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DEFORMATIONS ALONG SUBSHEAVES

by Stefan KEBEKUS, Stavros KoOUSIDIS and Daniel LOHMANN *)

ABSTRACT. Let f: ¥ — X be a morphism of complex manifolds, and assume that
Y is compact. Let F C Tx be a subsheaf which is closed under the Lie bracket. The
present paper contains an elementary and very geometric argument to show that all
obstructions to deforming f along the sheaf & lie in Hl(Y, i?T'y), where Fy C f*(Ty)
is the image of f*(F) under the pull-back of the inclusion map. Special cases of this
result include Miyaocka’s theory of deformation along a foliation, Keel-McKernan's
logarithmic deformation theory and deformations with fixed points.
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1. INTRODUCTION AND MAIN RESUITS

1.A  INTRODUCTION

Let f: Y — X be a morphism of complex manifolds and assume that ¥
is compact. We aim to deform f, keeping X and Y fixed More precisely,
given an infinitesimal deformation of f, say o € HO(Y,f*(TX)), we ask if
o is effective, i.e., if ¢ comes from a deformation of f.

It is a classical result that any infinitesimal deformation is effective if
the associated obstruction space vanishes. We refer to [Hor73], or to [Kol96,
Chap. 1] for a thorough discussion of the algebraic case.

THEOREM 1.1. [If H! (Y,f*(TX)) = {0}, then any infinitesimal deformation
of f is effective.

Theorem 1.1 is not sharp however. There are many examples of infinitesimal
deformations that are effective even though hl(Y,f*(Tx)) is large. In these
cases, it is often possible to find a geometric reason that explains the behavior.
Here, we consider the geometric context where there is a subsheaf F C Tx,
and where o € H°(Y,f*(Ty)) is an infinitesimal deformation along T, i.e.,
where o is in the image of the natural map

H Y, f5() — H (¥, £ (T0).

If F is closed under the Lie bracket, we show that an analogue of Theorem 1.1
holds for deformations along F.

The proof of our main result, Theorem 1.5, is completely elementary and
does not use any of the sophisticated methods of deformation theory. The
methods also illustrate the proof of Theorem 1.1.

1.B  MAIN RESULT

In order to formulate the main results precisely in Theorem 1.5 below, recall
a few standard definitions and notation used in the discussion of deformations.

DEFINITION 1.2, A deformation of f is a holomorphic mapping
F:AxY — X whose restriction to {0} x ¥ 2 Y equals f. Here A C C
is a disk centered about 0.
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NoTaTioN 1.3. If F is a deformation and 7 € A any number, we often
write F,: ¥ — X for the obvious restriction of F* to {f} x ¥ =2 Y. Given a
point y € ¥, we can consider the curve

FyiA— X, (e Fi,y.
Given f € A and taking derivatives in ¢ for all y, this gives a section
op, € HO(Y, (F)*(Ty))

called velocity vector field at time t. For + = 0, we obtain a section
aro € HY(Y,f*(Tx)). Hements of H°(Y f*(Tx)) are thus called initial
velocity vector fields or first order infinitesimal deformations of f.

DEFINITION 1.4. A first order infinitesimal deformation o € H°(¥, f*(Tx))
is effective if there exists a deformation F with o = opyq.

With this notation, the main result of the present paper is formulated as
follows.

THEOREM 1.5 (Deformation along an involutive subsheaf). let f: ¥ — X
be a morphism of complex manifolds and assume that Y is compact. Let
F C Tx be a subsheaf of Ox-modules which is closed under the Lie bracket,
let Fy C f*(Tx) be the image of f*(F) under the pull-back of the inclusion
map, and let

o e HY, Fy) CH(Y, f1(Tv)
be a first order infinitesimal deformation of the morphism f that comes
from F.

If H'(Y, Fy) = {0}, then there exists a deformation F of f such that
a = arq, and such that for all times t € A the section or,; is in the image

of
(1.5.1) H (Y, (F)y (@) — H (Y. (F)"(T%) .

NoTraTioN 1.6. If F is any deformation of f such that (1.5.1) holds for
all ¢, we say that F' is a deformation along the sheaf T .

REMARK 1.7. The subsheaf F C Ty need not be a foliation because F
need not be saturated in Tx. We recall a few special cases of Theorem 1.5
that we have found in the literature:



290 S, KEBEKUS, 8. KOUSIDIS AND D. LOHMANN

(1.7.1) Foliations. The case where F is an algebraic foliation is studied
in Miyaoka’s theory of deformation along an algebraically defined
foliation, [Miy&7, MP97].

(1.7.2) Logarithmic tangent sheaves. The case where X contains a reduced
divisor D and J = Tx(—logD) appears in Keel and McKernan’s
work on the Miyanishi conjecture, [KMc99, Sect. 5].

(1.73) Deformation with fixed poinfs. A variant of the case where J = Tx®4,
is the tangent bundle twisted with the ideal sheaf of a point p is used
in Mori’s Bend-and-Break technique.

1.C OUTLINE OF THE PAPER

In Section 2, we recall the definition of jet bundles on a complex
manifold X and recall their main properties. The language of jets makes
it easy to discuss #n-th order deformations of a given morphism, and gives an
elementary way to construct classes in HI(Y, f*(TX)) that are obstructions
to extending n-th order deformations to (zz 4 1)-th order. We illustrate these
concepts by reproducing Horikawa’s proof of Theorem 1.1 in the language
of jets, referring to Artin’s paper [Art68] for the necessary convergence
results.

In Section 3, we outline the proof of Theorem 1.5, explain the main
strategy and motivate two sets of problems which are discussed in Sections 4
and 5 before completing the proof of Theorem 1.5 in Section 6.

Section 4 concerns the relation between vector fields and higher order jets
of the integral curves they define. Given two vector fields D; and D, on X
with integral curves ~; and -, we are interested in expressing the difference
of higher order terms in the power series expansions of the ~; in terms of
iterated Lie brackets involving £ and D-.

In Section 5, we discuss an elementary generalization of the classical
Frobenius Theorem of Differential Geometry, where the Lie-closed subsheaf
J C Tx is not necessarily a foliation. This will allow us to construct local
analytic subspaces of the Douady space Hom(Y.X) which locally parametrize
deformations along the sheaf J.

1.D  ACKNOWLEDGMENTS

A first version of Theorem 1.5 and the elementary proof of Theorem 1.1
are contained in the diploma thesis of Daniel Lohmann and Stavros Kousidis,
respectively. Both thesis projects were supervised by Stefan Kebekus.
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The authors would like to thank Guido Kings for discussions, and the
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a projectivity assumption, and for bringing Horikawa’s paper to our attention.

2. JET BUNDLES AND DEFORMATIONS OF MORPHISMS

In Sections 2.A-2.C we recall the definition and briefly discuss the main
properties of jet bundles of a complex manifold, which are higher order
generalizations of the tangent bundle. Jet bundles are then used in Section 2.D
to describe higher-orderinfinitesimal deformations of morphisms. To illustrate
the use of jets in deformation theory, we end this chapter with a short and
very transparent proof of the classical Theorem 1.1.

REMARK 2.1. There are two notions of “jet bundle” found in the literature.
In this paper, an “n-jet” is an n-th order curve germ. This notion was, originally
introduced in slightly higher generality in real geometry by Ehresmann,
cf. [Amn88, Chapt. 6.29C].

Other authors use the word “n-jet” to denote an n-th order germ of a
section in a given vector bundle. This notion is found, e.g., in the work of
Kumpera-Spencer on Lie equations, [KS72, Chap. 1].

NoTATION 22, If X and ¥ are any two complex spaces where Y is
compact, we denote the Douady space of morphisms from Y to X by
Hom(Y. X). Like the Hom-scheme of algebraic geometry, the Douady space
of morphisms represents a functor and is therefore uniquely determined by its
universal properties. We refer to [CP94, Sect. 2] for a brief overview and for
further references.

The reader who is content with algebraic morphisms of projective varieties
is free to use the Hom-scheme instead of the Douady space throughout this

paper.

2.A TANGENT BUNDLES

Let X be a complex manifold. Before discussing jet bundles of arbitrary
order, we recall two equivalent standard constructions of the tangent bundles
for the reader’s convenience.
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CONSTRUCTION 2.3. As a manifold, the tangent bundle Ty is the set of
equivalence classes of germs of arcs A — X, under the equivalence relation that
T ~ ¢ if they agree to first order. Coordinate charts on X induce coordinate
charts on Tx in the obvious canonical manner, and the map 7 — 7(0) induces
a canonical morphism w: Tx — X.

CONSTRUCTION 2.4, As a complex space or scheme, the tangent bundle
is defined as Ty = Hom(Spec C[s]/(sz), X), where Spec C[s]/(sz) denotes
the double point on the affine line. The obvious map C[z] /(52) — C induces
a canonical morphism w: Tx — X = Hom(Spec C. X).

Using either construction, an elementary computation immediately gives
the following

FACT 2.5, The tangent bundle Tx of a complex manifold X has the
structure of a vector bundle over X .

Local coordinates on U C X induce vector bundle coordinates on
Iy C Tx. More precisely, if U C X is a coordinate neighborhood,
and v is a germ of an arc . A — U, described in U -coordinates as

~(1) = Xg + X 1 + (higher-order terms)

then the associated point of Tx has # =Y (U)-coordinates (3o, %) € UxCImX,

2B JET BUNDLES

In complete analogy with Constructions 2.3-2.4, the jet bundle of a complex
manifold X can be defined in one of the following equivalent ways.

CONSTRUCTION 2.6. As a manifold, the n-th jet bundle Jet™(X) is the
set of equivalence classes of germs of arcs A — X, under the equivalence
relation that T ~ o if they agree to n-th order. Coordinate charts on X induce
coordinate charts on Jet”(X) in the obvious canonical manner, and for any
m < n the restriction of arcs to m-th order induces a canonical morphism
Tpm. Jet'(X) — Jet™(X).

CONSTRUCTION 2.7. As a complex space or scheme the n-th jet bundle
is defined as Jet"(X) := Hom({SpecCle]/(e"t"), X). For m < n, the
truncation map C[a]/(s”“) — C[s]/(a’”“) induces a canonical morphism
Tpm. Jet'(X) — Jet™(X).
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It is clear from the construction that Jet’(X) = X and Jet!(X) = Ty. In
complete analogy with Fact 2.5, an elementary computation in local coordinates
shows the following

FacT 2.8 Let X be a complex manifold and let m < n be any two
integers. Then the following hold :

(2.8.1) The morphisms Ty Jet'(X) — Jet™(X) are fiber bundles, locally
trivial in Zariski topology with fibers isomorphic to AW 40X _y seneral,
the transition maps are neither linear nor affine, and w,,, is generally
neither a vector bundle nor an affine bundle.

(2.8.2) Local coordinates on U C X induce vector bundle coordinates on
71‘,:01((/) C Jet™(X), for all n. More precisely, if U C X is a coordinate
nefghborhood, and v is a germ of an arc v. A — U, described in
U -coordinates as

O =ty + Tt -+ U, 1+ (higher-order terms) ,
then the associated point of Jet"(X) has ?T;(}(U) -coordinates
s B s 000 0 B @0,

with %; = i\ - ¥;. In particular, the coordinate X; is computed in local
coordinates as the i-th derivative, X; = 7‘“(0).

(283) If m =n—1, the fiber bundle Tyuiym: Jet"Thxy s Jet™(X) has
affine transition maps and is therefore an affine bundie.

2.C  AFFINE BUNDLES ASSOCIATED WITH JETS

We need to discuss the affine bundle structure of JetcX) — Jet" '(X)
in more detail. For that, we briefly recall the relevant properties of affine
spaces.

By definition, any affine space A comes with a canonical vector space
V', the space of translations, whose additive group V acts on A. The action
map, often called frarslation map is usually denoted as follows:

VXA A, (T,a)—>T+a.

Given any @ £ A, the natural map V — A, ¥ — ¥+« is an isomorphism of
complex manifolds. Consequently, given any two elements a, b € A, there is
a uniquely defined difference vector © € V, often denoted as & =a— b, such
that 1+ b=a.
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In complete analogy, any affine bundle A — B naturally comes with a
vector bundle w: V — B, the “bundle of translations”. The translation maps
on fibers glue to give a translation map

+: VxgA—A.

Given any section o: B — A, the natural map V — A, ¥ — ¥+ o(w (@)
is a fiber bundle isomorphism. Consequently, given any two sections
o1,02. B — A, there is a uniquely defined difference section, - B — V,
often denoted as ™ = o7 — o3, such that 7(b) + o(b) = o1(b) for all b€ B.

For the affine bundle Jet""(X) — Jet(X), the elementary computation
used to prove Fact 2.9 immediately identifies the translation bundle.

FACT 2.9. Let X be a complex manifold and let n > Q be any number.
Then the vector bundle V, of translations associated with the affine bundle
Jet' "Xy —» Jet™(X) is precisely the pull-back of the vector bundle Tx to
Jet"(X). In other words, V, = 7} o(Tx).

In the setup of Fact 2.9, if a1,02: X — Jet" Xy are two sections that
agree to n-th order, 7,11 ,001 = T41,, 002, then the difference is given by
a section oy — op € H(X, Ty). We will later need the following elementary
generalization of this fact.

REMARK 2.10. If f: ¥ — X is a morphism of complex manifolds and if
g1, 020 ¥ — F*Iet" LX) = Jet"THX) x5 ¥ are two sections in the pull-back
bundles that agree to n-th order, f*(7,41,) 001 = f*(7aq1,.) 0 02, then the
difference is given by a section o1 — e € H (Y, f*(Tx)) .

We end this section with a remark that shows how to compute the difference
of jets in local coordinates. The (easy) proof is again left to the reader.

REMARK 2.11. If &/ € X is a coordinate neighborhood, and if -,
v € Jet"TIX) are two jets with 7,.,(v) = Tnt1,a(72), represented in
the induced coordinates on frnjrll‘o(U) & Jet”“(X) as

o=, X, K X)) and e =G, X, L T Kas12),
then the difference ~; — 72 is given by the tangent vector written in the
induced coordinates on Ty as 7 — 2 = G, Xop11 — Far12) € Txlym.
If the base point 1 (0) is clear, we will often write

S o
M =2 = X110 — Ft12 € Tl o -
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2.0 HIGHER-ORDER INFINITESIMAL DEFORMATIONS IN JET LANGUAGE

The following notion is the higher-order analogue of the infinitesimal
deformation discussed in the introduction.

DEFINITICN 2.12. Tet f: ¥ — X be a morphism of complex manifolds.
An n-th order infinitesimal deformation of f is a morphism

f.: SpecClel/(e"H x ¥ = X,

whose restriction to ¥ = SpecC x Y agrees with f.

It is clear from the universal property of the Douady space of morphisms
that an n-th order infinitesimal deformation of f is the same as a morphism
Spec C[a-]/(a”*l) — Hom(Y,X) which maps the closed point to the point
of Hom(Y,X) that represents f. For our purposes, however, the following
description is more useful. It also shows that for # = 1, Definition 2.12 and
Notation 1.3 agree.

PROPOSITION 2.13.  To give an n-th order infinitesimal deformation of f,
it is equivalent to give a section Y — f*Jet"(X), where f*Jet’(X) =
Jet"(X) xx Y.

Proof. 1tis clear from the universal property of Hom(Y, X) that to give an
n-th order infinitesimal deformation of f, it is equivalent to give a morphism

$n: ¥ — Hom (Spec Cle]/(="™), X) = Jet"(X)

with 7,00 ¢, =f. By the universal property of the fiber product, this is the
same as to give a section.

2.E  APPLICATIONS TO DEFORMATIONS AND TO THEOREM 1.1

As an application of the methods and the language outlined in the previous
sections, we reproduce in part Horikawa’s proof of Theorem 1.1, referring
to Artin’s paper [Arto8] for the necessary convergence results. More detailed
computations are found in [Hor73].

The proof follows the common approach to first construct a formal
deformation of f, which is then turned into a holomorphic solution. The
existence of a formal solution is guaranteed by the following lemma which
asserts that any r-th order infinitesimal deformation can be lifted to (#+1)-th
order.
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LEMMA 214, In the setup of Theorem 1.1, let o, ¥ — f*Jet™(X) be
any section. Then there exists a lifting to (n + 1)-th order, ie., a section
Onir: ¥ — et TN (X) making the following diagram commutanive :

S o T
(2.14.1) / lf”(mnn)

Y D et (X)),

Proof. Since both f*Jet"(X) and f* Jet" Xy are locally trivial on Y, it
is clear that liftings to (n + 1)-th order always exist locally. More precisely,
there exists a covering of Y with open sets (U,,),ca and there are sections
oyt Ua = f" Jet™ (X)) such that f*(i,qq,)0 o1 = ouly, - We have seen
in Remark 2.10 that for any «, 3 € A, the difference defines a section
vy € (U, N Us f7(T%) .

The v.3 obviously satisfy the Cech cocycle condition and we obtain a
cohomology class (v,a) € Hl( Y, f* (TX)) which is zero by assumption.

Consequently, there are sections A, € H°(U.,, T;() with A, — Ay = Vag.
If we set

a3
UoNUs = Ty

e
Vog = Opq1

Tpi1 = (A) + o5
then c,’;jrl and cr,’;j_l agree on U/, M{/y for any o, 5 € A and therefore define

a global section o, ¥ = f* Tet"T1(X) that lifts o,.

Proof of Theorem 1.1. Let o € H°(Y, f*(Tx)) be any first order infinites-
imal deformation. Choose a neighborhood U of the point [f] £ Hom(Y, X),
and view {/ as a subset of A®, given by equations &/ = {fy =--- =f, = 0}.
With this notation, our aim is to find a holomorphic map &: A — A" which
agrees with ¢ to first order and satisfies f; oo = 0 for all {. By Michael
Artin’s result on solutions of analytic equations, [Art68, Thm 1.2], a holo-
morphic solution will exist if there is a formal solution to the problem.

Using Lemma 2.14 inductively, we can find a sequence o = ay,07,...
of liftings to arbitrary order, with 7,41, 9 0,41 = o,. If' we view the &, as
morphisms

0 SpecCle]/("™) — Hom(Y, X)),
this defines a formal map
&: Spec C[[=]] = Hom (¥, X) .

which satisfies f; o = 0 for all i, and whose first order part agrees with o.
Artin’s result therefore applies.
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3. STRATEGY FOR THE PROOF OF THEOREM 1.5

3.A INTRODUCTION

Before giving a complete proof of Theorem 1.5 in Section 6 below, we first
outline the main strategy of the proof and recall a few elementary facts. We
hope that the explanations given below will help to motivate the preparatory
Sections 4 and 5 where we gather several technical results used in the proof.

We will constantly use a number of elementary facts concerning vector
fields on manifolds, their associated ordinary differential equations, flow maps
and local actions of 1-parameter groups. Since all relevant results hold without
change in the holomorphic as well as in the C°¢ category, we have chosen to
use [War83] as our main reference, for the reader’s convenience. A thorough
introduction to vector fields and their flows on possibly singular complex
spaces is found in [Kau65].

3.B  OUTLINE CF THE PRCOF

To start the outline, consider the setup of Theorem 1.5 in the simple case
where f: ¥ — X is a closed immersion and where both X and ¥ are compact.
Viewing Y as a subspace of X, let

= Image(HO(Y, Fly) = HO(Y, TX|y))

be a first order infinitesimal deformation of f along J.

If ¢ is the restriction of a global vector field D ¢ HD(Xj SF), we can
integrate the vector field D globally on X, obtaining a holomorphic action of
a l-parameter group, say

o AXX =X,
such that for each point x € X, the arc v.: A= X, f— ¢(f,x) is a solution
to the initial value problem associated with the ordinary differential equation
described by D. In down-to-earth terms, the germ of ~; is the unique solution

to the problem of finding a germ of an arc ~: A — X that satisfies the two
following requirements,

(3.0.1) w0y =x and
(3.0.2) YO =D(xn) foral reA.

NOTATION 3.1. We call «, the infegral curve of D through x.
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Viewing ¢ as a deformation of £, this gives a proof of Theorem 1.5 in case
o comes from a global vector field. For this, observe that requirement (1.5.1)
of Theorem 1.5 immediately follows from ¢3.0.2) above.

If o is the restriction of a vector field D € H*(U, &) that is defined
only on an open neighborhood U of ¥, but perhaps not on all of X,
essentially the same strategy applies. In this setup, there exists a local action,
cf. [War83, Thm 1.48]. More precisely, there exists an open, relatively compact
neighborhood V of ¥ with ¥ C V & U/, there exists a disk A and a map

o AxV = U,

such that the ares ¢ — ¢, x) are again solutions to the initial value
problems (3.0.2). As before ¢ gives a deformation of f that solves the
problem.

In general, however, o is not the restriction of a vector field that lives on
a neighborhood of ¥, and extensions of ¢ to open subsets of X exist only
locally, cf. [War83, Rem. 1.52]. More precisely, there exist finitely many open
sets {/; that are open in X, cover Y and admit vector fields D; € HO(U,-, TX)
whose restrictions D;|ynp, equal o|ynp.. As before, we find relatively compact
open subsets V; € U/; that still cover Y, and local action morphisms

d;0 A x Vi — U{,

again with the property that if x is a pointin V;, we obtain an arc ~v,;: A — X
that solves the initial value problem for [;, as in (3.0.1) and (3.0.2) above.
However, if { & j are any two indices, the local action morphisms will
generally not agree on the overlap V; MV}, and if x isin V;NV;NY, the
arcs 7., and <, ; will likewise not agree.

There are a few things we can say about v,; and -, ; though. Since

Dilv.ovay = Dilvioviny = alvinyay

and since ~.; and -, ; satisfy (3.0.2), it is clear that for any point
xe VinVy;NY, the arcs -y,; and . ; agree to first order, though perhaps not
to second order. In other words, the ¢, induce sections!)

Th: VinY = JefXuay  and 75 VN Y = Jet?(X)]yry

whose first-order parts m () V.NY — Jetl(X)|V,my agree on the overlap
Vi V;NY. We have seen in Section 2.C that the difference 77 — 7, can be

1) Since the <y, are holomorphic for each x, the o; give sections in Jet*(X)|y.ny, for any
number n. For the purposes of this outline, we concentrate on the case n = 2.
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expressed as a section of T)(‘V‘.mp;my, and we will see in Theorem 4.3 below
that this difference is expressed in terms of the Lie bracket of the vector
fields D., as follows:

TIZ)J Vinvny — 7'[2)‘. viv,r = [Di, Dy lviawar

This will allow us to describe the Cech cocycles associated with the problem
of lifting the infinitesimal deformation ¢ from first to second order in terms
of Lie brackets. An argument similar to the proof of Lemma 2.14 will then
allow us to adjust the vector fields D;, in such a way that the associated
local group actions give a well-defined lifting of ¢ to second order, globally
along Y. An iterated application of this method will give liftings to arbitrary

order.

4. JETS ASSOCIATED WITH VECTOR FIELDS

If Dy and D» are two vector fields on X and x € X is a point, the integral
curves v; of D; through x do generally not agree. If ~; and -» agree to
n-th order, we have seen that the difference between the (n—+1)-th order parts
of the v can be expressed as an element @ € Tx|.. In this section, we aim
to express ¢ purely in terms of the vector fields D; and their Lie brackets.
Before formulating the result in Theorem 4.3 below, we need to introduce
some notation.

DEFINITION 4.1 (Jets associated with a vector field). Let &/ C X be an
open set, and let D € H*(U, Tx) be a vector field. Given any number n € N,
let vf: I/ — Jet"(X) be the section in the n-th jet bundle induced by the
local action of the vector field.

In other words, if x € U is any point, and ~,: A — X the unique curve
germ that satisfies (3.0.1) and (3.0.2), then 77(x) is exactly the n-th order jet
associated with ~,.

DEFINITION 4.2 (Iterated Lie brackets). Let I/ € X be an open set,
and let Dy, D, € H°(U, Ty) be two vector fields. For any integer n > 2,
we recursively define a vector field, called the n-th iterated Lie bracket of
Dy and D», as follows:

D1, D219 :=[Dy, D>]  and  [Dy, D] = [D1x DL, Dg]("*l)},
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THEOREM 4.3. Let 7 C X be an open set, and let Dy,Dr € HO(U, TX)
be two vector fields. If x € U is any point and n any integer such that the
n-th order jets associated with D1 and D> agree at x, i.e. T4 (x) = 75, (x),
then the tangent vector that describes the difference between the (n+ 1)-th
order jets is expressed in terms of iterated Lie brackets as follows :

4.3.1) ol — T = [Dy, D)"Y,

Proof of Theoreim 4.3 for n = 1. Choose a coordinate neighborhood U of
x and let v A — X be the germs of the integral curves of D; through x for
ie {1,2}. By Remark 2.11 and Fact 2.8, the difference between the second
order parts of the ~; is then expressed in {/-coordinates as the difference of
the second derivatives,

(4.3.2) T =15, (0 — 75, (0) = () — 7{(0) € Ty,

We aim to express the right hand side of (4.3.2) in terms of the vector
flelds D;. For that, it is convenient to recall that to give a vector field D on
U, it is equivalent to give a derivation Oyx|y — Ox|y, written as f — Df.
Likewise, to give a tangent vector at x, it is equivalent to give a derivation
Ox: — C, where Oy, denotes the stalk of Ox at x. For a given tangent
vector i € Tx|,, the derivation is f + f'(x)-«f, where f' is the derivative of f
in U/-coordinates, and the dot is matrix-vector multiplication. The derivations
commute with restriction, so that (Df)(x) = f'(x)- D|; for all f.

Now, if f € Ox, is any germ of a function, taking the second derivative
of fo~; yields

4.33) Flo -8 =F'@- (%0 —10) =(Fforp —F o).

In order to relate the right hand side of (4.3.3) to the vector fields Dy,
recall Equation (3.0.2), which asserts that for any function g, we have
(go~v) = (D) oy, Applying this to f and D;f, we obtain the following
expression for the second derivatives of f oy,

(4.34) (Fow =(DiH o) = (DaDiP) o v = D)oy
Substituting (4.3.4) into (4.3.3) we find that the equality
Flo-#= (05 - DD

holds for all f € Ox,., and therefore expresses ¢ in terms of the vector
fields D;. To prove (4.3.1), it is therefore sufficient to show that

435 (D3 - DHA)® = (ID1, DAY = ((D1D; — D2D)F) )
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holds true for all f € Oy . We show a stronger statement: for all f we have

(43.6) (DR = (DD iy and (DR = (D1 D2f ).

To prove (4.3.6), note that the equality D], = D3|, implies that (Dyg)(x) =
(Dygi(x) for every g € Ox.. An application to ¢ = Dif and g = Do f,
respectively, gives the two equalities in (4.3.6).

Sketch of proof of Theorem 4.3 for arbitrary n. The line of argumentation
used to show Theorem 4.3 in case # = 1 also works for arbitrary n. As a
first step, one shows that the difference vector ¥ = T§2+1(x) = rgj'l(x) =
ﬂé”“)(O) - »},(I”H)(o) € Tx|. is determined by that fact that it satisfies the
equation

437 o= (@57 - D
for all f € Ox,. Once this is established, it remains to show that
(4.3.8) (D5 — DITHF) e = (D1 DAV (),

again for all f € Ox . Equations (4.3.7) and (4.3.8) can be shown by induction
on n, using elementary but tedious computations in local coordinates. We refer
to [LohOg, Satz 1.4] for details.

5. FROBENIUS THEOREMS AND DEFORMATIONS ALONG SUBSHEAVES

In Theorem 1.5, we aim to deform the morphism f along the sheaf F.
For that, we aim to define an analytic subspace Homy (Y, X) C Hom(Y, X)
which parametrizes such deformations. If J is a regular foliation, the space
Hom g (Y_, X) can be defined as a relative analytic Douady space of morphisms,
using the classical Frobenius Theorem which asserts that J is the foliation
associated with a morphism, at least locally.

THEOREM 5.1 (Frobenius Theorem, cf. [War83, Thm 1.60]). Let Z be a
complex manifold and S C Ty a regular foliation, i.e., a vector subbundle of
Tz which is closed under the Lie bracket. If z € Z is any point, then there
exists an analytic neighborhood U = U(z) C Z which has a product structure,
U=AxB, such that § = n}(Ty), where ma: A X B = A is the projection
to the first factor.
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After introducing some notation and after proving the auxiliary Proposi-
tion 5.3, we give a generalization of the Frobenius Theorem that works for
arbitrary Lie-closed sheaves. While this result, formulated in Corollary 5.4,
is probably known to experts, we include a full proof, for lack of an ade-
quate reference. We will use this version of the Frobenius Theorem to define
the space Homgr(}’, X) in Corollary 5.6 and to prove some of its universal
properties.

Throughout the present section, we maintain the notation of Theorem 1.5
where X is a complex manifold and F € Ty a sheaf which is closed under
the Lie bracket.

NOTATION 5.2 (Stratification of X). It follows immediately from semi-
continuity of rank that for any integer r, the subset

X, ={x€X | rank(F|, = Tx|lo =r} CX

is a locally closed analytic subspace of X. We consider the natural sequence
of closed analytic subspaces of X,,

X, =X 2K 303X DX =5,

where X! is defined inductively as the singular locus of X.. We obtain
a decomposition of X into finitely many disjoint, smooth and locally closed
analytic subspaces,

Xes| |E with 27 =3 NN
B

PROPOSITION 5.3. Let r be any number such that X, 2= @, let x € X,
be any point and D € HO(U, ."f) a vector field, defined in a neighborhood
U=Ux)CX of x. If v: A— X is the integral curve of D through x, as
defined in Notation 3.1, then () € X, for all 1 € A.

Proof. Let ¢ < r be the least integer such that the set A, := 7 '(X,)
is not empty. By semicontinuity, A, € A is a closed analytic subset, and
to prove Proposition 5.3, it suffices to show that A, is also open. Using
the fundamental property that ~,(0) = vt +fp) for all 5 € A, and all
sufficiently small numbers #, we can assume without loss of generality that
Oc A, and r = ¢. For the same reason, it suffices to show that A, contains
a neighborhood A’ of 0 € A.



DEFORMATIONS ALONG SUBSHEAVES 303

To this end, we will show that near 0 € A, the local group action induced
by D yields an injective linear map from Image(F|.., — Tx|.u) to a
¢-dimensional vector space, for every sufficiently small number ¢. Shrinking
U/, if necessary, we can assume without loss of generality that the sheaf F|p
is generated by vector fields Dy,....D, € H(U, F). The vector field D
induces a local group action ¢: A x V — U/, where V C I/ and A’ C A are
suitably small open neighborhoods of x and 0, respectively.

To prove Proposition 5.3, we need to show that A" C A,. For this, pick
any element ¢ € A" and set y 1= ~,.(f). We consider the vector spaces

We = (D12, ..., D)) CTx|, and W, :={Diy)....,D:() C Tx]y.

Since W, = lmage(F|, — Tx|;), the dimension of W, equals r = ¢, and
since ¢ is chosen minimal, Proposition 53 is shown once we prove that
dim W, < g. In order to relate the spaces W, and W, we consider the open
immersion ¢;: V — U, ¢,(v) := é&(t,v), whose pull-back morphism yields an
isomorphism of vector spaces ¢ Tx|y — Txlx.

To understand the morphism ¢; better, let D;(y) be any generator of W,,
and define the map

r: A — Tx|x
£ o (dho Ds)(f.?')f'(x))

and notice that T(©) = D) € W, and [(®) = ¢} (Diy)). Since ¢f is
injective, it remains to prove that I'(f) is an element of W,. Recall from
[Warg3, Def. 2.24, Prop. 2.25] that T is analytic and that its derivative is

U'(¢) = (¢ o [D, DD (du ().

In particular, we have that I'(0) = [0, D;](x) is an element of W,. It follows
by induction that the higher-orderderivatives are given by

20 = () o [D, D7) (pe ().

In particular, we have that [0 = [D, D% (x) is an element of W, for
all numbers »n. Expanding T in a Taylor series, it follows that T'(#) is an
element of W, for all ¥ ¢ A,

In summary, we see that the isomorphism ¢} : Tx|, — Tx|. maps each gen-
erator D;{(y) of W, to W,. As a consequence, we obtain dim W, < dim W, = ¢,
as claimed. This ends the proof of Proposition 53.
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COROLLARY 5.4 (Frobenius Theorem for F). If r, s are any two integers
such that Z =7} is not empty, then

(5.4.1) the image of T along Z is contained in the tangent bundie of Z,
ie.,

Tz :=Image(T|z — Tx|z) C Tz,

(5.4.2) the sheaf Tz C Tz is a regular foliation, and

(5.43) every point z € Z admits an open neighborhood U = U(z) C Z
with a product structure, U = A X B such that Fz = mi(Tx), where
ma: AX B — A is the projection fo the first factor.

Proof. Let U C X be any open subset of X, and let D € H*(U, F) be
any vector fleld, with an associated local group action ¢: A x V — X, where
A 1s again a sufficiently small disk and V C U/ a suitable open subset that
contains x. By Proposition 5.3, we know that for any point x’ € V and any
rc A, we have ¢(r,x") € X, if and only if ¥ € X,. In fact, more is true:
since the morphisms ¢(z,-): V — X are open immersions, they must stabilize
the singular set of X,. Eventually, it follows that for any number s, we have
o, x") € X3 il and only if x' € X7, Since

D‘x = (%(})(O,x) - (%ﬁfx)(o)z

this implies Claim (5.4.1).

By definition of X,, it is clear that Fz is a vector subbundle of 7T7.
The assertion that F7 is closed under the Lie bracket of Tz follows from
Claim (5.4.1) and a standard computation, cf. [War83, Prop. 1.55], giving
Claim (5.4.2). Claim (5.4.3) follows when one applies the classical Frobenius
Theorem 5.1 to Fz C T7.

Using Corollary 5.4, we can now define the analyfic space Homg(}’, X)
which parametrizes deformations along F. The following notation is useful
for the description of its universal properties.

DEFINITION 5.5 (Infinitesimal deformations that are pointwise induced by a
subsheaf). Let ¢,: ¥ — f* Jet®(X) be an n-th order infinitesimal deformation
of the morphism f. We say that &, is peintwise induced by vector fields in
F, if for any peoint y € Y there is a neighborhood {/ C X of f(3) and a vector
field D € H°(U. T) such that ¢, = 75 (f(), where T4: U — Jet"(X) is
the section in the n-th jet bundle described in Definition 4.1.
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CORCLLARY 5.6 (Existence of a parameter space for deformations along a
subsheaf). There exists a locally closed analviic subspace Homp;(Y, X) S
Hom(Y., X) which contains the morphism f and has the following universal
properties.

(56.1) If o, is an n-th order infinitesimal deformation of the morphism
F which is pointwise induced by vector fields in T, then the associated
morphisim Spec Clg] /(E’H'l) — HOIn(Y, X) Sactors via Homfr(Y, X) .

(562) If v: A —» Homg(Y,X) is any arc with ¥(0) = f, and if
F: AxY —= X is the associated deformation, then F is a deformation
along F, in the sense of Noiation 1.6.

Proof. 'We begin with the construction of the space HOI’Hg‘(Y, X) . Choose
integers r, s with f{Y N Z* # @, an irreducible component ¥ C f~47Z%),
a general point yo € ¥’ and a neighborhood V = V(f(yo)) C X, with a
decomposition VNZ' = A x B as in Corollary 54. Let U = Ulyg) €
Y Nf~YV) be a relatively compact neighborhood. By relative compactness
of U, there exists an analytically open neighborhood H} ,» C Hom(Y, X) of
f € Hom(Y, X) such that g(y) € V for all peints y € &/ and all morphisms
g € H!, . The set

563 = ({9 €Hhy | s €2} CHL,
yeU

is then the intersection of finitely or infinitely many analytic subspaces, and
therefore, by the analytic version of Hilbert’s Basissatz [KK8&3, Prop. 23.1], an
analytic subspace itself. We remark that neither Hf,;,y* nor any of the spaces
on the right hand side of (5.6.3) are necessarily reduced.

Identifying VN Z = A x B, with projection ng: A x B — B, we can then
consider the following analytic subspace of Hrz’s’y, :

(564 Heyy =o€,y | oo =Gao N} CH., .
yeU

In order to define the subspace HOIH(,\"(Y, X) = Hom(Y, X), repeat this
construction for each of the finitely many numbers r and s, and for each of
the finitely many components ¥’ C f~1(Z%). Finally, let Hom. (¥, X) be the
connected component of the intersection which contains f,
Homy (Y, X) € (] Hrowr € ()| Hl,y € Hom(Y, X).
[l Tl s

oo
open in Hom(Y, X)

It remains to show that the Universal Properties (5.6.1) and (5.6.2) hold.
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For Property (5.6.1), assume that an n-th order deformation o, is given
as in (5.6.1). Given any two integers r, s and any connected component
Y Cf 4z, let VCX and U @ Y NF V) be the sets considered above
in the construction of H,,y, with decomposition VM Z> = A x B. Now, if
y € U is any point and D the associated vector fleld near f(y), with integral
curve yuym: A — X, it is clear from Corollary 5.4 that ~s,,(6) € Z;, for all
¢. In particular, the associated morphism

(5.6.5) &, Spec Cle] /(=" — Hom (Y, X)

factors via Hf’siy,. In a similar vein, it follows from Corollary 5.4 that
TR O Vi) = n-B(f(y)) for all # € A. In particular, viewing ¢, as a map
o, SpecCle]/(=") % ¥ — X, we have

78 © (Onspeccre1 /ity fyy) = TalfO))

so that the morphism (5.6.5) actually factors via H,;y-. Since this is true for
all r, s and ¥’, the morphism (5.6.5) factors via Homg(Y. X), as claimed.
This ends the proof of Property (5.6.1).

To prove Property (5.6.2), let ~ be any arc that satisfies the conditions
of (5.6.2) and let F be the associated deformation. For r € A, let

op. € HY(Y, (F)*(Ty)

be the velocity vector field, as introduced in Notation 1.3 on page 289. We
aim to show that the op, are really sections in (F,)"(F). Again, if any two
integers r, s and any connected component ¥/ C f~1(Z%) are given, it is clear
from (5.63) and (5.6.4) that

aralu € HY(U, (F)*(Fz)),

where Fg: is the sheaf infroduced in Corollary 5.4. Since {/ is analytically
open in the irreducible space ¥’ C f~1(Z%) and since we have seen in
Corollary 5.4 that &z is a vector bundle, it follows immediately from the
identity principle that

oraly € HO(Y' . (FY"(Fz).

Since this holds for all numbers r and s, and all irreducible components
Y' C f(Z}), Property (5.6.2) follows.
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6. PROOF OF THEOREM 1.5

6.A SETUP OF NOTATION, OVERVIEW OF THE PROCF

We end this paper with the proof of Theorem 1.5. Throughout the present
Section 6, we maintain the assumptions and the notation of the theorem. In
particular, we assume that we are given a morphism f: ¥ — X of complex
manifolds, with ¥ compact, an involutive subsheaf F C Ty and a first order
infinitesimal deformation of f, denoted o & HO(Y, Fy), where Fy C f*(Tx)
is the image of f*(F) under the pull-back of the inclusion map. We also
assume that H1(Y, Fy) = {0}.

The proof is given in three steps. Replacing the target manifold X with
the product ¥ x X, and the morphism f with the natural graph map, we
first show that it suffices to prove Theorem 1.5 in the case where f is a
closed immersion. In Step 2, we construct a setting where the tangent vectors
a(y) € Tx|, and the vector spaces Ty|, C Tx|y are transversal at all points
y& Y. A third step will then complete the proof.

6B  STEP 1: REDUCTION TO THE CASE OF A CLOSED IMMERSION

In Section 3.B we have discussed the situation where f is a closed
immersion, and where the infinitesimal deformation ¢ was locally given by
restrictions of vector fields that live on open subsets of X. In order to reduce
to this simpler situation, we will show that to give a deformation of f, it is
equivalent to give a relative deformation of the graph morphism,

1Y > Y xX, where ()= (y,f(y)),

which is a closed immersion that identifies the domain ¥ with the graph of f.
We will then aim to construct an involutive subsheaf § C Ty.yx that comes
from T, and an infinitesimal deformation of the graph morphism ¢ along the
sheaf § that is related to «.

For this, recall that the tangent bundle of the product is a direct sum
Tyxx = m3(Ty) & m5(Tx), where the . are the natural projections, and set
G = {0} & ap(F) C Tyex. Since § is generated by vector fields that are
ax -related to vector fields in F, it follows from [War83, Prop. 1.55] that §
is closed under the Lie bracket. Finally, consider the first order infinitesimal
deformation a,: ¥ — +*(Tyxx) of &, given by .0 := (0, 0(y)).

The following lemmas are then immediate from the construction.

LEMMA 6.1. The infinitesimal deformation o, is contained in the subspace
HO(Y,Image(:*($) = *(Txuy))) C H (Y. " Txxy)) -
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LEMMA 6.2. There exist natural isomorphisms (9 = f*(F) and
Image (¢*(§) = " (Txxy)) = Image(F*(F) = f(Tx)) = Fy.
In particular, we have
H'(Y, Image(t*(§) = Txxr)) = H' (Y, Fy) = {0}.

LEMMA 63, If F.: AxY — Y xX is a deformation of the graph morphism
¢ along G, then F .=sxoF,: AxY = X is a deformation of f along F.
Iif F, is a lifting of o,, then F is a lifting of o.

In summary, Lemmas 6.1-6.3 show that all assumptions made in Theo-
rem 1.5 also hold for the morphism ¢, and that it suffices to find a lifting
of 7, along §. Without loss of generality, we can therefore maintain the
following assumption throughout the rest of the proof.

ASSUMPTION 6.4. The morphism .Y — X is a closed immersion.

6.C STEP 2: TIME DEPENDENT VECTOR FIELDS

The explicit computations of Cech cocyeles that we will use in Step 3 of
this proof become rather complicated if the infinitesimal deformation o has
zeros or if its associated tangent vectors are not transversal to f(Y) C X. As
in Section 6.B, we avoid this problem by enlarging X.

CONSTRUCTION 6.5. Set Z := X x C, with projections #x: Z — X and
we: Z — C. Throughout the remainder of the proof, the coordinate on C will
be denoted by ¢ and referred to as “time”. Using that the tangent bundle of
Z decomposes as a direct sum, we consider the sheaf

G 1= 73T D waTe) C w4(Tx) O 7a@e) = Tz,

the inclusion map
g Y =2, y= (f0)

and the infinitesimal deformation

neH' (Y, g'Tn), ni=oc+ %.
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As in Section 6.B, the following is immediate from the construction:

LEMMA 6.6. The sheaf G is closed under Lie bracker. If G: AXY — Z
is a deformation of the morphism g along G, then F . =nyo0G. AxY =X
is a deformation of  along F . If the deformation G is a lifting of 1, then
F is a lifiing of o.

WARNING 6.7. If Gy C ¢*(Tz) denotes the image of ¢*(5) under the pull-
back of the inclusion map, then Gy = Fy &0y It is therefore generally wrong
that #(Y. Gy) = {0}, and the assumptions of Theorem 1.5 will generally
not hold for the morphism g. Rather than using cohomological vanishing
for Gy, the arguments given in Step 3 will therefore only use cohomological
vanishing of Fy and the special form of #, in order to construct infinitesimal
liftings of arbitrary order.

The following special types of vector fields on Z will play a role in the
computations.

DEFINITICN 6.8 (Time-dependent vector field). A vector field on Z is
called a fime-dependent vector field in F if it is a section of the sheaf

(P e {0} Cmx(Frome(Te) C Tz,

DEFINITION 6.9 (Vector fleld with constant flow in time). A vector field
D on Z is called a vector field in G with constant flow in fime if it is of the
form P
D=D 1+ =,
£ dt’

where D' is a time-dependent vector field in F.

We remark that the first-order infinitesimal deformation 5 of Construc-
tion 6.5 is induced by a vector field with constant flow in time, in the sense
of the following definition.

DEFINITION 6.10 (Infinitesimal deformations induced by vector fields). An
n-th order infinitesimal deformation 1,: ¥ — ¢* Jet"(Z) = Jet"(Z)|y of the
closed immersion g is induced by vector fields in § with constant flow in
rime if for every point y € Y there are a neighborhood U = U (g(y)) cZ
and a vector field D € HD(U, §) with constant flow in time, such that the
restriction 7, yry 18 given by the section 7j|yny discussed in Definition 4.1.
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In Step 3 of the proof, we need to consider iterated Lie brackets of vector
fields with constant flow in time. We end this section with an elementary
observation, asserting that Lie brackets of time-dependent vector fields, or of
vector fields with constant flow in time will always be time dependent.

LEMMA 6.11. Let U C Z be any open set and let Dy and D> be any two
time dependent vector fields in F, defined on U. Then the following hold :
(6.11.1) The Lie bracket [Dy, D] is a time-dependent vector field in T .
(6.11.2) The Lie bracket [%,Dl] is a fime-dependent vector field in F.

Proof. Assertion (6.11.(6.11.1)) follows from an elementary computation,
of. [War83, Prop. 1.55], when one observes that a vector field in § is a
time-dependent vector field in F if and only if it is w¢-related to the trivial
vector field 0 € H°(C, T¢). Observing that a vector field has constant flow
in time if and only if it is 7 -related to the vector field % e H" (C.\ TC), the
same computation also gives (6.11.(6.11.2)).

COROLLARY 6.12. Let Dy + % and Dy + % be any two vector fields in
S with constant flow in time. If n is any infeger, then the iterated Lie bracket
[Dy + %,Dg -+ %](”) is a time dependent vector field in F.

6.1> STEP 3: END OF PROOF

The end of the proof of Theorem 1.5 is now very similar to the proof of
Theorem 1.1. First, we prove an analogue of Lemma 2.14 that gives liftings
of n to arbitrary order These liftings will locally be induced by wvector
fields in F with constant flow in time. Finally, we apply Artin’s result to
construct the required deformation of f. The universal properties of the space
HOI’I’I:}'(Y: X), as spelled out in Corollary 5.6, will then guarantee that this is
in fact a deformation along the subsheaf T .

LEMMA 613, Let n,. Y — g*Jet'(Z) be an n-th order infinitesimal
deformation of the closed immersion g that is induced by vector fields in G
with constant flow in fime. Then there exists a lifting 1,,1: ¥ — ¢* Jet" (Z)
of 0, that is likewise induced by vector fields in G with constant flow in time.

Proof. As a first step, we construct liftings locally. Using the cohomo-
logical vanishing for Fy, we can then correct the local liftings, to ensure that
they glue on overlaps. This will define a global lifting, which is then shown
to be induced by vector fields in § with constant flow in time.
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It follows from Definition 6.10 that there exists an acyclic covering of
a(¥Y) C Z by open subsets ({/);z;y € Z such that there are time-dependent
vector flelds D; £ HO(U,-, 7y F O {O}) that satisfy #.|ury = TSV_‘_E‘U[Q}I.

T de
We consider the induced section of the (n 4 1)-th jet bundle,
rn+1

=Ty e

. . n+1
pot |y UiNY = Jet™(Z).

Obviously, the 7; are local liftings of 1,, but they do not necessarily glue on
overlaps. However, it follows from Theorem 4.3 that for any pair of indices
i, j € I, the affine differences are given by iterated Lie brackets,

Vij = Ti|UngmY - TJ‘|U[ﬁUjﬁY

|:D;'|'i d

(n+1)
dt ‘U[mUJ. I dr U(-r_][];.:|

NNy,
=

Corollary 6.12 asserts that the iterated Lie brackets A; ; are time-dependent
vector flelds in JF. The differences i ; therefore yield cohomology classes
in HI(Y. I}'Y) which are zero by assumption. We can thus find sections
A E HO(U,ﬂ Y, ffy) such that A; —X; = 14,;. As in the proof of Lemma 2.14,
viewing the A as sections in HO(U; NY, Fy D Oy) = H'(U;NY, Gy) C
HO(UI- nky, g*(Tz)), the sections obtained by translation,

7= N Uy Y = Jet™ YD) gy
glue on overlaps U/; N ;MY and define a lifting to (n 4 1)-th order,
(61313 fupr: ¥ = Jet"TNZ), with o |pey =7 — A forall i

It remains to show that 7,,; is an infinitesimal deformation induced
by vector fields in § with constant flow in time. To check the conditions
of Definition 6.10, let ¥ € ¥ be any point, and let { € [ be any index
with () € U;. Then it suffices to construct a time-dependent vector field
De HO(Ug. ﬁ;(g)) such that 'Tln+1|U‘-ﬂY = Tgil%‘mﬁy.

To this end, consider the sections 7; and A; defined above. Recall that «
is induced by the vector field D; + %. Since the covering of Z is acyclic,
the section A; HD(U!' ny, ffy) is given as the restriction of a vector field
E € H(U, (). Set D := (D;—£.E). With Theorem 4.3 at hand, it is then
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casy to compute the affine differences of Tl’;ilimﬁy and 771 pAy on U
di

D4
as
A+l _ ol N -~ SR, 9
Mo Uny = T g funy = E=—)\.
-
We obtain Tgfﬂy‘_w = 7;,— A; and Equation (6.13.1) then gives 75111 SRy =
dr de

Net1lvny, as required.

Proof of Theorem 1.5; end of proof. Consider the analytic subset
Homg(¥,Z) of the Douady space Hom(Y,Z) constructed in Corollary 5.6
and the sequence of liftings m. iz, ... of Lemma 6.13. By Proposition 2.13,
we can view the »; as morphisms Spec C[E]/(EH_I) * Y = Z. Assertion (5.6.1)
of Corollary 5.6 then implies that these morphisms factor via Homg(Y,Z),
for each i.

Arguing as in the proof of Theorem 1.1, only replacing Hom(Y, Z) by the
analytic subspace Homg(Y,Z), Artin’s Theorem [Art68, Thm 1.2] guarantees
the existence of a deformation (¢ of g that factors via Homg(Y,Z) and
lifts the infinitesimal deformation #. Lemma 6.6 and Assertion (5.6.2) of
Corollary 5.6 then implies that F = mx ¢ G is in fact a deformation along J°
that lifts the infinitesimal deformation .

REFERENCES

[Am88] ARNOL'D, V.I. Geometrical Methods in the Theory of Ordinary Differ-
ential Equations. Second edition. Grundlehren der mathematischen
Wissenschaften 250. Springer-Verlag, New York, 1988

[ATt68] ARTIN, M. On the solutions of analytic equations. favent. Math. 5 (1968),
277-291.

[CP94] CAMPANA, E and T PETERNELL. Cycle spaces. In: Several Complex
Variables, VII, 319-349. Encyclopaedia Math. Sci. 74. Springer,
Berlin, 1994.

[Hor73] HORIKAWA, E. On deformations of holomorphic maps. I J. Math. Soc.
Japan 25 (1973), 372-396.

[KK83] Kaup, L. and B. KAUP. Holomorphic Funcitions of Several Variables.
An introduction to the fundamental theory. With the assistance of
G. Barthel. Translated from the German by M. Bridgland. De Gruyter
Studies in Mathematics 3. Walter de Gruyter & Co., Berlin, 1983.

[Kau65] KAUP, W. Infinitesimale Transformationsgruppen komplexer Riume. Math.
Ann. 160 (1965), 72-92.

[KMc99]  KEEL, S. and J. MCKERNAN. Rational Curves on Quasi-projective Surfaces.
Mem. Amer Math. Soc. 740 (1999), no. 669.



[Kol96]

[K$72]

[Loh08]

[Miy87]

IMP97]

[War83]

DEFORMATIONS ALONG SUBSHEAVES 313

KOLLAR, J. Rational Curves on Algebraic Varieties. FErgebnisse der
Mathematik und ihrer Grenzgebiete, 3. Folge, 32. Springer-Verlag,
Berlin, 1996.

KUMPERA, A. and D. SPENCER. Lie Eguations. Vol. I: General Theory.
Annals of Mathematics Studies 73. Princeton University Press,
Princeton, N.J., 1972

LOHMANN, D. Deformationen entlang integrabler Untergarben des Tangen-
tialbiindels. Diploma thesis, University of Cologne, 2008. Available
at: htip://kups.ub.uni-koeln. de/volltexte/2009/2713.

MrvaoKA, Y. Deformations of a morphism along a foliation and applica-
tions. In: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine,
1985), 245-268. Proc. Sympos. Pure Math. 46. Amer. Math. Soc.,
Providence, RI, 1987.

MIYAOKA, Y. and T. PETERNELL. Geometry of Higher-dimensional Alge-
braic Varieties. DMV Seminar 26. Birkhauser Verlag, Basel, 1997.

WARNER, E W. Foundations of Differentiable Manifolds and Lie Groups.
Corrected reprint of the 1971 edition. Graduate Texts in Mathematics
94. Springer-Verlag, New York-Berlin, 1983.

(Recu le 12 juin 2009; version révisée recue le 29 mars 2010)

Stefan Kebekus

Mathematisches Institut
Albert-Ludwigs-Umversitdt Freiburg
Eckerstrafe 1

D-79104 Freiburg im Breisgau

Germany

e-mail: stefan.kebekus@math uni-freiburg.de

Stavros Kousidis

Mathematisches Institut der Universitit zu Kdln
Weyertal 86-90

D-50931 Koln

Germany

e-mail: skousidi@math uni-koeln.de

Daniel Lohmann

Mathematisches Institut
Albert-Ludwigs-Universitidt Freiburg
Eckerstralle 1

D-79104 Freiburg im Breisgau

Germany

e-maif:  daniel.lohmann@math.uni-freiburg.de



	Deformations along subsheaves

