dirac sur les orbites périodiques de période inférieure à un
certain réel T donné, et montre que ces moyennes convergent lorsque T tend

vers l'infini. Notons V l'ensemble des orbites périodiques du flot, et 1(c) la

période d'une orbite périodique c dans X.
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THÉORÈME 4.6 (R. Bowen [B72], [B74]). Soit gt un flot d'Anosov transitif
défini sur une variété compacte connexe. Alors il existe une mesure ß telle que :

L'entropie de cette mesure est égale à l'entropie topologique du flot, et toutes

les autres mesures de probabilités invariantes ont une entropie strictement

inférieure à celle de p.

La preuve consiste à calculer explicitement l'entropie des points d'accumulation

des moyennes qui viennent d'être décrites. Ce calcul est basé sur deux

propriétés du flot connues sous le nom d'expansivité et de spécification. La

propriété de spécification est en fait suffisante pour montrer qu'il existe au plus
une mesure dont l'entropie coïncide avec l'entropie topologique. Il n'y a donc

qu'un seul point d'accumulation possible et les moyennes sont convergentes.

L'ergodicité de la mesure d'entropie maximale est une conséquence immédiate
de son unicité et de la convexité de l'entropie.

Il faut mentionner que la mesure d'entropie maximale est tout d'abord
construite par W. Parry [P64] dans le contexte des décalages sur les chaînes

de Markov. A cette date, on connaît un certain nombre de variétés à courbure

négative sur lesquelles le flot géodésique est conjugué à une suspension d'une
chaîne de Markov; c'est le cas par exemple pour les surfaces compactes à

courbure constante négative. L'existence et l'unicité de la mesure d'entropie
maximale est donc connue dès 1964 pour ces variétés.

Le cas des variétés de rang un. G. Knieper [Kn98] parvient en 1998 à

généraliser le théorème de Bowen aux flots géodésiques définis sur les variétés

M compactes de rang un. Les moyennes doivent porter sur les géodésiques

périodiques hyperboliques; on a alors convergence de ces moyennes vers

l'unique mesure d'entropie maximale. Présentons brièvement les travaux de

G. Knieper.
La construction de la mesure d'entropie maximale passe par le bord du

revêtement universel, suivant une idée due à S. Patterson [P76]. Rappelons
comment est défini le bord idéal de M. On introduit une relation d'équivalence
sur l'ensemble des demi-géodésiques c: R+ —> M comme suit: deux demi-

géodésiques sont dites asymptotiques si elles sont à distance bornée l'une
de l'autre pour tout temps positif. Le bord ÖM est l'ensemble des classes

d'équivalence associées à cette relation. Dans le cas du disque de Poincaré, ce
bord idéal s'identifie au cercle unité. Paramétrer les géodésiques par le biais

1

#{c G V | 1(c) < t] c£'P tq l(c)<i
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de leurs extrémités sur le bord du disque est une idée qui remonte au début
du vingtième siècle; on parle parfois de coordonnées de Hopf.

Notons T le groupe du revêtement M —> M. Il se plonge naturellement
dans le groupe d'isométries de M et M s'identifie au quotient M/Y. Fixons

un point p F M et notons htop l'entropie topologique du flot. La mesure sur
le bord est construite à partir de limites faibles de la forme :

S,.£r
y T-1

e~sd(P-Ap))
t—jfÇ.r

G. Knieper montre que la série au dénominateur est convergente pour s < htop

et diverge pour s > htop. Lorsque s converge vers htop, les moyennes
convergent vers une mesure p.p portée par le bord, qui est de support total.

Il s'agit maintenant de récupérer une mesure sur TXM. Pour cela, on
considère la projection P : TlM —r dM x ÔM qui associe à un vecteur les

deux extrémités de la géodésique qu'il engendre. Seuls les couples de points
du bord qui peuvent être effectivement joints par une géodésique sont dans

l'image de P. Les lignes de niveau de P sont constituées de géodésiques ou
de plats; on munit ces ensembles de la mesure de Lebesgue À. On définit
alors une mesure p sur TlM en posant:

IÂA) [ A({P~\t 0) H A}) h(Ç, r/) dpp(Odßp(ri)
•>P(TlM)

avec h une densité bien choisie de manière à obtenir une mesure invariante

par le flot. L'ergodicité de p s'obtient à l'aide de l'argument de Hopf et du

lemme élémentaire suivant:

LEMME 4.7. Soit v un vecteur de TlM récurrent de rang un. Alors
VV""'G0 Hor+(v).

Preuve. On travaille dans TlM et on note encore v un relevé de v à

TlM. Considérons un point w G Hor+(v) qui n'appartient pas à VF" (?,'). On

peut trouver C > 0 tel que :

V t > 0 C < d((ji(v). g,(u')) < d(v. w).

Par récurrence, il existe -y,, <S F, tn -Hoc tels que 7«(,</?„CO) v. On a

donc pour tout 5 > —tn,

C < d(gu+s(v\ gln+s(w)) d(gsyngu(v), gsyngu(w)) < d(v, w).

Quitte à passer à une sous-suite, on peut supposer que la suite 7„gln(w)
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converge vers une limite w'. On a alors, pour tout s R,

C < d(gs(v), gs(w')) < d(v, w).

Le vecteur v est sur le bord d'une bande plate, il est donc de rang plus grand

que un. Ceci termine la preuve.

Le calcul de l'entropie de p s'inspire de la méthode mise au point par
R. Bowen. Le flot géodésique sur une variété de rang un n'est pas expansif
en général, mais il satisfait une propriété plus faible appelée h-expansivité.
De même, le flot ne possède plus la propriété de spécification, mais on a tout
de même un produit local en restriction aux vecteurs de rang un. Il devient
alors possible de montrer que les mesures invariantes singulières par rapport à

p ont une entropie plus petite que celle de p. On renvoie à [B74] et [Kn02]

pour un aperçu des calculs.

Question. Est-il possible de généraliser les considérations précédentes

au cas des variétés non compactes?

Volume et mesure d'entropie maximale. En courbure négative
constante, la mesure d'entropie maximale coïncide avec le volume riemannien.

En courbure négative variable, par contre, elles sont en général distinctes:

THÉORÈME 4.8 (A. Katok [K82]). Soit S une surface compacte connexe
à courbure strictement négative. La mesure d'entropie maximale et le volume

riemannien coïncident si et seulement si la courbure est constante.

La question est ouverte en dimension supérieure.

4.4 Le point de vue générique

On peut se demander si l'ergodicité est une propriété typique des mesures
de probabilités invariantes par le flot géodésique.

En courbure strictement négative, K. Sigmund étudie la question sous

l'angle de la généricité. Rappelons qu'un sous-ensemble d'un espace métrique
est un G$-dense si c'est une intersection dénombrable d'ouverts denses. Si le

théorème de Baire est valide dans X, alors un tel ensemble est lui-même dense;

en particulier, il est non vide. Remarquons qu'une intersection dénombrable
de Gs -denses est encore un Gs -dense. Pour cette raison, ces ensembles sont

parfois considérés comme un analogue topologique des ensembles de mesure
totale en théorie de la mesure.
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On dit qu'une propriété associée à certains points d'un espace métrique
X est générique si l'ensemble des points qui satisfont cette propriété contient

un sous-ensemble Gs -dense.

Le flot géodésique en courbure négative possède de nombreuses mesures
de probabilités ergodiques, par exemple tous les Diracs portés par des orbites

périodiques. On construit également facilement des mesures de support total.

On peut par exemple considérer une somme de tels Diracs: ^j2~'SCi; dès

que les orbites périodiques c,- forment un ensemble dense dans X, la mesure
obtenue est de support total (mais pas ergodique).

La complexité inhérente à la preuve de l'ergodicité du volume ou à la
construction de la mesure d'entropie maximale pourrait laisser penser que peu
de mesures invariantes sont ergodiques.

THÉORÈME 4.9 (K. Sigmund [Si72]). Soit gt: X —> X un flot d'Anosov

transitif défini sur une variété compacte C1. Alors l'ensemble des mesures
invariantes ergodiques de support total est un Gs-dense dans l'ensemble de

toutes les mesures de probabilités boréliennes invariantes définies sur X.

Ici, on a muni l'ensemble JA1(X) des mesures de probabilités boréliennes
invariantes sur X de la topologie associée à la convergence étroite : une suite

de mesures de probabilités pn convergent vers p si pour toute fonction /
continue bornée, ffdpn converge vers ffdp. Quand X est un espace métrique
séparable complet, l'espace A41 (X) est lui aussi métrisable et complet pour
une certaine distance qui redonne la topologie.

Rappelons que les mesures de probabilités invariantes sont toutes supportées

par l'ensemble non errant du flot. Si on veut un énoncé valide dans le cas non

compact, il faut donc se restreindre à l'ensemble des mesures de probabilités
supportées par cet ensemble.

Remarquons de plus que l'existence d'une mesure de probabilité invariante

ergodique de support total dans Q implique la transitivité du flot en restriction
à Q. On a vu plus haut un exemple de surface de rang un non compacte sur

laquelle cette propriété n'était pas satisfaite.

THÉORÈME 4.10 (Y. Coudène, B. Schapira [CS10]). Soit M une variété
de rang un telle que tous les vecteurs de TXM sont non errants sous l'action
du flot géodésique : Q — TlM. Soit Tl\ C TlM l'ouvert des vecteurs de rang
un. Alors l'ensemble des mesures définies sur 1Z\ qui sont invariantes par le

flot, ergodiques, de support total dans TZi, est un Gs-dense dans l'ensemble
de toutes les mesures de probabilités invariantes définies sur TZ\.
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Sous les hypothèses du théorème, l'ouvert TZi est dense dans TlM, si bien

que les mesures données par le théorème sont aussi des mesures ergodiques
invariantes de support total dans TlM. De plus l'ouvert 1Z\ est non vide
invariant, si bien que toute mesure ergodique de support total dans T1M est

supportée par 1Z\.

Même en courbure constante —1, l'existence d'une mesure de probabilité
ergodique de support total est non triviale. En général, sur les variétés non

compactes, le volume est totalement dissipatif et "la" mesure de Bowen-

Margulis n'est pas définie.

COROLLAIRE. 4.11. Soit M une variété de rang un telle que Q, T1 M.
Alors il existe une mesure de probabilité invariante par le flot géodésique,

ergodique et de support total.

Cependant, les mesures ergodiques de support total ne forment pas toujours
un sous-ensemble dense dans l'ensemble de toutes les mesures de probabilités
invariantes.

PROPOSITION 4.12. Soit M une surface compacte admettant un cylindre
euclidien plongé. Alors les Diracs supportés par les orbites périodiques à
l'intérieur du cylindre ne sont pas dans l'adhérence des mesures de probabilités
invariantes ergodiques de support total.

Preuve. Soit c: R -5- M une géodésique périodique à l'intérieur du

cylindre. Considérons un voisinage tabulaire de c dans le cylindre isométrique
à ]-3e,3e[xS1.

Soit 9 ç]0. f[. Considérons l'ouvert U constitué de tous les vecteurs

tangents à ]—c.etxS1 et faisant un angle avec la verticale compris dans

l'intervalle ]—9,9[.
Les orbites du flot géodésique sont des droites dans le cylindre, si

bien qu'une trajectoire qui rentre dans U au temps to et qui en sort au

temps t\, a dû passer d'abord un temps au moins égal à h — to dans un
des cylindres ]—3c, —c] x S1 ou [£r,3£r[x51. Par conséquent, la quantité:
|rA{y G [0,71 | 9t(v) UE} est inférieure ou égale à | pour tout T > 0 et

tout v G TlM extérieur au cylindre.

Soit /./, une mesure ergodique de support total; si elle est suffisamment

proche du Dirac porté par la géodésique c, on a: p(U£) > y• Appliquons le

théorème ergodique. On peut trouver une orbite v G T1 M hors du cylindre
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telle que :

j A( [0; T] | gt(v) EU,}) — ^ p(U£)

ce qui donne une contradiction. La proposition est démontrée.

Question. Peut-on caractériser les variétés compactes de rang un pour
lesquelles les mesures ergodiques de support total forment un Gs -dense dans

l'ensemble de toutes les mesures de probabilité invariantes?

Dans le cas où il existe des vecteurs errants, on peut quand même démontrer
la généricité des mesures ergodiques de support total, si on se restreint à

l'ensemble 1Z\ H Q des vecteurs de rang un non errants. Ceci implique en

particulier :

THÉORÈME 4.13 (Y. Coudène, B. Schapira [CS10]). Soit M une variété

connexe complète à courbure négative ou nulle. On suppose que l'ensemble

non errant du flot géodésique contient plus de deux orbites périodiques
hyperboliques. Alors il existe une mesure de probabilité invariante ergodique
dont le support contient toutes les géodésiques périodiques hyperboliques.

Expliquons brièvement comment se démontrent ces théorèmes. La preuve
de K. Sigmund est basée sur la propriété de spécification. Celle-ci ne peut être

satisfaite que si l'espace ambiant est compact, et semble difficile à obtenir en
l'absence d'hyperbolicité uniforme.

Nous sommes parvenu à montrer la densité des mesures ergodiques de

support total en nous basant sur deux propriétés du flot à priori plus faibles

que la spécification: l'existence d'une structure de produit local et le lemme de

fermeture. Ces propriétés ne nécessitent à priori pas d'hypothèse de compacité

sur l'espace ambiant, et ne reposent que sur une forme faible d'hyperbolicité.
Il a été possible de les établir dans le contexte des variétés de rang un.

Pour cela, il faut se restreindre à un sous-ensemble de la variété sur lequel

on observe les phénomènes de dilatation/contraction propres à la courbure

strictement négative. Nous nous sommes placés sur l'ensemble Qi des vecteurs

de rang un non errants, pour lesquels variétés stables et horosphères stables

coïncident. On récupère sur cet ensemble la structure de produit local et le

lemme de fermeture.

Cet ensemble Qj contient les vecteurs de rang un récurrents, d'après le
lemme de G. Knieper mentionné plus haut. Il est donc de mesure totale pour
toute mesure de probabilité invariante portée par les vecteurs de rang un,
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d'après le théorème de récurrence de Poincaré. Ce qui se passe hors de Qq

est invisible du point de vue des mesures invariantes, et le flot se comporte de

manière suffisamment proche d'un flot hyperbolique sur Qq, pour qu'on puisse
obtenir la généricité en restriction à Qj. Enfin, le lemme de fermeture montre

que les géodésiques périodiques de rang un sont denses dans l'ensemble des

vecteurs de rang un non errants, ce qui permet de conclure à la densité de

Qi dans TlM si Q TlM.
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