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EXTREMAL PROPERTIES OF (EPDSTURMIAN SEQUENCES
AND DISTRIBUTION MODULO 1

by Jean-Paul ATLOUCHE and Amy GLEN

ABSTRACT. Starting from a study of Y. Bugeaud and A. Dubickas (2005) on a
question about the distribution of real numbers modulo 1 vie combinatorics on words,
we survey some combinatorial properties of (epi)Sturmian sequences and distribution
modulo 1 in connection to their work. In particular we focus on extremal properties
of (epi)Sturmian sequences, some of which have been rediscovered several times.

1. INTRCDUCTION

Not long ago, the first author came across a paper of Y. Bugeaud and
A. Dubickas [22] where the authors describe all irrational numbers & > 0O
such that the fractional parts {£6"}, n > 0, all belong to an interval of length
1/b, where b > 2 is a given integer. They also prove that 1/b is minimal,
i.e., for any interval [ of length < 1/b, there is no irrational number £ > 0,
such that the fractional parts {£6"}, n > 0, all belong to /. An interesting and
unexpected result in their paper is the following: the irrational numbers & > 0
such that the fractional parts {67}, n = O, all belong to a closed interval of
length 1/b are exactly the positive real numbers whose base b expansions are
characteristic Sturmian sequences on {k,k+1}, where k€ {0,1,...,b—2}.
We recall that Sturmian sequences (resp. characteristic Sturmian sequences)
are the codings of trajectories on a square billiard that start from a side
(resp. from a cormer) with an irrational slope; alternatively a Sturmian (resp.
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characteristic Sturmian) sequence can be obtained by coding the sequence of
cuts in an integer lattice over the positive quadrant of R* made by a line
of irrational slope (resp. a line of irrational slope through the origin), sce
Theorem 4 below for some other definitions.

We will see in particular that the combinatorial results underlying [22]
were stated several times, in particular by P. Veerman who proved Bugeaud-
Dubickas’ number-theoretical statement in the case b = 2 as early as 1986—
1987 (see [B5, B6]).

The structure of the paper is as follows. Section 2 gives the combinatorial
background of Bugeaud-Dubickas’ result, Section 3 gathers results on Sturmian
and episturmian sequences, Sections 4 and 5 address the relevant combinatorial
extremal properties (including the description of the lexicographic world) and
the history of their (re)discoveries, while Section 6 translates everything in
terms of distribution modulo 1.

2. THE COMBINATCRIAL BACKGROUND OF A RESULT
CF BUGEAUD AND DUBICKAS

The main result of Bugeaud and Dubickas [22, Theorem 2.1] will be
recalled in Section 6. Looking at the proof, we see that its core is a
result in combinatorics on words that is encompassed by Theorems 1 and 2
below.

21 STURMIAN SEQUENCES SHOW UP

In this section sequences take their values in {0,1}. We let T denote
the shift map defined as follows: if s := (5,),>0, then T(s) = T((5,),20) :=
(Sp+1)n0, and we let < denote the lexicographical order on {0, 1}N induced
by 0«<1.

THEOREM 1. An aperiodic sequence s = (5,)u>0 on {0,1} is Sturmian
if and only if there exists a sequence u = (4,),>0 on {0.1} such that Ou <
TH(s) < lu for all k& > 0. Moreover, u is the unique characteristic Sturmian
sequence with the same slope as s, and we have Qu = inf{Tk(s), k> 0}
and lu = sup{T*(s), k > 0}.
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THECREM 2. Ar aperiodic sequence @ on {0,1} is a characteristic
Sturmian sequence if and only ff, for all k> 0,

Ou < Th(u) < lu.
Furthermore, we have Ou =inf{T*(w), k > 0} and 1u = sup{T*(nw), & > 0}.

[Theorem 2 is an easy consequence of Theorem 1. For a proof of Theorem 1,
see Section 5.1.]

Actually Theorem 2 was known prior to [22]. G. Pirillo (who published it
in [73]) indicated it to the first author who suggested that this could well be
already in a paper by §. Gan [36] under a slightly disguised form (which is
indeed the case). About eight years earlier J. Berstel and P. Séébold [19] and
also J.-P. Borel and F. Laubie [20] proved one direction of Theorem 2, namely
that characteristic Sturmian sequences satisly the inequalities On < TH(u) < lu
for all £ > 0. In fact, it seems that both theorems were proved for the first
time (including the number-theoretical aspect for the case of base 2) by
P Veerman [85, 86]. For more on the history of that result (including other
papers like [23]), see Section 5 (in particular Section 5.4).

2.2  (ENERALIZATIONS

Two directions for generalizations are possible. One is purely combinatorial
and looks at generalizations of Sturmian sequences; in particular episturmian
sequences, which share many properties with Sturmian sequences and have
similar extremal properties. In this direction, characterizations of finite and
infinite (epi)Sturmian sequences via lexicographic orderings have recently been
studied (see [38, 39, 41, 49, 52, 73, 74, 75]). The other type of generalization
i1s number-theoretic and looks at distribution modulo 1 from a combinatorial
point of view. Recent papers of Dubickas go in this direction; we cite two of
them showing an unexpected occurrence of the Thue-Morse sequence [30, 31]
(sec Section 6).

3. MORE ON STURMIAN AND EPISTURMIAN SEQUENCES
Here we give some background on Sturmian and episturmian sequences.

3.1 TERMINOLOGY & NOTATION

In what follows, we shall use the following terminology and notation from
combinatorics on words (see, e.g., [66]).
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Let A denote a finite non-empty alphabet. If w = x1x2-- - X, 18 a finite
word over A, where each x; € A, then the length of w is |w| = m,
and we let |w|, denote the number of occurrences of a letter a in w. The
word of length O is called the empsy word, denoted by =. The reversal w
of w is given by w = xuxm_1---x1, and if w = 2, then w is called
a palindrome.

An infinite word (or simply sequence) x over A is a sequence indexed
by N with values in A, ie., x = xgx1x2---, where each x; € A. A finite
word w is a factor of x if w — ¢ or w—x;---x; for some {, j with { <j.
Furthermore, if w is not empty, w is said to be a prefix of x if i =0, and
we say that w is right (resp. lef) special if wa, wh (resp. aw, bw) are
factors of x for some letters a, b e A, a#£ b. The set of all factors of x is
denoted by F(x), and F,(x) denotes the set of factors of length » of x, ie.,
Fpx) .= F(x) N A". Moreover, the alphabes of x is Alph(x) .= F(x) N A.
A factor of an infinite word x is recurrent in x if it occurs infinitely many
times in x. The sequence x itself is said to be recurrent if all of its factors are
recurrent in it. Moreover x is said to be uniformly recurrent (or minimal) if it
is recurrent and if, for any factor, the gaps between its consecutive occurrences
are bounded.

If u, v are non-empty words over A, then ¢* (resp. uz™) denctes the
periodic (resp. wultimately periodic) infinite word vewv--- (resp. wowve---)
having as a period. An infinite word that is not ultimately periodic is said
to be aperiodic.

b

For any infinite word x = xgxix2x3 ---, recall that the shift map T is
defined by 7(x) = x;xx3---. This operator naturally extends to finite words
as a circular shift by defining T'(xw) = wx for any letter x and finite word w.

The set of all finite (resp. infinite) words over 4 is denoted by A*
(resp. A“), and we define AT = A*\ {}, the set of all non-empry words
over A.

A morphism on A is a map ¢: A* — A" such that (uv) = (e(e)
for all words u, v over A. Clearly a morphism on .4 is uniquely determined
by its restriction to A (|4 A — A%).

32 STURMIAN SEQUENCES

Sturmian sequences were introduced in [71]. They are in some sense the
“least complicated” aperiodic sequences on a binary alphabet, as is evident
from Lemma 3 and Theorem 4 below. The following lemma can essentially
be found in [71].
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LEMMA 3 ([711). Let s be a sequence taking exactly a > 2 distinct
values. Let plk) be the number of distinct factors of length k& of s (the
function k — p(k) is called the block-complexity of the sequence s). Then
the following properties are equivalent.

(i) There exists ko > 1 such that plky + 1) = plko).

(i) The sequence (p(k)y»1 is wltimately constant {ie., constant from some
index on).

(iii) There exists M such that plk) <M for all k> 1.

(iv) There exists ky > 1 such that plky) <k +a—2.

(v) Let glk) = plk) — k. There exists kp > 1 such that glks + 1) < glk).

(vi) The sequence s is ultimately periodic.

Proof. For any sequence, we clearly have p(k+ 1) > p(k) for all £ > 0.
This implies on the one hand that properties (ii) and (iii) are equivalent. On
the other hand, this implies the equivalence of properties (i) and (v). Namely
letting g(k) := p(k) — k, we have gk + 1) — glk) = plk+ 1) —plk) — 1.

The implications (vi) = (i) = (iv) are straightforward. It thus suffices
to prove that (iv) = (1), and (i) = (vi).

(iv) = (i): if (i) is not true, then the sequence (p(k)h»q is (strictly)
increasing. Thus, for all £ > 1, one has p(k + 1) > p(k) + 1. Hence, by an
easy induction, one has pk) > p()+k—1=a+k—1,1e, py>a+k—2,
foral £>1.

(1) = (vi): the equality p(ky+1) = p(ky) shows that s has no right special
factor of length & . But this implies in turn that s has no right special factor
of length & + 1 (such a factor would give a right special factor of length kg
by removing its first letter). Iterating shows that s has no right special factor
of length k, for any &k > ky. This implies that s is ultimately periodic (s can
be written as a concatenation of words of length &y and each of these words
must always be followed by the same word).

We see from Lemma 3 above that an aperiodic sequence taking exactly
a distinct values must satisfy pk) > k+a — 1. The “simplest” aperiodic
sequences would thus be sequences with the smallest p(k), i.e., sequences (if
any) satisfying p(k) = k41 for all k£ = 1. Such sequences do exist; they are
called Sturmian sequences. They are characterized in Theorem 4 below (see,
e.g., [66]). Note that Sturmian sequences admit several equivalent definitions
and have numerous characterizations; for instance, they can be characterized
by their palindrome or return word structure [28, 54].
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THEOREM 4. For any infinite word s over {a,b}, the following properties
are equivalent. If § satisfies these properiies, then s is called Sturmian.
+ The number of factors of s of length n is equal to n+ 1, for all n > 1.
* There exisi an irrational real number « > 0 and a real number p,
respectively called the slope and the intercept of s, such that s is equal
to one of the following two infinite words :

Sapo 5 .p: N — {a. b}

x

defined by

6o () = a if [n+Da+p|—|ne+p| = |a
= b if |(n+ Da+pl — [no+p] # o]

¢ oy d? ¥ etDatp]—[ratp]= o]
e if |—(n + D + p] - ’—m’.lf + p—‘ = LC\“J

Jor v > 0 (where |x| denotes ihe greatest integer < x and [x] denofes
the least integer > x). Moreover, s is said fo be characteristic Sturmian
if p=c, in which case § = $,., =5, ..

EXAMPLE 5. Taking a=0, b=1, and o = p = (3 —/5)/2, we get the
characteristic Sturmian sequence 01001010..., which is called the (binary)
Fibonacci sequence.

REMARK 6. By definition it is clear that any Sturmian sequence is over a
2-letter alphabet. It also follows from Lemma 3 that Sturmian sequences are
aperiodic. Note that if we choose a to be rational in the above definition, we
obtain (purely) periodic sequences, referred to as periodic balanced sequences
— see below. (Some authors also use the name periodic Sturmian sequences.)
We will call characteristic periodic balanced sequences those obtained with
a rational slope a > 0 and intercept p = & in Theorem 4. Also note
that the names “slope” and “intercept” refer to the geometric realization of
Sturmian words as approximations to the line y = x4 p (called mechanical
words, see, e.g., [66, Chapter 2]). Finally, note that, given an irrational number
« € (0,1), the characteristic Sturmian sequence § = (s,),>1 of slope « is
given by s, = 0 if (n+ 1)(1 — @) modulo 1 is in the interval [0,1 — a)
and s, = 1 otherwise, for # > 1. For example, the infinite Fibonacci
word f = (fy)x>1 = 01001010010010100101001001 - - (which has slope
3 — \/3)/2) is given by f, = 0 if 4+ 1X(V5 — 1)/2 modulo 1 is in the
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interval [0,('\/5 —1)/2) and f, =1 otherwise, for n > 1. More generally, a
Sturmian sequence of slope o and intercept p is given by a coding over a
2-letter alphabet of the orbit of p under the action of the irrational rotation
R: x—=x+a (mod 1). A good reference for this description is [76, Chapter 6].

All Sturmian sequences are “balanced” in the following sense.
DEFINITION 7. A finite or infinite word w over {a,b} is said to be

balanced if, for any factors u, v of w with |u| = |v|, we have |\u|b—|u|b‘ <1
(or equivalently |[ul, — |o|,| < 1).

The term “balanced” for this property is relatively new; it appeared in
[19, 18] (see also [66, Chapter 2]), and the notion itsell dates back to
[71, 25]. [Note that the French term is “équilibré”.] In the pioneering paper
[71], balanced infinite words over a 2-letter alphabet are called “Sturmian
trajectories” and belong to three classes corresponding to: Sturmian; periodic
balanced; and a class of non-recurrent infinite words that are ultimately periodic
(but not periodic), called skew words. That is, the family of balanced infinite
words over {a,b} consists of all the Sturmian and periodic balanced infinite
words over {a, b} (which are recurrent), and the (non-recurrent) skew infinite
words over {a, b}, the factors of which are balanced. In particular, we have the
following result due to Morse and Hedlund [71], and Coven and Hedlund [25]
(see also [66, Theorem 2.1.3]):

THECREM 8. A binary sequence is Sturmian if and only if it is balanced
and aperiodic.

NOTE. A description of skew words is given in part (ii) of Theorem 21.
Simple examples are infinite words of the form a®ba®, where # € N.

It is important to note that a finite word is finife Sturmian (i.e., a factor
of some Sturmian word) if and only if it is balanced [66, Chapter 2,
Proposition 2.1.17]. Accordingly, balanced infinite words are precisely the
infinite words whose factors are finite Sturmian. This concept is generalized
in [41] by showing that the set of all infinite words whose factors are
finite episturmian consists of the (recurrent) episturmian words and the (non-
recurrent) episkew infinite words (i.e, non-recurrent infinite words, all of
whose factors are finite episturmian), see Section 3.3.2.



372 I-P ALLOUCHE AND A. GLEN

For a comprehensive introduction to Sturmian words, see for instance
[9, 66, 76] and references therein. Also see [23, 45, 75, 83, 84] for further
work on skew words.

We end this section with a simple and useful proposition which deserves
to be better known. Its two parts were suggested several years ago to the
first author in the case of binary sequences by J. Cassaigne and J. Berstel
respectively (private communications).

PROPOSITION 9. [Lef s be a sequence taking exactly a > 2 disiinct values
and let p(k) be the number of distinct factors of length k of s.

(1) If s is aperiodic and admits at most one left special factor of each length,
then one has k+a—1 < plk) <{(a— Dk+1 for all k> 1. In particular
an aperiodic binary sequence which has at most one lefi special factor
of each length is Sturmian.

(1) If there exists ky > 1 such that plk) =k+a—1 for all k > &y, then
plk)=k+a—1 forall k> 1.In particular if a binary sequence satisfies
pk)y=k+1 for all k larger than some ky, then it is Strmian.

Proof. (1) Using part (iv) of Lemma 3, we have p(k) > k+a—1 for all
k> 1, since s is aperiodic. On the other hand, erasing the first letter of all
factors of s of length &+ 1 gives all factors of length 4. There is at most
one of these factors of length & which can be obtained from distinct factors
of length £+ 1 (since s admits at most one left special factor of length &),
and if so there can be at most a such distinct factors of length £+ 1 (since
a left special factor can be extended on the left by at most @ letters). Hence
plk+1)—plk) <a—1 forall £> 1. By telescopic summation, this implies
pRY<la—Dk—-D+ply=(a@— Dk -1)+ta=ak—k+1.

(ii) Let %k be the least integer > 1 such that for all & > k, one
has p(k) = k+a — 1. Suppose that &y > 1, and let ¢ := & — 1. Then
p&y £ L£+a—1. But pify < plly) = kg +a—-1 = £+ a. Hence either
piy =£¢+a, or pify < £+ a— 2. In either case s would be ultimately
periodic (by Lemma 3 (i), resp. by part (iv) of Lemma 3), a contradiction.
Hence k; = 1 and the claim about Sturmianicity follows from Theorem 4.

3.3 EPISTURMIAN SEQUENCES

It is well known that the set of factors of any Sturmian sequence is closed
under reversal, i.e., if u is a factor of a Sturmian sequence s, then its reversal
I is also a factor of s (e.g., see [68] or [66, Proposition 2.1.19]). In fact:
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THEOREM 10. An aperiodic binary sequence s is Sturmian if and only if
F(8) is closed under reversal and s admits exactly one left special factor of
each length.

Proof. Let s be an aperiodic binary sequence. First suppose that s is
Sturmian. For a proof of the fact that F(s) is closed under reversal, see [68]
or [66, Proposition 2.1.19]. Now we will show that s has exactly one left
special factor of each length.

Let p(n) denote the number of factors of length # of s. Since F(s) is
closed under reversal, a factor of s is left special (resp. right special) if and
only if its reversal is right special (resp. left special). Hence, for all n > 1,
the difference p(rn + 1) — p(n) is equal to the number of left special factors
of s of length n. Therefore, since p(n + 1) — p(sy = 1 for all n > 1 (by
Theorem 4), s admits exactly one left special factor (or equivalently, right
special factor) of each length.

The converse follows immediately from part (i) of Proposition 9.

Inspired by results of this flavour, Droubay, Justin, and Pirillo [27, 51]
introduced the following natural generalization of Sturmian sequences on an
arbitrary finite alphabet 4.

DEFINITICON 11 ([27]).  An infinite word ¢ € A“ is said to be episturmian
if its set of factors F(t) is closed under reversal and ¢ admits at most one
left special factor (or equivalently, right special factor) of each length.

NOTE. When A is a 2-letter alphabet, this definition gives the Sturmian
words as well as the periodic balanced words.

In the seminal paper [27], episturmian words were defined as an extension
of standard episturmian words, which were first introduced as a general-
ization of characteristic Sturmian words using iterated palindromic closure
(a construction due to de Luca [26]).

The palindromic right-closure w™ of a finite word w is the (unique)
shortest palindrome beginning with w (see [26]). More precisely, if w = uw
where v is the longest palindromic suffix of w, then w'? = wwii. For
example, (tie)'™ = tie it. The iterated palindromic closure funciion [30],
denoted by Pal, is defined recursively as follows. Set Pal(s) = ¢ and, for
any word w and letter x, define Paltwx) = (Pal(w)x)? . For instance,
Pallabey = (Pallab)e)™? = (abac)P = abacaba. Note that Pal is injective:
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and moreover, it is clear from the definition that Paf(w) is a prefix of Pal(wx)
for any word w and letter x. Hence, if v is a prefix of w, then Pallv) is a
prefix of Pal(w).

THEOREM 12 ([27]). For an infinite word s € A, the following properties
are equivalent.

(1) There exists an infinite word A = x130x5 ... (x; € A), called the directive
word of s, such that s =lim, .. Pallxixz -+ - X,).

(1) F(s) is closed under reversal and all of the left special factors of s are
prefixes of it.

An infinite word s safisfying the above properties is said to be standard

episturmian (or epistandard for short).

The above characterization of epistandard words extends to the case of
an arbitrary finite alphabet a construction given in [26] for all characteristic
Sturmian words.

EXAMPLE 13. The epistandard word r directed by A = (abe)™ is known
as the Tribonaceci word; it begins in the following way :

r = abacabaabacababacabaabacabacabaabaca - - -

where each palindromic prefix Pal(x; - --x,_1) is followed by an underlined
letter x,. More generally, for k& > 2, the k-bonacci word is the epistandard
word over {a,a,....a;} directed by (aaz - ap)®.

REMARK 14. In [27], Droubay et al. proved that an infinite word ¢ is
episturmian if and only if F(f) = F(s) for some epistandard word s. They also
proved that episturmian words are uniformly recurrent; hence any such infinite
word is either (purely) periodic or aperiodic. The aperiodic episturmian words
are precisely the episturmian words that admit exactly one left special factor of
each length. In fact, an epistandard word s (and hence any episturmian word
with the same set of factors s) is periodic if and only if exactly one letter
occurs infinitely often in the directive word of s (see [51, Proposition 2.9]).

The notion of a directive word (as defined for epistandard words in The-
orem 12) extends to all episturmian words with respect to episturmian mor-
phisms, which play a central role in the study of these words. Introduced first
as a generalization of Sturmian morphisms, Justin and Pirillo [51] showed that
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episturmian morphisms are exactly the morphisms that preserve the aperiodic
episturmian words (i.e., the morphisms that map aperiodic episturmian words
onto aperiodic episturmian words). Such morphisms naturally generalize to
any finite alphabet the Sturmian morphisms on two letters. A morphism ¢ is
said to be Sturmian if @(s) is Sturmian for any Sturmian word s. The set
of Sturmian morphisms over {a,b} is closed under composition, and con-
sequently it is a submonoid of the endomorphisms of {a,b}*. Moreover, it
is well known that the monoid of Sturmian morphisms is generated by the
three morphisms: (@&~ ab, b v a), (a +— ba,b — @), (a— b, b — a) (see
[19, 69]; see also Section 5.2 later).

By definition (see [27, 51]), the monoid of all episturmian morphisms is

generated, under composition, by all the morphisms:
o, Wgla) =a, P.(x) = ax for any letter x # a;
s 4 Uga) =a, V.00 = xa for any letter x £ a;
* #,: exchange of letters a and b.

Moreover, the monoid of so-called epistandard morphisms is generated
by all the ¢, and the 8, and the moncid of pure episturmian morphisms
(resp. pure epistandard morphisms) is generated by the #, and 1), only
(resp. the %, only). The monoid of the permutation morphisms (i.c., the
morphisms ¢ such that ¢(A) = A) is generated by all the .

Asg shown in [51], any episturmian word is the image of another episturmian
word by some pure episturmian morphism and any episturmian word can be
infinitely decomposed over the set of pure episturmian morphisms. This last
property allows an episturmian word to be defined by one of its morphic
decompositions or, equivalently, by a certain spinned directive word, which
is an infinite sequence of rules for decomposing the given episturmian word
by morphisms. See [42, 53] for recent work concerning directive words of
episturmian words.

REMARK 15. The shifi-orbii of an infinite word x € A% is the set
Ox) = {Tx), i > 0} and its clesure is given by

O = {y € A, Pref() € U PrefiTée) } |

where Pref(w) denotes the set of prefixes of a finite or infinite word w. Note
that for any infinite word ¢ and x € W, Fix) C F@. If, moreover, ¢t is
uniformly recurrent, then it follows that for each n > 1, F,(x) = F,(f), and
hence F(x) = F(t) for any x € 6 (see for instance [76, Proposition 5.1.10]
or [66, Proposition 1.5.9]). This implies that @x) = O for any x € O
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in other words, O is a minimal dynamical system (see, e.g., [66, 76]).
Accordingly, since episturmian words are uniformly recurrent, the closure
of the shift-orbit of any epistirmian ¢ is a minimal dynamical system; in
particular, OB consists of all the episturmian words with the same set of
factors as t (see, e.g, [79]).

Note that if ¢ is aperiodic, then O6) contains a unique epistandard word
with the same set of factors as ¢, whereas if ¢ is periodic, O contains two
different epistandard words (see for instance [40, 42]).

33.1 STRICT EPISTURMIAN WORDS

DEFINITICN 16.  An epistandard word s (or any episturmian word with
the same set of factors as s) is said to be strict if every letter in the alphabet
of s occurs infinitely often in its directive word.

Strict episturmian words on & letters are often said to be k-sirict; these
words have (& — 1)n+ 1 distinct factors of length » for all # > 1 (as proven
in [27, p.549]) and they coincide with the k-letter Arnoux-Rauzy sequences,
introduced in [15] for &k = 3 and later defined for arbitrary & > 3 in [79].
In particular, the 2-strict episturmian words are exactly the Sturmian words
since these words have n + 1 distinet factors of length n for each n > 1
(recall Theorem <.

Note that any episturmian word takes the form ¢() with ¢ an episturmian
morphism and ¢ an Arnoux-Rauzy sequence (or strict episturmian word). In
this sense, episturmian words are only a slight generalization of Arnoux-
Rauzy sequences. For example, the family of episturmian words on three
letters {a.b,c} consists of the Amoux-Rauzy sequences over {a.b,c}, the
Sturmian words over {a, b}, {b,c}, {a,c} and their images under episturmian
morphisms on {a, b, c}, and periodic infinite words of the form »(x)*, where
¢ is an episturmian morphism on {a, b,c} and x € {a,b.c}.

332 EPISKEW WORDS. A finite word w is said to be finife Sturmian
(resp. finite episturmian) if w is a factor of some infinite Sturmian (resp. epi-
sturmian) word.

Recall from Section 3.2 that skew words are ultimately periodic (but
not periodic) infinite words, all of whose factors are finite Sturmian (or
equivalently, balanced). Over a 2-letter alphabet, skew words constitute the
family of non-recurrent balanced infinite words, whereas the recurrent balanced
infinite words consist of the Sturmian words and the periodic balanced words.
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Inspired by Morse and Hedlund’s [71] skew words, episkew words were
recently defined in [41] as non-recurrent infinite words, all of whose factors
are finite episturmian. A number of equivalent definitions of such words were
given in [41] (see also Theorem 21, to follow).

Episkew words were first alluded to (but not explicated) in [38]. Following
that paper, these words showed up again in the study of inequalities char-
acterizing finite and infinite episturmian words in relation to lexicographic
orderings [41]; in fact, as detailed in Section 5.1, episturmian words have
extremal properties similar to those of Sturmian words.

To learn more about episturmian and episkew words, see for instance the
recent surveys [17, 40].

4. EXTREMAL WORDS

Suppose the alphabet A is totally ordered by the relation <. Then we can
totally order A1 by the fexicographic order <, defined as follows. Given
two non-empty finite words u«, » on A, we have u < v if and only if either
i is a prefix of v (with u % v) or u = xar’ and v = xbv', for some finite
words x, ', +' and letters a, b with a < k. This is the usual alphabetic
ordering in a dictionary, and we say that u is lexicographically less than v,
This notion naturally extends to infinite words, as follows. Let & = wptgu - -
and v = worye -+, where u;, v € A, We define u < v if there exists an
index i > 0 such that u; = ¢; forall j=0,...,i—1 and u; < ;.

Let w be a finite or infinite word on A, and let & be a positive integer.
We let min{w|k) (resp. max(w|k)) denote the lexicographically smallest
(resp. greatest) factor of w of length & for the given order (where |w| > &
if w2 is finite).

If w is infinite, then it is clear that min(w|k) and max(w|k) are prefixes
of the respective words min(w|k 4+ 1) and max(w|k + 1). So we can define,
by taking limits, the following two infinite words (see [74]):

min(u) = kl;njlc min(w|k) and max(w) = klgrolc max(w|k).

That is, we can associate with any infinite word ¢ two infinite words min{#) and
max(¢) such that any prefix of min(# (resp. max(t)) is the lexicographically
smallest (resp. greatest) amongst the factors of ¢t of the same length.

For a finite word w on a totally ordered alphabet A, min(w) denotes
min(w|k) where & is maximal such that all min(w|p, j=1,2,...,k, are
prefixes of min(w|k). The word max(w) is defined similarly (see [417).
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The following definition, given in [41], will be useful in the next section,
where we survey recent work concerning extremal properties of {epi)Sturmian
sequences, particularly inequalities characterizing such words (finite and
infinite).

DEFINITION 17.  An acceptable pair for an alphabet A is a pair (a, <),
where a is a letter in A and < is a total order on .4 such that & = min(.4).

5. EXTREMAL PROPERTIES

In 2003, Pirillo [73] (see also [74]) proved that, for infinite words s on a
2-letter alphabet {a,b} with a < b, the inequality

(1) as < min(s) < max(s) < bs

characterizes the characteristic Sturmian words and characteristic periodic
balanced words.

REMARK 18. Characteristic periodic balanced sequences, which correspond
to the “Sturmian” sequences with rational slope o > 0 and intercept p = «
(see Theorem 4 and Remark ©), are precisely the sequences of the form
(Paliv)xy), where v € {a,b}* and {x,¥} = {a,b} (see for instance
[B, 17, 27]). Also note that if & is a characteristic Sturmian sequence, then
as = min(s) and bs = max{s). On the other hand, if s is a characteristic
periodic balanced sequence, then either:

+ as < min(s) and bs = max(s) when s takes the form (Pal(v)ab)*, or

+ gs = min(s) and max(s) < bs when s takes the form (Pal(v)ba)™ .
For example, the characteristic periodic balanced sequence s .= (Pallab)ab) =
{abaab)* satisfles

as = alabaab)’ < min(s) = (aabab)” and bs = blabaab)” = max(s),
whereas &' (= (Pal(ab)ba)”’ = (ababa)” satisfies
as’ = alababa)’ = min(s’) and max(s) = (babaa)” < bs' = blababa)® .

More generally, given two characteristic periodic balanced sequences s, s' of
the form s = (Pal(v)ab) and §' = (Pal(v)ba)” for some v € {a.b}*, we
have

min(s) = min(s) = (@Pal()b)” and max(s) = max(s) = (bPal(v)a)” .

See [8, 74] for more details.
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The preceding result of Pirillo concerning characteristic Sturmian words and
characteristic periodic balanced words (property (1)) encompasses Theorem 2
— one of the key properties underlying the main theorem in Bugeaud and
Dubickas’™ paper [22]. In fact, as mentioned previously, Theorem 2 was
known much earlier — in 1993, Berstel and Séébold [19] (as well as
Borel and Laubie [20]) proved one direction of the theorem, namely that
characteristic Sturmian words satisfy (1). This Sturmian extremal property
also resurfaced in 2001, under a different guise, in a paper of S. Gan
[36]. However, it seems that P Veerman [86] was actually the first to
prove (1) for Sturmian sequences in 1987, albeit from a symbolic dynamical
perspective and in an implicit way. A year prior, Veerman had already proved
in [85 Theorem 2] that characteristic Sturmian sequences have the above
extremal property; it was not until [86, Theorem 2.1] that he proved the
equivalence. Motivated by the combinatorics of the Mandelbrot set, Bullett
and Sentenac [23] reproved these results of Veerman, in the language of
ordered sets.

In this section, we shall first discuss the combinatorial work of Pirillo and
others in relation to the inequalities (1) and their generalizations. Following
this, we will consider in more detail the earlier work by Berstel and
Séébold [19], Gan [36], and Veerman [85, 86].

5.1 PIRILLO’S WORK CONTINUED

Continuing his work in relation to the inequalities (1), Pirillo [74] proved
further that, in the case of an arbitrary finite alphabet A, an infinite word
s on A is epistandard if and only if, for any acceptable pair (a, <), we
have

(2) as < min(s).

Moreover, s is a strict epistandard word if and only if (2) holds with strict
equality for any order [52].

In a similar spirit, Pirillo [75] defined fine words over two letters; that
is, an infinite word ¢ over a 2-letter alphabet {a,b} (& < b) is said
to be fine if (min(), max(#)y = (gs,bs) for some infinite word s. These
infinite words were characterized in [75] by showing that fine words on
{a, b} are exactly the Sturmian and skew infinite words (see Section 3.2).
Specifically :
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THEOREM 19. [let t be an infinite word over {a,b}. The following
properties are equivalent:

(i) t is fine,

(1) either t is Sturmian, or t is an ulimately periodic (but not periodic)
shift of an infinite word of the form p(x"vx*) for some € € N, where 11 is a
pure standard morphism on {a,b} and {x.y} = {a,b} {these words are the
skew words).

In other words, a fine word over two letters is either a Sturmian word or
an ultimately periodic (but not periodic) infinite word, all of whose factors
are Sturmian.

Pirillo [75] remarked that perhaps his characterization of fine words
could be generalized to an arbitrary finite alphabet; indeed, Glen [38] soon
generalized this result by extending Pirillo’s definition of fine words to more
than two letters. That is:

DEFINITION 20 ([38]). An infinite word ¢ on .A is said to be fire if there
exists an infinite word s such that min(#) = as for any acceptable pair (a, <.

NOTE. It is easy to see that Pirllo’s original 2-letter definition of a
fine word is a special instance of the above definition. Certainly, as there
are only two lexicographic orders on words over a 2-letter alphabet, it
follows from Definition 20 that a fine word ¢ over {a,b} (a < b) satisfies
(min(¢), max(t)) = (as. bs) for some infinite word s.

Glen [38] characterized these generalized fine words (given in Definition 20)
by showing that such an infinite word is either a strict episturmian word or
a strict episkew word. More precisely

THEOREM 21 ([38]). Let t be an infinite word with Alph(t) = A. Then,
t is fine if and only if one of the following holds :

(1) t is an A-strict episturmian word;

(i1) t is non-recurrent and takes the form p(xs), where x is a letter, s Is

a strict epistandard word on A\ {x}, and p is a pure episturmian morphism

on A.

REMARK 22. Note that part (ii) of Theorem 21 gives the form of so-called
strict episkew words, it is slightly simpler to what was originally given in [41],



EXTREMAL PROPERTIES 381

thanks to Richomme (private communication). Also note that strict episkew
words on a 2-letter alphabet are precisely the skew words (see [40]). One
can also compare Theorem 21 with Theorem 19. A simple example of an
episkew word is ¢f := cabaababaaba . . ., where f is the Fibonacci sequence
on {a,b}.

EXAMPLE 23 ([38]). Let A = {a.b,c} with a < & < ¢. Let f denote
the infinite Fibonacci word over {a. b}, i.e., the epistandard word directed by
{ab)* . Then, the following infinite words are fine.

+ f = abaababaabaaba - - -

+ ¢f = cabaababaabaaba - - -

» ficf = aabacabaababaabaaba - - -

+ () = aabaaabaabaaabaaaba - - -

+ Ww.(ef) = ceacbecacacheacheacacheacachea - - -

* ¢ (fich) = cacacbcaccacbeacacbeacheacacheaca - - -

Let us note, for example, that ©.(f) is nof fine since it is a non-strict
epistandard word. That is, .(f) is an epistandard word with directive word
clab)” | so it is not strict, nor does it take the second form given in Theorem 21.

Continuing this work, Glen, Justin, and Pirillo [41] recently proved new
characterizations of finitre Sturmian and episturmian words via lexicographic
orderings. As a consequence, they were able to characterize by lexicographic
order all episturmian words in a wide sense (episturmian and episkew infinite
words). Similarly, they characterized by lexicographic order all balanced infinite
words on a 2-letter alphabet; in other words, all Sturmian, periodic balanced,
and skew infinite words, the factors of which are (finite) Sturmian.

In the finite case:

THECREM 24 ([41]). A finite word w on A is episturmian if and only if
there exists a finite word w on A such that, for any acceptable pair (a, <),
we have

(3) A1 < I,
where m = min(w) for the considered order.

A corollary of Theorem 24 is the following new characterization of finite
Sturmian words (i.e., finite balanced words).
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CORCLLARY 25 ([411). A finite word w on A = {a. b}, a < b, is not
Sturmian (in other words, not balanced) if and only if there exists a finite
word u € {a,b}* such that aua is a prefix of min(w) and bub is a prefix of
max(ur).

In the infinite case, a characterization of episturmian words in the wide
sense follows almost immediately from Theorem 24. That is:

COROLLARY 26 ([41]). An infinite word t on A is episturmian in the
wide sense (i.e., episturmian or episkew) if and only if there exists an infinite
word w orn A such that

ay < mindt)

for any acceptable pair (a, <).

Consequently, an infinite word s on {a,b} (a < b) is balanced (e,
Sturmian, periodic balanced, or skew) if and only if there exists an infinite
word 1 on {a, b} such that

4 au < min(s) < max(s) < bu.

For any sequence s, max(s) is the same as sup{Tk(s), k > 0}, and similarly
min(s) = inf{Tk(s), k > 0}, where the infimum and supremum are taken with
respect to the lexicographic order. The preceding result therefore shows that
a sequence s in {0,1} is balanced if and only if there exists a sequence
u ¢ {0,1}* such that Ou < T%s) < lu for all £ > 0. In particular, a
sequence s on {0.1} being Sturmian is equivalent to s being aperiodic and
the existence of a sequence # on {0, 1} such that Ou < Tk(s) < 1m. Moreover,
it follows from the proof of Theorem 19 (or Theorem 21) that & is the unique
characteristic Sturmian sequence having the same slope as s. This is exactly
Theorem 1. For the sake of completeness, we give a direct proof here.

Direct proof of Theorem 1. Let s be an aperiodic sequence on {0,1}.
First suppose that s is a Sturmian sequence. Since it contains both 0’s and 17,
there exist two binary sequences x and y such that Ox :=inf {T"‘(s), k>0}
and 1y = sup{T*(s), &k > 0}. We claim that x > y. Namely, if x < y, there
exist a (possibly empty) word w and two infinite sequences x' and ¥ such
that x = w0x’ and ¥ = wly' . Hence Ox = OwOx’ and 1y = lwly' . Since
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any factor of inf{T*(s), & > 0} and of sup{7T*(s), k£ > 0} is a factor of s,
we have that both Qw0 and 1a1 are factors of s. Hence s is unbalanced (see
Definition 7 and the comments following it), but it was supposed Sturmian,
a contradiction (Theorem &). Thus x > v, and hence

YVE>0, Ox<THs)<l1y<lr.

Now suppose that s has the property that there exists a binary sequence u
such that

(3) VE>0, Ow<TMs) < 1u.

Let z be a left special factor (if any) of s, and let z’ be the prefix of & that
has the same length as z. Since Oz and 1z are both factors of s, there exist
two integers £; and f, such that T*(s) begins with Oz and 7%(s) begins
with 1z. We deduce from the inequalities (5) with k& = ¢ (resp. £») that

07 <0z and 1z < 1Z7.

This implies
7 <z and z<7

hence z = 7. Thus s has at most one left special factor of each length.
Hence s is Sturmian (Proposition 9), and its left special factors are exactly
the prefixes of u.

This implies furthermore that & belongs to the closure of the shift-orbit
of &, hence it is Sturmian. But the prefixes of Ox and lu are also factors
of §. Hence On and 1z are also in the closure of the shift-orbit of s,
thus Sturmian. This implies that & is Sturmian characteristic (see, e.g., [66,
Proposition 2.1.22]). Thus # is the (unique) characteristic Sturmian sequence
having the same slope as s.

REMARK 27. We noted in the Introduction that Theorem 2 can be easily
deduced from Theorem 1. Actually Theorem 1 can also be deduced from
Theorem 2: it suffices to remember that the closure of the shift-orbit of a
characteristic Sturmian sequence r is exactly the set of all Sturmian sequences
having the same slope as # (see for instance [66, Proposition 2.1.25]), and all of
these Sturmian sequences have the same set of factors ([66, Proposition 2.1.18],
or [68]). Sec also Remark 33 later.

Recently, Richomme [78] proved that episturmian words can be character-
ized via a nice “local balance property”. That is:
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THEOREM 28 ([78]). For a recurrent infinite word t € A“ | the following
assertions are equivalent :

() t is episturmian;
(i1} for each facior u of t, there exists a letter a such that Au AN F(t) C
au A U Aua ;

(iil) for each palindromic factor u of t, there exists a letter a such that

AudANF® C aud ) Aua.

Roughly speaking, the above theorem says that for any factor u of a given
episturmian word ¢, there exists a unique letter a such that every occurrence
of u in t is immediately preceded or followed by a in ¢. When |A| = 2,
property (ii) of Theorem 28 is equivalent to the definiion of balance. Indeed,
Coven and Hedlund [25] stated that an infinite word s over {a, b} is not
balanced if and only if there exists a palindrome u such that aug and bub
are both factors of §. As pointed out in [78], this property can be rephrased
as follows: an infinite word s is Sturmian if and only if s is aperiodic and,
for any factor u of s, the set of factors belonging to AxA is a subset of
anA U Aua or a subset of buAU Aub.

REMARK 29. Recall that the set of all infinite words in A* having
episturmian factors consists of the (recurrent) episturmian words and the (non-
recurrent) episkew words in A¥. Therefore, since properties (ii) and (iii) in
Theorem 28 concern only factors, one readily deduces that these properties in
fact characterize the episturmian and episkew words in A¥. So the recurrence
hypothesis in the statement of the theorem restricts attention to episturmian
words only.

We will now use Theorem 28 to give an alternative (simpler) proof of
the following analogue of Theorem 1 for episturmian sequences, which was
originally proved in [39] (also see [41]). This result, in particular, gives a
more precise version of Corollary 26 under the recurrence hypothesis.

THEOREM 30. A recurrent infinite word t on A is episturmian If and
only if there exisis an infinite word u on A such that, for any acceptable
pair (a, <),

an <TW forall i>0.

Moreover, if t is aperiodic, then u is the unique epistandard word with the
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same set of factors as t {i.e., the unique epistandard word in the closure of the
shift-orbit of t), and for any acceptable pair (a, <), au =inf{T*®), & > 0}
if and only if the letter a occurs infinitely often in the directive word of u.

Proof. Let t be a recurrent infinite word on A.

First suppose that ¢ is episturmian. Let x be a letter in A and consider
two different total orders <2y and <, on .4 such that (x. <;) and (x, <) are
acceptable pairs. Then there exist infinite words # and v on A such that

(6) xu = infl{Tk(t),k >0} for the total order <; on A,
and
) xv = inf, {T*(f),k > 0} for the total order <, on A.

(Here, inf; denotes the infimum with respect to the order <; for i =1,2.)
We will show that w = v. By equations (6) and (7), we have

xie <y xv and xv <o xm.

Hence, if u and v are prefixes of the respective words @ and » with |u| = |¢|,
then we have w <<y v and » <; u. This implies that ¥ = v, and therefore
u = v. Hence, for a given letter x in A, there exists a unique infinite word
u on A4 such that

() xu = inf, {T”‘(t), k > 0} for any acceptable pair (x, <,).

Now consider another letter y in A\ {x}. By what precedes, we know there
exists a unique infinite word v on A such that

(9) YU = infy{T"‘(t), k> 0} far any acceptable pair (y, <,).

Again, we will show that u = v. Suppose not. Then there exist a (possibly
empty) word w and two infinite words #” and ¢’ over A such that & = wzie
and v = wzv' for some letters z; and zp with z; # z2. Hence xu = xwzia
and yv = ywzv', and therefore the words xwz; and ywz are both factors
of t, since any factor of xu and of v is also a factor of ¢t (by (8 and (9)).
But then, by Richomme’s local balance property (Theorem 28), 7o = x or
=Y.

If 75 = x, then for any acceptable pair (x, <), we have x <, 71 (since
721 # ), and hence xv (= xwxv') <, xn (= xwzu'), contradicting the
(lexicographical ) minimality of & with respect to the total order <. Likewise,
if z; =y, then for any acceptable pair (y, <,), we have y <, z» (since z1 # 22),
and hence yu (— ywzu') <y (= ywz;v"), a contradiction. Thus & — v.
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Hence, there exists a (unique) infinite word & on A such that, for any
acceptable pair (a, <), au < T forall i > 0.

Conversely, suppose there exists an infinite word & on 4 such that, for
any acceptable pair (a, <), we have

(10) an < Tip for all i > 0.

Let z be a left special factor (if any) of ¢, and let 7/ denote the prefix of &
with |Z'| = |z|. Since z is left special in ¢, there exist at least two distinct
letters x, y such that xz and yz are both factors of ¢. In particular, there exist
non-negative integers £, and & such that T4 begins with xz and 7%(p
begins with yz. Thus, by inequality (10), we have

xz <.xz for any acceptable pair (x, <),

and
vz <,yz for any acceptable pair (y,<).

Hence 7/ <,z and ¢ <, ¢, and this implies that z = ¢'. Therefore ¢ has at
most one left special factor of each length and the left special factors of ¢
are exactly the prefixes of w. Thus F(u) C F(f); in particular, u is in the
closure of the shift-orbit of ¢

Now suppose that ¢ is not episturmian. Then, by Theorem 28, there exists a
ward w (possibly empty) and letters a, b, ¢, and d with {a, b} {c.d} = &
such that awb and cwd are both factors of ¢. Since @ # ¢, the word w is
a left special factor of ¢, and therefore w is a prefix of u.

Let £, and f; be non-negative integers such that Th(p begins with awh
and T begins with cwd. Then, for any two acceptable pairs (a, <) and
(c,<.), we have

(11) 2/} (: au'z - - ) Sa Tgl(t) (: awh . .)1
and
(12) cu (=cwz ) <, T2W® (=cud- ).

Inequality (11) implies that z <, b, whereas inequality (12) implies that
z <, d, and moreover z <, b and z <, 4. These inequalities imply that
z=b=4d, a contradiction.

Hence ¢t is episturmian, and therefore w« is episturmian too (since m is
in the closure of the shift-orbit of ¢, which consists of all episturmian words
with the same set of factors as ¢t — see Remark 15 or [40]). Moreover, 1 is
epistandard since all of its left special factors are prefixes of it. Therefore, for
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any letter x in 4, xu is episturmian if and only if x occurs infinitely often in
the directive word of u (see [51, Theorem 3.17], [39, Theorem 2.6], or [78,
Theorem 6]). Hence, for any acceptable pair (a, <), au = inf {T%(6), &k > 0} if
and only if the letter ¢ occurs infinitely often in the directive word of .

REMARK 31. An unrelated connection between finite balanced words
(i, fnite Sturmian words) and lexicographic ordering was recently studied
by Jenkinson and Zamboni [49], who presented three new characterizations
of “cyclically” balanced finite words via orderings. Their characterizations are
based on the ordering of shift-orbits, either lexicographically or with respect
to the 1 -norm | - |1, which counts the number of occurrences of the symbol 1
in a given finite word over {0,1}.

52 STURMIAN MORPHISMS

Prior to the recent work of Pirillo and others, the extremal property (1) was
shown to hold for characteristic Sturmian sequences in a paper by Berstel and
Séébold [19]. Here is a reformulation of their result (recalling the definition
of s, from Section 3.2, and letting ¢, ‘= 5¢,n = S;ch denote the unique
characteristic Sturmian sequence of slope «): '

PROPOSITION 32 ([19, Property 71). Lef « > O be an irrational number.
Then, for all i > 1, we have

ac, < Tiac,) and be, > Tibe,).
In particular, for all i > Q, we have
ac,, < Tite,) < be, .

REMARK 33. Recall from Remark 15 that the closure of the shift-
orbit of any Sturmian word s is a minimal dynamical system consisting
of all the Sturmian words with the same set of factors as s (see also [66,
Proposition 2.1.25]). In particular, if s is a Sturmian word with (irrational)
slope «, then O(s) consists of all Sturmian words of slope o (e.g, see [66,
Propositions 2.1.18] or [68]). Accordingly, the second part of Proposition 32
(see also Theorems 1 and 2) tells us that ac,, and be,, are the lexicographically
least and greatest Sturmian words of slope «, respectively.

Proposition 32 was also proved by Borel and Laubie [20] in the same year
(1993). In [19], Berstel and Séébold showed that it is an easy consequence
of the following more general result.
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PROPOSITION 34.  Let « > 0 be an irrational number and let p, p' be
real numbers such that 0 < g, p' < 1. Then

Sap <Sap = p<p.

The above proposition was one of numerous results in [19] leading to
the proof of a now well-known characterization of Sturmian morphisms, i.e.,
morphisms that preserve Sturmian words. Specifically, a morphism on {a,b}
is Sturmian if and only if it can be expressed as a finite composition of the
following morphisms, in any number and order:

ba

a

E_a%b a = ab ~ a3
b oa P b oa Y b
(Note that ¢ = 20,0, and & = .04 ; see Section 3.3.)

This result played a particularly important role in Berstel and $éébold’s
characterization of morphisms that preserve characteristic Sturmian words —
the so-called characteristic or standard {Sturmian) morphisms. That is, a
morphism on {a,b} is standard if and only if it is expressible as a finite
composition of the morphisms £ and ¢ in any number and order [19]. The

fact that there is no occurrence of the morphism ¢ in such a composition is
due to Proposition 32.

53 THE LEXICOGRAPHIC WORLD

As mentioned previously, a disguised form of Theorem 2 (see also (1))
appeared in §. Gan’s paper [36]; in fact, as we shall see, Theorem 1 can
be deduced from the main results in [36]. Gan came across this property of
Sturmian sequences whilst endeavouring to obtain a complete description of
the lexicographic world, defined as follows.

For any two infinite words x, y € {0,1}*, define the set

Ha—rfe @D, TF®, ¥i 20004 P < g
The lexicographic weorld L is defined by
L:={xy c{0,1}* x{0,1}*, Iy # &} .
Gan proved in [36, Lemma 2.1] that
£={@mv) e {0.1}* x {01}, v > o)},
where ¢: 0,1} — {0,1}* is the map defined by
(%) ‘= inf{y € {0,1}¥, ¥, £ &}.
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As Gan points out in that paper, the set £ is closely related to the bifurcation
of a Lorenz-like map (see [64] for example).

The following theorem combines Corollary 5.6 and Theorem 5.7 from
Gan’s paper [36] (see also Theorem 1.1 in the same paper). It shows in
particular that any element in the image of ¢ is a Sturmian or periodic
balanced sequence in {0,1} (and such sequences are the lexicographically
greatest amongst their shifts).

THEOREM 35. For any sequence s € {0,1}%, the following conditions
are equivalent.

() s = dx) for some sequence x € {0,1}%.

(1) § is a Sturmian or periodic balanced sequence satisfving Tis) < g
for all i > 0. Moreover, if x begins with 1, then @(x) = 1%, and if
x = 0u for some u € {0,1}¥, then ¢(x) is the unique Sturmian or
periodic balanced sequence s in 10,11 satisfying On < T'(s) < lu and
Tis) <s forall i> 0.

In the process of establishing Theorem 35, Gan also proved the following
description of Sturmian minimal sets (see [44] for a definition; also note that
minimal sets correspond to minimal dynamical systems).

THECREM 36 ([36]). A minimal set M is a Sturmian minimal set if and
only if M C [Ox,1x] = {v € {0,1}*,0x <y < 1x} for some x € {0,1}~.
Moreover, for any x € {0,1}¥, there exists a unique Sturmian minimal set in
[Ox, 1x].

Theorem 36 actually encompasses the first part of Theorem 1; indeed, it can
be interpreted as follows: a uniformly recurrent sequence y € {0, 1} satisfies
Ox < T%(v) < 1x for all i > 0 and some binary sequence x if and only if y
is a Sturmian or periodic balanced sequence. As discussed in Section 5.1, this
result was recently rediscovered by Glen, Justin, and Pirillo [41] (see (4)), but
in a slightly stronger form without the uniform recurrence condition, giving
that y is either a Sturmian sequence, a periodic balanced sequence, or a skew
sequence (i.e., v is a balanced sequence).

The second part of Theorem 1 can also be deduced from Gan’s work,
as follows. Let u be any characteristic Sturmian sequence on {0,1}. Then,
by Theorem 35, the sequence s = ¢(0m) is the unique Sturmian sequence
satisfying Om < Ti(s) < lu and T%(s) < s for all { > 0. Suppose x is the
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unique characteristic Sturmian sequence in Ots), the closure of the shift-
orbit of s. Then Ox and 1x are Sturmian sequences, by [66, Proposition
2.1.22]. Moreover, Ox and 1lx have the same set of factors as x since the
prefixes of x are exactly its left special factors. Hence, both Ox and 1x
are in CXs), and therefore, since Ou < Ti(s) < lu for all ¢ > 0, we have
Ou << Ox and lx < lu. These inequalities imply that # = x. Thus, for any
characteristic Sturmian sequence x, we have 0x < Tix) < 1x for all i > 0.
This establishes the forward direction of Theorem 2, and it follows that for
any Sturmian sequence § on {0,1}, we have Om < Tis) < lu forall i >0,
where & is the unique characteristic Sturmian sequence with the same slope
as s (recall Remark 33). This proves the second part of Theorem 1 and
from this theorem one can easily deduce both directions of Theorem 2 (see
Remark 27).

REMARK 37. By Remark 33, the lexicographically greatest and least
Sturmian sequences in the closure of the shift-orbit of a Sturmian sequence
s on {0,1} are Ou and lu, where u is the unique characteristic Sturmian
sequence with the same slope as s. We thus deduce from Theorems 1 and 35
that, for any sequence x on {0,1} beginning with 0, the sequence &(x) is
a Sturmian or periodic balanced sequence of the form lu. Moreover, if ¢(x)
i1s Sturmian, then & is the unique characteristic Sturmian sequence with the
same slope as ¢@(x).

The following lemma was a key step in Gan’s proof of Theorem 36. It
involves the block condition (BC): a sequence s £ {0,1}1% satisfies the BC
if, for any finite word w on {0,1}, at least one of the words Ow0 and lwl
is not a factor of s.

LEMMA 38 ([36, Lemma 4.4]). A sequence s € {0.1}* satisfies the BC
if and only if there exists a sequence u such that Ou < Tis) < lu for all
i>0.

This result is essentially the characterization of balanced infinite words
given in [41] (see (4)). Indeed, the BC is equivalent to the balance property,
as defined in Definition 7. See Section 3 in [25], in which the balance property
is called the Sturmian block condition (see also [78]). Note that the BC of
Coven and Hedlund [25, Lemma 3.06, p.143] is (seemingly) stronger than

Gan’s in that “for any finite word 7 is replaced by “for any palindrome w7;
actually both BC conditions are equivalent to the balance property.
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REMARK 39. As explained by Labarca and Moreira in [61], the termi-
nology “lexicographical world” was coined in 2000, in a preprint version
of [63] (which appeared only in 2006) in which the authors extended the
work of Hubbard and Sparrow [46]. For more on the lexicographic(al) world,
the reader can lock at, e.g., [62, 63] and the references therein. See also the
recent paper [8], in which the present two authors give a complete description
of the lexicographic world in the process of describing the minimal intervals
containing all fractional parts {£2"}, for some positive real number £, and
for all n > 0.

54 THE EARLY WORK OF VEERMAN: 1986 & 1987

Let &% denote the set of all Sturmian sequences of (irrational) slope
o > 0 over the alphabet {0,1} (e, ¢+ 0, b+ 1 in Theorem 4). As
noted, e.g., in [16], each Sturmian sequence s € &% can be viewed as
the binary expansion of some real number #(s) modulo 1. Moreover, it is
easily verified that, for any s, s € &%, we have s < & if and only if
r(8) < r(s"). Furthermore, by Remark 33, we know that the lexicographically
least and greatest sequences in &% are Oe¢, and le,, respectively. In
terms of binary expansions, as r(le,) = 1/2 + r(0c,), it follows that
the set r(8%) = {r(s) € [0,1), s € 8§} is completely contained within
the closed interval [r(Ocy),r(leq)] of length 1/2 and not in any smaller
interval.

This latter result (to compare with Bugeaud-Dubickas” result where base 2
is replaced with base b [22]) is essentially a reformulation of Theorem 2,
P 558 in Veerman’s paper [85], which also states that »(5™) is a Cantor set
of Lebesgue measure zero. The converse of this theorem was proved one year
later by Veerman in [86, Theorem 2.1, p.193-194]. As such, it seems that
Veerman was the first to (implicitly) prove the Sturmian extremal property
given in Theorem 1, under the framework of symbolic dynamics.

Actually, Veerman’s main result in [86] shows that a sequence s in {0,1}¥
satisfies the inequalities Ou << T'(s) < 1u for some sequence u € {0,1}* and
for all i = 0 if and only if s is a Sturmian sequence or a periodic balanced
sequence (cf. (4)). A few years earlier (in 1984), Gambaudo et al. [35] had
already proved the periodic case (i.e., the case when « is rational); Veerman
considered his Theorem 2.1 in [86] to be a generalization of their main
result.
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REMARK 40. Note that the set ~(5%) is a dynamical system under the
operation of the doubling map o: x — 2x (mod 1) on the one-dimensional
torus T = R/Z. This was the point of view of Veerman and also that of Bullet
and Sentenac [23], who gave reformulations and self-contained combinatorial
proofs of some of Veerman’s results in [85, 86]. In particular, Bullett and
Sentenac gave ancther proof of the following result (which can be deduced
from Veerman’s work): for each closed interval C, = [34,1/2 + ] of length
1/2 (where w € T), there exists a unique « such that (5% is contained
in C,, and there is no other dynamical system for the doubling map that
is a strict subset of C,. This fact was recently used by Jenkinson [47] to
prove new characterizations of Sturmian measures, which have applications to
ergodic optimization of convex functions. Another important application is in
the combinatorial description of the Mandelbrot set (e.g., see [23, 57]).

REMARK 41. In the study of kneading sequences of Lorenz maps (..,
a certain class of piece-wise monotonic maps on [0,1] with a single
discontinuity), Glendinning, Hubbard, and Sparrow [43, 46] have investigated
so-called allowed pairs (r,s) of distinet binary sequences in {0,1}* satisfying

r<Tirn<s and r< T <s foral i>0.

In particular, it was shown in [46] that these allowed pairs are exactly the
pairs of (distinet) binary sequences in {0,1}* that are realizable as kneading
invariants of a topologically expansive Lorenz map. (Note that the case s = 1%
was studied by Acquier, Cosnard, and Masse in [1].) Moreover it can be
deduced from property (1) that the allowed pairs of the form (Ou,lx) are
those where # is a characteristic Sturmian sequence.

6. BACK TO DISTRIBUTION MODULO 1 :
THE THUE-MORSE SEQUENCE SHOWS UP

As indicated in the Introduction, we began writing this survey after the

publication of the paper of Bugeaud and Dubickas [22], whose starting point
goes back to a paper of Mahler [67]. In that paper Mahler defines the set of

Z-numbers
{geR, £>0, ¥n>0, Og{g(%)n}<%}a
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where {x} is the fractional part of the real number x. Mahler proved that
this set is at most countable. It is still an open problem to prove that this set
is actually empty. More generally, given a real number o > 1 and an interval
(s,£) C (0,1) one can ask whether there exists £ > 0 such that, for all » > 0,
we have s < {£a”} < . Flatto, Lagarias, and Pollington [34, Theorem 1.4]
proved that, if o = p/q with p,¢ coprime integers and p > ¢ > 2, then
any interval (s,#) such that for some £ > 0, one has that {{(p/q)"} € (5,8
for all » > 0O, must satisfy + — s = 1/p. The main result in [22] reads as
follows.

THEOREM 42 (Bugeaud-Dubickas). Let b > 2 be an integer and
let & be an irrational number. Then the numbers {E£b"} cannot all lie
in an interval of length < 1/b. Furthermore there exists a closed in-
terval I of length 1/b containing the numbers {Eb"} for all n > 0
if and omnly if the sequence of base b-digits of the fractional pari
of & is a Sturmian sequence s on the alphaber {k,k + 1} for some
ke {0,1,...,b—2}. If this is the case, then & is transcendental, and
the interval [ is semi-open. It is open uniess there exists an integer j > 1
such that T/(s) is a characteristic Sturmian sequence on the alphabet

{k.k+1}.

The reader will easily see the relation between Theorem 42 and Theorems 1
and 2. Note that the first assertion in Theorem 42 is generalized to algebraic
real numbers > 1 by Dubickas in [29]. Also note that two other papers by
Dubickas [30, 31] deal with links between distribution of {£a"} modulo 1
and combinatorics on words. Furthermore the Thue-Morse sequence, defined
as the fixed point beginning with 0 of the morphism 0 — 01, 1 — 10, shows
up in these two papers: in [30] for the study of “small” and “large”™ limit
points of ||£(p/¢)"||, the distance to the nearest integer of the product of any
non-zero real number £ by the powers of a rational; in [31] for the study
of the “small” and “large™ limit points of the sequence of fractional parts
{£&b"}, where b < —1 is a negative rational number and ¢ is a real number.
For work in a similar vein and with an avatar of the Thue-Morse sequence,
see [55].

Interestingly enough, the Thue-Morse sequence also appeared in 1983 in
another question of distribution, as a by-product of the combinatorial study
of a set of sequences related to iterating continuous maps of the unit interval

(see [4, o]).



394 I-P ALLOUCHE AND A. GLEN

THECOREM 43.  Define the set r by
Ci={xe[0,1], Vk>0, 1 —x< {2"} <x}.

Then the smallest limit point of T is the number o = Yo a, /2", where (ay)n>a
is the Thue-Morse sequence. The set T contains only countably many elements
less than o and they are all rational. Furthermore any segment on the right of
o contains uncountably many elements of T. This structure around o repeats
at infinitely many scales : Tisa fractal set.

The reader will have guessed that Theorem 43 above is a by-product of
the combinatorial study of the set

(13) C:i={uc{0,1N, Vk>0, a<T"w) < u},

where @ is the sequence obtained by switching 0°s and 17s in u (see [4]).

An avatar of the set I' (where large inequalities are replaced by strict
inequalities) was studied in [33] in the description of univoque numbers, i.c.,
real numbers 3 in (1,2) such that there exists a unique base F-expansion
of 1 as 1= ijlujﬁ_f, with u; € {0,1}. See [7] for more details.

In [5] the first author uses Theorem 1 to prove that a Sturmian sequence
s on {0,1} belongs to the set T (see (13 if and only if there exists a
characteristic Sturmian sequence & beginning with 1 such that s = la. (In
particular, a Sturmian sequence belonging to T' must begin with 11.) As an
immediate corollary we have that a real number 7 € (1,2) is univoque and
self-Sturmian (i.¢., the greedy 3-expansion of 1 is a Sturmian sequence) if and
only if the J-expansion of 1 is of the form la, where m is a characteristic
Sturmian sequence beginning with 1. Self-Sturmian numbers were introduced
in [24], where it was proved that such numbers are transcendental (see also
[60] for more on related questions). Theorem 2 was used in [24] and a
proof of Theorem 1 was also given in a preprint version of that paper (see
http://arxiv.org/abs/math/0308140); it was deleted from the final version, as
D. Y. Kwon explained to J.-P. Allouche : first because a referee suggested it was
“folklore”, and second because actually only one direction of Theorem 2 was
needed. Self-sturmian numbers have since been generalized to self-episturmian
numbers in [39], where an analogue of Theorem 1 for episturmian sequences
can also be found (see Theorem 30).

Also note that sets related to the set I and to the lexicographic world
occur in the study of badly approximable numbers in [72].

We end this section with a last remark which, while pointing to a new
statement, might lead number-theorists to a yet-to-be explored field.
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REMARK 44. It is tempting to try to convert the extremal property
for episturmian sequences given in Corollary 26 (see [41]) to a result in
distribution modulo 1. From now on, < will denote the “usual” order on
D.={0,1,....d—1}; other orders will be denoted by ~<. As we have seen,
an infinite word ¢ on D is episturmian in the wide sense (i.e., episturmian or
episkew) if and only if there exists an infinite word u such that

() au = min(f)

for any acceptable pair (a, <). Actually, replacing the “usual” order on D by
another total order is the same as keeping the order but replacing each j in
this set by #(j), where & is a permutation of D). More precisely, (a, <) is an
acceptable pair if and only if there exists a permutation ¢ = o= of D such
that ¢(a@) = 0 and [ = j < o(i) < ¢(f). Hence, another way of formulating
(+) above is as follows: there exists an infinite word r such that for all
permutations ¢ of [ one has

Oo(m) < min(o(s)) ,

where o(ugit iy .. .) :— o(ig)o(ua(us) . .. (for finite or infinite words on D).
Hence translating extremal properties of episturmian sequences to properties
of distribution modulo 1 for real numbers consists of looking at reals x in
(0,1) such that there exists a real y in (0.1) with cl—iya < {d*x,} for all
integers k and for all permutations ¢ (where x, is the real number obtained
from x by applying the permutation o digitwise). If 4 = 2, permuting 0’s
and 1°s in a real number x written in base 2 is the same as replacing x by
1 —x. Hence, in that case, the inequalities %ya < {2%x,} boil down to the two
families of inequalities 3y < {2%x} and 21 —y) < {2*( — 0} =1 — {2%},
Le, 3y < {2"x} < 1+ %y forall k. This is precisely the question from which
we started our paper, but for general 4 it does not seem that number-theorists
have been interested in distribution modulo 1 combined with permuting
digits.

7. ADDENDUM

While writing this survey we came across several extra relevant references;
other extra references were suggested by the referees. We give them here.
About combinatorics of words and Lorenz maps [10, 11, 12, 13, 56, 81],
about extremal properties of Sturmian sequences or measures [21, 48, 58, 59],
about the distribution of {£a”} [2, 3, 32, 87, 88], and last but not least



39

I-P ALLOUCHE AND A. GLEN

the historical paper of Lorenz [65] (see also [82]). Finally note that relations
between Sturmian sequences and Markoff numbers would need a separate

survey, since many results were found since the nice survey [80].

ACKNOWLEDGEMENTS. The authors would like to thank J. Berstel, J. Cas-
saigne, P. de la Harpe, J. Justin, D.Y. Kwon, G. Pirillo, G. Richomme,
P Séébold, and L. Q. Zamboni, as well as the referees, for discussions, com-
ments, or suggestions.

(2]

(3]

(4]

(3]

[6]

(7]

(8]

[9]

[10]

REFERENCES

ACQUIER, M.-H., M. COSNARD et C. MASSE. Structure de bifurcations des
familles a un parameétre de fonctions croissantes par morceaux possédant
une seule discontinuité. C. R. Acad. Sci. Paris Sér. I Math. 300 (1985),
17-22.

AKIYAMA, S. Mahler's Z-number and 3/2 number systems Unif. Distrib.
Theory 3 (2008), 91-99.

AKIYAMA, S., C. FROUGNY and J. SAKAROVITCH. Powers of rationals modulo 1
and rational base number systems. Israel J. Marh. 168 (2008), 53-91.

ALLOUCHE, J.-P Théorie des nombres et automates. These d'Ftat, 1983,

Université Bordeaux [ Available at: http://tel archives-ouvertes fr/tel-
00343206/f1/.

—— A note on univoque self-Sturmian numbers. Theor. Inform. Appl 42

(2008), 659-662.

AILLOUCHE, J.-P et M. COSNARD. [térations de fonctions unimodales et suites
engendrées par automates. C. R. Acad. Sci. Paris Sér. [ Marh. 296 (1983),
159-162.

ALLOUCHE, J.-P. and M. COSNARD. Non-integer bases, iteration of continuous
real maps, and an arithmetic self-similar set. Acte Math. Hungar. 91
(2001), 325-332.

ALLOUCHE, J-P and A. GLEN. Distnibution modulo | and the lexicographic
world. Ann. Sci. Math. Québec 33 (2009), 125-143.

AILOUCHE, [-P. and J. SHALLIT. Awtomatic Sequences. Theory, Applications,
Generalizations. Cambridge University Press, Cambridge, 2003.

AISEDA, LL. and A. FALCO. A characterization of the kneading pair for bimodal

degree one circle maps. Ann. Inst. Fourier (Grenoble) 47 (1997), 273—
304



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

EXTREMAL PROPERTIES 397

ALSEDA, LL. and A. FALCO. On the topological dynamics and phase-locking
renormalization of Lorenz-like maps. Ann. Inst. Fourier (Grenoble) 53
(2003), 859-883.

ALSEDA, LL. and F MANOSAS. Kneading theory and rotation intervals for a
class of circle maps of degree one. Nonlinearity 3 (1990), 413452

ALSEDA, LL. and F MANQSAS. Kneading theory for a family of circle maps
with one discontinuity. Acta Math. Univ. Comenian. (N.S.) 65 (1996),
11-22.

ANAGNOSTOPOULOQU, V. and O. JENKINSON. Which beta-shifts have a largest
invariant measure ? J. London Math. Soc. (2) 79 (2009), 445-464.

ARNOUX, P et G. RAUZY. Représentation géométrique de suites de complexité
2n+ 1. Bull. Soc. Math. France 119 (1991), 199-215.

BERSTEL, J. Recent results on extensions of Sturmian words. fnternat. J.
Algebra Compur. 12 (2002), 371-385.

—— Sturmian and episturmian words (a survey of some recent results).
ln: Algebraic Informatics. Second International Conference, CAI 2007,
Thessaloniki, Greece, 2007, 23-47. Lecture Notes in Computer Science
4728 Springer, Berlin, 2007.

BERSTEL, J. and P SEEBOLD. A remark on morphic Sturmian words. Theor.
Inform. Appl. 28 (1994), 255-263.

BERSTEL, J and P SEEBOLD. A characterization of Sturmian morphisms. In:
Mathematical Foundations of Computer Science 1993 (Gdaidisk, 1993),
281-290. Lecture Notes in Computer Science 7/71. Springer, Berlin, 1993.

BoOREL, J.-P et F. LAUBIE. Quelques mots sur la droite projective réelle.
J. Théor. Nombres Bordeaux 5 (1993), 23-51.

BouscH, T. Le poisson n’a pas d’arétes. Aun. Inst. H. Poincaré Probab. Statist.
36 (2000), 489-508.

BUGEAUD, Y. and A. DUBICKAS. Fractional parts of powers and Sturmian
words. C. R. Math. Acad. Sci. Paris 341 (2005), 6974

BULLETT, S. and P SENTENAC. Ordered orbits of the shift, square roots, and
the devil’s staircase. Math. Proc. Cambridge Philos. Soc. 115 (1994),
451-481.

CHi, D.P and D.Y. KWON. Sturmian words, 3-shifts, and transcendence.
Theoret. Comput. Sci. 321 (2004), 395-404.

CoOVEN, E.M. and G.A. HEDLUND. Sequences with mimmal block growth.
Math. Systems Theory 7 (1973), 138-153.

DE LUCA, A. Sturmian words: structure, combinatorics, and their arithmetics.
Theoret. Comput. Sci. 183 (1997), 45-82.

DroUBAY, X., J. JUSTIN and G. PIRILLO. Episturmian words and some
constructions of de Luca and Rauzy. Theorer. Compur. Sci. 255 (2001),
539-553.

DrouBAY, X. and G. PIRILLO. Palindromes and Sturmian words. Theorer.
Compui. Sci. 223 (1999), 73-85.



308

[29]

[30]

[31]

[38]

[39]

[40]

[41]

[42]

I-P ALLOUCHE AND A. GLEN

DUBICKAS, A. Arithmetical properties of powers of algebraic numbers. Buli.
London Maih. Soc. 38 (2006), 70-80.

—— On the distance from a rational power to the nearest integer. J. Nuniber
Theory 117 (2006), 222-239.

—— On a sequence related to that of Thue-Morse and its applications. Discrete
Math. 307 (2007), 1082-1093.

—— Powers of a rational number modulo 1 cannot lie in a small interval.
Acta Arith. 137 (2009), 233-239.

ERDOS, P, I JOO and V. KOMORNIK. Characterization of the unique expansions
1 =37, ¢ and related problems. Bull. Soc. Math. France 118 (1990),
377-390.

FLatTo, L., J. C. LAGARIAS and A. D. POLLINGTON. On the range of fractional
parts {&(p/q)"}. Acta Arith. 70 (1995), 125-147.

GAMBAUDO, J-M., O. LANFORD et C. TRESSER. Dynamique symbolique des
rotations. C. R. Acad. Sci. Paris Sér. I Marh. 299 (1984), 823-826.

GAN, S. Sturmian sequences and the lexicographic world. Proc. Amer. Math.

Soc. 129 (2001), 1445-1451.

GLEN, A. Powers in a class of .4-strict standard episturmian words. In: 5th
International Conference on Words, Université du Québec a Mentréal,
Publications du LaCIM 36 (2005), 249-263; and Theorer. Comput. Sci.
380 (2007), 330-354.

—— A characterization of fine words over a finite alphabet. Theoret. Compus.

Sci. 391 (2008), 51-60.

—— Order and quasiperiodicity in episturmian words. In: Proceedings of
the 6th International Conference on Words, 144—158. Marseille, France,
September 17-21, 2007,

GLEN, A. and J. JUSTIN. Episturmian words: A survey. Theor. Inform. Appl.
43 (2009), 403-442.

GIEN, A., J. JUSTIN and G. PIRILLO. Characterizations of finite and infinite
episturmian words via lexicographic orderings. European J. Combin. 29

(2008), 45-58.

GLEN, A., F LEVE and G. RICHOMME. Directive words of episturmian words:
equivalences and normalization. Theor. Inform. Appl. 43 (2009), 299
319.

GLENDINNING, P. and C. SPARROW. Prime and renormalisable kneading invari-
ants and the dynamics of expanding Lorenz maps. (Homoclinic chaos
(Brussels, 1991)). Physica D 62 (1993), 22-50.

HEDLUND, G. A. Sturmian minimal sets. Amer. J. Math. 66 (1944), 605-620.

HEINIS, A. and R TIIDEMAN. Characterisation of asymptotically Sturmian
sequences. Publ. Math. Debrecen 56 (2000), 415-430.

HUBBARD, J. H. and C. T. SPARROW. The classification of topologically expan-
sive Lorenz maps. Comm. Pure Appl. Math. 43 (1990), 431-443.



[47]

[48]

[49]

[50]

[51]

[52]

[33]

[34]

[35]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

EXTREMAL PROPERTIES 399

JENKINSON, O. Optimization and majorization of invariant measures. Electron.
Res. Announc. Amer. Math. Soc. 13 (2007), 1-12.

—— A partial order on x2-invariant measures. Marh. Res. Lewr. 15 (2008),
893-900.

JENKINSON, O. and L. Q. ZAMBONIL Characterisations of balanced words via
orderings. Theoret. Comput. Sci. 310 (2004), 247-271.

JUSTIV, J. Episturmian morphisms and a Galois theorem on continued fractions.
Theor. Inform. Appl. 39 (2005), 207-215.

JusTiN, J. and G. PRILO. Episturmian words and episturmian morphisms.
Theoret. Comput. Sci. 276 (2002), 281-313.

JUSTIN, J. and G. PIRILLO. On a characteristic property of Amoux-Rauzy
sequences. Theor. Inform. Appl. 36 (2002), 385-388.

JUSTIN, J. and G. PIRILLO. Episturmian words: shifts, morphisms and numer-
ation systems. [nternat. J. Found. Comput. Sci. 15 (2004), 329-348.

JUSTIN, J. and L. VUILLON. Return words in Sturmian and episturmian words.
Theor. Inform. Appl. 34 (2000), 343-356.

KANEKO, H. Distribution of geometric sequences modulo 1. Result. Math. 52
(2008), 91-109.

KELIER, G. and M. ST PIERRE Topological and measurable dynamiecs of
Lorenz maps. In: Ergodic Theory, Analysis, and Efficient Simulation of
Dynamical Systems, 333-361. Springer-Verlag, Berlin, 2001.

KELLER, K. Invariant Factors, Julia Equivalences and the (Abstract) Mandel-
brot Set. Lecture Notes in Mathematics 7732, Springer-Verlag, Berlin,
2000.

KIEFFER, J. C. Sturmian mimmal systems associated with the iterates of certain
functions on an interval. In: Dynamical Systems (College Park, 1956-87),
354-360. Lecture Notes in Mathematics /342, Springer, Berlin, 1988.

KRUGER, T., S. SCHMELING, R. WINKLER and L. Q. ZAMBONL Dynamics of
kneading sequences. Unpublished preprint (1999).

Kwon, D. Y. A devil’s staircase from rotations and irrationality measures for
Liouville numbers. Math. Proc. Camb. Philos. Soc. 145 (2008), 739-756.

LABARCA, R. and C. MOREIRA. Bifurcation of the essential dynamics of Lorenz
maps and applications to Lorenz-like flows: contributions to the study
of the expanding case. Bol. Soc. Brasil. Mat. (N.§.) 32 (2001), 107-144.

LaBarca, R and C. MORBIRA. Bifurcations of the essential dynamics of
Lorenz maps on the real line and the bifurcation scenario for the linear
family. Sci. Ser. A Math. Sci. (N.§.) 7 (2001), 13-29.

LABARCA, R. and C. MOREIRA. Essential dynamics for Lorenz maps on the
real line and the lexicographical world. Ann. fust. H. Poincaré Anal. Non
Linéaire 23 (2006), 683-694.

LABARCA, R. and S. PLAZA. Bifurcation of discontinuous maps of the interval
and palindromic numbers. Bel. Soc. Mat. Mexicana (3) 7 (2001), 99-116.

LoORENZ, E. N. Deterministic nonperiodic flow. J. Asmos. Sei. 20 (1963), 130—
141.



400

[66]

[67]

[68]

[69]

[70]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

(81]

[82]

[83]

[84]

I-P ALLOUCHE AND A. GLEN

LOTHAIRE, M. Algebraic Combinatorics on Words. Encyclopedia of Mathe-
matics and its Applications 90. Cambridge University Press, Cambridge,
2002.

MAHLER, K. An unsolved problem on the powers of 3/2. J. Austral. Marh.
Soc. 8 (1968), 313-321.

MiGgNoOsl, E Infinite words with linear subword complexity. Theorer. Comput.
Sei. 65 (1989), 221-242,

MIGNOSI, F. et P SEEBOLD. Morphismes sturmiens et régles de Rauzy. J. Théor.
Nombres Bordearix 5 (1993), 221-233.

MigNosI, FE and L Q. ZAMBONL On the number of Amoux-Rauzy words.
Acta Arith. 101 (2002), 121-129.

MORSE, M. and G. A. HEDLUND. Symbolic dynamics II. Sturmian trajectories.
Amer. J. Math. 62 (1940), 1-42.

NILSSON, . Sur les nombres mal approximables par les nombres q-adiques.
Doctoral Thesis, Lund University, LTH, 2007. Available at: http://tel
archives-ouvertes.fr/tel-00273870/.

PRILO, G. Inequalities characterizing standard Sturmian words. Pure Math.
Appl. 14 (2003), 141-144.

—— Inequalities characterizing standard Sturmian and episturmian words.
Theoret. Comput. Sci. 341 (2005), 276-292.

—— Morse and Hedlund’s skew Sturmian words revisited. Ann. Comb. 12

(2008), 115-121.

PYTHEAS FOGG, N. Substitutions in Dynamics, Arithmetics and Combinatorics.
Lecture Notes in Mathematics /794, Springer-Verlag, Berlin, 2002.

Ravuzy, G. Mots infinis en arithmétique. In: Automaia on Infinite Words
(Le Mowni-Dore, 1984), 165-171. Lecture Notes in Computer Science
192, Springer, Berlin, 1985.

RICHOMME, G. A local balance property of episturmian words. In: Develop-
ments in Language Theory, 371-381. Lecture Notes in Computer Science
4588, Springer, Berlin, 2007.

RISLEY, R N. and L. Q. ZAMBONI. A generalization of Sturmian sequences:
combinatorial structure and transcendence. Acta Arith. 95 (2000), 167-
184.

SERIES, C. The geometry of Markoff numbers. Math. Intelligencer 7 (1985),
20-29.

SvA, L. and J. SouUsA RAMOS. Topological invariants and renormalization of
Lorenz maps. Physica D 162 (2002), 233-243.

SPARROW, C. The Lorenz Equations: Bifurcations, Chaos, and Strange At-
tractors. Applied Mathematical Sciences 47. Springer-Verlag, New York-
Berlin, 1982.

TIDEMAN, R. On complementary triples of Sturmian bisequences. Indag. Math.
(NS.) 7 (1996), 419-424.

—— Intertwinings of periodic sequences. Indag. Math. (N.S.) 9 (1998), 113~
122.



[85]
[86]
[87]

[88]

EXTREMAL PROPERTIES 401

VEERMAN, P Symbolic dynamics and rotation numbers. Physica A 134 (1986),
543-576.

—— Symbolic dynamics of order-preserving orbits. Physica D 29 (1987),
191-201.

ZAIMI, T. An arithmetical property of powers of Salem numbers. J. Number
Theory 120 (2006), 179-191.

—— On integer and fractional parts of powers of Salem numbers. Arch. Math.
(Basel) 87 (2006), 124-128.

(Recu le 31 juiller 2009)

Jean-Paul Allouche

Amy

CNRS, Math., Equipe Combinatoire et Optimisation
Université Pierre et Marie Curie

Case 189

4, place Jussieu

F-75252 Paris Cedex 05

France

e-maif :  allouche@math. jussien. fr

Glen

Department of Mathematics and Statistics
School of Chemical and Mathematical Sciences
Murdoch University

Perth, WA 6150

Australia

e-mail: amy.glen@ gmail. com



	Extremal properties of (Epi)Sturmian sequences and distribution modulo 1

