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L’Enseignement Mathématique (2) 56 (2010), 315-363

ORBIFOLDS AS STACKS?

by Fugene LLERMAN

ABSTRACT. The first goal of this survey paper is to argue that if orbifolds are
groupoids, then the collection of orbifolds and their maps has to be thought of as
a 2-category. Compare this with the classical definiion of Satake and Thurston of
orbifolds as a 1-category of sets with extra structure and/or with the “modern” definition
of orbifolds as proper étale Lie groupoids up to Morita equivalence.

The second goal is to deseribe two complementary ways of thinking of orbifolds
as a 2-category: (1) the weak 2-category of foliation Lie groupoids, bibundles and
equivariant maps between bibundles and (2) the strict 2-category of Deligne-Mumford
stacks over the category of smooth manifolds.

1. INTRCDUCTION

Orbifolds are supposed to be generalizations of manifolds. While manifolds
are modeled by open balls in the Euclidean spaces, orbifolds are supposed
to be modeled by quotients of open balls by linear actions of finite groups.
Orbifolds were first defined in the 1950°s by Satake [25, 26]. The original
definition had a number of problems. The chief problem was the notion of
maps of orbifolds: different papers of Satake had different definitions of maps
and it was never clear if maps could be composed. Additionally:

1. The group actions were required to be effective (and there was a spurious
condition on the codimension of the set of singular points). The requirement of
effectiveness created a host of problems: there were problems in the definition
of suborbifolds and of vector (orbi-)bundles over the orbifolds. A quotient of
a manifold by a proper locally free action of a Lie group was not necessarily
an orbifold by this definition.

2. There were problems with pullbacks of vector (orbi-)bundles — they
were not defined for all maps.
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Over the years various patches to the definition have been proposed. See,
for example, Chen and Ruan [6], Haefliger [8, 9], Moerdijk [20], Moerdijk and
Pronk [22]. In particular Moerdijk’s paper on orbifolds as groupoids has been
quite influential among symplectic topologists. At about the same time the
notion that orbifolds are Deligne-Mumford/geometric stacks over the category
of manifolds started to be mooted.

There are two points to this paper.

1. If one thinks of orbifolds as groupoids then orbifolds have to be treated
as a 2-category: it is not enough to have maps between groupoids, one
also has to have maps between maps. This point is not new; | have learned
it from [13]. Unfortunately it has not been widely accepted, and it bears
repetition.

2. There are two complementary ways of thinking of orbifolds as a
2-category. One way uses bibundles as maps. The other requires embedding
Lie groupoids into the 2-category of stacks. Since stacks and the related mental
habits are not familiar to many differential geometers I thought it would be
useful to explain what stacks are. While there are several such introductions
already available [19, 3, 12], I feel there is room for one more, especially for
the one with the emphasis on “why”.

I will now outline the argument for thinking of orbifolds as a 2-category (the
possibly unfamiliar terms are defined in subsequent sections). The simplest
solution to all of the original problems with Satake’s definition is to start
afresh. We cannot glue together group actions, but we can glue together action
groupoids. Given an action of a finite group, the corresponding groupoid is
étale and proper. This leads one to think of a C orbifold (or, at least,
of an orbifold atlas) as a proper étale Lie groupoid. The orbit spaces of
such groupoids are Hausdorff, and locally these groupoids look like action
groupoids for linear actions of finite groups. Since a locally free proper action
of a Lie group on a manifold should give rise to an orbifold, limiting oneself
to étale groupoids is too restrictive. A better class of groupoids consists of Lie
groupoid equivalent to proper étale groupoids. These are known as foliation
groupolds.

If orbifolds are Lie groupoids, what are maps ? Since many geometric
structures (metrics, forms, vector fields, etc.) are sections of vector bundles,
hence maps, one carmot honestly do differential geometry on orbifolds without
addressing this question first.

Since groupoids are categories, their morphisms are functors. But our
groupoids are smooth, so we should require that the functors are smooth too
(as maps on objects and arrows). One quickly discovers that these morphisms
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are not enough. The problem is that there are many smooth functors that are
equivalences of categories and that have no smooth inverses. So, at the very
least, we need to formally invert these smooth equivalences. But groupoids
and functors are not just a category; there are also natural transformations
between functors. This feature is dangerous to ignore for two reasons. First
of all, it is “widely known” that the space of maps between two orbifolds is
some sort of an infinite dimensional orbifold. So if one takes the point of view
that orbifolds are groupoids, then the space of maps between two orbifolds
should be a groupoid and not just a set. The most natural groupeid structure
comes from natural transformations between functors. There are other ways
to give the space of maps between two orbifolds the structure of a groupoid,
but I do not find these approaches convinecing.

The second reason has to do with gluing maps. Differential geometers
glue maps all the time. For example, when we integrate a vector field on
a manifold, we know that a flow exists locally by an existence thecrem for
a system of ODEs. We then glue together these local flows to get a global
flow. However, if we take the category of Lie groupoids, identify isomorphic
functors and then invert the equivalences (techmically speaking we localize
at the equivalences), the morphisms in the resulting category will not be
uniquely determined by their restrictions to elements of an open cover. We
will show that amy localization of the category of groupoid will have this
feature, regardless of how it is constructed! See Lemma 3.41 below.

Having criticized the classical and “modern™ approaches to orbifolds, 1 feel
compelled to be constructive. [ will describe two geometricaily compelling and
complementary ways to localize Lie groupoids at equivalences as a 2-category.
These are:

1. replace functors by bibundles and natural transformations by equivariant
maps of bibundles or

2. embed groupoids into the 2-category of stacks.

ACKNOWLEDGEMENTS. [ have benefited from a number of papers on
stacks in algebraic and differential geometry: Metzler [19], Behrend-Xu [3],
Vistoli [29], Behrend ef @l. [2] and Heinloth [12] to name a few. Many
definitions and arguments are borrowed from these papers. There are now
several books on ILie groupoids. T have mostly cribbed from Moerdijk-
Mréun [21]. The paper by Laurent-Gengoux ef af. [15] has also been very
useful. T have benefited from conversations with my colleagues. In particular
I would like to thank Matthew Ando, Anton Malkin, Tom Nevins and
Charles Rezk
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1.1 CONVENTIONS AND NOTATION

We assume that the reader is familiar with the notions of categories, functors
and natural transformations. (Given a category € we denote its collection of
objects by Cp; Cy is not necessarily a set. The reader may pretend that
we are working in the framework of Von Neumann—-Bernays—Godel (NBG)
axioms for set theory. But for all practical purposes set theoretic questions,
such as questions of size will be swept under the rug, i.e., ignored. We denote
the class of morphisms of a category C by €. Given two objects x,y € Cqy
we denote the collection of all morphisms from x to ¥ by Home(x,y) or by
C(x,y), depending on what is less cumbersome.

1.2 A NOTE ON 2-CATEGCRIES

We will informally use the notions of stricr and weak 2-categories. For for-
mal definitions the reader may wish to consult Borceux [4]. Roughly speaking
a strict 2-cafegory A is an ordinary category A that in addition to ob-
jects and morphisms has morphisms between morphisms, which are usually
called 2-morphisms (to distinguish them from ordinary morphisms which
are called 1-morphisms). We will also refer to 1-morphisms as (1-)arrows.
The prototypical example is Cat, the category of categories. The objects of
Cat are categories, 1-morphisms (l-arrows) are functors and 2-morphisms
(2-arrows) are natural transformations between functors. We write w: f = ¢

S

and - U” » , when there is a 2-morphism «: from a l-morphism f to

g
a l-morphism 4.

Natural transformations can be composed in two different ways:

S/ f
vertically : L JSE AR SO G
R h
and
) K kf

horizontally : °@' lg » °@- .
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The two compositions are related by a 4-interchange law that we will not
describe. Axiomatizing this structure gives rise to the notion of a strict
2-category.

Note that for every 1-arrow f in a 2-category we have a 2-arrow ids: f = f.
A Z-arrow is invertible if it is invertible with respect to the vertical composition.
So it makes sense to talk about two 1-arrows in a 2-category being isomorphic.

Weak 2-categories (also known as bicategories) also have objects, 1-arrows
and 2-arrows, but the composition of 1-arrows is no longer required to be
strictly associative. Rather, given a triple of composable 1-arrows f. ¢,k one
requires that (fg)h is isomorphic to f(gh). That is, one requires that there is
an invertible 2-arrow «: (fgd)h = flgh). As in a strict 2-category it makes
sense to talk about two 1-arrows in a weak 2-category being isomorphic (the
vertical composition of 2-arrows is still strictly associative). If f:x — y is
an arrow in a weak 2-category for which there is an arrow ¢: v — x with fg
isemoerphic to 1, and gf isomorphic to 1, we say that f is weakly invertible
and that 4 is a weak inverse of f.

2. ORBIFOLDS AS GROUPQIDS

In this section we define proper éiale Lie groupoids. A comprehensive
reference on Lie groupoids is [18]. Proposiion 2.23 below is the main
justification for thinking of proper étale groupoids as orbifolds (or orbifold
atlases): locally they look like finite groups acting linearly on a disk in some
Euclidean space. Proper étale Lie groupoids are not the only groupoids we
may think of as orbifolds. For example, a locally free proper action of a
Lie group on a manifold defines a groupoid that is also, in some sense, an
orbifold. We will explain in what sense such an action groupoid is equivalent
to an étale groupoid. This requires the notion of a pullback of a groupoid
along a map. We start by recalling the definition of a fiber product of sets.

DEFINITION 2.1. Let f: X = Z and ¢: ¥ — Z be two maps of sets. The
Jiber product of f and g, or more sloppily the fiber product of X and Y over
Z is the set

Xxrz, Y =X xzV i={0x,» | f(0) = g»}.
REMARK 2.2. If f: X = Z and ¢: Y — Z are continucus maps between

topological spaces then the fiber product X xzY is a subset of X x ¥ and hence
is naturally a topological space (it is closed if Z is HausdorfD). If f: X — Z
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and g¢: ¥ — Z are smooth maps between manifolds, then the fiber product is
not in general a manifold. Tt is a manifold if the map (f,g): X x ¥ > Z < Z
is transverse to the diagonal A;.

DEFINITION 2.3. A groupoid 1s a small category (objects form a set) where
all morphisms are invertible.

Thus a groupoid G consists of the set of objects (O-morphisms) Gy |, the set
of arrows (1-morphisms) {7; together with five structure maps: s: Gy — Gy
(source), . Gy — Gy (target), u: Gy — G (unit), m (multiplication) and
inv: G1 — G (inverse) safisfying the appropriate identities. We think of an
element v € G, as an arrow from its source x to its target y: x —> y.
Thus s(+) = x and #{~) = y. For each object x € Gy we have the identity
arrow x L> x, and u(x) = 1,. Note that s(u(x)) = r(u(x)) = x. Arrows with

T

TN

the matching source and target can be composed: x* *y sz

\__________/

Foy
Therefore the multiplication map m is defined on the fiber product
{n X Gy G =Gy X 5,Go G = {(O’ e Gy %Gy ‘ s(o) = I(’}’)};
¥ o Toy
A T i o
m: 1 xg, G1 —+ G1, m(xe °y *z2)= x* az.
Since all 1-arrows are invertible by assumption (G is a groupoid) there is the
inversion map 1 5
v Gy — Gy, inv(xe 'y):xV/—\\'y.

The five maps are subject to identities, some of which we already mentioned.

NOTATION 2.4, We will write G = {G; = Gp} when we want to
emphasize that a groupoid G has the source and target maps.

EXAMPLE 2.5, A group is a groupoid with one object.

EXAMPLE 2.6 (Sets are groupoids). Tet M be a set, Gop = G1 = M,
s,t=idi M — M, inv = id etc. Then {M = M} is a groupoid with all the
arrows being the identity arrows.

EXAMPLE 2.7 (Action groupoid). A left action of a group " on a set X
defines an action groupoid as follows: we think of a pair {(g.x) €' x X as
an arrow from x to g-x, where I' x X 3 (g.x) —= g-x € X denotes the action.
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Formally Gy =T'x X, Gp =X, s(g,x) =x, #g,x) =g-x, u(x) = (1,x),
where 1 ¢ T is the identity element, imv(g.x) = (g~',g -x) and the
multiplication is given by

(h':g '-X)(g,-x) = (hg:x) .

DEFINITION 2.8 (Orbit space/Coarse moduli space). Let & be a groupoid.
Then
~ = {(x,y) € Go x Gy | there is v € Gy with x %y}

is an equivalence relation on Gy. We denote the quotient Gy/~ by Gy /Gy and
think of the projection Gg — Go/G1 as the orbit map. We will refer to the set
Gy /Gy as the orbir space of the groupoid G. Note that it G ={I'xX = X}
is an action groupoid, then Gy/Gy = X/U'. The orbit space Go/Gy is also
referred to as the coarse moduli space of the groupcid G.

DEFINITION 2.9 (Maps/Morphisms of groupoids). A map/morphism ¢
from a groupoid G to a groupoid H is a functor. That is, there is a map
do: Go — Hy on objects, a map ¢1: Gy — H; on arrows that makes the
diagram

3]

G - H

l(s,f) l(—‘:f)
(ebo.cb0)

Gy % Gy —— Ho x Hy

commute and preserves the (partial) multiplication and the inverse maps.

REMARK 2.10. Note that ¢g = so ¢y ou, where u: Gg — Gy 1s the unit
map. For this reason we will not distinguish between a functor ¢: G — H
and the corresponding map on the set of arrows ¢,: Gy — H;.

Next we define Lie groupoids. Roughly speaking a Lie groupoid is a
groupoid in the category of manifolds. Thus the spaces of arrows and objects
are manifolds and all the structure maps s, ¢, i, m, inv are smooth. Additionally
one usually assumes that the spaces of objects and arrows are Hausdorff and
paracompact (except in foliation theory where this assumption is usually
dropped).

There is a small problem with the above definition: in general there is
no reason for the fiber product Gy xg, Gi of a Lie groupoid {Gi = Go)
to be a manifold. Therefore one cannot talk about the multiplication being
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smooth. This problem is corrected by assuming that the source and target
maps s,#: G; — (p are submersions. We therefore have:

DEFINITION 2.11. A Lie groupoid is a groupoid G such that the set Gy
of objects and the set (; of arrows are (Hausdorff paracompact) manifolds,
the source and target maps s.¢: G, — Gp are submersions and all the rest of
the structure maps are smooth as well.

REMARK 2.12. Since im?® = id, inv is a diffeomorphism. Since soinv = ¢,
the source map s is a submersion if and only if the target map ¢ is a
subm ersion.

REMARK 2.13. The coarse moduli space Gp/G of a Lie groupoid G is
naturally a topological space.

EXAMPLE 2.14 (Manifolds as Lie groupoids). Let M be a manifold,
Go=Gi =M, s,t=id: M — M, inv=1id etc. Then {M = M} is a Lie
groupoid with all the arrows being the identity arrows.

EXAMPLE 2.15 (Action Lie groupoid). Let I' be a Lie group acting
smoothly on a manifold M. Then the action groupoid I' x M — M is a Lie
groupoid.

EXAMPLE 2.16 (Cover Lie groupoid). Let M be a manifold with an open
cover {U,}. Let U = || U/, be the digjoint union of the sets of the cover
and | |, 4 U, N Uy the disjoint union of double intersections. More formally

UU,,QU;;:MXMM,

x.il

where ¢ = | |U; — M is the evident map. We define s: U, NUs — U,
and ¢: U/, Ni/s — Ug to be the inclusions. Or, more formally, we have two
projection maps s,f: ¢ Xy U — 4. We think of a point x € U/, N /g as an
arrow from x € U, to x € Ug. One can check that I %y U = U is a Lie
groupoid. Alternatively it is the pull-back of the groupoid M = M by the
“inclusion™ map I/ — M (see Definition 2.25 below).

REMARK 2.17. Occasionally it will be convenient for us to think of a
cover of a manifold M as a surjective local diffeomorphism ¢: U — M.
Here is a justification: If {U;} is an open cover of M then I = | |U; and
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& U — M is the “inclusion”. Conversely, if ¢: If — M is a surjective local
diffeomorphism then there is an open cover {V;} of U so that ¢lv.: Vi = M
is an open embedding. Moreover the “inclusion” | |@(V) — M “factors™
through ¢: & — M. So any cover in the traditional sense is a cover in the
generalized sense. And any cover in the new sense gives rise to a cover in
the traditional sense.

DEFINITION 2.18 (Proper groupoid). A Lie groupoid G is proper if the
map {s,2): Gy — Gp % Go, which sends an arrow to the pair of points (source,
target), is proper.

DEFINITION 2.19 (Gtale groupoid). A Lie groupoid G is éiale if the source
and target maps s,f. Gi — Gp are local diffeomorphisms.

EXAMPLE 2.20. An action groupoid for an action of a finite group is
étale and proper. A cover groupoid U Xy if = I is étale and proper. An
action groupoid I' x M = M is proper if and only if the action is proper (by
definition of a proper action).

DEFINITION 2.21 (Restriction of a Lie groupoid). Let G be a Lie groupoid
and I/ C Gy an open set. Then shns I is an open submanifold of G;
closed under multiplication and taking inverses, hence forms the space of
arrows of a Tie groupoid whose space of objects is {/. We call this groupoid
the restricion of G to U and denote it by Glp.

REMARK 2.22. We will see that the restriction is a special case of a
pull-back construction defined below (Definition 2.25).

We can now state the proposition that justifies thinking of proper étale Lie
groupoids as orbifolds. It asserts that any such groupoid looks locally like a
linear action of a finite group on an open ball in some R”. More precisely,
we have:

PROPOSITION 2.23. Let G be a proper étale Lie groupoid. Then for any
point x € Go there is an open neighborhood U C Gy so that the restriction
G|y is isomorphic to an action groupoid Ax U = U where A is a finite group.
That is, there is an invertible functor f: Gly — {A » U = U}. Moreover,
we may take U to be an open ball in some Euclidean space centered at the
origin and the action of A fo be linear.
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Proof. This is a special (easy) case of Theorem 2.3 in [30]. For proper
étale effective groupoids the result was proved earlier in [22].

REMARK 2.24. One occasionally runs into an idea that a proper étale Lie
groupoid G is an atlas on its coarse moduli space Go/G; . Indeed, there is an
analogy with atlases of manifolds: if A is a manifold and {U;} is a cover
by coordinate charts then M is the coarse moduli space of the cover groupoid
{U xp Ul = U}, where U =| | U;. This idea leads to endless trouble.

Next I would like to explain how to obtain a proper étale Lie groupoid
from a proper and locally free action of a Lie group on a manifold.

DEFINITION 2.25. The pull-back of a groupoid G by a map f: N — Gy
is the groupoid f*G with the space of objects N, the space of arrows

(f"Gn = (NXN) xXguxa G

= {x,y, ) e NXNxGy|slg) =f0), 0g) = fy}
g

= [P ENXNXG [fme " N efml,

the source and target maps s(x,y,¢) = x, #(x,y,¢) = y and mulfiplication
given by (v,z, h)x,y, g) = (x,z,hg). Note that the maps fo =f: N — Gy and
h:f"Gr — Gy, filx,y,9) = g, form a functor f: G — G.

It is not always true that the pull-back of a Lie groupoid by a smooth map
is a Lie groupoid: we need the space of arrows (f*(G); to be a manifold and
the source and target maps to be submersions. The following condition turns
out to be sufficient.

PROPCSITION 2.26. Let G be a Lie groupoid and f: N — Gy a smooth
map. Consider the fiber product
N Xy G = [ g €N x G | flo =s(g)} .

If the map N x5 g, Gy — Go, (x,9) > Hg) isa Sugmersion, then the pullback
groupoid f*G is a Lie groupoid and the functor . f*G — G defined above
is @ smooth functor.

Proof. See, for example, [21], pp. 121-122.

REMARK 2.27. If the mapmN X s 6o G1 = Go, (x,9) — Hg) 1s a surjective
submersion then the functor f: f*G — G is an equivalence of groupoids in
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the sense of Definition 3.5 below.

EXAMPLE 2.28. Let G be a Lie groupoid, {/ an open subset of the space
of objects Gy. The inclusion map ¢: U < Gy satisfies the conditions of the
proposition above and so the pull-back groupeoid (*G is a Lie groupoid. It is
not hard to see that ¢*G is the restriction G|y of G to U.

Next recall that an action of a Lie group I' on a manifold M is locaily
free if for all points x € M the stabilizer group

I, ={yel|g-x=x}
is discrete. An action of I' on M is proper if the map
I'xM-—o>MxM, (g.x) — (x,g-x)

is proper (this is exactly the condition for the action groupoid {I" x M = M}

to be proper). A sfice for an action of ' on M at a point x € M is an

embedded submanifold £ C M with x € 2 so that

1. X is preserved by the action of I'y: for all s € £ and g € I'y, we have
g-s€X.

2. Theset '-X:={g-s|gel,scX} is openin M.

3. Themap ' xX2 =12 CM, (g,5) — g-s descends to a diffeomorphism

(T xE)/T, —+T-Z (here T, acts on ' x T by a-(g,5) = (ga‘l,a S8
Thus, for every point s € £ the orbit ' s intersects the slice X in a unique
I, orbit. A classical theorem of Palais asserts that a proper action of a Lie
group ' on a manifold M has a slice at every point of M.

With these preliminaries out of the way, consider a proper locally free action
of a Lie group I' on a manifold M. Fick a collection of slices {Z,}.ca SO
that every I orbit intersects a point in one of these slices: I'-|JZ, = M.
Let ¢ = | |2, and f: U — M be the “inclusion” map: for each x € =,
fx) =x € M. The fact that X, s are slices implies (perhaps after a moment
of thought) that Proposition 2.26 applies with G = {I' x M = M} and
f U — M. We get a pullback Lie groupoid f*G, which is, by construction,
étale. By Remark 2.27 the functor f: f*{I'x M = M)} — [ x M =3 M}
is an equivalence of groupoids. Note that f is not surjective and may not be
injective either. In particular, it is not invertible. Reasons for thinking of it as
some sort of an isomorphism are explained in the next section.

Note that if we pull & back further by the inclusion Zg — LIZ,, we get
an action groupecid of the form A x T4 = Z3 where A is a discrete compact
group, that is, a finite group.



326 E LERMAN

EXAMPLE 2.29. An industrious reader may wish to work out the example
of the action of CX = {7 € C | z # 0} on C? -~ {0} given by
A (z1,22) = (W, M%) for a pair of positive integers (p,q). The reader
will only need two slices: € x {1},{1} » C C C*~. {a}.

3. LOCALIZATION AND ITS DISCONTENTS

At this point in our discussion of orbifolds we reviewed the reasons for
thinking of smooth orbifolds as Lie groupoids. If orbifolds are Lie groupoids
then their maps should be smooth functors. It will turm out that many such maps
that should be invertible are not. We therefore need to enlarge our supply of
available maps. We start by recalling various notions of two categories being
“the same”. More precisely recall that there are two equivalent notions of
equivalence of categories.

Recall our notation: if A is a category, then A denotes its collection
of objects and A(a, a") denctes the collection of arrows between two objects
a,a € Ag.

DEFINITION 3.1. A functor F: A — B is fidl if for any a,4’ € Ay the map
F: Ala,a") — B(F(a), F(a') is onto. 1t is faithful if F: Ala, ") — B(F(a), Fla')
is injective. A functor that is full and faithful is fully faithful.

A functor F: A — B 18 essentially surjeciive if for any b € By there is
a € Ap and an invertible arrow v € By from F(a) to b.

EXAMPLE 3.2. Let Vect denote the category of finite-dimensional vector
spaces over R and linear maps. Let Mat be the category of real matrices.
That is, the objects of Mat are non-negative integers. A morphism from #
to m in Mat is an r x m real matrix. The functor Mat — Vect which sends
n to R* and a matrix to the corresponding linear map is fully faithful and
essentially surjective.

The following theorem is a basic result in category theory.
THECOREM 3.3. A functor F: A — B is fully faithful and essentially surjec-

tive if and only if there is a functor G: B — A with two natural isomorphisms
{(invertible natural transformations) o FG = id, and 3. GF = idp.
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DEFINITION 3.4. A functor F: A — B satisfying one of the two equivalent
conditions of the theorem above is called an equivalence of categories. We
think of the functor G: B — A above as a (weak) inverse of F.

There is no analogous theorem for €™ functors between Lie groupoids:
there are many fully faithful essentially surjective smooth functors between Lie
groupoids with no continuous (weak) inverses. The simplest examples come
from cover groupoids. If U xpydf = U is a cover groupoid associated to a
cover I — M of a manifold M then the natural functor {If <yl = U} —
{M — M} is fully faithful and essentially surjective and has no continuous
weak inverse (unless one of the connected components of I is all of M).

Additionally, not every fully faithful and essentially surjective smooth
functor between two Lie groupoids should be considered an equivalence of
Lie groupoids (just like not every smooth bijection between manifolds is a
diffeomorphism). The accepted definition is (see for example [21]):

DEFINITION 3.5. A smooth functer £: G —+ H from a Lie groupoid G
to a Lie groupoid H is an equivalence of Lie groupoids if

1. the induced map
G1 = (Go X Go) X(r,p Hoxeo H1s o 0 (86D 1), FOn

is a diffeomorphism;

2. the map Go %p @, Hi—Hy, (x,h) — s(h) is a surjective submersion.

REMARK 3.6. The first condition implies that F is fully faithful and the
second that it is essentially surjective.

REMARK 3.7. In literature this notion of equivalence variously goes by
the names of “essential” and “weak”™ equivalences to distinguish it from
“strict” equivalence: a smooth functor of Lie groupoids F: G — H is a
strict equivalence it there is a smooth functor L. H — G with two smooth
natural isomorphisms (invertible natural transformations) o: FL = idg and
8: LF = idy. We will not use the notion of strict equivalence of Lie groupoids
in this paper.

EXAMPLE 3.8. As we pointed out above, if f: I — M is a surjective
local diffeomorphism then the functor f: {U xpld = U} — {M = M} isan
equivalenice of Lie groupoids in the sense of Definition 3.5.
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EXAMPLE 3.9. As we have seen in the previous section, if a Lie
group I' acts locally freely and properly on a manifold M, U = [|Z,
is a collection of dlices with T'-[JZ, = M and F*{L x M = M} is
the pullback of the action groupoid along f: U — M, then the functor
f: FAT x M 5 M} — {T «x M = M} is an equivalence of Lie groupoids.
This is a reason for thinking of the action groupoid {I" x M = M} as an
orbifold.

REMARK 3.10. We cannot fully justify the comrectness of Definition 3.5.
And indeed the reasons for it being “correct” are somewhat circular. If one
embeds the category of Lie groupoids either into the Hilsum-Skandalis category
of groupoids and generalized maps (see below) or into stacks (stacks are
defined in the next section), the functors that become invertible are precisely
the equivalences and nothing else! But why define the generalized maps or
to embed groupoids into stacks 7 To make equivalences invertible, of course!

Let us recapitulate where we are. An orbifold, at this point, should be a
Lie groupoid equivalent to a proper étale Lie groupoeid. If this is the case,
what should be the maps between orbifolds ? Smooth functors have to be
maps in our category of orbifolds, but we need a more general notion of
a map to make equivalences invertible. There is a standard construction in
category theory called localization that allows one to formally invert a class
of morphisms. This is the subject of the next subsection.

3.1 LOCALIZATION OF A CATEGORY

Let C be a category and W a subclass of morphisms of C (i.e. W C Cy).

A localization of C with respect to W is a category D and a functor L: C —= D

with the following properties:

1. For any w € W, L{w) is invertible in D.

2. If ¢: C — E is a functor with the property that ¢(a) is invertible in £ for
all w € W then there exists a unique map . D — E so that ¢vo L = ¢,
that is,

£

& A
| 4
|

C—=D

commutes.
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REMARK 3.11. The second condition is there to make sure, among other
things, that the localization D is not the ftrivial category with one object and
one morphism.

The next two results are old and well known. The standard reference is
Gabriel-Zisman [7]. We include them for completeness.

LEMMA 312, If a localization L: C — D of C with respect to W C €
exists, then it is unique.

Proof. This is a simple consequence of the universal property of the
localization. If L/: C — D' is another functor satisfying the two conditions
above then there are functors +: D — D' and 7: ' — D so that wol =L’
and Tol/ =L Hence toyol =L. Since idpol = L as well, o = idp
by uniqueness. Similarly o7 = idp: .

NOTATION 3.13. We may and will talk about the localization of C with
respect to W and denote it by my: C — C[W™1].

LEMMA 3.14.  The localization my: C — C[W™] of a category C with
respect to a subclass W of arrows always exists.

REMARK 3.15. Some readers may be bothered by the issues of size:
the construction we are about to describe may produce a category where the
collections of arrows between pairs of objects may be too big to be mere sets.
Later on we will apply Lemma 3.14 to the category of Lie groupoids. There is
a standard solution to this “problem”. One applies the argument below only to
small categories, whose collection of objects are sets. What about the category
Gpoid of Lie groupoids which is not small (the collection of all Lie groupoids
is a proper class)? There is a standard solution to this problem as well. Fix
the disjoint union E of Euclidean spaces of all possible finite dimensions;
E:=R°UR'U...UUR"LI.... Given a Lie groupoid G, we consider its
space of objects Gy as being embedded in its space G; of arrows. By the
Whitney embedding theorem the manifold G; may be embedded in some
Euclidean space R” C E. It follows that the category Gpoid of Lie groupoids
is equivalent to the category of EGpoid of Lie groupoids embedded in E.
Clearly EGpoid is small.

Proof of Lemma 3.14. The idea of the construction of C[W~] is to keep
the objects of C the same, to add to the arrows of C the formal inverses of
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the arrows in W and to divide out by the appropriate relations. Here are the
details.

Recall that a directed graph G consists of a class of objects Gy, a class of
arrows ) and two maps s.¢: G — Gp (source and target). In other words,
for us a directed graph is a “category without compositions”.

Given a category € and a subclass W C €, let W=! be the class
consisting of formal inverses of elements of W : for each w € W we have
exactly one w™! € W~ and conversely. We then have a directed graph
C[W 11 with objects Cp and arrows C; LU WL,

A directed graph G generates a free category F(G) on G : the objects of
F{(G) are objects Gp of G and arrows are parhs. That is, an arrow in F(G);
from x € Gy to y € Gp is a finite sequence (v, ¥a_1,-.-.71) of elements of
¢ with s(y1) = x and #(v,) =y (think: x B .. v). In addition, for
every x € Gy there is an empty path (), from x to x. Paths are composed
by concatenation:

(Ums'- -301)(7}:5-- -',H,".l) = (G-m'- ":O-lsf)'ne-'-:’}l)'

We now construct C[W~!] from the category F(C[W~']) by dividing out
the arrows of F(E[W*I]) by an equivalence relation. Namely let ~ be the
equivalence relation generated by the following equations:

1. () ~ (1) for all x € Gy (1, is the identity arrow in C; for an object

x € Co).

2. (@)(v) ~ (g7) for any pair of composable arrows in C.

3. Forany x Byc W, Go,w D~ (1) and (w1 ) ~ (1),

Thus we set C[W ™o = Co and C[W™1]; = F(CIW™'])1/ ~. We have the
evident functor 7w: € — C[W™!] induced by the inclusion of C into the
directed graph C[W—'1.

It remains to check that ww: C — C[W 1] is a localization. Note first that
for any w € W the arrow mw () is invertible in C[W™!] by construction of
CIW™ 1. If ¢: C =+ E is any functor such that ¢(w) is invertible for any
w e W, then ¢ induces a map ¢: CIW'1 — E: (w1 ;= ¢!, This
map drops down to a functor @: C[W™!] — E with ¢([w ') = ¢(u) ™! for
all w € W (here [w!] denotes the equivalence class of the path (w~!) in
FCIW™1).

We now come to a subtle poini. It may be tempting to apply the local-
ization construction to the category Gpoid whose objects are Lie groupoids,
morphisms are functors and the class W consists of equivalences, and then
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take the category of orbifolds to be the subcategory whose objects are iso-
morphic to proper étale Lie groupocids. Let us not rush. First of all, it will
not at all be clear what the morphisms in Gpoid[W™!1 are, since they are
defined by generators and relations. A more explicit construction would be
more useful. Secondly, Gpoid is really a 2-category: there are also natural
transformations between functors. We are thus confronted with three choices:

(1) Forget about natural transformations and localize; we get a category.

(2) Identify isomorphic functors and then localize.!) We get, perhaps, a
smaller category.

(3) Localize Gpoid as a 2-category.

It is not obvious what the correct choice is. Option (1) is never used,
perhaps it is not clear how to do it geometrically. Option (2) is fairly popular
[11, 20, 16]. There are several equivalent geometric ways of carrying it out.
We will review the one that uses isomorphism classes of bibundles. It is
essentially due to Hilsum and Skandalis [14]. We will prove that it is, indeed,
a localization. We will show that it has the unfortunate feature that maps
from one orbifold to another do not form a sheaf: we cannot reconstruct a
map from its restrictions to elements of an open cover. We will argue that
this feature of option (2) is unavoidable: it does not depend on the way the
localization is constructed. For this reason I think that choosing option (2) is
a mistake.

There is another reason to be worried about option (2). Tt is “widely
known™ that the loop space of an orbifold is an orbifold. So if we take the
point of view that an orbifold is a groupoid, the loop space of an orbifold
should be a groupoid as well. But if we think of the category of orbifolds as
a 1-category the space of arrows between two orbifolds is just a set and not a
category in any natural sense. There are, apparently, ways to get around this
problem [5, 11, 17], but T do not understand them.

There are many ways of carrying out option (3), localizing Gpoid as a
2-category. Let me single out three:

» Pronk constructed a calculus of fractions and localized Gpoid as a weak
2-category [23]. She also proved that the resulting 2-category is equivalent
to the strict 2-category of geometric stacks over manifolds.

* One can embed the strict 2-category Gpoid into a weak 2-category Bi
whose objects are Lie groupoids, l-arrows are bibundles and 2-arrows

1) Two smooth functors f,gy: G — H between two Lie groupoids are isomorphic if there
is a natural transformation a: Gy — Hi from f to g. Note that since all arrows in A1 are
invertible, « is automatically a natural isomorphism.
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equivariant diffeomorphisms between bibundles. We will explain the
construction of Bi in the next subsection.

* One can embed Gpoid into the strict 2-category of stacks over manifolds.
We will explain this in Section 4.

In the rest of the section we discuss option (2) in details. We start by
introducing bibundies and reviewing some of their properties. Thereby we will
introduce the weak 2-category Bi. Next we will discuss a concrete localization
of the category of Lie groupoids due to Hilsum and Skandalis; it amounts
to identifying isomorphic 1-arrows in Bi. We will then demonstrate that lo-
calizing groupoids as 1-category is problematic no matter which particular
localization is being used.

3.2 BIBUNDLES
DEFINITICN 3.16. A right action of a Lie groupoid H on a manifold P
consists of the following data:
1. a map a: P — Hy (anchor) and
2. a map
Pxam.H — P, (p,h) — p-h, (the action)

(as usual ¢: H; — Hp denotes the target map) such that
(@) a(p-h)y=s) Tor al (p,) € P Xym. Hi;
(by (p-h)-hy = p-(lhy) for all appropriate p € P and A, h, € H;
(¢) p-lypy =p foral peP.

DEFINITICN 3.17. A manifold P with a right action of a Lie groupoid H
1s a principal (right) H-bundle over B if there is a surjective submersion
7: P — B so that
L. wip-hy=m(p) forall (p,h) € Px,pq, . H, that is, 7 is H-invariant; and
2. the map P Xgopm . H1 = P xg P, (p,h) — (p,p-h) is a diffeomorphism,

that is, H acts freely and transitively on the fibers of w: P — B.

EXAMPLE 3.18. For a Lie groupoid H the target map ¢ Hy — Hy
makes H, into a principal H-bundle with the action of H being the
multiplication on the right (the anchor map is s: H; — Hp). This bundle
is sometimes called the wnit principal H-bundle for the reasons that may
become clear later.
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Principal H-bundles pull back: if w: P — B is a principal H-bundle and
f: N — B is a map then the pullback

ffP=NxgP-=3N

is a principal H-bundle as well. The action of H on f*P is the restriction of
the action of H on the product N x P to N xgP C N x P. It is not difficult
to check that f*P — N is indeed a principal H-bundle.

LEMMA 3.19. A principal H-bundle m: P — B has a giobal section if and
only if P is isomorphic to a pull-back of the principal H-bundle H; L Hy.
Proof. Since P — B is H-principal we have a diffeomorphism
PxometHh = PXgP,  (ph)—=(pp-h.

Its inverse is of the form (py,p2) v (p1,dp1.p2)) € P %o, Hy, where
di{py, p2) is the unique element 4 in H; so that pp = py - . The map

d: P xgP — H (“the division map™)

is smooth. Note that d(p,p) = lup. If o B— P is a section of @: P — B,
define f: P — H; by
fipy = dlotr(p)), p).
Then
p=olalp)-fip) foral pep.

Note that f is H-equivariant: observe that for all (p,h) € P xg H;
o(x(p - b)) f(p)-h=p-h=o(x(p- W)fip-h).

Hence, since P is H -principal, f(p) -h :f(p -h).
Consequently we get a map

eI P fH, o(p) = ((p), fpY),

where f: B — Hp is defined by f(b) = a(o(b)). The map ¢ has a smooth
inverse 4 f*Hy — P, t(b,h) = o(b)- h, hence ¢ is a diffeomorphism.

Conversely, since H A Hy has a global section, namely wu(x) = 1, for
x € Hy, any pullback of H, e Hpy has a global section as well.

REMARK 3.20. It is useful to think of principal groupoid bundles with
global sections as trivial principal bundles.
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The next result is technical and will not be needed until we start discussing
stacks in the next section. It should be skipped on the first reading.

COROLLARY 3.21. Let G be a Lie groupoid, £, — N, & — N two
principal G-bundles with anchor maps ay, a respectively. Any G-equivariant
map v & — & inducing the identity on N is a diffeomorphism.

Proof. Note that a; o ¢ = @ ; this is necessary for ¢ to intertwine the
two (r-actions.

Since 4 is G-equivariant and induces the identity map on the base N,
for any open set &/ C N, v(&|p) © &|p. Therefore it is enough to show
that for any sufficiently small subset &/ of N the map ! {|lp — &|p is
a diffeomorphism. Since &; — N is a submersion, it has local sections. The
two observations above allow us to assume that & — N has a global section
o N = &.

We have seen in the proof of Lemma 3.19 that the section ¢ together with
the “division map" d: £; xxy & — G defines a G-equivariant diffeomorphism

f: & =G — Go),

where f = a o o. Similarly the section o o: N — & together with the
division map for & defines a G-equivariant diffeomorphism

i S e -SG0

where h = azc(3b o). Since (@01 oo = @y o, we have h = f. By tracing
through the definitions one sees that

‘17"; — (71’)71 O}T.
Hence ¥ is a diffeomorphism.
DEFINITION 3.22. A [leff action of a Lie groupoid G on a manifold M is

1. A map a;r = a: M — Gy (the (left) anchor) and
2. a map

Gl XM — M, (v, x) — - x, (the action),

such that
(a) 1y -x=uxforall x < M,
by a(y-x) =1ty for al (v.x) € G X500 M,
(©) 72+ (v1+x)=(v2v) -x for all appropriate 7.7y € Gy and x € M.
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REMARK 3.23. Given a right action ap: M — Go, M xg, G — M of
a Lie groupoid  on a manifold M, we get a left action of G on M by
composing it with the inversion map G; — Gy, v+~ L.

REMARK 324 If f: G — H is a smooth functor between two Lie
groupoids then the pullback

frHy = Gy Xp . H1 = Go
of the principal H-bundle H; L Hy by fo: Go — Hp is a principal H-bundle.
In addition it has a left G-action:
G X607 (Go X 1) — (Go X e 1) (g, (x ) = (g filgdh) .
This left G-action commutes with the right A -action.

The manifold f;f; with the commuting actions of G and H constructed
above is an example of a bibundle from G to H, which we presently define.

DEFINITION 3.25. Let G and H be two Lie groupoids. A bibundle from
G to H is a manifold P together with two maps arp: P — Go, ag: P — Hy
such that
1. there is a left action of G on P with respect to an anchor a7 and a right
action of H on P with respect to an anchor ag;
2. arp: P — Gy is a principal H-bundle;

W

ap is G-invariant: ap(g-p) = ap(p) for all (g, p) € Gy xXg, P;
4. the actions of G and H commute.

If P is a bibundle from a Lie groupoid G to a Lie groupeid H we write
P.G—=H.

DEFINITION 3.26. Two bibundles P, Q: G — H are isomorphic if there is
a diffeomorphism «: # — @ which is G—H equivariant: a(g-p-h) = g-a(p)-h
for all ('(],p,h) e X Gy P X H.

REMARK 3.27 (Bibundles defined by functors). By Remark 3.24 any
functor f: G — H defines a bibundle
<f> ZZfO*Hl = Go Xf,HD:t Hli G- H.

The bibundle {idg} corresponding to the identity functor idg: G — G is Gy
with G acting on (; by left and right multiplications.
Note that {f} — Gy has a global section o(x) := (x,f(1.)).



336 E LERMAN

EXAMPLE 3.28. A map f: M — N between two manifolds tautologically
defines a functor f: {M = M} — {N = N}. The corresponding bibundle
{f} is simply the graph graph(f) of f. It is not hard to show that a converse
is true as well: any bibundle P: {M = M} — {N = N} is a graph of a
function fp: M — N.

Note also that given two maps f: M — N, g M’ — N, an equivariant
map of bibundles ¢: graph(f) — graph(g) has to be of the form &(x, f(x)) =
(h(x), g(h(x))) for some map h: M — M. That is, ¢: graph(f) — graph(g)

M_ s
corresponds to A: M — M’ with the diagram hl N commuting. This
M,' i

example is also important for embedding the category of manifolds into the
2-category of stacks.

EXAMPLE 3.29. Let M be a manifold and I' a Lie group. As we have
seen a number of times the manifold M defines the groupoid {M = M}.
The group I' defines the action groupoid {I' = =} for the action of " on
a point #. A bibundle P: {M = M} — {I' = =} is a principal I'-bundle
over M. A bibundle P is isomorphic to a bibundle of the form {f) for some
functor f: {M = M} — {T = +} only if it has a global section, that is, only
if it is trivial. Thus there are many more bibundles than functors.

Note, however, that any principal I'-bundle P — M is locally trivial.
Hence, after passing to an appropriate cover ¢: U — M, the bibundle
P U U = U} — {I' = =} is isomorphic to {f) for some functor
Fo U xpld 28U} — {T = #}. This is a special case of Lemma 3.37 below.

Note also that the functor f: {if xy if = U} — {T =3 x} is a Cech
1-cocycle on M with coefficients in ' with respect to the cover 4.

REMARK 3.30. Bibundles can be composed: if P: G - Hand Q. H =+ K
are bibundles, we define their composition to be the quotient of the fiber product
P g, O by the action of H:

QoP =(Pxg O)/H.

This makes sense: Since Q — Hy is a principal K-bundle, the fiber product
P xg, O is a manifold. Since the action of H on P is principal, the action of
H on Pxy Q given by {(p,q)-h=(p-h,h~' . ¢ is free and proper. Hence
the quotient (P xg, @)/H is a manifold. Since the action of H on P xg, Q
commutes with the actions of G and K, the quotient (P xz, @)/# inherits
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the actions of G and K. Finally, since  — Hp is a principal K -bundle,
(P xg, O/H — Gy is a principal K -bundle.

REMARK 3.31. The composition of bibundles is not strictly associative:
if Py, P», P; are three bibundles then Py o (P> o P3) is not the same manifold
as (Pp o P2) o Py On the other hand the two bibundles are isomorphic
in the sense of Definition 3.26: there is an equivariant diffeomorphism
) Py o(PzoP3) — (PpoPy)o Py, This is the reason why we end up
with a weak 2-category when we replace functors by bibundles.

REMARK 3.32. A natural transformation o f = ¢ between two [unctors
f.g: K — L givesrise to an isomorphism {a}: {f) — {g) of the corresponding
bibundles.

REMARK 3.33. If a bibundle P: G — H is G-principal, then it defines
a bibundle P!: H — G: switch the anchor maps, turn the left G-action
into the right G-action and the right H-action into a left H-action. Indeed,
the compositions P! o P and P~ o P are isomorphic to {(ids) and {idy}
respectively.

We summarize (without proof):

1. The collection (Lie groupoids, bibundles, isomorphisms of bibundles) is a
weak 2-category. We denote it by Bi.

2. The strict 2-category of Lie groupoids, smooth functors and natural
transformations embeds into Bi. For this reason bibundles are often referred
to as “generalized morphisms."

The lemma below allows us to start justifying our notions of equivalence of

Lie groupoids.

LEMMA 334 A functor [ G — H is an equivalence of Lie groupoids
if and only if the corresponding bibundle (f}: G — H is G-principal, hence
{weakly) invertible.

Proof. Recall that a functor f: G — H is an equivalence of Lie groupoids
if and only if two conditions hold (cf. Definition 3.5):
L. the map w: Gi — (Go x Go) X(p 0. HyxHogsn H1, 00y = SO 10y, N
is a diffeomorphism and
2. the map b: Gy Xp gy, H1—Hy, bx,B) = s(h) is a surjective submersion.
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Recall also that {f) = Ga Xy g, 41 and that the right anchor ag: () — Hg
is precisely the map b, while the left anchor is the projection on the first
factor: arp(x,h) = x. Tautologically az is a surjective submersion if and only
if b is a surjective submersion.

Suppose that G acts freely and transitively on the fibers of ag: (f) — Ho.
That is, suppose ag: {f) — Hp is a principal G-bundle. Then the map

¥ GiXs g, (GoxXpmHD — () xm{f) . w(g,xh) = (), (. f@h')

is a diffeomorphism. Hence it has a smoocth inverse. Thus for any (x, &), (x,A") €
Gy x Hy with fix) = (thy, f(x') = (k") and s(h) = s(#') there is a unique
¢ € Gy depending smoothly on x,x", 4 and & with s(g) =x, #(g) =x" and
' = f(g)h. Therefore for any x,v € Gy and any A& € H with s(h) = f(x)
and #A") = f(y) there is a unique g € (; depending smoothly on x,y and
H so that &' = f(g)lpw . That is, the map

v G1 = (Go X Go) X(fp),m xH s, HL

has a smooth inverse. Therefare if {f) — Hy is left G-principal bundle then
f is an equivalence of Lie groupoids.

Conversely suppose ¢ has a smooth inverse. Then for any ((x, &), &', &) €
{fy xm, {f) there is a unique ¢ € Gy with s(¢) = %', #g) = x and
flo) = h(HH~!. Hence the map % has a smooth inverse. Therefore, if
S G — H is an equivalence of Lie groupoids, then (f} — Hp is left
G -principal bundle.

COROLLARY 3.35. Let G be a Lie groupoid and ¢: U — Gy a cover
{a surjective local diffeomorphism). Then the bibundle () defined by the
induced functor ¢ ¢*G — G is invertible.

Proof. We have seen that the functor 6. "G — G is an equivalence.
The result follows from Lemma 3.34 above.

LEMMA 3.36. Let P: G — H be a bibundle from a Lie groupoid G to a
Lie groupoid H. Then P is isomorphic to ([} for some funcior {1 G — H
if and only if ap: P — (y has a global section.

Proof. 'We have seen that for a functor f: G — H the map
ar: Gy xg, H = Gy

has a global section.
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Conversely, suppose we have a bibundle P: G — H and the principal
H-bundle ay: P — Go has a global section. Then by Lemma 3.19 the bundle
P — Gy is isomorphic to Go X4, H for some map ¢: Gy — Hy. Therefore
we may assume that P = Go X m, . H1. Now the left action of G on P defines
amap f: Gy — H; by

- W s ) = G L) - S .

The map f is well defined since the action of H is principal. Finally the map
f preserves multiplication: if z 5 v 2 x are two composable arrows in Gy
then, on one hand,

@ (g1 Low) = g - Law) - fla) = (2, L e) - Flgz)) - flgy)

and on the other,
(g1) - (x, Lo) = (@ Lan) floeg).
Hence f{g2)f{m) = flgzg1), that is, f is a functor.

LEMMA 337 Let P G — H be a bibundie from a groupoid G to a
groupoid H. There is a cover ¢ U — Gy and a functor f: ¢°G — H s0
that

Pa(o) = (),

where (; O*G — G is the induced funcior and —— an isomorphism of
bibundles.

Proof. Since a;: P — Gy 18 an H-principal bundle, it has local sections
g U= P with | JU; =G. Let Y = | |U; and ¢: I — Gy be the inclusion.
Then ¢*P — I has a global section. Hence, by Lemma 3.36 there is a functor
[ é*G — H with {f) = ¢"P.

33 HILSUM-SKANDAIIS CATEGCRY OF LIE GROUPOIDS

Recall that Bi denotes the weak 2-category with objects Lie groupoids,
1-arrows bibundles and 2-arrows equivariant maps between bibundles. The
2-arrows are always invertible. Recall that Gpoid denotes the (2-)category of
Lie groupoids, functors and natural transformations.

DEFINITION 3.38.  Define the 1-catesory Gp to be the category with objects
Lie groupoids and arrows the isomorphism classes [f] of smooth functors.
Define the 1-category HS (for Hilsum and Skandalis [14], who invented it)
to be the category constructed out of Bi by identifying isomorphic bibundles.
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There is an evident functor 7: Gpoid — HS which is the identity on objects
and takes a functor f to the equivalence class of the bibundle {f} defined by
51 zZH =[{H1. Clearly it drops down to a faithful functor

[ﬂ]

zGp—Hs, 6B m=c"Ym.

By abuse of notation let W denote the collection of isomorphism classes of
equivalences in Gp:

W = {[w] | w € Gpoid, is an equivalence} .

PROPOSITION 3.39.  The functor z: Gp — HS defined above localizes Gp
at the class of equivalences W. That is, z induces an equivalence of categories

Gp[W 1] — HS.

Proof. By Lemma 3.34, z([w]) is invertible in HS for any equivalence
w. Thus the content of the proposition is the universal property of the functor
z: Gp — HS. Suppose @®: Gp — E is a functor that sends isomorphism
classes of equivalences to invertible arrows. We want to construct a functor
W HS — E so that

Yoz=10¢,

As the first step, for an object G € HSy define W) = ©(G). Next let
P: G — H be a bibundle. We want to define W{([P]). By Lemma 337 we
can factor P as

P (F)o ()™
for some equivalence w': G' — G and a functor f': G' — G. Define

WP = D P[w' D

We need to check that this is well defined and that W preserves compositions.
Suppose w”’: G’ — G and "1 G" — G is another choice of factorization.
Let

(0] = z[w'] 2w G = 6.
Then [Q] can be factored as well:
[0] = z([g]) =[]~

for some equivalence @: G — G” and some functor g: G — G’
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The diagram
G/

«LgD

G [l

[

Gl.’
commutes in HS. Hence
(3.1) 2D @D = 2D z(Lg])
Since z is faithful,
L] = [F10g]
in Gp. Hence, in E,
O D ea]) = DAL DUgD = UL D DL’ D™ ([’ D g
= D[ '] DL’ D[] DD,
where we used the fact that z is faithful and (3.1). Since ®([«]) is invertible,
O = BUFD P’ D DD

Therefore
[ DO D! = S DD,
and ¥ is well-defined.
A similar argument shows that W preserves multiplication.

DEFINITICN 3.40 (Morita equivalent groupoids). Two Lie groupoids are
Morita equivalent if there they are isomorphic in the localization Gp[W!]
of the category of groupoids at equivalences. In particular, G and H are
Morita equivalent if there is a bibundle P: G — H with the action of G
being principal.

We finally come to the punchline of the section: the localization of the
category of Lie groupoids at equivalences as a 1-category has problems.

LEMMA 3.41. There are a cover {Uy, U2} of S' and two morphisms
fog: S' = {Z/2 = +} in GplW™ so that fly. = glg. (i=1.2) but f #g.
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Proof. In the category HS a morphism from a manifold M (that we
think of as the groupoid {M — M}) to a groupcid & is the equivalence
class of a bibundle P from {M = M} to G. An action of {M = M} on
P is simply a map ap: P —+ M. So a bibundle from M to G is a principal
(-bundle and an HS morphism from M to G is the equivalence class of some
principal G-bundle over M. Hence an HS morphism from §! to {Z/2 = ]
is the class of a principal Z/2 bundle over §' (cf. Example 3.29). There
are two such classes: the class of the trivial bundle & and the class of the
nontrivial bundle » Now cover §' by two contractible open sets /; and
/>, Any principal §* bundle over a contractible open set is trivial. Therefore
alg, = blp,, i =1,2. This gives us the two morphisms in HS from §! to
{Z/2 = *} with the desired properties. Let F: HS — Gp[W™!] denote an
equivalence of categories, which exists by Proposition 3.39. Then f = F(a)
and g = F(b) are the desired morphisms in Gp[W1].

It may be instructive to note how this problem does not arise in the weak
2-category Bi. In Bi the 1-arrows are not isomorphism classes of bibundles
but actual bibundles. Let P; — §' denote a trivial Z/2 principal bundle and
P, — §' a nontrivial one. Over the open sets {/;, {» we have isomorphisms
wit Pl =1 P:p., rather than equalities, as we had with their isomorphism
classes. These local isomorphisms obviously do not glue together to form
a global isomorphism from P; to P,. They cannot, because P; and P»
are not isomorphic. And they do not because they do not agree on double
intersections: 21/p, |y, # ¥21P11u; e, -

At this point we can agree that the right setting for orbifolds is the weak
2-category Bi and declare our mission accomplished. That is, a smeoth orbifold
would be a Lie groupoid weakly isomorphic in Bi (i.e., Morita equivalent) to
a proper étale Lie groupoid. We would call such groupoids orbifold groupoids.
A map between two orbifolds would be a smooth bibundle.

The geometry of orbifolds would proceed along the lines of Moerdijk’s
paper [20]. For example, let us define vector orbi-bundles. The definition is
modeled on the case where the orbifold is a manifold with an action of a
finite group. That is, suppose a finite group I' acts on a manifold M. A vector
bundle over the orbifold “M/I'” is a [-equivariant vector bundle £ — M.
Hence, in general, a vector bundle over an orbifold groupoid G is a vector
bundle E — Gp over the space of objects together with a linear left action of
G on E (linear means that the map Gy ¢, £ — E is a vector bundle map).
A bit of work shows that one can pull back a vector bundle by a bibundle.

On the other hand, there is still something awkward in this set-up, since
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the composition of bibundles is not strictly associative. This gets particularly
strange when we start thinking about flows of vector fields, or, more generally,
group actions. For example, let the circle S' act on itsell by translations. Now
take an open cover I — §' and form the cover groupoid G = {Uxald = U
The induced functor G — {$' = §'} is weakly invertible, so we get an
“action” of §' on . The word “action” is in quotation marks because for
any two elements of the group A, A’ < § and the corresponding isomorphisms
Do, G G

GA 0 PA F Pava
Rather,

620 6x 2 dagw
for some isomorphism of bibundles A depending on A, A'. We get a so called
weak action of S' on G.

The same thing happens when we try to integrate a vector field on G
we do not get a flow in the sense of an action of the reals. We get some sort
of a weak flow. For the same reason the action of the Lie algebra Lie(I') on
a proper étale Lie groupoid G with the compact coarse moduli space Gy/Gy
will not integrate to the action of the Lie group T'. It will only integrate to
a weak action. This is somewhat embarrassing since in literature Lie groups
routinely act on orbifolds.

There is another question that may be nagging the reader: are not
groupoids supposed to be atlases on orbifolds, rather than being orbifolds
themselves 7 There is a solution to both problems. It involves embedding the
weak 2-category Bi into an even bigger gadget, the 2-category of stacks St.
Stacks form a strict 2-category. This is the subject of the next and last section.
In particular in 5t the composition of 1-arrows is associative and strict group
actions make perfectly good sense. Additionally there is a way of thinking
of a groupoid as “coordinates™ on a corresponding stack. Different choices
of coordinates define Morita equivalent groupoids. And Morita equivalent
groupoids define “the same™ (isomorphic) stacks.

4. STACKS

In Section 3.2 we constructed a weak 2-category Bi whose objects are
Lie groupoids, 1-arrows (morphisms) are bibundles and 2-arrows (morphisms
between morphisms) are equivariant maps between bibundles. The goal of this
section is to describe a particularly nice and concrete (?1) s#rictification of



344 E LERMAN

this weak 2-category. That is, we describe a strict 2-category St of stacks
and a functor B: Bi — 5t which is an embedding of weak 2-categories (there
is no established name in literature for this functor, so I made one up). The
2-category St of stacks is a sub-2-category of the category of categories Cat.
Recall that the objects of Cat are categories, the 1-arrows are functors and
the 2-arrows are natural transformations.

Here is a description of the 2-functer B: Bi — Cat (it will land in St
once we define/explain what St is):

1. To a groupoid ¢ assign the category B(, whose objects are principal
G-bundles and morphisms are G-equivariant maps.

2. To a bibundle P: G — H assign a functor

BP. BG — BH

as follows: A principal G-bundle Q on a manifold A is a bibundle from the
groupoid {M = M} to G. Define

BP(QJ)=Po(Q (a composition of bibundles).

A G-equivariant map ¢: 01 — (> between two principal (-bundles
Q01— My, 0> = M> induces an H-equivariant map BP(¢): Pc Q) = Po (>
between the corresponding principal A -bundles. It is not hard to check that
BP is actually a functor.

3. To a G-H equivariant map A: P — P' assign a natural transformation
BA: BP = BP' as follows. Given a principal G-bundle Q, the map A: P — P
induces a G-H equivariant map A Q xg, P — Q xg, P which descends to
an H-equivariant diffeomorphism

BA(Q): BP(Q) = Po Q= (Q %g, P)/G = (Q x¢, P)/G = BP'(Q).

REMARK 4.1,  The notation B{M = M} is quite cumbersome. Instead we
will use the notation M.

It follows from Example 3.28 that the category M has the following simple
description. It objects are maps Y 7y M of manifolds into M. A morphism
in M from f: ¥ = M to f: ¥ — M is a map of manifolds h: ¥ — ¥’

2 o I
making the diagram hl M commute. The category M is an example
y o

of a slice (or comma) category.
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We now proceed to describe the image of the functor B: Bi — Cat.
More precisely we will describe a slightly larger 2-category of geometric
stacks and the functor B will turn out to be an equivalence of weak 2-
categories B: Bi — geometric stacks. More precisely, we will see that every
geometric stack is isomorphic to a stack of the form BG for some Lie
groupoid G.

We define geometric stacks in several step. We first define cafegories
fibered in groupoids (CFQs) over the category of manifolds Man. Next we
define stacks. These are CFG’s with sheaf-like properties. Then we single
out geometric stacks. These are the stacks that have atlases. Finally any
geometric stack is isomorphic (as a stack) to a stack of the form BG for
some groupoid G.

4.1 CATEGORIES FIBERED IN GROUPQIDS

DEEINITION 4.2. A category fibered in groupoids (CFG) over a category C
is a functor «: D — C such that
(1) Given an arrow f: €' — C in C and an object £ € D with =(¢) = C
there is an arrow f: &' — ¢ in D with «(f) =f (we think of £ asa
pullback of & along f).

5” \f\ ﬂ_(éﬂ) jl_f)
(2) Given a diagram e ¢ in D and a commutative diagram !Il (&)
7
¢k (& wh
&‘H f
in C there is a unique arrow g: & — £ in D making q,L \‘\f com-
.

mute and satisfying «(¢) = ¢. That is, there is a unique way to fill in
the first diagram so that its image under « is the second diagram.

We will informally say that D is a category fibered in groupoids over C,
with the functor « understood.

EXAMPLE4.3. Fix a Lie groupoid . I claim that the functor «: BG — Man
that sends a principal G-bundle to its base and a G-equivariant map between
two principal G-bundles to the induced map between their bases makes the
category BG into a category fibered in groupoids over the category Man of
manifolds.

Indeed condition (1) of Definition 4.2 is easy to check. Given a map
f: N — M between two smooth manifolds and a principal G-bundle £ — M
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we have the pullback bundle f*¢ — ¥ and a G-equivariant map f: fEE S E
inducing f on the bases of the bundles.

Note that if #': £ — N is a principal G-bundle and h: & — £ is a
G-equivariant map inducing f: N — M then there is a canonical G-equivariant
map n: & — f*¢ which is given by n(x) = (v'(x), A(x)). By Corollary 3.21,
the map 7 is a diffeomorphism.

To check condition (2) suppose that we have three principal G-bundles
g M, - M ¢ — M, two G-equivariant maps f: &7 — €&,
h: & — ¢ inducing f: M — M and % M’ — M respectively and

M" F
a map g: M”" — M so that nl \M commutes. We want to con-
'’
struct a G-equivariant map §: £’ — & with hog = f. By the pre-
ceding paragraph we may assume that &' = F & = M" xy & and

& = HE = M xy ¢ Define j: M xp £ — M xp £ by Gomx) =
(g(m),x). Hence hog = f, and we have verified that =: BG — Man is
a CFG.

DEFINITION 4.4 (Fiber of CFG). Let m: D = C be a category fibered
in groupoids and C € Cy an object. The fiber of D over C is the category
D(Cy with objects

D(Co == {§ € Do | 7(¢) = C}

and arrows/morphisms

DOy = {(f:1 & = &) e Dy | &,¢ € DICYy and 7(f) = ide} .

EXAMPLE 4.5. In the case of w: BG — Man the fiber of BG over a man-
ifold M is the category of principal G-bundles over M and gauge wransforma-
tions (G-equivariant diffeomorphisms covering the identity map on the base).

REMARK 4.6, Let #: D — C be a CFG. Suppose Y 4y X is an arrow
in C, £ € DXy, £,% € DY)y and A;: & — € (i =1,2) are two arrows
in D with «(h;) = f. Then by Definition 4.2(2) there exist unique arrows
k:& — & and £: & — § making the diagrams

£ h & o m
kl >& and fT \é
&7 &7l

commute, with w(k) = w(f) — idy.
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Then, since 7k o £) = idy and

& m
E'Dkl( \5
£ 7 M

commutes, we must have £ ok = idg . Similarly, ko{ = id.,. We conclude:

any two pulibacks of € along Y 4 X are isomorphic.

CONVENTION. From now on, given a CFG 7 D — C and & € DiX)y

for cach arrow ¥ X € C; we choose an arrow f in D with target £. We
denote the source of f by f"£ and refer to it as the pullback of € by f. We
always choose id"§ = &.

Similarly we can define pullbacks of arrows: Suppose (& Ly &) € DXy

is an arrow in D and (¥ L X) is an arrow in €. We then have a diagram
in D:

7
ffa—4
“.D ?‘l :
Fe—=t
L
&1 el
By Definition 4.2(2) applied to & we get the unique arrow
& A

v f*E — & making (4.1) commute.

REMARK 4.7. Similar arguments show that a fiber D(C) of a category
D fibered in groupoids over C is actually a groupoid. That is, all arrows in
D¢C) are invertible.

DEFINITION 4.8 (Maps of CFGs). Let nip: D = C and #ng: E — C be
two categories fibered in groupoids. A 1 -morphism (or a 1-arrow) F: D — E
of CFGs is a functor that commutes with the projections: wgo F =ap.

A 1-morphism F: D — E of CFGs is an isomorphism if it is an equivalence
of categories.

Given two 1-morphisms F,F': D — E of CFGs, a 2-morphism . F = F'
is a natural transformation from F to F'.
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Thus the collection of all categories fibered in groupoids over a given
category C is a strict 2-category. Note also that natural transformations
between 1-arrows of CFGs are automatically invertible since the fibers of
CFGs are groupoids. We note that for any two CFGs D and E over C,
the collection of 1-arrows Hom(D.E) forms a category. In fact, it is a
groupoid.

42 DESCENT

To make sense of the next definition, consider how a principal G-bundle
P — M (G a Lie groupoid) can be reconstructed from its restrictions
to clements of an open cover {{f;} of M and the gluing data?) We
have restrictions P; = P|y, and isomorphisms Pi|y;, — Pj|y, over double
intersections Ly = U; N U; satisfying the cocycle conditions. Given a
G-equivariant map ¢: P — P of two principal G-bundles covering the identity
map on the base, we have a collection of G-equivariant maps ¢;: P — P;
which agree on double intersections: &ip, = dilp),, -

Conversely, given a collection of principal G-bundles {P; — U;} and
isomorphisms 0;: P; v, PJ,»|U9 satisfying the cocycle conditions, there is a
principal G-bundle P over M with P|y isomorphic to P; for all ¢.

Similarly, given two collections ({P} — U;},{0}: Pilu, — Pilu, D,
({P: = Ui}, {#y: Pilu, — Pjlu,}) and a collection of principal G-bundle maps
{é: P, — P;} compatible with {0};} and {0}, there is a (-equivariant map
¢: P' — P which restricts to ¢; over UJ;.

A succinet way of describing the above local-to-global correspondence is
through the language of equivalences of categories. We have the category
BG(M) of principal G-bundles over M and G-equivariant maps covering
idy. We may think of it as the category Bi({M — M}.G) of bibundles from
{M = M} to G. Given a cover i = | | U; = M, we have the cover groupoid
U xyld = U. A collection ({P; — Ui}, {04 Pily, — Pily,}) of principal
G -bundles is nothing but a bibundle from the cover groupoid to G. Similatly,
a map between two such collections is an equivariant map between two
bibundles. And the restriction map P +— {P|y, } induces a map between the
two categories:

W BI({M = M}, G) — BildU xy U = UG

2) The reader may think of G as a Lie group to avoid getting bogged down in irrelevant
technicalities.
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Formally, on objects,
lII(Q) - Q o U:

where U: {U xu U = U} — {M = M} is the bibundle with the total
space ¢, left anchor the identity map and the right anchor the “embedding™
4 — M. Since a G-equivariant map @ — @' induces a (-equivariant map
Qoll — @ olU, ¥ is a functor. Moreover, since I/ is weakly invertible,
W is an equivalence of categories. One says that the principal G-bundles on
the cover I satisfying the compatibility conditions descend to the principal
G-bundles on M.

More generally, given a CFG w: D — Man and a cover I/ — M, one
defines the descent category DU — M). To do it properly, we need to
correct one inaccuracy in the discussion above. We have taken advantage of
the fact that one can restrict principal bundles to open sets. Furthermore if
{U;} is a cover of a manifold M and P — M a principal G-bundle, then
Plu)lv, = Plu, = (Plyply, (here, again, Uy = U; N U;). But if we want to
think of BG — Man abstractly, as a CFG, then restrictions should be replaced
by pullbacks.

Now if M" % M' 5 M are maps of manifolds and ¢ is an object
of D over M, then we do not expect (f o g)"f to equal ¢*(f*&); we
only expect them to be canonically isomorphic. And indeed if D = BG
so that £ is a principal G-bundle, then the pullback f*(g*P) is nof
the same as (f o ¢)"P even as a sef! To talk about descent in gen-
eral we need to replace restrictions by pull-backs: instead of Ply. we
should think +!P where «: U — M denotes the canonical inclusion.
We will then discover that «;:7P is isomorphic but not equal to 7P
(17 and ¢; denote the inclusions of the double intersection U/; into i
and U; respectively), so the bookkeeping gets a bit more complicated.
Let us now properly organize all this bookkeeping. We closely follow Vis-

toli [29].

Given an open covering {U; — M} of a manifold M we think
of the double intersections &/ = {4 M {/; as fiber products U/; xp U;
and ftriple intersections Uz as fiber preducts U; xpr xU; xp Uy Let
pri: Uy Xy Uy = U; and pr,: U; xy U; — U; the first and second projec-
tion respectively. Similarly for any three indices i;.i»,i3 we have projection
Pa Uy X xUy %y Uy, — Ui, a = 1,2,3. We also have a commuting
cube:
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Pro3
Uig ——————= Un

Py /

Py

“4.2)

Ui — U

v

U =M

where pry,, pry; and pr,y; denote the appropriate projections.

DEFINITION 4.9 (Descent category). Let w: D — Man be a category
fibered in groupoids, M a manifold and {Z/;} an open cover of M. An object
with descent data({&}, {¢5}) on M, is a collection of objects & € D(U)),
together with isomorphisms ¢y;: pri & ~ pri & in D(U;) = D(U; ¥ U, such
that the following cocycle condition is satisfied: for any triple of indices 7, j
and k, we have the equality

Prisdix = Pri»@y @ Prasdp: pry & — pry &

where pr, and pr, are the projections discussed above. The isomorphisms
¢y are called transition isomorphisms of the object with descent data.

An arrow between objects with descent data

{ot: Q& Ao — Ak {vgD

is a collection of arrows «;: & — 1; in D(U;), with the property that for each
pair of indices , j, the diagram

’ pry e y
G 2k
pry & ———— prz v

-
1 €

% e *
pri & ———— pri v

commutes.

There is an obvious way of composing morphisms, which makes objects
with descent data the objects of a category, the descent category of {U; — M}.
We denote it by D({U; — M}).
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REMARK 4.10. As before let w: D — Man be a category fibered in
groupoids, M a manifold and {U/;} an open cover of M. We have a functor

DM) — DHU; — M}

given by pullbacks.
We are now in a position to define stacks over manifolds.

DEFINITION 4.11 (Stack). A category fibered in groupoids w: D — Man
is a siack if for any manifold M and any open cover {U; — M} the pullback
functor

DA — DHU; = MP

is an equivalence of categories.
EXAMPLE 412. The CFG BG — Man is a stack for any Lie groupoid G.

EXAMPLE 4.13. Let T be a Lie group. The category 4Bl with objects
principal I'-bundles with connections and morphisms connection preserving
equivariant maps is a stack.

DEFINITICN 4.14 (Maps of stacks). Let n¢c: € — Man, np: D — Man be
two stacks. A functor f: C — D is a map of stacks (more precisely a 1-arrow
in the 2-category St of stacks) if it is a map of CFGs (cf. Definition 4.8) —
f commutes with the projections to Man:

mpof =mc.

LEMMA 415 Let M be a manifold, H a groupoid. Then any map of
stacks F . M — BH is naturally isomorphic to the functor BP induced by a
principal H-bundle P over M.

Proof. As we have seen in Remark 4.1, the objects of the CFG M are

maps Y Jy M. An arrow in M from Y SMoyhMisa commuting
Y
triangle hl
Y.F
principal A -bundle F(Y i> M) over M. Let P —= F(M E} M. Note that any

M . The functor F assigns to each object ¥ oM of M a

S
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map f: ¥ — M is also an arrow in M : it maps ¥ SiMto M ﬂM, since
o

fl M commutes. Hence we get a map of principal H-bundles

Y

M| Frdmmsp
A

projecting down to the map f: ¥ — M in Man. But BH — Man is a
CFG and f*P — P is another arrow in BH projecting down to f: ¥V — M.
Consequently the principal H-bundle F(Y i M) — Y is isomorphic to the
bundle f*F — Y. Denote this isomorphism by a(f). Varying f € (M) we
get a map

a: (M — (BH;

it is a natural isomorphism of functors «v: F = BP.

COROLLARY 4.16. Let M, M’ be two manifolds. For any map F: M — M’
of CFGs there is a unique map of manifolds f. M — M’ defining F. That
is, the functor Man — CFG’s over Man, M — M is an embedding of
calegories.

Proof. Any two maps of CFGs from M to M’ are equal since the only
arrows in the fibers of M’ are the identity arrows.

REMARK 4.17. Note a loss: if we think of smooth manifolds as stacks,
we lose the way to talk about maps between manifolds that are nor
smooth.

REMARK 4.18. With a bit of work L.emma 4.15 above can be improved
as follows:

Let & and H be two Lie groupoids. Then any map of stacks F: BG — BH
is isomorphic to BP for some principal bibundle P: G — H.

Indeed, let P = F(G; — Gyp). It is an object of BH((y), that is, a
principal H-bundle over Gy. Since Gy — Gy also has a left G-action and F
is a functor, P also has a left G-action. A bit more work shows that BP is
isomorphic to F.
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43 2-YONEDA

Lemma 4.15 generalizes to arbitrary categories fibered in groupoids. The
result is often referred to as 2-Yoneda lemma.
For any category C and any object C € Cy there exists a CFG € over C

defined as follows. The objects of € are maps €’ R C ¢ C;. A morphism

CJ‘
from ¢’ % Cto ¢ & Cisa commuting triangle kl >C. There
CH g

is an evident composition of such triangles (stick them together along the
common side) making € into a category. There is also a functor #¢: € — C:

C."
me(C’ /S Cy=C' and 7 ( hl \C Y=t —=CN.
T

LEMMA 4.19 (2-Yoneda). [Let D — C be a category fibered in groupoids.
For any object X € C there is an equivalence of categories

®: Homepg(X, D) — DX),
F:X =Dy FX S X,
(@ F=> G- X3 x: Fix S x— 6ix 4 xy,

where Homepg(X, D) denotes the category of maps of CFGs and natural
transformations between them.

Proof. Suppose F,G: X — D are two functors with F(idx) = G(idx) =

& € Dg. We argue that for any ¥ € C and any Y—>XE)_((Y)0 there is a
Y _f

unique alf) € C(Yy with GG "4 F¢f). Indeed, the diagram fl Ty
x id
in C defines an arrow in X from (Y i> X)e X(¥Yy to (X E} X) e X(X.
Yoo f
Since mx fl \X = (Y i) X) € ¢y and since F and G are maps of
X i
CFGs, we also have:
Y _ 7 Y 5
o Il\ ) = 7ol fl\ ):(YLX).
T T

&

X id X
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Hence we have a diagram

G,

~

§ = Glidx) = Flidy)
Fp o

in D. The functor «p: D — C takes the diagram above to the commuting
diagram

Y _ Y
AL \f\

idy | X, where 1= Il w X
¥ -
¥R X

Therefore, by the axioms of CFG, there is a unique arrow «(f) € D(¥Y); with
mola(f)) = idy making the diagram

G o
al f) {
o

commute. The map e: X, — D; is a natural transformation from G to F.
We now argue that @ is essentially surjective and fully faithful. Let

£ € D(X) be an object. Recall that for any arrow (¥ 4 X) ¢ C; we have
chosen a pullback f*¢ € D(Y)q. Define a functor Fr: X — D by

FrLx=p,

Y, f
\ o : 3 o+ * = +h
Fe hl X | =the unique arrow in D from f*¢ to g*& covering Y' =Y.
Yf 4

Note that F.(idy) = id3{ = &, so by the discussion above there is a natural
transformation «: F = Fz. Hence @ is essentially surjective.

It remains to prove that @ is fully faithful. Suppose (v: &' — &) € D(X);
is an arrow. We want to find a natural transformation cv.,: Fe = Fe with
©(cv,) =~ and prove that such a natural transformation is unique.
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Given (¥ %5 X) € X, define
aly Lxy=re I e,

Then ., is a natural transformation from Fes to Fe with . (idy) = idgy = ~.
Moreover ., isunique: if : X; — Dy is another natural transformation from

Fg to Fy then for any (¥ ﬁX) € X, the diagram

[ =Fe(f)—=¢
(4.3) lﬁ(f) ) l
JE=Fe(f) —¢
commutes in D. Since 3(f) € D(Y);, mp(3(f)) = idy. Therefore mp takes
the diagram (4.3) to
Y—X

o] e

Yy —X

By construction mp also maps a,(f): €' — f*¢ to idy and makes

f*r{l N g.'

o] |

[rE—=g

commute. By (43) we must have «.(f) = B(f). Therefore @ is fully
faithful.

4.4  ATLASES

One last idea that we would like to describe in this fast introduction to
stacks is a way of determining a condition for a stack to be isomorphic to
a stack BG for some Lie groupoid . This involves the notion of an arlas,
which, in turn, depends on a notion of a fiber product of categories fibered
in groupoids.
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DEFINITION 4.20. Let 7x: X = C, my: ¥ = C and nz: Z — C be three
categories fibered in groupoids over a category C. The 2-fiber product Z xx Y
Y
of the diagram if is the category with objects

Z 7+ X

@ xx Vo = {0v2,0) € Yo x Zo x X | 1) = 7202), fO) % o)}
and morphisms

Homz, .y (1, y1, 1), (22, ¥z, 00)) =

N . o0 fim
{(Zl = 22,31 — Y2) my) = mz{) € G, iy 0 ym € Xl}

§(z1) == glz2)
glw)
together with the functor 7n: Z xx ¥ — C defined by

Tz, y, o) = wz(2) = my(y),  w(v,u) = 7z(v) = wy(u).

REMARK 4.21. It is not hard but tedious to check that Z xx ¥ — C is a
category fibered in groupoids.

REMARK 4.22. There are two evident maps of CFGs pry: Zxx ¥ — Z

Zxx¥ sy
and pr,: Z xy ¥ — Y, but the diagram lpfl l'? does not strictly
VA X

speaking commute. Rather there is a natural isomorphism g o pr, = f opry
which need not be the identity.

REMARK 4.23. The fiber product Z xsx, ¥ is characterized by the
following universal property: For any category fibered in groupoids W, there
is a natural equivalence of categories
Hom(W.Z xx ¥) —

fv.a) |u: W— Z,v: W— Y functors, o: i = v natural isomorphism };

it sends a functor A: W — Z xx ¥ to the pair of functors hopr;, hopr, and
the natural isomorphism between them.



ORBIFOLDS AS STACKS? 357

EXAMPLE 4.24. Let & be a groupoid and p: Gy — BG be the map of
CFGs defined by the canonical principal G-bundle ¢: Gy — Go (G acts on Gy
by multiplication on the right). Then for any map f: M — BG Irom (the stack
defined by) a manifold M to the stack BG, the fiber product M x; gg , Go is
(isomorphic to) Py, where Py — M is the principal G-bundle corresponding
to the map f by 2-Yoneda.

Proof. We sort out what the objects of M X, pg, Go are, leaving the
morphism as an exercise to the reader. Fix a manifold Y. The objects of
the fiber M x; pe, Go(Y) are triples (z,y, ), where g € M(¥Y)y, ¥ € Go(Y)
and « is an arrow in BG(Y) from f(z) to p(3). The objects of M(Y) are
maps of manifolds ¥ A M. The image f(Y - M) of such an object is
a principal (7-bundle over Y. By 2-Yoneda this bundle is &*P; (recall that
Py = fldy) € BGM)). Similarly p(Y 4 Gy) = £7G; — Gp). Finally
a: f(Y b M) — p(¥ $ Gp) is an arrow in the category BG(Y). That is,
o k* Py — £%(Gy — Gp) is an isomorphism of two principal G-bundles over
Y. Note that since &7 — Gy has a global section, the pullback #*(G; — Ga)
also has a global section. And the isomorphism a~!: (G, — Gg) — k¥ Py
is uniquely determined by the image of this global section. Hence the objects
of M Xspe, Go(Y) are pairs (pullback to ¥ of Py — M, global section of
the pullback). A global section of &Py — Y umiquely determines a map
a: Y — Pr making the diagram

Py

/|

Y — M
commute. Therefore objects of M xy g, Go(Y) “are” maps from ¥ to Pr.
Unpacking the definitions further one sees that M % g, Go is isomorphic

to Py as a category fibered in groupoids, where by “isomorphic” we mean
“equivalent as a category”.

REMARK 4.25. The map of manifelds P; — M in the construction above

is a surjective submersion. Therefore we may think of Gy — BG as a surjective
submersion.

REMARK 4.26. To keep the notation from getting out of control we now
drop the distinction between a manifold M and the associated stack M.
We will also drop the distinction between stacks isomorphic to manifolds and
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manifolds. Thus, in the example above we would say that for any Lie groupoid
G, any manifold M and any map M — BG the fiber product M xgzg Go is
a manifold.

DEFINITION 4.27 (Atlas of a stack). Let D — Man be a stack over the
category manifolds. An atlas for D is a manifold X and a map p: X — D
such that for any map f: M — D from a manifold M the fiber product
M X¢pp X is a manifold and the map pr;: M x;p, X —+ M is a surjective
submersion.

REMARK 4.28. A stack over manifolds which possesses an atlas is
alternatively referred to as a geometric stack, a differentiable stack or an
Artin stack.

EXAMPLE 4.29. Let M be a manifold and let I = | |U; — M be a cover
by coordinate charts. Then the map of stacks p: & — M is an atlas.

EXAMPLE 430. For any Lie groupoid G the canonical map p: Gy — BG
sending idg, to the principal G-bundle G; — Gy is an atlas.

PROPOSITION 4.31. Given a stack with an atlas p: X — D there is a
Lie groupoid G such that D is isomorphic fo BG. Moreover we may fake
Go=X and Gy =X X,pp X. In other words any geometric stack D is BG
Jor some Lie groupoid G.

It is relatively easy to produce the groupoid G out of the atlas p: X — D.
It is more technical to define a map of stacks ¢ D — BG and to prove that
it is an isomorphism of stacks (that is, prove that ¢ is an equivalence of
categories commuting the projections wgg: BG — Man and «p: D — Man).
We will only sketch its construction and refer the reader to stacks literature for
a detailed proof. The reader may consult, for example, [19, Proposition 70].

Sketch of proof of Proposition 431. We first construct a Lie groupoid
out of an atlas on a stack. Let D be a stack over manifolds and p: Gop — D
an atlas. Then the stack Gy x,p, Go is a manifold; call it &;. We want
to produce the five structure maps: source, target s,f: G — Gy, unit
u: Gy — Gy, inverse i: GGy — (G and multiplication m: Gy xg, Gy — (1
satisfying the appropriate identities. We will produce five maps of stacks. By
Corollary 4.16 this is enough. We take as source and target the projection
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maps pry,pry: Go Xpp,p Go — (o, Since the diagram

Go N (o

]

Go—=D

commutes, there is a unique map of stacks u: Gy — Gy »pp,, Go- Concretely,
on objects, it sends x € Gp to (x.x,idyn). We also have the multiplication
functor

m: (Go % ,.p,p Go) %6, (Go %,.0, Go) = (Go Xp,0,p Go)s
which on objects is given by composition:
m(x, X2, o), (2,x3, 3)) = (x1, %3, Fo).
It is easy to see that the multiplication is associative. Finally the inverse map
inv: Gy Xppp Go — Go Xppp Go
is given, on objects, by
mvixy, Xz, 0x) = (xz,xl.,a_l).

Note that the construction above does not use the descent properties of D.
That is, we could have just as well defined an atlas for a category fibered in
groupoids. The construction would then still produce a Lie groupoid.

Next we sketch a construction of a map +: D — BG of CFGs. It will
turn out to be a fully faithful functor. We will only need the fact that D is a
stack to prove that ¢ is essentially surjective.

By 2-Yoneda, an object of D over a manifold M is a map of CFGs
f:M — D. Since p: X — D is an atlas, the fiber product M xp X is a
manifold and the map pry: M xp X — M is a surjective submersion. There
is a free and transitive action of & on the fibers of pr; with respect to the
anchor map pr, M xpX — X = Gy (once again we identify manifolds with the
corresponding stacks). The right action of G is given by the “composition”

Mxp X)Xy (X XpX) > MxpX

((-xly-x27 Q): (-x2,1x31 ‘8)) — (-xlj-x?);;‘f}(l)

(following the tradition in the subject we only wrote out the map on objects).
It is free and transitive since the map
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M3xp X)Xy X XpX)— (M xpX) xp (M xpX)
(Cxy, 2z, @), (2, X3, 30 > (X, X2, @), (X2, 33, Ba))
is an isomorphism of stacks. Thus
W(f M D)=(pr: Mxrpp, X — M.
Next we define ¢ on arrows. An arrow from fi: M; - D to fo: M> — D
My i
is a 2-commuting triangle & Vi D (this can be proved more or less
YA
M xpX—X
the same way as we proved 2-Yoneda). Since the diagram hoprl‘ Z ‘”
M50
2-commutes, we get, by the universal property of the 2-fiber product, a map
hi My xp X — Ma xp X
making the diagram

M XDX—}!>-M2 *xp X

| |

M M,

2-commute. And since all the objects in the diagram are manifolds, it actually
commutes on the nose. It is not hard to check that % is compatible with the
action of G. This defines #: on arrows and gives us a [unctor

. D — BG.

One checks that + is fully faithful (I am waving my hands here).

Next we argue that the full subcategory BGy, of BG consisting of the
trivial bundles is in the image of . A trivial G-bundle on a manifold M is
the pull back of the unit G-bundle G; — Go =X by amap &: M — X. The

X
x
diagram / 17 commutes by definition. Hence pry: M xp X — M
g

has a global section ¢ with pr, oo = k. Therefore M xpX — M is isomorphic
to k*(Gy — Gg) — M. That is,
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W(pok) = k"(Gy — Gp).

Similarly if

M

hl \X
L

M> 2

is a commuting diagram of maps of manifolds, then
Ml pok)
hl D
M poky

is a commuting triangle of maps of CFGs, i.e., a map between two objects
My

in . One checks that ¥ hJ Vi D) is the map h (G, — Gp) —

M
k3 (Gy — Gp). Thus the image of ¢ includes the full subcategory BG,, of
trivial bundles.

Finally we use the fact that D is a stack to argue that + is essentially
surjective. If P — M is a principal G-bundle, then M has an open cover
{U; — M} so that the restrictions P|y, have global sections. Then for
each i there is & € D(U;) with () isomorphic to P|y,. The cover also
defines descent data ({P|r,}, {¢i}). These descent data really live in BGeyy.
Hence, since the image of 0 contains BGy;, and since 7 is fully faithful,
({Pi}, {&y}) defines descent data ({&}, {¢' '(¢;)}) in D. Since D is a stack,
these descent data define an object & of D(M). Since # is a functor, 3(£) is
isomorphic to P. We conclude that ¢*: D — BG is essentially surjective. LI

REMARK 4.32.  Atlases of geometric stacks are not unique. For example, if
p. X — D isanatlas and f: ¥ — X is map of manifolds which is a surjective
submersion, then pof: ¥ — D is also an atlas. However, if p: Gy — D and
q: Hy — D are two atlases, then by Proposition 4.31, the stacks BG and BH
are isomorphic. It is not hard to construct an invertible bibundle 7: G — H
explicitly: P is the fiber product Gy %, p, fy. The actions of G and H are
defined as in the proof of Proposition 4.31 and they are both principal.

It is useful to think of these two atlases and of the two corresponding Lie
groupoids as two choices of “coordinates™ on the stack D.
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REMARK 4.33. In the light of the above remark it makes sense to say that
a geometric stack D — Man is an orbifold if there is an atlas p: X —+ D so
that the corresponding groupoid X xp X = X is a proper €tale Lie groupoid.
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