
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 56 (2010)

Artikel: Deformations along subsheaves

Autor: Kebekus, Stefan / Kousidis, Stavros / Lohmann, Daniel

DOI: https://doi.org/10.5169/seals-283521

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 20.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-283521
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


L'Enseignement Mathématique (2) 56 (2010), 287-313

DEFORMATIONS ALONG SUBSHEAVES

by Stefan Kebekus, Stavros Kousidis and Daniel Lohmann*)

ABSTRACT. Let/: Y —'? X be a morphism of complex manifolds, and assume that
Y is compact. Let if C Tx be a subsheaf which is closed under the Lie bracket. The
present paper contains an elementary and very geometric argument to show that all
obstructions to deforming / along the sheaf IT lie in Hl{Y, 3/), where 3"y Çf*(Tx)
is the image of /*(3) under the pull-back of the inclusion map. Special cases of this
result include Miyaoka's theory of deformation along a foliation, Keel-McKeman's
logarithmic deformation theory and deformations with fixed points.
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1. Introduction and main results

1 .A Introduction

Let /: Y —> X be a morphism of complex manifolds and assume that Y

is compact. We aim to deform /, keeping X and Y fixed. More precisely,

given an infinitesimal deformation of /, say o H°[Y,f*(Tx)), we ask if
o is effective, i.e., if o comes from a deformation of /.

It is a classical result that any infinitesimal deformation is effective if
the associated obstruction space vanishes. We refer to [Hor73], or to [Kol96,
Chap. 1] for a thorough discussion of the algebraic case.

THEOREM 1.1. If H1 Y.ff(Tx)) — { 0 } > then any infinitesimal deformation

off is effective.

Theorem 1.1 is not sharp however. There are many examples of infinitesimal
deformations that are effective even though h1 (Y,f*(Tx)) is large. In these

cases, it is often possible to find a geometric reason that explains the behavior.

Here, we consider the geometric context where there is a subsheaf 'J Ç Tx,
and where <r H°(Y,f*(Tx)) is an infinitesimal deformation along U, i.e.,

where o is in the image of the natural map

If IT is closed under the Lie bracket, we show that an analogue of Theorem 1.1

holds for deformations along 3L

The proof of our main result, Theorem 1.5, is completely elementary and

does not use any of the sophisticated methods of deformation theory. The

methods also illustrate the proof of Theorem 1.1.

LB Main result

In order to formulate the main results precisely in Theorem 1.5 below, recall

a few standard definitions and notation used in the discussion of deformations.

DEFINITION 1.2. A deformation of f is a holomorphic mapping
F: A x Y -a- X whose restriction to {0} x Y Y equals /. Here A c C
is a disk centered about 0.
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Notation 1.3. If F is a deformation and t E A any number, we often
write Ft: Y —f X for the obvious restriction of F to {*} x Y Y. Given a

point y E Y, we can consider the curve

Fy-.A^X, t i-A F(t, y).

Given t E A and taking derivatives in t for all y, this gives a section

cf., s

called velocity vector field at time t. For t 0, we obtain a section

(Tf o H°(Y.f*(Tx)). Hements of are thus called initial
velocity vector fields or first order infinitesimal deformations off.

Definition 1.4. A first order infinitesimal deformation a E H°{Y ,f*(Tx))
is effective if there exists a deformation F with a — op.o

With this notation, the main result of the present paper is formulated as

follows.

Theorem 1.5 (Deformation along an involutive subsheaf). Let f : Y —» X
be a morphism of complex manifolds and assume that Y is compact. Let
cF C Tx be a subsheaf of Gy -modules which is closed under the Lie bracket,
let 'Sy C f* (Tx) be the image of f*('J) under the pull-back of the inclusion

map, and let

ffg H°{Y. fY) ÇH°(Y,/'(Tx))
be a first order infinitesimal deformation of the morphism f that comes

from 'J.

If H1{Y, jFyj {0}, then there exists a deformation F of f such that

a — op o, and such that for all times t E A the section apj is in the image

of

(1.5.1) H°(Y,(Ftrm) -> H°(Y,(FtT(Tx))

Notation 1.6. If F is any deformation of / such that (1.5.1) holds for
all t, we say that F is a deformation along the sheaf J".

Remark 1.7. The subsheaf 'S E Tx need not be a foliation because {S

need not be saturated in Tx We recall a few special cases of Theorem 1.5

that we have found in the literature :
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(1.7.1) Foliations. The case where cF is an algebraic foliation is studied

in Miyaoka's theory of deformation along an algebraically defined

foliation, [Miy87, MP97].

(1.7.2) Logarithmic tangent sheaves. The case where X contains a reduced

divisor D and 'J Tx(— logD) appears in Keel and McKernan's
work on the Miyanishi conjecture, [KMc99, Sect. 5].

(1.7.3) Deformation with fixed points. A variant of the case where fF Tx<S>dp

is the tangent bundle twisted with the ideal sheaf of a point p is used

in Mori's Bend-and-Break technique.

l.C Outline of the paper

In Section 2, we recall the definition of jet bundles on a complex
manifold X and recall their main properties. The language of jets makes

it easy to discuss n-th order deformations of a given morphism, and gives an

elementary way to construct classes in H1(Y,f*(Tx)) that are obstructions

to extending n-\h order deformations to (n + l)-th order. We illustrate these

concepts by reproducing Horikawa's proof of Theorem 1.1 in the language

of jets, referring to Artin's paper [Art68] for the necessary convergence
results.

In Section 3, we outline the proof of Theorem 1.5, explain the main

strategy and motivate two sets of problems which are discussed in Sections 4
and 5 before completing the proof of Theorem 1.5 in Section 6.

Section 4 concerns the relation between vector fields and higher order jets
of the integral curves they define. Given two vector fields D1 and D2 on X
with integral curves 71 and 72, we are interested in expressing the difference

of higher order terms in the power series expansions of the 7,- in terms of
iterated Lie brackets involving D\ and D2.

In Section 5, we discuss an elementary generalization of the classical

Frobenius Theorem of Differential Geometry, where the Lie-closed subsheaf

T Ç 7"x is not necessarily a foliation. This will allow us to construct local

analytic subspaces of the Douady space Hom(F.A) which locally parametrize
deformations along the sheaf J".

1. D Acknowledgments

A first version of Theorem 1.5 and the elementary proof of Theorem 1.1

are contained in the diploma thesis of Daniel Lohmann and Stavros Kousidis,

respectively. Both thesis projects were supervised by Stefan Kebekus.
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2. Jet bundles and deformations of morphisms

In Sections 2.A-2.C we recall the definition and briefly discuss the main

properties of jet bundles of a complex manifold, which are higher order

generalizations of the tangent bundle. Jet bundles are then used in Section 2.D
to describe higher-orderinfinitesimal deformations of morphisms. To illustrate
the use of jets in deformation theory, we end this chapter with a short and

very transparent proof of the classical Theorem 1.1.

Remark 2.1. There are two notions of "jet bundle" found in the literature.

In this paper, an "«-jet" is an «-th order curve germ. This notion was, originally
introduced in slightly higher generality in real geometry by Ehresmann,

cf. [Arn88, Chapt. 6.29C].

Other authors use the word "«-jet" to denote an «-th order germ of a

section in a given vector bundle. This notion is found, e.g., in the work of
Kumpera-Spencer on Lie equations, [KS72, Chap. 1].

Notation 2.2. If A and Y are any two complex spaces where Y is

compact, we denote the Douady space of morphisms from F to A by
Hom(F. A). Like the Horn-scheme of algebraic geometry, the Douady space
of morphisms represents a functor and is therefore uniquely determined by its
universal properties. We refer to [CP94, Sect. 2] for a brief overview and for
further references.

The reader who is content with algebraic morphisms of projective varieties

is free to use the Horn-scheme instead of the Douady space throughout this

paper.

2.A Tangent bundles

Let A be a complex manifold. Before discussing jet bundles of arbitrary
order, we recall two equivalent standard constructions of the tangent bundles

for the reader's convenience.
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Construction 2.3. As a manifold, the tangent bundle 7> is the set of
equivalence classes of germs of arcs A —y A, under the equivalence relation that

r ~ cr if they agree to first order. Coordinate charts on A induce coordinate
charts on Tx in the obvious canonical manner, and the map r h> t(0) induces

a canonical morphism it: Tx —> X.

Construction 2.4. As a complex space or scheme, the tangent bundle

is defined as Tx := Horn (Spec C|>]/(£:2), X), where SpecC|>]/(c2) denotes

the double point on the affine line. The obvious map C[£:]/(c2) —> C induces

a canonical morphism ir: Tx —» X Hom(SpecC. X).

Using either construction, an elementary computation immediately gives
the following

FACT 2.5. The tangent bundle Tx of a complex manifold X has the

structure of a vector bundle over X.
Local coordinates on J Ç X induce vector bundle coordinates on

7T
1 U) Ç Tx More precisely, if U Ç X is a coordinate neighborhood,

and 7 is a germ of an arc y: A —» U, described in U -coordinates as

7'(f) xq + 5'i • t + (higher-order terms'),

then the associatedpoint of Tx has -coordinates (xo.xf) G £/xCdimS'.

2.B Jet bundles

In complete analogy with Constructions 2.3-2.4, the jet bundle of a complex
manifold X can be defined in one of the following equivalent ways.

Construction 2.6. As a manifold, the n-th jet bundle Jet"(A) is the

set of equivalence classes of germs of arcs A —» X, under the equivalence
relation that r ~ a if they agree to «-th order. Coordinate charts on X induce
coordinate charts on Jetrt(X) in the obvious canonical manner, and for any
m < n the restriction of arcs to m-th order induces a canonical morphism

t-n,m: Jet"(A) —» Jef"(X).

Construction 2.7. As a complex space or scheme the re-th jet bundle
is defined as Jet"(A) := Horn (Spec C[s:]/(ê:"+1), A). For m < n, the

truncation map C[c]/(e"+1) —> C[e]/(cw+1) induces a canonical morphism

tw Jet"(A) —> Jet"1(A).
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It is clear from the construction that Jet°(X) X and Jet^X) 7>. In

complete analogy with Fact 2.5, an elementary computation in local coordinates

shows the following

FACT 2.8. Let X be a complex manifold and let m < n be any two

integers. Then the following hold:

(2.8.1) The morphisms i\n,m : Jefi!(X) -a Jet^fX) are fiber bundles, locally
trivial in Zariski topology with fibers isomorphic to _ jn general,
the transition maps are neither linear nor affine, and 7vn,m is generally
neither a vector bundle nor an affine bundle.

(2.8.2) Local coordinates on U Ç X induce vector bundle coordinates on

TtfoiU) Ç Jet"(X), for all n. More precisely, if U Ç X is a coordinate

neighborhood, and y is a germ of an arc 7: A —> U, described in
U-coordinates as

7(f) — vq + v\ t 3- • • • + vn f + (higher-order terms'),

then the associated point of Jet"(X) has tt ~q (U)-coordinates

(Xq.X!,^. ...,Xn)eUx Cn'dimX

with Xj i! • Vi. In particular, the coordinate .7 is computed in local
coordinates as the i-th derivative, Xj 7(0(0).

(2.8.3) If m — n — 1, the fiber bundle Jetm+1(X) —> Jef(X) has

affine transition maps and is therefore an affine bundle.

2.C Affine bundles associated with jets

We need to discuss the affine bundle structure of Jet'YX) -7 Jef!_1(X)

in more detail. For that, we briefly recall the relevant properties of affine

spaces.

By definition, any affine space A comes with a canonical vector space
V, the space of translations, whose additive group V acts on A. The action

map, often called translation map is usually denoted as follows:

4- : V x A —> A (v, a) 1-4 v + a.

Given any a G A, the natural map V —A, v v a is an isomorphism of
complex manifolds. Consequently, given any two elements a,b G A, there is

a uniquely defined difference vector v G V, often denoted as v a —b, such

that v + b a.
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In complete analogy, any affine bundle A —^ £ naturally comes with a

vector bundle tt : V —y B, the "bundle of translations". The translation maps
on fibers glue to give a translation map

-j- ; V Xg A —y A.

Given any section <j : B —y A, the natural map V —y A, v i-4 v -T cr(tt(v))
is a fiber bundle isomorphism. Consequently, given any two sections

oi,(J2' B —^ A, there is a uniquely defined difference section, r: B -4 V,
often denoted as r <j\ — oz, such that r(b) + ozib) ofb) for all b B.

For the affine bundle Jet"+1(X) —> Jet"CX), the elementary computation
used to prove Fact 2.9 immediately identifies the translation bundle.

FACT 2.9. Let X be a complex manifold and let n > 0 be any number.

Then the vector bundle Vn of translations associated with the affine bundle
Jet"+1(X) -4 Jet"(X) is precisely the pull-back of the vector bundle Tx to
Jet"(X). In other words, Vn 7t*0(Tx)

In the setup of Fact 2.9, if <7i,<72: X —y Jef+1(JQ are two sections that

agree to n-th order, i\n+i.„ ° <r\ 7r„+i,n ° a2, then the difference is given by
a section cq — <72 H°(X, Tx). We will later need the following elementary
generalization of this fact.

Remark 2.10. If /: Y —y X is a morphism of complex manifolds and if
<71.02: Y —y f* Jef+1(X) Jef+1(X) x* Y are two sections in the pull-back
bundles that agree to re-th order, f*(7rn+iM) ° ci 0 c2l then the

difference is given by a section o\ — az H° (F, f'(Tx)).

We end this section with a remark that shows how to compute the difference

of jets in local coordinates. The (easy) proof is again left to the reader.

Remark 2.11. If U Ç X is a coordinate neighborhood, and if 71,

72 Jet"+1(A) are two jets with 7r„+i.rt(7i) 717+1,„(72), represented in
the induced coordinates on 7t„+Yo(^) Ç Jef+1(X) as

71 =(X0;X1,---; xn,xn+1a) and 7/2 C*b, M...., x„,xn+i2),

then the difference 7/1 — 77 is given by the tangent vector written in the

induced coordinates on Tx as 71 -72 - (T0,T„+li -^++2) 7>|7i(0)-

If the base point 77 (0) is clear, we will often write

71 — 72 — 4-1+1,1 — 4I+i,2 G 1-/1(0) •
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2.D Higher-order infinitesimal deformations in jet language

The following notion is the higher-order analogue of the infinitesimal
deformation discussed in the introduction.

Definition 2.12. Let /: Y -a X be a morphism of complex manifolds.
An n-th order infinitesimal deformation off is a morphism

fn. SpecC[c3/(c"+1) x f hX.
whose restriction to Y SpecC x Y agrees with /.

It is clear from the universal property of the Douady space of morphisms
that an n-th order infinitesimal deformation of / is the same as a morphism
SpecC[c]/(c"+1) —> Hom(F.A) which maps the closed point to the point
of Hom(F,X) that represents /. For our purposes, however, the following
description is more useful. It also shows that for n 1, Definition 2.12 and

Notation 1.3 agree.

PROPOSITION 2.13. To give an n-th order infinitesimal deformation of f,
it is equivalent to give a section Y —> /* Jet"(A), where f* Jet"(A) : —

Jet"(X) xxY.

Proof. It is clear from the universal property of HomtT, X) that to give an

n-th order infinitesimal deformation of /, it is equivalent to give a morphism

<pn: Y -a Horn (Spec C[£]/(£n+1), X) Jef(A)

with 7rrtio o (pn —f • By the universal property of the fiber product, this is the

same as to give a section.

2.E Applications to deformations and to Theorem l.l
As an application of the methods and the language outlined in the previous

sections, we reproduce in part Horikawa's proof of Theorem 1.1, referring
to Artin's paper [Art68] for the necessary convergence results. More detailed

computations are found in [Hor73],
The proof follows the common approach to first construct a formal

deformation of /, which is then turned into a hoiomorphie solution. The
existence of a formal solution is guaranteed by the following lemma which
asserts that any «-th order infinitesimal deformation can be lifted to (n +1 -th
order.
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LEMMA 2.14. In the setup of Theorem 1.1, let on : Y —> f* Jet"(A) be

any section. Then there exists a lifting to (n + 1 )-th order, i.e., a section
: Y —>f Jet"+1(A) making the following diagram commutative:

-/* Jet"+1'

(2.14.1)

Proof. Since both f* JefLY) and f Jet"+1(X) are locally trivial on Y, it
is clear that liftings to (n + 1 )-th order always exist locally. More precisely,
there exists a covering of Y with open sets (U(X){Y^a and there are sections

1
: Ua —> /* Jet*+1(JY) such that /*("7t«+m) ° cr"+1 a»\ua We have seen

in Remark 2.10 that for any a. 8 A, the difference defines a section

f-Vi — ^n+llu.yllUfl - &n+l\u<xf[Uß n Uß,f*(Tx))
The uaß obviously satisfy the Cech cocycle condition and we obtain a

cohomology class (vaf) <E H1 (Y, f*(Tx)) which is zero by assumption.

Consequently, there are sections À„ G H° U(i, Tf) with Aa: — Xß — v,yß.
If we set

an+1 := —^«) + an+l 5

then a,n'f1 and agree on UIS fl IIß for any a,ß G A and therefore define

a global section on+i : Y —> /* Jet"+1(X) that lifts an.

Proof of Theorem 1.1. Let a G H°[Y, f*(Tx)) be any first order infinitesimal

deformation. Choose a neighborhood U of the point [/] G Horn (F, X),
and view U as a subset of A", given by equations U {/i • • • =fm 0}.
With this notation, our aim is to find a holomorphic map a: A —> A" which

agrees with a to first order and satisfies f o <j 0 for all i. By Michael

Artin's result on solutions of analytic equations, [Art68, Thm 1.2], a

holomorphic solution will exist if there is a formal solution to the problem.

Using Lemma 2.14 inductively, we can find a sequence o <71,02,...
of liftings to arbitrary order, with 7rrt+i,rt o on+1 on. If we view the an as

morphisms

o„: SpecC[£]/(£w+1) -4 Hom(F, X)

this defines a formal map

o: SpecC[[c]] -4 Hom(F, X),
which satisfies f o o 0 for all i, and whose first order part agrees with 0.
Artin's result therefore applies.
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3. Strategy for the proof of Theorem 1.5

3.A Introduction

Before giving a complete proof of Theorem 1.5 in Section 6 below, we first
outline the main strategy of the proof and recall a few elementary facts. We

hope that the explanations given below will help to motivate the preparatory
Sections 4 and 5 where we gather several technical results used in the proof.

We will constantly use a number of elementary facts concerning vector
fields on manifolds, their associated ordinary differential equations, flow maps
and local actions of 1 -parameter groups. Since all relevant results hold without
change in the holomorphic as well as in the C°° category, we have chosen to
use [War83] as our main reference, for the reader's convenience. A thorough
introduction to vector fields and their flows on possibly singular complex

spaces is found in [Kau65].

3.B Outline of the proof

To start the outline, consider the setup of Theorem 1.5 in the simple case

where f: Y —> X is a closed immersion and where both X and Y are compact.

Viewing Y as a subspace of X, let

a Image(/f°(r, ?|r) ^ H°(Y^

be a first order infinitesimal deformation of / along IT.

If a is the restriction of a global vector field D H°(X. IT), we can

integrate the vector field D globally on X, obtaining a holomorphic action of
a 1-parameter group, say

è\ AxIhI.
such that for each point x e X, the arc ~/x: A —y X, t m- è(t,x) is a solution

to the initial value problem associated with the ordinary differential equation
described by D. In down-to-earth terms, the germ of yx is the unique solution

to the problem of finding a germ of an arc 7: A —> X that satisfies the two
following requirements,

(3.0.1) 7(0) x and

(3.0.2) 7 (f) 0(7(0) for all te A.

NOTATION 3.1. We call "fx the integral curve of D through x.
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Viewing & as a deformation of /, this gives a proof of Theorem 1.5 in case

a comes from a global vector field. For this, observe that requirement (1.5.1)
of Theorem 1.5 immediately follows from (3.0.2) above.

If <7 is the restriction of a vector field D £ H°{U, fF) that is defined

only on an open neighborhood U of Y, but perhaps not on all of X,
essentially the same strategy applies. In this setup, there exists a local action,
cf. [War83, Thm 1.48]. More precisely, there exists an open, relatively compact
neighborhood V of Y with Y Ç V U, there exists a disk A and a map

o: A x V £/.

such that the arcs t i—» é(t,x) are again solutions to the initial value

problems (3.0.2). As before <£> gives a deformation of / that solves the

problem.
In general, however, a is not the restriction of a vector field that lives on

a neighborhood of Y, and extensions of o to open subsets of X exist only
locally, cf. [War83, Rem. 1.52]. More precisely, there exist finitely many open
sets Ui that are open in X, cover Y and admit vector fields D, £ H° ((/,-, Tx)
whose restrictions A|rnc/,- equal o\ynu-, As before, we find relatively compact

open subsets V, <j= U, that still cover Y, and local action morphisms

<Pi A,- x Vi —> Ui,

again with the property that if x is a point in V,, we obtain an arc yxj : A —» X
that solves the initial value problem for D,, as in (3.0.1) and (3.0.2) above.

However, if i ^ j are any two indices, the local action morphisms will
generally not agree on the overlap V, fl V), and if x is in V, H V) fi Y, the

arcs jxj and yxj will likewise not agree.
There are a few things we can say about yxj and yxj, though. Since

A"|v;nv;nr — Dj\vir\VpY — ^|v;nv;nr

and since yxj and yxj satisfy (3.0.2), it is clear that for any point
x 6 V, Hi Vj n Y, the arcs yXJ and yxj agree to first order, though perhaps not
to second order. In other words, the <£>,- induce sections1)

rg; : Vi H Y —> Jet2(A)|V;nr and rg. : Vj HfA Jet2(A)|Vjnx

whose first-order parts 7r2,i(r.): V. fl Y —r Jet^Xjlv.nr agree on the overlap
Vj fl Vj fl Y. We have seen in Section 2.C that the difference rg — rg. can be

1 Since the 7x are holomorphic for each x, the e>< give sections in Jet"(X)|v.ni'> for any
number n. For the purposes of this outline, we concentrate on the case n 2.
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expressed as a section of 7xjv;nvnx, and we will see in Theorem 4.3 below
that this difference is expressed in terms of the Lie bracket of the vector
fields D., as follows :

rbj I v,-nv,nF — rD;k,-nv,nx [A? A'] lv;nv;nr •

This will allow us to describe the Cech cocycles associated with the problem
of lifting the infinitesimal deformation a from first to second order in terms
of Lie brackets. An argument similar to the proof of Lemma 2.14 will then

allow us to adjust the vector fields D,, in such a way that the associated

local group actions give a well-defined lifting of a to second order, globally
along Y. An iterated application of this method will give liftings to arbitrary
order.

4. Jets associated with vector fields

If D\ and Dz are two vector fields on X and xçX is a point, the integral
curves 7, of D, through x do generally not agree. If 71 and 72 agree to
«-th order, we have seen that the difference between the (n 41) -th order parts
of the 7; can be expressed as an element v G Tx\x- In this section, we aim

to express v purely in terms of the vector fields D( and their Lie brackets.

Before formulating the result in Theorem 4.3 below, we need to introduce

some notation.

Definition 4.1 (Jets associated with a vector field). Let U ç X be an

open set, and let D G H°{j, Tx) be a vector field. Given any number n N,
let rg: U —> Jet"(A) be the section in the «-th jet bundle induced by the
local action of the vector field.

In other words, if x U is any point, and 77 A —> X the unique curve

germ that satisfies (3.0.1) and (3.0.2), then rß(x) is exactly the n-th order jet
associated with

Definition 4.2 (Iterated Lie brackets). Let U ç X be an open set,

and let D\,Dz G H°(U. Tx) be two vector fields. For any integer n > 2,

we recursively define a vector field, called the n-th iterated Lie bracket of
D\ and Dz, as follows:

[Du D2](2) := [Du D2] and [Du D2](n) := [Du [Du D2fn^l))
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THEOREM 4.3. Let U ç X be an open set, and let D\,D2 G H° (U, 7y)
be two vector fields. If x G U is any point and n any integer such that the

n-th order jets associated with D\ and D2 agree at x, i.e. rjjfx)
then the tangent vector that describes the difference between the (n + 1 -th

order jets is expressed in terms of iterated Lie brackets as follows :

(4.11). rgj-tf - T^pfg |Ä D2f»1>\x

Proofof Theorem 4.3 for n — 1. Choose a coordinate neighborhood U of
x and let 77: A —» X be the germs of the integral curves of D, through x for
16 {1,2}. By Remark 2.11 and Fact 2.8, the difference between the second

order parts of the 7,- is then expressed in U -coordinates as the difference of
the second derivatives,

(.4.3.2) v := - 5,(.v)

We aim to express the right hand side of (4.3.2) in terms of the vector
fields Di. For that, it is convenient to recall that to give a vector field D on

U, it is equivalent to give a derivation Oy|u —» Oy|y, written as / h Ö/.
Likewise, to give a tangent vector at x, it is equivalent to give a derivation
Ox.x —t C, where Qx.x denotes the stalk of Oy at x. For a given tangent
vector w Tx\x, the derivation is / H>/'(x)-m, wheref is the derivative of /
in U -coordinates, and the dot is matrix-vector multiplication. The derivations
commute with restriction, so that (Df)(x) =f'(x) • D\x for all /.

Now, if / G Öx,x is any germ of a function, taking the second derivative

of / o 77 yields

(4.3.3) f\x) v=f'(x) (7/(0) - 7/(0)) (/ o 72 -/ o 7l)"(0).

In order to relate the right hand side of (4.3.3) to the vector fields D,,
recall Equation (3.0.2), which asserts that for any function g, we have

(g 07,-)' (Djg) o 77. Applying this to / and DJ, we obtain the following
expression for the second derivatives of / o 77-,

(4.3.4) (/ o 77)" - {(DJ) o 7iy (DfDJ)) o 77 (D2J) o 77-.

Substituting (4.3.4) into (4.3.3) we find that the equality

/'« r {(D£-D\)f)(A
holds for all / G Ox.x, and therefore expresses v in terms of the vector
fields D,. To prove (4.3.1), it is therefore sufficient to show that

(4.3.5) ((£>! - D?)/)(x) ([D1; D2\f)(x) {(D^ - D2D0f)(x)
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holds true for all / Ox,x• We show a stronger statement: for all / we have

(4.3.6) (Djf)(x) (D2D1f)(x) and (D22f)(x) (D^JXX) •

To prove (4.3.6), note that the equality D]\x D2\x implies that (DigXx)
CD2g)(x) for every g G 0x>. An application to g D\f and g D2f,
respectively, gives the two equalities in (4.3.6).

Sketch ofproofof Theorem 4.3 for arbitrary n. The line of argumentation
used to show Theorem 4.3 in case n 1 also works for arbitrary n. As a

first step, one shows that the difference vector v : —
1

(x) — r^~l(x) —

72rt+1)(0) — ^1"+1,(0) e Tx\x is determined by that fact that it satisfies the

equation

(4.3.7) ffx) v ((Dn2+1 - Dî+1)/)(x)

for all / G Öx.x Once this is established, it remains to show that

(4.3.8) ((£^+1 - Dl+1)f)(x) ([Du D2](n+1)f)(x)

again for all / G Ox>. Equations (4.3.7) and (4.3.8) can be shown by induction

on n, using elementary but tedious computations in local coordinates. We refer

to [Loh08, Satz 1.4] for details.

5. FROBENIUS THEOREMS AND DEFORMATIONS ALONG SUBSHEAVES

In Theorem 1.5, we aim to deform the morphism / along the sheaf 37

For that, we aim to define an analytic subspace Horn5-(F, Xj Ç Hom()/, X)
which parametrizes such deformations. If 3" is a regular foliation, the space
Homy(Y, X) can be defined as a relative analytic Douady space of morphisms,
using the classical Frobenius Theorem which asserts that J" is the foliation
associated with a morphism, at least locally.

Theorem 5.1 (Frobenius Theorem, cf. [War83, Thm 1.60]). Let Z be a
complex manifold and S C 7z a regular foliation, i.e., a vector subbundle of
Tz which is closed under the Lie bracket. If z G Z is any point, then there

exists an analytic neighborhood U U(z) C Z which has a product structure,
U A X B, such that 3 T\*a(Ta), where 7r^: A X B —> A is the projection
to the first factor.
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After introducing some notation and after proving the auxiliary Proposition

5.3, we give a generalization of the Frobenius Theorem that works for
arbitrary Lie-closed sheaves. While this result, formulated in Corollary 5.4,

is probably known to experts, we include a full proof, for lack of an
adequate reference. We will use this version of the Frobenius Theorem to define

the space Horner (F, X) in Corollary 5.6 and to prove some of its universal

properties.

Throughout the present section, we maintain the notation of Theorem 1.5

where X is a complex manifold and IT Ç Tx a sheaf which is closed under
the Lie bracket.

Notation 5.2 (Stratification of X). It follows immediately from semi-

continuity of rank that for any integer r, the subset

Xr := {x E X I rank(5"|x -4 Tx\x) — r} Ç X

is a locally closed analytic subspace of X. We consider the natural sequence
of closed analytic subspaces of Xr,

Xr X°r D Xlr x?'+1 0

where Xlr+l is defined inductively as the singular locus of X'r. We obtain

a decomposition of X into finitely many disjoint, smooth and locally closed

analytic subspaces,

X \J Zsr with Zsr:=Xsr\ Xsr+1.

r,s

PROPOSITION 5.3. Let r be any number such that Xr ^ 0, let x £ Xr
be any point and D HG{U, a vector field, defined in a neighborhood
U U(x) C X of x. If yx\ A —y X is the integral curve of D through x, as

defined in Notation 3.1, then jx(f) £ Xr for all t A.

Proof. Let q < r be the least integer such that the set Xq := yfl(Xq)
is not empty. By semicontinuity, A, Ç A is a closed analytic subset, and

to prove Proposition 5.3, it suffices to show that Xq is also open. Using
the fundamental property that 7-,o0)(O — jx(t + to) for all to Xq and all

sufficiently small numbers t, we can assume without loss of generality that
0 e Xq and r q. For the same reason, it suffices to show that Xq contains

a neighborhood A' of 0 G A.
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To this end, we will show that near 0 A, the local group action induced

by D yields an injective linear map from Imaged7l(,) -a XxIvao) to a

q -dimensional vector space, for every sufficiently small number t. Shrinking
U, if necessary, we can assume without loss of generality that the sheaf 3~'\u

is generated by vector fields D\,...,DS H°(U, 3"). The vector field D
induces a local group action <t>: A' x V —» U, where V Ç (J and A' Ç A are

suitably small open neighborhoods of x and 0, respectively.

To prove Proposition 5.3, we need to show that A' Ç £sq. For this, pick
any element te A' and set y := yx(t). We consider the vector spaces

Wx := (Diix),Ds(x)) Ç Tx\x and Wy := (Di(y),... ,Ds(y)) Ç Tx\y

Since Wx Image(fF|x —> Tx\x), the dimension of Wx equals r q, and

since q is chosen minimal, Proposition 5.3 is shown once we prove that

dim Wy < q. In order to relate the spaces Wx and Wy we consider the open
immersion ôt: V —> U, èt(v) := &(t,v), whose pull-back morphism yields an

isomorphism of vector spaces : Tx\y —> Tx\x.

To understand the morphism <p* better, let D,(y) be any generator of Wy,

and define the map

r: A' Tx\x
t< ^ (4>poDd(Mx))

and notice that T(0) D,(x) £ Wx and T(0 6* (Dfy)). Since ç>* is

injective, it remains to prove that T(0 is an element of Wx. Recall from

[War83, Def. 2.24, Prop. 2.25] that F is analytic and that its derivative is

r'(t') (0*, O [D, Di

In particular, we have that r'(0) [D, Z),](x) is an element of Wx. It follows
by induction that the higher-orderderivatives are given by

=(#o |R Ra«î^i|ç|}
In particular, we have that r(,!)(0) — [D, Di\(n\x) is an element of Wx, for
all numbers n. Expanding T in a Taylor series, it follows that r(F) is an
element of Wx, for all t' £ Is!.

In summary, we see that the isomorphism <p* : Tx\y —> Tx\x maps each

generator D,(y) of Wy to Wx. As a consequence, we obtain dim Wy < dim Wx q,
as claimed. This ends the proof of Proposition 5.3.
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COROLLARY 5.4 (Frobenius Theorem for T). If r, s are any two integers
such that Z :.== Zf. is not empty, then

(5.4.1) the image of IT along Z is contained in the tangent bundle of Z,
i.e.,

'Tz := Image(3"|z —> Tx\z) Ç Tz,

(5.4.2) the sheaf Tz Ç Tz is a regular foliation, and

(5.4.3) every point z G Z admits an open neighborhood U U(z) Ç Z
with a product structure, U A X B such that Tz — iï%(Ta), where

ita : A x B —? A is the projection to the first factor.

Proof. Let V Ç X be any open subset of X, and let D e H°(U, £F) be

any vector field, with an associated local group action <p: À x V —y X, where

À is again a sufficiently small disk and V Ç U a suitable open subset that
contains x. By Proposition 5.3, we know that for any point x' V and any
t A, we have <p(t,x') Xr if and only if x' Xr. In fact, more is true:
since the morphisms <p(t, •): V —> X are open immersions, they must stabilize
the singular set of Xr. Eventually, it follows that for any number s, we have

<j)(t,xf) Xsr if and only if x' Xfi Since

D\X f|«M §§ß$m,

this implies Claim (5.4.1).

By definition of Xr, it is clear that Tz is a vector subbundle of Tz-
The assertion that Tz is closed under the Lie bracket of Tz follows from
Claim (5.4.1) and a standard computation, cf. [War83, Prop. 1.55], giving
Claim (5.4.2). Claim (5.4.3) follows when one applies the classical Frobenius
Theorem 5.1 to Tz Ç Tz.

Using Corollary 5.4, we can now define the analytic space Homy-(iC X)
which parametrizes deformations along IT. The following notation is useful

for the description of its universal properties.

Definition 5.5 (Infinitesimal deformations that are pointwise induced by a

subsheaf). Let crn : Y —>f* Jet"(A) be an n -th order infinitesimal deformation
of the morphism /. We say that on is pointwise induced by vector fields in

T, if for any point y G Y there is a neighborhood U Ç X of f(y) and a vector
field D e H°(U. fi) such that ofy) rjj(/(y)), where rß: U Jet'!LY) is

the section in the rc-th jet bundle described in Definition 4.1.
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Corollary 5.6 (Existence of a parameter space for deformations along a

subsheaf). There exists a locally closed analytic subspace Homy (P. X) C

Hom(y. X) which contains the morphism f and has the following universal

properties.
(5.6.1) If on is an n-th order infinitesimal deformation of the morphism

f which is pointwise induced by vector fields in I?, then the associated

morphism SpecC[e]/(ert+1) —¥ Hom(y, X) factors via Hornby, X)
(5.6.2) If 7: A -7 Homy(y, X) is any arc with 7(0) /, and if

F: Ax y —fX is the associated deformation, then F is a deformation
along 'J, in the sense of Notation 1.6.

Proof. We begin with the construction of the space Horn3-(y, X). Choose

integers r, s with /(Y) D Zsr f- 0, an irreducible component Y' Ç /_1(Z)),
a general point yo Y' and a neighborhood V V(/(yo)) Ç X, with a

decomposition V n Zsr A x B as in Corollary 5.4. Let U U(yo) C
Y' nf-fy) be a relatively compact neighborhood. By relative compactness
of U, there exists an analytically open neighborhood Hlr sY, Ç Hom(y, X) of

/ £ Hom(y. X) such that g(y) £ V for all points y £ U and all morphisms

g £ H} s y,. The set

(5.6.3) H2rsY, := p| {g £ HlrsY, \ g(y) £ Zsrj Ç HlrsY,

yeu

is then the intersection of finitely or infinitely many analytic subspaces, and

therefore, by the analytic version of Hilbert's Basissatz [KK83, Prop. 23.1], an

analytic subspace itself. We remark that neither Hf: s Y, nor any of the spaces

on the right hand side of (5.6.3) are necessarily reduced.

Identifying V T\Zf Ax B, with projection 7rg: Ax B -y B, we can then
consider the following analytic subspace of H2sY, :

(5.6.4) := p| (fl 6 I (7rs 0 =(r» Ç Cs.r s

yeu

In order to define the subspace Homy(y. XJ Ç Hom(y, X), repeat this
construction for each of the finitely many numbers r and s, and for each of
the finitely many components Y' Çf~l(Zji). Finally, let Horn3-[Y, X) be the
connected component of the intersection which contains /,

Hom:T(y, X) C p] Hr:S:Y' C p| Hlr s Y, C Horn (y, X).
r.s.Y' r.s.Y'

open in Hom(F, X)

It remains to show that the Universal Properties (5.6.1) and (5.6.2) hold.
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For Property (5.6.1), assume that an n-th order deformation an is given
as in (5.6.1). Given any two integers r, 5 and any connected component
Y' Çf~1(Zsr), let V Ç X and U Y' fi/-1(V) be the sets considered above

in the construction of HrtSj>, with decomposition V n Zsr A x B. Now, if
y G (J is any point and D the associated vector field near f(y), with integral
curve 7/(y) : A —> X, it is clear from Corollary 5.4 that 7/(^(0 Zsr, for all

t. In particular, the associated morphism

(5.6.5) <j„: SpecC[£]/(£rt+1) Hom(h, X)

factors via Hfs Y,. In a similar vein, it follows from Corollary 5.4 that

7TB o y/(y)(0 TVßifiy)) for all t A. In particular, viewing an as a map

an : SpecC[s]/(£"+1) x Y -t X, we have

Kb ° i&n |specC[£]/(£"+')x {>'}) — Kß(f(y)),

so that the morphism (5.6.5) actually factors via Hr.s.y>. Since this is true for
all r, s and Y', the morphism (5.6.5) factors via Homy(h, X), as claimed.

This ends the proof of Property (5.6.1).

To prove Property (5.6.2), let 7 be any arc that satisfies the conditions
of (5.6.2) and let F be the associated deformation. For t G A, let

aFil H°[Y, (FtT(Jx))

be the velocity vector field, as introduced in Notation 1.3 on page 289. We

aim to show that the <jFtl are really sections in (F))*^). Again, if any two
integers r, s and any connected component Y' Ç f~lÇZsr) are given, it is clear

from (5.6.3) and (5.6.4) that

(ZhWz/)),

where CSZ* is the sheaf introduced in Corollaiy 5.4. Since U is analytically

open in the irreducible space Y' Ç f~l(Zsr) and since we have seen in

Corollary 5.4 that 3is a vector bundle, it follows immediately from the

identity principle that

of,,|r e mt&z§.
Since this holds for all numbers r and s, and all irreducible components
Y' Çf~l(Zsr), Property (5.6.2) follows.
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6. Proof of Theorem 1.5

6.A Setup of notation, overview of the proof
We end this paper with the proof of Theorem 1.5. Throughout the present

Section 6, we maintain the assumptions and the notation of the theorem. In

particular, we assume that we are given a morphism /: Y -a X of complex
manifolds, with Y compact, an involutive subsheaf and a first order
infinitesimal deformation of /, denoted o £ H°(Y, IF^), where 'Jy Ç f*(Tx)
is the image of /*(ff) under the pull-back of the inclusion map. We also

assume that Hl(Y, 3V) — {0}.
The proof is given in three steps. Replacing the target manifold X with

the product Y x X, and the morphism / with the natural graph map, we

first show that it suffices to prove Theorem 1.5 in the case where / is a

closed immersion. In Step 2, we construct a setting where the tangent vectors

<j(y) £ Tx\y and the vector spaces Ty\y Ç Tx\y are transversal at all points

y £ Y. A third step will then complete the proof.

6.B Step 1 : Reduction to the case of a closed immersion

In Section 3.B we have discussed the situation where / is a closed

immersion, and where the infinitesimal deformation a was locally given by
restrictions of vector fields that live on open subsets of X. In order to reduce

to this simpler situation, we will show that to give a deformation of /, it is

equivalent to give a relative deformation of the graph morphism,

l : M Y y, X, where i(y) (y,f(y)),
which is a closed immersion that identifies the domain Y with the graph of /.
We will then aim to construct an involutive subsheaf S Ç Tyxx that comes
from J, and an infinitesimal deformation of the graph morphism i along the
sheaf S that is related to a.

For this, recall that the tangent bundle of the product is a direct sum

Tyxx iiy(Ty) © 7Ty(Tx), where the n. are the natural projections, and set

S := {0} O TTyCfF) Ç Tyxx- Since 3 is generated by vector fields that are

ttx-related to vector fields in If, it follows from [War83, Prop. 1.55] that S

is closed under the Lie bracket. Finally, consider the first order infinitesimal
deformation a,/. Y —> i*(Tyxx) of given by (7,{y) (0,uiy)).

The following lemmas are then immediate from the construction.

LEMMA 6.1. The infinitesimal deformation <7,. is contained in the subspace

/f°(F, Image(7*(S) -A t*(W))) Ç H°(Y,t,*(TXxy)).
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LEMMA 6.2. There exist natural isomorphisms i*(S) — f * (S1-) and

Image(t*(3) -3- i*'(TXxY)) Image-> f(Tx)) =:

In particular, we have

H1 (Y, Image(i*(3) -4 F(TXxY))) H1 (Y, 'JY) (0).

LEMMA 6.3. IfFAxF-> Y xX is a deformation of the graph morphism

t along 3, then F : 77X o F,, : Ax Y —> X is a deformation of f along J.
If FL is a lifting of a,, then F is a lifting of a.

In summary, Lemmas 6.1-6.3 show that all assumptions made in Theorem

1.5 also hold for the morphism i, and that it suffices to find a lifting
of a,, along 3. Without loss of generality, we can therefore maintain the

following assumption throughout the rest of the proof.

ASSUMPTION 6.4. The morphism f: Y —> X is a closed immersion.

6.C Step 2 : Tilie-dependent vector fields

The explicit computations of Cech cocycles that we will use in Step 3 of
this proof become rather complicated if the infinitesimal deformation a has

zeros or if its associated tangent vectors are not transversal to f(Y) Ç X. As
in Section 6.B, we avoid this problem by enlarging X.

Construction 6.5. Set Z:=IxC, with projections ttx: Z —x X and

ttq Z —^ C. Throughout the remainder of the proof, the coordinate on C will
be denoted by t and referred to as "time". Using that the tangent bundle of
Z decomposes as a direct sum, we consider the sheaf

S := CD tt^CTC) Ç ttx(Tx) G) ^(Tc) Tz

the inclusion map

and the infinitesimal deformation

$*<$$,. V^er+J,
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As in Section 6.B, the following is immediate from the construction:

LEMMA 6.6. The sheaf 3 is closed under Lie bracket. If G: A X Y —> Z
is a deformation of the morphism g along 3 >

then F : ixy ° GAx Y —> X
is a deformation of f along ff. If the deformation G is a lifting of ij, then

F is a lifting of a.

Warning 6.7. If 3r L iflJz) denotes the image of g*(3) under the pull-
back of the inclusion map, then S y (fy^BÖy. It is therefore generally wrong
that H1{Y. 3r) {0}, and the assumptions of Theorem 1.5 will generally
not hold for the morphism g. Rather than using cohomological vanishing
for S y, the arguments given in Step 3 will therefore only use cohomological
vanishing of 'Jy and the special form of ?/, in order to construct infinitesimal

liftings of arbitrary order.

The following special types of vector fields on Z will play a role in the

computations.

Definition 6.8 (Time-dependent vector field). A vector field on Z is

called a time-dependent vector field in J if it is a section of the sheaf

tt*(J) e {0} c 7T*(5) e nc(Tc) ç Tz

Definition 6.9 (Vector field with constant flow in time). A vector field
D on Z is called a vector field in S with constant flow in time if it is of the

form
D D'+fdt

where D' is a time-dependent vector field in 3L

We remark that the first-order infinitesimal deformation // of Construction

6.5 is induced by a vector field with constant flow in time, in the sense

of the following definition.

Definition 6.10 (Infinitesimal deformations induced by vector fields). An
n-th order infinitesimal deformation r/n: Y -a <f Jet'YZ) — Jef(Z)\y of the
closed immersion g is induced by vector fields in 3 with constant flow in
time if for every point y Y there are a neighborhood U U(fjiy)) Ç Z
and a vector field D G H°(U, 3) with constant flow in time, such that the

restriction gn\ucy is given by the section rßlynr discussed in Definition 4.1.
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In Step 3 of the proof, we need to consider iterated Lie brackets of vector
fields with constant flow in time. We end this section with an elementary
observation, asserting that Lie brackets of time-dependent vector fields, or of
vector fields with constant flow in time will always be time dependent.

LEMMA 6.11. Let U ç Z be any open set and let D\ and D2 be any two
time dependent vector fields in jF, defined on U. Then the following hold:
(6.11.1) The Lie bracket [,D\,Df\ is a time-dependent vector field in J*.

(6.11.2) The Lie bracket is a time-dependent vector field in 'J.

Proof. Assertion (6.11.(6.11.1)) follows from an elementary computation,
cf. [War83, Prop. 1.55], when one observes that a vector field in S is a

time-dependent vector field in T if and only if it is ttq -related to the trivial
vector field 0 e H° (C, 7c)- Observing that a vector field has constant flow
in time if and only if it is ttq -related to the vector field H°(C, Tq) the

same computation also gives (6.11.(6.11.2)).

COROLLARY 6.12. Let D1 + jt and D2 + j{ be any two vector fields in
S with constant flow in time. If n is any integer, then the iterated Lie bracket

[.D\ + jt*Dz + is a time dependent vector field in 'J.

6.D Step 3 : End of proof

The end of the proof of Theorem 1.5 is now very similar to the proof of
Theorem 1.1. First, we prove an analogue of Lemma 2.14 that gives liftings
of rj to arbitrary order. These liftings will locally be induced by vector
fields in with constant flow in time. Finally, we apply Artin's result to

construct the required deformation of /. The universal properties of the space
Homg.- [ Y. X), as spelled out in Corollary 5.6, will then guarantee that this is

in fact a deformation along the subsheaf 7.

LEMMA 6.13. Let rjn : Y —> çf Jet*(Z) be an n-th order infinitesimal
deformation of the closed immersion g that is induced by vector fields in S

with constant flow in time. Then there exists a lifting ijn+i • Y —> g* Jetrt+1(Z)

of g,j that is likewise induced by vector fields in S with constant flow in time.

Proof. As a first step, we construct liftings locally. Using the cohomo-

logical vanishing for Ty, we can then correct the local liftings, to ensure that

they glue on overlaps. This will define a global lifting, which is then shown

to be induced by vector fields in S with constant flow in time.
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It follows from Definition 6.10 that there exists an acyclic covering of
g(Y) Ç Z by open subsets ((Jùtei Ç. Z such that there are time-dependent
vector fields D, G H°((/,-, 7^(30 G {0}) that satisfy 7]n\u,nY tJ.+ JctîDy-

We consider the induced section of the (n + l)-th jet bundle,

r,:=r^£>,+ £ I Uif\Y ' U, n Y -fi Jet"+1(Z).

Obviously, the 77 are local liftings of r\n, but they do not necessarily glue on

overlaps. However, it follows from Theorem 4.3 that for any pair of indices

i. j G /, the affine differences are given by iterated Lie brackets,

v-uj := u-.nunY Tj\u;nUjr\Y

D-+i
UiPUj D,+dt

(rt+l)

UinuJm
i/frw,-nr.

—.A-,.

Corollary 6.12 asserts that the iterated Lie brackets AitJ are time-dependent
vector fields in 'J. The differences v,j therefore yield cohomology classes

in Hl(Y, "Jy) which are zero by assumption. We can thus find sections

ÀG H°(Ui fi Y, fFj-j such that A,- — Aj u,d. As in the proof of Lemma 2.14,

viewing the A(- as sections in H°(Ui D Y, 7Y CD Or) — H°{Ui H Y, S y) Ç

H()(Uj fi Y, g*(Tz)), the sections obtained by translation,

T, - A,: £/(• n T —> Jetrt+1(Z)|[/;ny.

glue on overlaps U; fi Uj Cl Y and define a lifting to (n + 1 -th order,

(6.13.1) 77rt_|_i : Y —¥ Jetw+1(Z) with ih-\-\\u:rY — fi — A,- for all i.

It remains to show that r)n+i is an infinitesimal deformation induced

by vector fields in S with constant flow in time. To check the conditions
of Definition 6.10, let y G F be any point, and let i G / be any index

with g(y) G Ut. Then it suffices to construct a time-dependent vector field
D G H°(Ui, 7ïj(T)) such that rjn+ilu.nY u-^y

To this end, consider the sections rt and \t defined above. Recall that r,-

is induced by the vector field Dt -f Since the covering of Z is acyclic,
the section A,- G fl F, 5y) is given as the restriction of a vector field
E G H°(Un 7Ty((f)). Set D := (D,- — ^E). With Theorem 4.3 at hand, it is then
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easy to compute the affine differences of and r^4'^ |y,nK on Ut

as
1 I _.i+i I p \' n-u ^ l^nr — rn 4. " I £/,-nr — ~e — —A.

=T;

We obtain T^^J^nr A — A, and Equation (6.13.1) then gives

%+iknr. as required.

Proof of Theorem 1.5; end of proof. Consider the analytic subset

Horng(Y,Z) of the Douady space Horn(Y,Z) constructed in Corollary 5.6
and the sequence of liftings 771, 1/2. of Lemma 6.13. By Proposition 2.13,

we can view the /?,• as morphisms Spec C[sr]/(sr'-1-1) x Y —> Z. Assertion (5.6.1)
of Corollary 5.6 then implies that these morphisms factor via Homg(F. Z),
for each i.

Arguing as in the proof of Theorem 1.1, only replacing Hom(F.Z) by the

analytic subspace Homg(F,Z), Artin's Theorem [Art68, Thm 1.2] guarantees
the existence of a deformation G of y that factors via Horng (F, Z) and

lifts the infinitesimal deformation •??. Lemma 6.6 and Assertion (5.6.2) of
Corollary 5.6 then implies that F ttx ° G is in fact a deformation along 0"

that lifts the infinitesimal deformation a.
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