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L’Enseignement Mathématique (2) 57 (2011), 103-115

A SHORT GEOMETRIC PROCF
OF A CONIECTURE OF FULTON

by Nicolas RESSAYRE

ABSTRACT. We give a new geometric proof of a conjecture of Fulton about the
Littlewood-Richardson coefficients. This conjecture was first proved by Knutson, Tao
and Woodward using the Honeycomb theory (see [KTWO04]). A geometric proof was
given by Belkale in [BelO7b]. Our proof is based on the geometry of Hom cones.

1. INTRODUCTION

1.1 THE HORN CONJECTURE

We start with a question first considered by H. Weyl [Weyl2] in 1912:

What can be said about the eigenvalues of a sum of two Hermitian matrices,
in terms of the eigenvalues of the summands ?

Let H(n) denote the set of #» by » Hermitian matrices. For A € H(n),
we denote its spectrum by a(A) = (ay....,e,) € R? repeated according to
multiplicity and ordered so that ay > --- > a,. We set

Ay = {(a(A), a(B), a(C) ER™ : A, B, C € H(n) st. A+ B+ C =0}.

In 1962, Horn proposed a conjectural answer to Weyl’s question. Indeed,
Hom conjectured in [Hor6Z] an inductive description of A{r). We now
introduce notation in order to state the Horn conjecture. Set E(n) = R,
let E(n)™ denote the set of (oy, i, v) € E(n) such that o; > a1, % > B
and ~v; > vy for all § = 1,...,n — 1. Because of the trace, the points
(e, 3, v) in A(n) satisfy Zle(a; + 3+~ = 0. Let Ep(n) denote the
hyperplane of E(n) defined by this condition.
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104 N. RESSAYRE

Let P(r,n) denote the set of subsets of {1,...,n} with r clements. To
any { = {h < -+ < i} € Plr,m) we usually associate (see Section 4 for
details) a partiion Ay =@, —r > - > hH — 1) € ZL,. If J and K are two
other elements of P(r.n) then (Aj, Ay Ag — 2(n — rSl”) belongs to Z7" and
so to E(r). Note that (A, Ar, Ax — 2(n — )17 belongs to E(#)T and to Ey(r).

THE HORN CONJECTURE ([Hor62]).  Let (evi. 3i, 1) € Ea(n) N E()T . Then,
(ax;, 3.y belongs to Aln) if and only if for every r =1,....n—1, for every
(0, J,K) € Plr.n) such that

1) Ar, A Ag =200 = 11" € Al
the following inequality holds :

) i+ B+d> m<o.

icl = keK

Note that this conjecture implies that A(n) is a closed convex polyhedral
cone. This fact is a consequence of convexity results in Hamiltonian geometry
(see [Kir84]). The combination of a theorem of Klyachko [Kly98] with a
theorem of Knutson-Tao [KT99] implies the truth of this conjecture (see
Section 2 for details).

1.2  LITTLEWCOD-RICHARDSON COEFFICIENTS

Recall that the imreducible representations of GL,.(C) (or U.(C) if you
want to work with a compact Lie group) are indexed by sequences A =
(A =2 A0 € Z (see for example [FH91, Lecture 6]). Denote by V), the
representation corresponding to A. Like any representation of GL.,(C), the
tensor product ¥V &V, of two given irreducible representations V) and V,
is a sum of irreducible representations. We define the Litflewood-Richardson
coefficients i, € N as the corresponding multiplicities:

&) Va® V=Y &,V

v
The Knutson-Tao theorem [KT99] was previously known as the
SATURATION CONJECTURE. {f, for some n >0, c}f, #0 then c, #0.
This note is about another relation between the Horn conjecture and the

sequences of stretched Littlewood-Richardson coefficients ; that is the sequences
(X n#)n € N. Namely, we will prove the following
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SHORT GEOMETRIC PROOF OF A CONJECTURE OF FULTON 105

FULTON CONJECTURE. for any n >0, 5, =1 = 1.

$7 —
ninp T

This conjecture was first proved by Knutson, Tao and Woodward [KTW04]
using the Honevcomb theory. A geometric proof was given by Belkale in
[BelO7b]. The aim of this note is to give a short proof of this conjecture
based on the geometry of Horn cones.

The proof of the Horn conjecture is much more involved than its statement.
In Section 2, we give an idea of the history of this proof and the subjects
interplaying with it. Section 3 is concerned with the codimension one faces
of the Horn cones. Sections 2 and 3 are mainly expository; we give proofs
only when elementary linear algebra allows it. The last section is our proof
of Fulton’s conjecture.

2. SCHUBERT CALCULUS AND THE HORN CONJECTURE

21 SCHUBERT CALCULUS

Let Gr(a,b) be the Grassmann variefy of a-dimensional linear subspaces
Lof V=C* letF: 0} =R CFH CFR C CFuys=V bea
complete flag of C°T¥ (ie F;isa i-dimensional subspace of V). The relative
position of L & Gr(a,b) and F. defines a partition of Gr(a,b) which is a
cellular decomposition and allows one to describe the topology of Gr(a, b).
More precisely, for any subset { = {i1y < .-+ < i} of cardinality a in
{L,...,a+b}, we define the Schubert variety i(F.) in Gria, b) by

Qu(F.) = {L € Gr(a,b) : dim(Z. N Fy > jfor 1 <j=< a}.

The open subset of €;(F.) defined by dim(L MF)=j for any j is denoted
by €7(F.); it is isomorphic to some affine space. The Poincaré dual of the
homology class of £;(F.) does not depend on F.; it is denoted by 7. The
o;’s form a Z-basis for the cohomology group:

H*(Cr(a,b),Z) = @ Zo;.
1EP(a.a+b)

Now let I, J bein Pla,a+5b). By expanding o;.c;, we define the structure-
coefficients ¢& of the cup product in the Schubert basis:

e E K
7075 — CyUg -

K
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106 N. RESSAYRE

The class [pt] of the point generates H*¥(Gr(a, b), Z). For K in Pla,a+b),
we define KV by: i ¢ KY if and only if a+b+1—i € K. Then, s and ogv
are Poincaré dual, that is ox.oxv = [pt]. So, if the sum of the codimensions
of €, (F.), €;(F.) and Q;(F.) equals the dimension of Gr(a,b), we have

KV
1.05.08 = ¢y [ptl.

The following result gives a simple interpretation of the integers C‘U and in
particular shows that they are nonnegative :

THEOREM 1 (Kleiman [Kle74]). Make the above assumption about the
codimensions of Qy, Q; and Q. Then for flags F., G. and H. in general
position,

CF) NG N QR(H.) = QF(F) N QNG NQLH.)

; Voo
consists of ¢y points.

22 PRODUCING INEQUALITIES FROM SCHUBERT CALCULUS

A spectrum or a partition (m = -+ > ) is said to be regular if the
;s are pairwise distinct. Let A be an » x # Hermitian matrix with a regular
spectrum . Let [ € P(r,n), for some positive integer r < n. We are going
to explain how to express Eiei rv; as an extremum (see inequality (2)).

To A, we associate the complete flag A C --- C A,_1 C C”?, where
A; is the sum of the 7 eigenlines of A with the i largest eigenvalues (well
defined for o regular). We also consider the following Schubert variety of
the Grassmannian Gr(r,n) of r-dimensional subspaces of C”:

QA = {V € Gr(r,n) © dim(VNA) = #IN{L,...,i}), 1 <i<nal

For any linear subspace V of C" the Rayleigh trace Ra(V) is defined
to be the trace of the endomorphism pyv o Ajy, where py is the orthogonal
projection onto V.

THECOREM 2 ([HZ62]). If the spectrum of A is regular, we have

Jmn Ra(V) = i),

ici

Moreover, the minimum is aftained when V is the sum of the eigenlines
corresponding to the eigenvalues o;(A) for i € 1.
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SHORT GEOMETRIC PROOF OF A CONJECTURE OF FULTON 107

Let A°(nm) denote the set of triples of regular elements in A(n). We now
state the first relation between Schubert calculus and the Horn cone.

THEOREM 3 ([Tot94, HR93]). Let I, J and K be in P(r.n) such that
cfrv + 0. Then, inequality (2) holds for any point in Horn(n).

Proof. We admit that A(n) spans Eo(n). This implies that A°(n) is dense
in A(n); in particular, it is sufficient to prove the theorem for points in A°(#).
Let A, B and C be three Hermitian matrices with regular spectrum such that
A+ B+ C=0. Since gy.050r #0, Theorem 1 implies that

QA M Qy(B) N Qg(C)
is not empty. Let ¥, belong to this intersection. Theorem 2 implies that
@ oA B0 =) )+ Y BB+ Y WO

icl jer kek
(5 < V.IE%,T(IA) RA(V) + vénszijr(lB) Rp(V) + Véngiklga Re(V)
(©) = Ri(Vy) + Rp(Vo) + Be(Vy)

N < Rarpic(Vp)=0.

23 A COMPLETE SET OF INEQUALITIES FROM SEMISTABILITY

In 1998, Klyachko proved that the inequalities given by Theorem 3 are
sufficient to characterize A(n):

THECREM 4 ([Kly98]). Let (o, 3, v) € Eo(r) N EmT . Then (oy, 5, %)
belongs to Aln) if and only if for every r = 1,...,0n — 1, for every
(,J,K) € Plr,n)* such thai

(8) k2o,
the following inequality holds :

© S +d 4+d n<o.

el jer kEK

We are going to explain one ingredient used by Klyachko. Consider the
following basic question:

Given two irreducible representations Vs and V,, of GL,, what are the
irveducible subrepresentations of Vy @V, ?
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108 N. RESSAYRE

Let At be the set of A= (A > - > A,y € Z". We set
LR(GL,) = {(A i, ) € AYY - (Vi V, & V,) £ {0}].

Answering the above question is equivalent to describing the set LR(GL,).
Indeed, (Vy2V, @Kj)GLn # {0} if and only if V,, is a submodule of V)&V,
if and only if ¢f, # 0.

Let Fi(n) dencte the variety of compieie flags in C" acted upon by
GL,,. The Borel-Weil Theorem shows that 1, can be obtained as the module
of regular sections of some GL,-linearized line bundle L. In particular,
(Vy @V, ® V)% #£ {0} if and only if some line bundle on Fin)® admits
nonzero GL,-invariant sections. Now, the existence of some positive & such
that (kA, ku, k) € LR(GL,,) can be interpreted as the existence of semistable
points for some action of GI.,. This existence can be verified by linear
inequalities using either slopes of vector bundles or the Hilbert-Mumford
theorem. In Klyachko’s paper, the inequalities (9) are understood as inequalities
between slopes of toric vector bundles. The Kempf-Ness theorem [KN79]
shows that this existence is equivalent to the fact that 0 belongs to the image
of a moment map for some Hamiltonian action of {/,. Making this discussion
more precise, we finally obtain the following:

THEOREM 5. Let (A, p.v) be a triple of nonincreasing sequences of n
rational numbers. Then, (A, 1) € Hor(r) i and only if (kX ku, kv) €
LR(GL,) for some positive integer k.

24 THE ROLE OF THE SATURATION CONJECTURE

Note that the only difference between the Homn conjecture and Theorem 4
is that condition (1) was replaced by condition (8). The inductive nature of
condition (1) is mainly explained by Theorem 5 and the following classical
result of Lesieur (see [Lesd7]):

(10) Ble= B, »

where A; is defined in the introduction. Putting all these remarks together,
the missing piece to obtain the Horn conjecture is precisely the saturation
conjecture as stated in the introduction. In 1999, Knutson-Tao proved this
conjecture using a new model expressing the Littlewood-Richardson coefficient
cf,, as the number of integral points in some polytope (namely, the Honeycomb
model). Then, Belkale gave a geometric proof in [Bel0O6] using mainly
the interpretation of the Littlewood-Richardson coefficients in terms of the
cohomology of the Grassmannians. Derksen-Weyman gave a proof in [DWO0O]

L’Enseignement Mathématique, t. 57 (2011)



SHORT GEOMETRIC PROOF OF A CONJECTURE OF FULTON 109

using an interpretation of the problem in terms of representations of quivers.
In [KMO8], Kapovich-Millson gave a proof using the Littelmann path model to
translate the problem into geometric terms in some Bruhat-Tits buildings.

3. FACES oF A(m)

3.1 DELETING INEQUALITIES

For n =3, 4. 5 and 6, the Horn conjecture describes A(n) by respectively
18(=6412), 50(= 9+41), 154 = 124142) and 537(= 154-522) inequalities.
In the sums, the first term corresponds to the inequalities of E{n)* and the
second one to the inequalities (2). Using a computer software on convex
geometry, one can verify that for n = 3,4, 5 and 6, the cone A(n) has
respectively 18, 50, 154 and 536 faces of codimension one. So the Horn
conjecture gives one redundant inequality for n = 6. This is

toastoas+Hht+Mh+5+rtut <0,

This inequality corresponds to the coefficient ¢}, =2 with = {2, 4, 6}. In
2000, Belkale improved Theorem 4 as follows:

THEOREM & ([BelO1]). The point (oy, %, v € Eoln) O Em)T belongs to
An) if and only if for every r =1,....n — 1, for every (I,J,K) € P(r, n)?
such that
(1 K,

the following inequality holds :

(12) Sw+d g+ w<o.

el jed kER

We are now going to explain with the material already introduced why
Theorem 6 should be true. Let /, J and K be such that cﬁv = 0. In Theorem 4,
we can forget inequality (9) if when you saturate it you obtain no point in
A®(n). So, let us assume that there exist three Hermitian matrices A, B and
C with regular spectrum such that A+ B+ C =0 and

(13) ST Y 8B+ WO =0,

el jer kER

Arguing as in the proof of Theorem 3, we obtain that any point V in
the intersection £2;(A) M &2,(8) N Qx(C) satisfies Zie!“i(A) = R,(V). Now,
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110 N. RESSAYRE

Theorem 2 implies that V is the sum of the eigenlines corresponding to [f.
This proves that £;(A) N Q(B) N QLx(C) is reduced to one peoint. To obtain
Theorem 6, it remains to prove that the intersection is transverse.

32 THE KNUTSON-TAC-WOODWARD THEOREM

In 2004, Knutson-Tao-Woodward proved that Theorem 6 is optimal, in the
sense that no inequality can be deleted.

THEOREM 7. The hyperplanes «; = i1, 3 = i1 and v = i
spanned by the codimension one faces of E(n)T infersect A(n) along faces
of codimension one.

For any I.J and K in P(r,n) (for some 1 < r < n— 1) such that
K =1, the hyperplane 2ot @it 28t ek = O intersects A(n)
along a face Fuyx of codimension one intersecting A°(n).

The Knutson-Tao-Woodward proof uses their Honeycomb model. In
[Resl0], we give an alternative proof using the Geometric Invariant Theory
viewpoint. To prove this result, we have to produce points in A(n) which
satisfy equality (13). In [ReslO], these points are interpreted as line bun-
dles on some product of manifolds that have nonzero invariant sections (see
Section 2.3). We produce such line bundles by methods of algebraic geometry.

3.3 DESCRIPTICN OF THE FACES OF A(nm)

Let {,J and K be in P(r,n). Define the linear isomorphism ppx by:

En)— E B ER—F)
(l’l‘ i u) — (((l )161’1 ( 3 )JE.I ( !)JEK) —+ (((l )xgj' (3 )ggEJ (Af )xgEK)

This isomorphism puts together the eigenvalues (ey)ic;. We assume that
cf,V # 0. Then, by Theorem 3 inequality (2) holds for any point in A(n).
Consider the associated face (perhaps of small dimension):

14 Fix={@ 8, NEMD Y o+ Y G+ w =0}

iel jes kER

We can now describe Fpx in terms of smaller Horn cones. Indeed, we
will prove that the points of Fjy correspond to simultaneously block diagonal
matrices as in equation (15). Let E(mytt denote the open convex cone in
E(n) consisting of regular triples in E(n)™.

L’Enseignement Mathématique, t. 57 (2011)
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PROPOSITION 1. Recall that &' # 0. Let (e, 3,7) € E(n)" . Then,
) If purlo, 3,%) € M) X Aln — 1) then (o, 3,7) € Fux -
i) Conversely, if (o, 3,7) € FuxNEMTT then oo, 3,7) € AP xAn—r).

Proaf. Assume that prrla, 3,7v) € AG) x Aln—r). Let A B'.C' € H(r)
and A”,B" C" ¢ H@n—r) suchthat A’ + B+ C' =0 and A" + B+ C" =0
whose spectrum correspond to ppx(e, 3.v). Consider the following three
matrices of H(n):

A0 B0 0
(15) A(O A”)’B(O B”)' C(O C”)'

By construction, e is the spectrum of A and >, = (A", and similarly
for B and C. We deduce that (o, 3, %) € Fux.

Conversely, let (o, 3. %) € Fpr N EMTT. It remains to prove that
pur(c, 3,70 € Al X Aln — ).

Let us now choose three Hermitian matrices A, B and C with spectrum
a, 3 and -~ and such that A+ B+ C = 0. We use the notation of the
proof of Theorem 3. By assumption, @pg(A,B,C) = 0 and inequality (6)
becomes an equality. Thus, Ra(Vy) = minyeg,u Ra(V). Now, since v is
regular by assumption, Theorem 2 implies that Vg is the sum of the eigenlines
of A corresponding to f. Similarly, Vp is stable by B and C and the
spectrum of the restrictions is respectively (5);cr and (wier. We deduce
that ((odicr, (3Dicr, (ick) belongs to A(r). By considering the restrictions
of A, B and C to the orthogonal subspace of V,, we obtain similarly that
(Coidigr, (Fdigr, (idigr) belongs to Aa —r).

REMARK. The second assertion of Proposition 1 holds without the
assumption of regularity on «, 3 and -. In other words, the first assertion
is an equivalence. This fact is more difficult to prove and is not useful here.

CORCLLARY 1. Let I,J and K be as in the proposition. Then, if Fix
contains regular triples, it has codimension one. In particular, c}? =1.

Proaf. By Proposition 1, Fyx MEMYTT is isomarphic to an open subset
of A(r) X Aln—r). So, Fyr has codimension 2 in £(n) and so codimension
one in A(n). Now, Theorem 6 implies that c}'f,\ =1,

REMARK. Corollary 1 is proved in [Res10, Theorem &] by purely geometric
invariant theoretic methods.
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112 N. RESSAYRE

4. PROCF OF THE FULTON CONJECTURE

Let A, ¢+ and v be three partitions (with at most » parts) such that ¢{ =1

and let N be a positive integer We have to show that ¢}y g =L

Strategy of the proof. The fact that o w7 O 18 a direct consequence
of the Borel-Weil Theorem. By the Lesieur Theorem (see equation (10)) and
Theorem 7, the coefficient cf — equal to one corresponds to some face F
of some Hom cone. By interpreting the conclusion cjy np = 1 in similar
terms, we have to prove that a certain face of some Horn cone also has
codimension one. Producing points on this face becomes a game with block

diagonal matrices.

In the paragraph just before Theorem S, we already mentioned that by
the Borel-Weil Theorem, if cf w = 1 then there exists some GL.,-invariant
section ¢ of some line bundle £ on Fi(r). The fact that #®¥ is a nonzero
GL, -invariant section of £%N implies that )} w7 O

We draw the three partiions A, p and » in a same rectangle: we [ix
an integer m such that » — r is greater or equal to Ay, y41 and 4. Set
I={n—r+i—XN :i=1,...,r} € Plr,n) in such a way A; = A with the
notation of the introduction Similarly, we associate J and K to g and ».
By equality (10), we have ¢ =1.

By Theorem 7, Fyxv is a face of codimension one of A(n). Let (A, B, C)
(resp. (A, B, C")) be three Hermitian matrices of size r (resp. n — r) such
that A+B+C =0 and A’ 4+ B’ +C" = 0. We assume that their spectra belong
to the relative interior of pyrv (Frrv).

Now let 7,77 and K" be the three subsets of r+N(n—r) of cardinality r
corresponding to the three partitions NA, N and Ny whose Young diagram
is contained in the rectangle with r lines and N(n — r) columns. Since
C%KN;L # 0, we can consider the face Fprpig of Alr + N(n —r)) as in
Proposition 1. By Corollary 1, it remains to prove that Fpejpegev intersects
E(r+ Nin — rt+.

Consider N generic perturbations (A!, 8!, CH of (A", B',C") satisfying
Al + Bl + C! = 0. Consider now the block diagonal matrix A" of size
r+ N(n—r) with blocks A, A],..., A}y ; and similarly B” and C". We have
AH +BH +C” — O

It remains to prove that the point of A(r + N(n — 1)) corresponding to
(A", B" C"y belongs to Fyuyigev . By Proposition 1, it is sufficient to prove
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SHORT GEOMETRIC PROOF OF A CONJECTURE OF FULTON 113

that the spectrum of A (resp. B and ) consists of the eigenvalues of A”
(resp. B and ") indexed by [ (resp. J” and K"V).

Let us explain how to recover [ from JA;. First, draw the Young diagram of
Ar. Consider the path from WS to EN ; it has length ». Mark each horizontal
step by 0 and each vertical step by 1. We have just obtained a word of length
n containing r 17s: it is the characteristic function x; of f. We illustrate this
remark by Figure 1. This description of the map A; — [ implies that xp» is
obtained from y; by replacing each 0 by N ones.

EN
5 d y 1
Fr=4,n=9
@ t M=0G2323=1)
3 . . 1 x7 = 010011001
I = {2, 5,6, 9}
1 1
0
RAN
FIGURE 1
From Ay to {

Now, the spectrum of A” is obtained from the spectrum of A by replacing
each eigenvalue between two ones indexed by [ by N closed eigenvalues. We
deduce that (c:(A”))iep = ((A)idier. This implies that (c(A™), (B"), o (C))
belongs to Fpepegev, ending the proof of Fulton’s conjecture.

REMARK. As pointed out by B Belkale the construction of A is close
to the construction of W(N) in [Bel07a, p. 11].
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