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A NOTE ON LOWER BOUNDS FOR FROBENIUS TRACES

by Enrico BOMBIERI and Nicholas M. KATZ

1. INTRCDUCTION

This paper grew out of the following question. Given an ordinary elliptic
curve E/F, over a finite field ¥, of characteristic p, consider the sequence
of integers A(n), n > 1, defined by

#EFp) =q"+1 — An).

Is it true that as »n grows we have |A(n)| — oo ?

Without the hypothesis “ordinary”™ the answer can be no, because for
a supersingular elliptic curve one can have A(n) = 0 on entire arithmetic
progressions of n. On the other hand, all the A(n) in the supersingular case
are divisible, as algebraic integers, by q”/ 2 50 the non-zero A(n) must have
|A(m)| = ¢"*. If instead E/F, is ordinary, then all the A(n) are not zero
because they are all prime to p, so this vanishing problem at least disappears.

The A(n) are the traces of the iterates of a certain Frobenius endomorphism
F and this leads to the more general question of when we can assert that in
the sequence |Trace(#™)|, n > 1, the non-zero terms tend to o,

The purpose of this note is to explain how classical results on recurrent
sequences answer these questions. Because of the “culture gap” between the
communities of those who know these classical results and those who are
interested in traces of Frobenius, we have written this note so to make it
accessible to members of both communities, at the risk that readers may find
parts of this note overly detailed.

We will use three different methods to approach the problem. The Skolem-
Mahler-Lech theorem on recurrent sequences is easy to prove and provides a
“soft™ answer, soft in the sense that it gives no estimate of the rate at which the
non-zero terms tend to oo, The other two methods lie much deeper. A theorem
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due independently to Evertse and to van der Poorten and Schlickewei, itself
based on an improved version of Schmidt’s subspace theorem, gives such a
rate, albeit ineffective in certain parameters. For elliptic curves (and some
other exponential sums, including classical Kloosterman sums), the Baker-
Wilstholz theorem gives an even better rate, this time effective in all parameters.

The problem of obtaining effective lower bounds in the most general case
remains unsolved and probably lies very deep.

ACKNOWLEDGEMENTS. [t is a pleasure to thank Umberto Zannier for his
helpful comments on an earlier version of this paper.

2. UNBOUNDEDNESS, VIA SKOLEM’S METHCD

We begin by recalling the relevant version of the Skolem-Mahler-Lech
theorem. For the convenience of the reader, we also recall its proof.

THECOREM 2.1. Let K be an algebraically closed field of characteristic
zero. Fix an integer n > 1, n numbers aq,...,o, in K*, the “eigenvalues”,
and n polynomials M(x), ... . ,(x) in K[x], the “coefficients”, not all of
which are zero. For each integer k > 1, define

Ak = Z Nk ok

i=1
Then we have the following results.

(1) Suppose that no ratio /oy, § 4§, is a roof of unity. Then there are
only finitely many integers k > 1 for which A(k) = 0.

(i1) The infegers k > 1 for which Alk) = 0 are the union of a (possibly
empty) finite set together with a finite number, possibly zero, of arithmetic
progressions fo some common modulus D; we can take D to be the
order of the group of roots of unity generated by all those roots of unity
which are of the form o/, for some i, j.

(dii) Suppose that for some index iy, My(x) # 0 and, for any j # iy, the ratio
ajfo, s not a root of unity. Then there are only finitely many integers
k> 1 for which A(k) =0.

(iv) Suppose that ne «; is a root of unity. Then for any i £ 0 in K, there
are ar most finitely many infegers k > 1 with A(k) = .



LOWER BOUNDS FOR FROBENIUS TRACES 205

Proof. (1) Let A be the set of coefficients of the polynomials A;(x). Tt is
standard that for almost all primes p we can embed the finitely generated
ring

Zlog, Ve, ... an 1o, A, ]

into the ring of integers @p in a finite extension Ep of Q,, cf. [C1] for
an elementary proof or [Ka%96], 5.9.3. (In Cassels it is shown that if K is
any finitely generated field of zero characteristic and C is a finite subset of
K™ then there is a set of primes p of positive density such that, for each p
in this set, there is an embedding of K in the p-adic field Q, in which all
elements of C are units.)

We choose such an embedding, denote by 7# € Op a uniformizing
parameter, by | |, the extension of the usual p-adic absclute value to Ep,
by ordp the associated additive valuation, and by L the cardinality of the
finite group OF /(1 + prOp).

For each i, we have

(ant el +prOp .

Hence in each arithmetic progression {a + kL}rcz modulo L, we have

n
Ala+ kL) =" ofMla + kL) (ol

i=1
which we can view as the case where the eigenvalues are the ol and the
coefficients are af A;(@ 4 xL). Notice that the new eigenvalues (.y;-L contimue to
satisfy the condition that their ratios are not roots of unity.

Looking at each of these progressions separately, it suffices to prove ()

under the additional hypothesis that the # numbers «; each lie in 1 +prQOp.
The key observation is that the functions

logl +9= 3 (-1 12

m=1

and 7
xp = L
m=0 -

are a pair of inverse group isomorphisms between the multiplicative group
1 + paCp and the additive group pwOp. (Indeed, for any clement p € Op
with 4?7~ € pPOp, log and exp are inverse group isomorphisms between the
multiplicative group 14 pOp and the additive group pOp, see [DGS], p. 52)
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Thus distinct elements «; € 1 + prOp have distinet logarithms

o
8= logla;) = (*1)’"71—((” —L7 € prQp .
g ,Z{ ——cp

The power functions n — of = exp(3)" = exp({in) are interpolated by the
functions z > exp(J;z), whose power series are easily seen to lie in Op[[#z]].

We next show that these »n analytic functions exp(J;z) have power series
that are linearly independent over E-p[z]. For completeness, we repeat here the
standard proof. Suppose that P,(z), ( =1,...,n), are non-zero polynomials
in Ep[z], of degree 4;, which we may and will assume to be monic. We
will show that the n power series f{(z) := Pi(z) %% are linearly independent
over Ep. It suffices to show that their Wronskian

Kool Y
=aa((E) f9), .,
is not zero. The (7,j)-th entry of the matrix is easily calculated to be

(,"3{"126" + lower degree terms) e
Therefore, the determinant is
A= {zzdf + lower degree terms} Vand(J;.....3,) PO

with Vand the Vandermonde determinant. The 3, i = 1,...,n, are distinct,
hence the Vandermonde determinant is not 0.

We now retumn to the proof of part (i) of the theorem. Since not all
coefficients A;(x) vanish, the function

n
F):= ) M@exp(F)

i=1
is not zero in Op[[wz]]. It follows that F(z) has at most finitely many zeroes
in Op and a fortiori has at most finitely many integer zeroes, which will prove
what we want. This is an easy consequence of the Weierstrass Preparation
Theorem applied to the power series ring OQp[[nz]] (see Lang [La], Thm. 9.2),
or of the theory of Newton polygons (see, for example, Dwork [Dw], Thm. 1.1
or Dwork, Gerotto, Sullivan [DGS], 11.2.1). In its most elementary form,
this finiteness of the number of zeroes follows from Strassmann’s Theorem :

If F(2) =3 anz™ is convergent for |z|lp < 1 and not identically 0, and
M is the largest index m for which |a.|p reaches its maximum, then the
equation f(z) =0 has at most M zeroes ¢ with ord,({) > 0.
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The following simple proof by induction on M can be found in Cassels
[C2], Thm. 4.1. Since Y a,z™ is convergent for |z]p < 1, we have |am|p — 0,
hence M exists. If M = 0, there is nothing to prove. Now if f({) = 0 we
have

F@ = FD —FO =3 an@ —

m=1
o om—1 o
= (z—g)ZZamz"C’"”ﬁl:(z—C) biz!
m=1 j=0 m=0
=z — Q).
say, with
b= Y an(™ .
m=j+1

From this, it is clear (we are dealing with an ultrametric valuation) that
|bilp = O as j — oc. Moreover, it is immediate that |bj|p < |am|p for
all j, |by—1|p = |am|p, and |bjlp < |ay|p if j > M; the result follows by
induction applied to g(z) = 3" b;z/, which we may because |b;lp — 0, so the
sum is convergent in |z|p < 1.

A refinement of Strassmann’s Theorem is the p-adic Rouché theorem
(see [DGS], [V.4.2 and its more general formulation for quotients of analytic
functions '), rather than just power series in Ex[[z]]):

Let f(2) =Y an?™ € Epllzl] be a power series convergent in |zlp < 1 and
let ||f]l :=max, |an|p. if Hz) € Epllz]] is another power series convergent
in |zlp <1 and with ||h|| < ||Fll, then f and f+ h have the same finite
number of zerces in the disk |z|lp < 1.

Once we have (1), we get (ii) and (iii) by partitioning the eigen-
values «; into equivalence classes according to the equivalence relation
where @ = b if and only if b/a is a root of unity. By renumbering,
we may assume that «ag,....a, are representatives of these equivalence
classes, and that the class of «; consists of (o, for j = 1,...,m;,
with suitable roots of unity ¢;; of order dividing some positive integer D.

1) This extension is important, because analytic continuation in a p-adic field cannot be done
by Weierstrass’s method using Taylor series.
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Then for a fixed integer 0 < a < D, and any integer & > 1, the se-
quence k +—» A(a + kD) is of the same form, with » eigenvalues QP
i=1,...,r, except that now it may be the case that all the coefficients
vanish. We do not care about the exact formulas for these coefficients,
except to note that for each equivalence class which is a singleton, say
iy, the new coefficient of oy, is of Aj(a +xD). If all coefficients vanish,
then we have vanishing on the entire progression. If not, then by (i) we
only have finitely many vanishing terms in the progression. This gives (ii)
and (iii).

Suppose now that no ¢, is a root of unity. We get (iv) by applying
(iii) to the situation with n + 1 eigenvalues (¢g.....a,, 1) and coefficients
(Aalx), ... A0, —), for here the equivalence class of the eigenvalue 1 is
a singleton, whose coefficient —z¢ is not zero.

COROLLARY 2.2. [Let K be an algebraically closed field of characteristic
zero, n > 1 an integer, and F € GL(n, K) an n x n invertible matrix whose
reversed characteristic polynomial det(1—FT) has integer coefficients. Suppose
that no eigenvalue of F is a root of unity. Define a sequence of integers
A(ny by

A(n) = Trace(F?), n>1.

Then the non-zero A(n) have |A(n)| — oc. More precisely, for any infeger
M = 1, there exists an integer ky = 1 such that if & > ky, then either
|ACk)| > M or Atk) = 0.

Proof.  Apply Theorem 2.1 (iv), to the eigenvalues «; of F, taking all
A; = 1. For any integer & > 0, A(k) is an integer, by the integrality assumption
on the coefficients of the characteristic polynomial. There are at most finitely
many integers k& > 0 for which 0 < |Trace(Fk)| < M, hence taking k) to be
the lareest of these, we get the assertion.

Here is another corollary. As before, K is an algebraically closed field
of characteristic zero, » > 1 an integer, and F € GL(n, K) is an n x n
invertible matrix whose reversed characteristic polynomial P(T) := det(/—FT)
has integer coefficients. (Given an integer & > 1, we say that an element
G € GL(n,K) is an integral form of F* if the following two conditions hold.
Let I € GL(n,K) be the identity element. Then

(i) the reversed characteristic polynomial det(J—GT) has integer coefficients;
(i) for some integer 4 > 1, we have det(J — G“T) = det(/ — F¥*T).
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CORCLLARY 2.3. [Let K be an algebraically closed field of characteristic
zero, n > 1 an integer, and F € GL(n,K) an n X n invertible matrix whose
reversed characteristic polynomial det(I—FT) has integer coefficients. Suppose
that no eigenvalue of F is a root of unity. Then for any integer M > 1, there
exists an integer ky > 1 such that for k > ky, and for any integral form G
of F*, either Trace(G) =0 or |Trace(G)| > M.

Proof. Denote by «; the eigenvalues of F. An integral form G of F*
has eigenvalues (;af, for some choice of roots of unity ;. We claim that
given £, there is an integer D > 1 such for any k& > 1 and any integral form
G of F* the possible ¢; are all D-th roots of unity. Granting this claim, we
get the result by applying Theorem 2.1 (iv), to the o; and to each of the D"
n-tuples (Ar,...,A,) with A; a D-th root of unity.

To prove the claim, we argue as follows. Since det(/ — FT) has integer
coefficients, the «; are algebraic numbers, so lie in some finite Galois extension
Ky/Q. If we pick a prime p which splits completely in K, and a prime P
of Ky lying over p, then the P-adic completion of Ky is just the p-adic
field Q,. So we can view all the «; as lying in the p-adic field Q,. The
fact that det(/ — GT) has integer coefficients shows that each product (;af is
algebraic of degree at most »n over Q, and hence of degree at most n over
Q. On the other hand, ozf‘ € Qp, 80 ¢; lies in an extension of Q, of degree
at most »n. Since Q, has only finitely many extensions of given degree, the (;
lie in a single finite extension, say £y, of Q,, and any such finite extension
contains only finitely many roots of unity.

We now give some applications fo varieties over finite fields, and to
isotrivial ?) families of such varieties. All of these applications have a common
structure, that there is only one cohomology group we do not know in advance.
Let us explain in a bit more detail. To begin with, suppose we are given a
proper, smocth, geometrically connected variety X over a finite field F, of
characteristic p > 0. We choose a prime number £ # p. Then we have
Grothendieck’s ¢-adic étale cohomology groups®) HL (X ©g, F,, Q;). In order
to simplify notation, we shall write here X for X @, F, (thus X is X after
base change from F, to F,) and we shall write A' for H,(X, Q) if X is
clear from the context.

%) A family X — S is isotrivial if it becomes a product §' x ¥ — §' with trivial projection
on the first factor, after a suitable finite étale base extension § — §.

Y In this paper, if K is a field, we denote by X a choice of an algebraic closure of X.
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These cohomology groups are finite-dimensional Q,-vector spaces, which
vanish for i outside the interval [0,2dim(X)]. On each group H' we have the
Frobenius automorphism Froqu, and according to the Lefschetz Fixed Point
Formula [Gr] the number #X(F,.) of points of X defined over the field Fg
is given, for each integer n > 1, by the formula

#X(Fp) = Z(flj"Trace(FrobﬁJH‘) .

This appears at first sight to be an equality of an integer #X(F,») with an
alternating sum of terms Trace(Frob%q\Hf) on the right, each of which is a
priori only an element of Q,. However, Deligne, [De2] proved that each
individual trace term Trace(Frob%q\Hf) on the right is itself an integer, and
moreover that this integer is independent of the auxiliary choice of the prime
number £ # p. Equivalently, for each i the reversed characteristic polynomial
det(f — TFroqu\Hi) is independent of ¢ # p and has integer coefficients.
Moreover, he proved in the same paper that cach eigenvalue of Frobg, on H
has complex absolute value ¢'/2. See the review [Ka94] for a slight elaboration
of this summary; for the purpose of this paper, it suffices to know only that
such a cohomology theory exists and that it has the above properties.

All this becomes much more concrete and explicit in a diophantine setting
when our variety X is either a curve or a complete intersection, because for
such an X, say of dimension #, there is only one of its cchomology groups,
namely the middle dimensional group H“, which is difficult to understand
completely. More precisely, for 0 < i < 2d and { # d, we have by [DK],
XI, 1.6,

(@ if 7 is odd, then H' =0,

(i) if 7 is even, say i = 2r, then dim(H#*) =1, and Frobg, acts on it by

multiplication by ¢".

Thus if X is a (proper, smooth, geometrically connected) curve, we have

#X(Fp) = 1 + ¢ — Trace(Frobg, |[H') .

If X is a (proper, smooth, geometrically connected) complete intersection of
odd dimension , we have

#X(Fp) =1+ ¢" + ¢ + - -+ + ¢™ — Trace(Froby, |HY).

Now if X is a complete intersection of even dimension o, then H? contains
a one-dimensional subspace which is Froqu -stable and on which Froqu
acts with eigenvalue ¢%? ([DK], XI, 1.6(iv)); the quotient of H?¢ by this
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one-dimensional subspace is denoted by Prim“. So here we have the formula
FX(Fp) =1+ q" + @ + -+ + ¢ + (—1) Trace(Frobf, [Prim?).

We unify these last two formulas by defining Prim® := ¢ in the case when
d is odd; then the last formula is valid when our X is a complete intersection
of any dimension 4.

The above definition of Prim? has been somewhat simplified here for our
purposes, so it is worthwhile to spend a few words to introduce the general
notion of the primitive part of the cohomology, which is quite interesting and
important in the study of projective varieties. This has no role for the limited
results in our paper and the reader may skip the more technical definitions
which follow.

Let X be a proper, smooth, geometrically connected variety of dimension
d over a finite field F, of characteristic p > 0 and let ¥ be a smoocth
hyperplane section®) of X. Let £ be a prime number ¢ # p. The embedding
¥ — X induces restriction homomorphisms

HL(X, Qo) — HL(T, Q0.
Using Poincaré duality, we get dual homomorphisms
L: Hi(Y.Qp — HEAX,Q, (1)),
called the Gysin homomorphisms, where Gf(k) denotes the k-th Tate twist?).
The image 7 € H%(X, Q;(1)) obtained applying the Gysin map to the class

4) The alert reader may correctly object at this point that over the given ground field F,
every hyperplane section might be singular. For instance, this is the case if 4 = 2r is even
and X is the smooth hypersurface in P**T! given by the equation in homogeneous coordinates
Z?:O(xgexzeJrl 7x2£xgi+1) = 0, see [Ka99], Question 10, pp.621-622. One way around this
difficulty is to use the fact that over every finite extension of sufficiently large degree of our
eround field there do exist smooth hyperplane sections. Indeed, the singular hyperplane sections are
a proper closed subscheme (the dual variery) X of the projective space PY of all hyperplane
sections, cf. [DK], Exp. XVII, 3.1.4; hence the complement PY \XV (the variety of smooth
hyperplane sections) is not empty, smooth and geometrically connected, so has points in all finite
extensions of large enough degree, by a well-known result of Lang and Weil [LW]. However,
there is a more elegant geometric approach to the question. Poonen [P] has shown that for a given
X as above, there exist smooth degree D hypersurface sections over the given ground field if
D is large enough. (See also Gabber [Ga] for an independent proof if in addition D is divisible
by the characteristic p.) Using these results, we can proceed in either of two ways. Suppose we
are given a smooth hypersurface section Y of X of some degree D. We can use the D-fold
Veronese emtbedding (via all monomials of degree 1)) to get a new projective embedding of X
in which the previous degree D hypersurface sections now become hyperplane sections; for this
projective embedding, there do exist smooth hyperplane sections over ;. Alternatively, in the

arguments which follow we can use the 65 -cohomology class (1/D)ly, instead of the class ly
of ¥ itself, to obtain the desired Q,-cohomology class of a hyperplane section.

5) The k-th Tate wwist aﬁ(k) is a certain one-dimensional Galois module over 6;5 for the
action of the absolute Galois group of F,. The effect on the eigenvalues of the action of Frobg,

due to the twist is to multiply the eigenvalues by g—*.
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1y € Hgt()_’,(_l,,) corresponding to ¥ (the so-called fundamental class of Y)
is the class of a hyperplane section of X.

A fundamental theorem (the Hard Lefschetz Theorem) which goes back to
Lefschetz for varieties over the complex field and classical “Betti” cohomology
with coefficients in C and proved by Deligne [De3], 4.1.1, for f-adic
cohomology ¢hence applicable in our setting) is:

Let X be a proper, smooth, geometrically connected, projective variety of
dimension d, over a finite field field ¥, of characteristic p > 0. Let £ #p
and let 1 be the hyperplane class in H3(X.Qu(1)). Then the homomorphism

nt s HOMNE, Qo) — HETME, Qulk)

given by cup-product with the class #* is an isomorphism.

In particular, the eigenvalues of Frobg, on Hgfk()?,af) are equal to
g* times the eigenvalues of Frobg, on HY™ (X, Q). On the other hand,
multiplying by n once more, the map

7 HETREL Q) - HETTHE, Qutk + 1)
may have a non-trivial kernel. This kemel
Prim” (X, Q) := ker(* M [ HS MX, Q)
is the primitive part of the cohomology group Hf;”‘()?,af). This subspace
Prim” (X, Q) € H *(X.Qp

is stable by the action of FI'Oqu, whose eigenvalues on Primd*k()?,ﬁg)
are hence among its eigenvalues on ng_k(j?jag). The remaining eigen-
values of Frobg, on H‘;,_k()?, 6[{) can be recovered from its eigenvalues on
Hff_k_z()? .Q,); they are equal to ¢ times the eigenvalues of Frobg, acting
on HY XX, Qp.

This shows the importance of the primitive part of the cohomology: its
knowledge is sufficient, via the Hard Lefschetz Theorem, to compute the
eigenvalues of the action of Frobg, on the whole ¢-adic cohomology of X.
Moreover, by the Weak Lefschetz Theorem, cf. [De3], 4.1.6, the cohomology
groups H' of a smooth projective variety X of dimension d are isomorphic,
for i < d—2, to the cohomology groups of any smooth hyperplane section.
The cchomology group H9 ! of X can be recovered as a suitable “gcd” of the
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groups H¢! of “all” smooth hyperplane sections®) of X. The cchomology
groups for i > d can of course be recovered by Poincaré duality from those
with 7 < 4. Inductively, this leaves only the middle dimensional cohomology
H% of X to be computed. The interest reader who wants a quick introduction
to this deep theory may consult Danilov’s article [Dan], §7 and §8&.

Going back to curves or complete intersections, there is a single cohomol-
ogy group, H' or Prim® respectively, which we do not know explicitly. It
is with the traces of iterates of Frobenius on this single unknown group that
we will now be concerned. These traces are, as noted above, integers, and
we will want to know cases when they are all not zero. One way to insure
their being not equal to zero is to know that they are not zero modulo p,
the characteristic of the finite field F, over which we are working. For this,
we can make use of the following congruence formula in [DK], XXII, 3.1.
For any proper X/F,, we have its coherent cohomology groups Hi(X,0x),
on which the g-th power map Fr, induces an F,-linear endomorphism. Then
we have an identity in F,,

#X(F) (mod p) = > (—1)Trace(Fry|H'(X, Ox)) .

In the case when our X/F, is either a curve or a complete intersection of
dimension 4 > 0 which is proper, smooth, and geometrically comnected, we
have
(i) HX,Ox)=F,, with Fr, =id;
(i) for i £ 0 or d, we have H'(X,Ox) = 0.
So when our X is a curve, we get
#X(F,) (mod p) = 1 — Trace(Fr, |H' (X, Ox))
and when our X is a complete intersection of dimension 4 > 0, we get
#X(F,) (mod p) =1 + (1) Trace(Fr,|[H (X, Ox)) .
If we compare the Lefschetz Fixed Point Formula with the congruence formula,
we get mod p congruences, namely : when our (proper, smooth, geometrically
connected) X is a curve,
Trace(Froqu|H1) = Tlrace(ﬁrq\Hl(X1 Ox)) (mod p)

and when our (proper, smooth, geometrically comnected) X is a complete
intersection of dimension & > 0,
Trace(Froby, |Prim?) = Trace(Fr,|H(X. Ox)) (mod p).

6) One needs the consideration of a Lefscherz pencil of hyperplane sections and delicate
monodromy calculations, see [De3], 4.5.1.
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With this background established, we now return to giving applications of
our previous results to varieties over finite fields. We begin with the case of
curves over finite fields.

THEOREM 2.4. Let X/F¥, be a proper, smooth, geometrically connected
curve over a finite field ¥, of characteristic p > 0. Define a sequence of
integers A(n),n > 1 by

#X(Fp) = g +1— An).
Then the non-zero A(n) saiisfy |A(n)| — oc.

Proof. This follows from Corollary 2.3 above, applied with K taken to
be Q, for some # # p and with F taken to be the action of the geometric
Frobenius Frobg, on HL(X, Q). By the Lefschetz Fixed Point Formula [Gr],
we have A(n) = Trace(F"). By Weil’s Riemann hypothesis for curves over
finite fields [W1], p. 70, the eigenvalues of F all have archimedean absolute
value ¢'/2, so are not roots of unity.

COROLLARY 2.5. Let X/F, be a proper, smooth, geometrically connected
curve over a finite field ¥, of characteristic p > 0. Suppose that one of the
Jfollowing three conditions holds.

(i) The genus y is 1 and X/F¥, is ordinary”).
(ii) The genus g of X is prime to p, and the q-th power map on H'(X, Ox)
is the identity (i.e., the Hasse-Witi matrix®) relative to ¥, is the identity

g % g matrix over F,), or, equivalently, the group of p-torsion rational
points of the Jacobian faclX)F,) has order pY.

(iil) For some integer N > 1 which is prime to p and modulo which 2g is
not zero, there are N29 points of order dividing N in Jac(X)(F,).

Then for afl n > 1, we have Aln) # 0, hence |A(n)| — oc.

Proof. 1In case (i), each A(n), n > 1, is prime to p, so is not zero. In
case (ii), the congruence formula [DK], XXII, 3.1, shows that for n > 1, we
have A(n) = g (mod p), so again A(n) # 0. In case (iii), we have A(n) = 2g
(mod N) for all n > 1, so again A(r) £ 0.

"y An elliptic curve over a finite field F, of characteristic p is ordinary if its group of
p-division points has order p. In the only other possible case, namely order 1, the curve is called
supersingular.

) The Hasse-Win matrix is obtained by looking at the action of the p-power map on a basis

of H(X, %) and is explicitly computable. For a curve of genus 1 it reduces to a single element
in F,, the Hasse invariant.
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We get similar results for complete intersections over finite fields.

THECREM 2.6. Let X/F, be a proper, smooth, geometrically connecied
complete intersection of dimension d > 1 over a finite field ¥, of characteristic
p > 0. Define a sequence of integers A(m).n > 1 by

d
#X(Fp) = g + (—1YAm).

i=0

Then the non-zero A(n) have |A(n)| — o0.

Proof. This again follows from Corollary 2.5 above, applied with K taken
to be Q, for some # # p and with F taken to be the action of the geometric
Frobenius Froby, on Prim4(X &g, F,,Q,) (the “primitive part” Prim¢, of the
cohomology HY of a smooth complete intersection X is simply HY if d
is odd and, if 4 is even, it is H% of X modulo the image of HY of the
ambient projective space, see [DK], XI, 1.6(iv)). By the Lefschetz Fixed Point
Formula [Gr] and the known cohomological structure of complete intersections
[DK], XI, 1.6, we have A(n) = Trace(F"). By Deligne’s Riemann hypothesis
for varieties over finite fields [DeZ], the eigenvalues of F have archimedean
absolute value ¢*/?, so are not roots of unity.

COROLLARY 2.7. Let X/F, be a proper, smooth, geometrically connecied
complete intersection of dimension d > 1 over a finite field ¥, of characteristic
p > 0. Suppose that ¢ = dim(H*X. Ox)) is prime to p, and that the q-th
power map on HYX,Ox) is the identity. Then for all n > 1, we have
Al £ 0, hence |Am)| — 0.

Proof.  Again by the congruence formula [DK], XXII, 3.1, for n > 1 we
have A(n) = ¢ (mod p), so again A(m) # 0.

Here is a variant of the last result, when the geometric genus is 1.

COROLLARY 2.8. Let X/F, be a proper, smooth, geometrically connecied
complete intersection of dimension d > 1 over a finite field ¥, of characteristic
p > 0. Suppose that Hm(HA X, Ox)) = 1, and that the g-th power map on
HAX, Ox) is not zero, say is multiplication by a € F; . Then, for all n > 1,
A(n) is prime io p, so it is not zero, hence |A(n)| — oc.

Proof. Again by the congruence formula [DK], XXII, 3.1, for n > 1, we
have A(n) = &" (mod p), hence for all » we have A(n) £ 0.
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We now turn to isotrivial families, and apply Corollary 2.8 above.

THEOREM 2.9. Let F, be a finite field of characterisiic p > 0, let S/F,
be a smooth, geometrically connected F,-scheme of finite type with S(F,)
nonempty, and let w. X = § be a proper smooth morphism of relative
dimension d > 1, all of whose geometric fibres are curves ov, if d > 2,
complete infersections. Suppose the morphism « is isofrivial, in the sense fhat
when pulled back to a suitable finite étale S-scheme T/S it becomes constant.
For each closed point P of S, with residue field denoted Fp, consider the
fibre Xy, :=X @p, Fp and define the integer Ap by
d
X, (Fp) = ) Nom(P) + (=1Y'Ap.
=0
Then the non-zero Ap have |Ap| — oo as deg(P) — oc. More precisely, for
any integer M > 1, there exists an integer ky > 1 such that for any k > ky,
and for any closed point P with deg(P) =k, either Ap =0 or |Ap| > M.

Proof. We choose a point sy € S(F,), and denote by X,/F, the fibre
of X/§ over sp. We choose a prime ¢ # p, and take for F the action
of geometric FI'Oqu on Primd()To, Gf). By the isotriviality of X/§, for any
closed point P of §, the fibre Xy, becomes isomorphic to Xy & Fp after
extension of scalars to some finite extension of Fp. Therefore the geometric
Frobenius Frobp acting on Prim®(Xg,., Q) is an integral form of Fi&(®)
So the assertion results from Corollary 2.8 above.

COROLLARY 2.10.  If X/S as above is an isotrivial family of elliptic curves
which are ordinary, i.c., if the constant j-invariant is ordinary, then all Ap
are not zero (because prime to p), hence |Ap| — o¢ as deg(P) = oo.

3. LOWER BOUNDS, VIA THE SUBSPACE THEOREM

Fix an integer Q > 1. In practice,  will be a prime power p™, but right
now that is not important. An algebraic number « € Q is called a Q-Weil
number if, for every embedding ¢: Q € C, we have |((a)|c = QV?, for | |¢
the usual complex absolute value |x +iy|c := (x* +3)1/2. A Q-Weil number
is called integral if in addition it is an algebraic integer.

Lower bounds come from the following special case of a theorem of Evertse
[Ev], Cor. 2, also due independently to van der Poorten and Schlickewei [PS],
Theorem 3.
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THEOREM 3.1. [Let Q > 1 and n > 1 be integers. Let oy, ... 10, be
integral Q-Weil numbers. For each integer k > 1, define

A(K) == iaf‘.
i=1

Given a real number € > 0, there exists a real constant C1 > O such that for
any infeger k > 1, either Alk) = O or, for any archimedean absolute value
on Q, we have

A 2 €0

Proof. This is the following special case of [Ev], Cor.2. Take for K a
number fleld containing all the ;. Take for § the set of all places of K
which are either archimedean or which lie over primes dividing Q. Take for
T C § a single archimedean place. Since the absolute norm of every a; is a
power of @, the algebraic integers «; are all §-units.

Then, for each integer & > 1 with A(k) =0, simply apply [Ev], Cor. 2, to
the §-units x; ;= af.

We can trivially make the constant C; disappear if we insist that k be
sufficiently large.

COROLLARY 3.2. Under the hypotheses of the theorem, given a real number
€ > 0, there exists an integer ky such that for all integers k > ky, either
Alk) =0 or, for any archimedean absolute value on Q, we have

A > Q7.

THEOREM 33. Let X/F, be a proper smooth variety over F,. Fix an
integer i > 1, and a prime ! & p. Consider the sequence of integers Ain),
n > 1, (independent of the auxiliary choice of £, cf. [De3], 3.3.9) defined as

Ai(n) = Trace(Frobg, |H:(X, Q).

Fix a real number ¢ > 0. Then for all sufficiently large n, either An)y =10
or
Am| = (g2)" .

Proof. This is an immediate consequence of Deligne’s theorem [De3],
339, by applying Thecorem 3.1 and Corollary 3.2 to the eigenvalues of
Froby, on H', which are integral ¢'-Weil numbers.
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We now turn to the situation with pure exponential sums. In nearly all
examples, the situation is the following, which we describe first in technical
terms, followed by simple explicit examples understandable by non-experts.

We are given an affine, smooth, geometrically connected variety U/F, of
some dimension 4 > 1, a prime number ¢ = p, and a lisse Gg -sheaf 7 on
U/ which is integral (all local Frobeniuses have algebraic integer eigenvalues)
and pure of some integer weight wgy > 0. We have somehow proven that for
all ¢, the “forget supports™ map®)

HYU,F)— H(U, F)

is an isomorphism. It then follows, cf. [De3], 3.3.6, and [Se], that Hé =0
for i # d and that, putting
wi=d+ wy,

the Frobenius eigenvalues on H¢ are integral ¢* -Weil numbers. The sequence
of algebraic integers

A(r) = Trace(Froby, [HI(T, F))

is the sequence of exponential sums, over bigger and bigger finite extensions
of F,, that we are interested in.

So in any such situation, Theorem 3.3 assures us that for any chosen
embedding + of the number field Q({eigenvalues of Frobg,}) into C, and
any chosen real number ¢ > 0, we have that for all » sufficiently large either
Ay =0 or [tA(me > (™) 2.

It is consequently of some interest to know in what situations of this type
we know in addition that A(n) # 0 for n large. Here are three such situations
which occur in practice, where in fact A(n) £ 0 for all = > 1.

(i) The d variable Kloosterman sums Kl(ip,a,F,), for 4 > 2, 1 a
nontrivial additive character of F,, and a € F‘;, defined by

(1Y KL, a, Fp) = Z Wixy x5

X)X Xg=a, all x€F,

Only 971 isnot zero, and the & Frobenius eigenvalues are integral g%~ -Weil
numbers [Del], 7.1.3, 7.4. This sum lies in Z[{,] and never vanishes, because
modulo the unique prime ideal p of Z[(,] lying over p we have

(—1 'Klga,F) = (g — D' = (1) (mod p)

Y Here H> denotes cohomology with compact support.
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(simply because ¢ is trivial (mod p)). Here the sequence of A(n) is
Aln) = Kl o Tracqu,,/Fq: @, Fga) .
Therefore, for any given real = > 0 we have the lower bound
| Kl OTTaC@Fqn/Fq,a,FM > (qn(d—l)/Z)lfs

for all n sufficiently large.

(i) Start with the projective line P!/F, and remove a nonempty set § of
F,-rational points, with #5 —1 invertible (mod p). We take U/ := P! 4 5.
On U, we take a regular function f € HYU, Oy) whose pole orders e, at
the points s € § are all prime to p. For ¢ a nontrivial additive character of
F,, we have the sum

S, £ ) == Y $fa).

#EUE,)

Only the first cohomology group with compact support ! is not zero, and
the #§—2+43" . ce; Frobenius eigenvalues are integral g-Weil numbers [W2].
This sum lies in Z[(,] and never vanishes, because moedulo the unique prime
ideal p of Z[(,] lying over p, it is congruent to —(g+1 —#5) = #5 — 1,
which by assumption is not zero mod p. The sequence A(n) in this case is

Alr) = S o Tracqun /F, S Fge).

Hence for any given real ¢ > 0 we have the lower bound

; 1—¢
|5 o Traceg,, /x,.f Fp)| = (q”/z)

for all sufficiently large n.

(iii) Here we have a slight variant on example (ii) above. Take for U the
affine line A!/F, and f € F,[X] a polynomial of degree & > 1. Under the
hypothesis that

p=1 (modd),

Sperber [Sp], 3.11, shows that the d — 1 Frobenius eigenvalues on HC1 have
all distinct P -adic valuations at any prime lying over p ; their P -adic orders,
normalized so that ¢ has ordp(g) =1, are 1/d,2/d,....(d —1)/d. Here the
A(n) are

Aln) = —SGb o Tracqun/quf, F),

they never vanish, and we have the same conclusion as in {ii) above.
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4. EFFECTIVE LOWER BOUNDS, VIA BAKER'S METHOD

In some cases there are only two Frobenius eigenvalues, they are complex
conjugates of each other, and their ratio is nof a root of unity. These cases
include an ordinary elliptic curve over F,, and also the classical Kloosterman
sums, denoted Kfp(y:, a,F,) in the previous section. In both of these cases,
the two Frobenius eigenvalues are integral g-Weil numbers, say « and &,
with oo = ¢. After we fix a complex embedding, we can write the two
cigenvalues as ¢'/2¢** for a unique 6 € [0,7]. Then the A(n) are given
by

An) = o + 7" = 2¢"% cos(nth) .

Here is the key technical result, an immediate application of the deep
Baker-Wiistholz theorem [BW]. For the definition of height, we refer to
[BG], §1.5.

THEOREM 4.1. Let 0 € [0,7]. Suppose that ¢ is not a root of unity,
but is an algebraic number, algebraic of degree d over Q. Define

CN,d) = 18N + DINY 132N 2 1og(ONd)
H(e*®) ;= max (log(H((1 : &)),0/d.1/d) ,
H(—1) =x/d,

where H((xo : ... x.)) is the Weil height of an (algebraic) point (xo : ... : x,)
in projective space P . Then for any integer n > 1 and any integer k we
have the inequality

log(|2n8 — kx|) > —CQ2, ) b (@) (1) log(2n) .

Proof. Fix n > 1. Since # € [0, 7], we have 2nfl € [0,2n7]. So the
closest approach of m# to an integer multiple of # occurs for some
k € [0,2n]. (Indeed, for any integer k& outside of this interval, we triv-
ially have |2n — kx| > w, and logm > 0.) Because ¢** is not a
root of umity, log(¢®”) = 2if and log(—1) = ir are linearly indepen-
dent over Q. Now apply the Baker Wiistholz theorem, with the N = 2
algebraic numbers ¢*¥ and —1, to the linear combination of logarithms
n log(e®®y — k log(—1).
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CORCLLARY 4.2. Let § € [0, 7] be as in the theorem. Given a real number
q > 1, define

c=clf,q) = C2,dh (e (—1)/1o2(g) .
Then for all integers n > 1, we have the estimate
‘qn/z COS(R9)| % (1/‘“_) qrz/Z—clog(Zn) )
Proof. Fix n > 1. By the theorem, for any integer k, we have the

inequality
|200) — kx| > q_Clog(Z”) :

For k& an odd integer, we have the trigonometric identity cos(nf) =
+sin(nf — kx/2) and for the odd integer &y which minimizes |nf — kw /2|
we have

0 < |nd — kow /2| < /2.

Also, for real x with [x| < #/2, we have the well-known inequality
| singx)| = (2/m)|x|.
Thus we find
| cos(n@)| = | sin(n@ — ko /2)| = (2/m)|nf — kom /2| > (1 /m)g 182
completing the proof.

Let us make this explicit in the two cases of ordinary elliptic curves and
of classical Kloosterman sums.

COROLLARY 43. (i) Given an ordinary elliptic curve over ¥, the sequence
of its A(n) has, for all n > 1, the archimedean lower bound

|A(n)| 2 (2/7?) qn/2—237 log(2n) i

(ii) Given a classical Kioosterman sum Kbh(v¥, a,Fy) over F,, denote by p
the characteristic of F,. If p =2 or p =3, the sequence of its A(n) has, for
all n > 1, the same archimedean lower bound as for ordinary elliptic curves,

|AGD] > 2/ g7 1

If p > 5, the sequence of its A(n) has, for all n > 1, the archimedean lower
bound
|[A(m)| > (2/m) giiEgploeaer,

with ¢, the constant c, — 23 ptlogp.
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Proof. We will compute, in the two cases, an explicit upper bound for
the constant ¢ of the previous corollary.

Denote by « and @ the two Frobenius eigenvalues. After possibly
interchanging them, we have /& = ¢¥. Thus

H(( : ) = H(e @) < ¢'/2,
simply because o and @ are integral g-Weil numbers.

In the case of an ordinary elliptic curve, « and @ lie in a quadratic
imaginary field, and their ratio is irrational, so we have d = 2 in this case.
Then

W (e®®) ;= max{log(H((1 : €#*)),0/d,1/d)
=max(log(g)/2,7/2,1/2) < 5log(q)/2;

the factor 5 takes care of the worst case ¢ = 2. So the constant ¢ of the
previous corollary is bounded by

e < C2,2(5/2)(r/2) =18 31 .27 . (64)* - log(®) - (5m f4) < 277,

In the case of a classical Kloosterman sum, the sum itself lies in Q(gp)"',
the real subfield of Q(¢,), and « and @ lie in a CM quadratic extension. Again
their ratio is irrational {otherwise it would be a rational number of absolute
value one, so 1), hence in this case we have 2 < 4 < max(p —1,2). So
again we have

B () < Slog(g)/2.
For p=2 and p =3, we have 4 = 2, giving the bound
c < 237
For p > 5 the bound becomes dependent on p, namely

¢ < C2,p— (Sn/4
=18-31.2%.32(p — 1)) - log(p — 1)) - (5m /4 < 25p*logp.
This completes the proof.

5. CONCILUDING REMARKS

As mentioned in the introduction, the main open problem here is obtaining
effective lower bounds. On the other hand, much is known about the number
of zeroes in a linear recurrence sequence. A theorem of Evertse, Schlickewei,
and Schmidt [ESS] states the following.
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Let K be a field of characteristic O, let T be a subgroup of (K*Y' of
finite Q-rank r, and let ay, ... a, € K* . Let X be the set of those solutions
(x1,....%) €T of the equarion

arxy+ o apx, =1

for which no proper subsum of a1xy+ - -+ ayx, vanishes. Then X is a finite
set of cardinality
2X < JEUHD

This can be applied easily to obtain further information on the set of zeroes
of the sequences A(n) examined here, since in this case we have r = 1.
The Skolem-Mahler-Lech theorem shows that the zero set of the sequence
A(n) is the union of a finite set Sy of isolated solutions and of finitely
many arithmetic progressions. Theorem 1.2 of [ESS] immediately shows that

#So + #arithmetic progressions) < A029%

Although this is not directly relevant to the applications we have treated
in this paper, a similar result also holds for any linear recurrence of order n
(where the coefficients A; are allowed to be polynomials), with a bound
expexpexpB3nlogn) for the corresponding number of isolated solutions and
of arithmetic progressions, see Schmidt [Sc].

The proof of these results is difficult and rather intricate, but it is a
remarkable fact that these bounds depend only on s and the rank of I'. It is
an interesting problem to determine the correct rate of growth for the number
of solutions of such equations.

For n = 2 and rank r = 1, J. Berstel provided the following example
with 6 solutions. Consider the equation ax™ + by" =1 for fixed x, y, and
varying m € Z, corresponding to the group (x,y)% of rank 1. We may assume
that m = 0 is a solution. If m =1 is also a solution, the equation becomes

y—1 1 —=x e
y*xxm+y*xym_1’

we can exclude x =1, y =1, x = y as degenerate cases. If now we fix
two more values for m, say m; and m», we can eliminate y and obtain an
algebraic equation for x, leading to infinitely many choices of the pair (x,y)
for which there are four solutions. The choice m; = 2 leads to a degenerate
case and if m; =3 the values m» =4,5,6,7,9 must be excluded, leading to
degenerate cases or a group of rank 0. However, taking m; =4 and mp; =6
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gives the equation
Bt 43 +28 +x+1=0

for x. For any root £ of this equation, we see that taking n = —1/(1 +£+£%)
(which is another root of the equation), we have

N=lem  1=& m
L —g =1
W—E£ =g

for m=0,1.4 6,13, 52. 1t is expected that 6 is the maximum number of
solutions for an equation with # = 2 and » = 1; Beukers and Schlickewei
[BS] obtained the upper bound 61 .

For general » and r, Erd®s, Stewart, and Tijdeman [EST] proved the
existence of equations with » = 2 and arbitrarily large r with at least
exp((4 —er'/2(logry~1/%) solutions for any fixed & > 0, and conjectured that
if » =2 the exponent 1/2 could be improved to 2/3 — = for any fixed
positive £ (of course, allowing a constant depending on £ in place of 4);
they also conjectured that the exponent 2/3 should be sharp. Although this
remains unsolved, progress was made by Konyagin and Soundararajan [KS],
who constructed equations for the case » = 2 and arbitrarily large r with
at least exp(rz_‘/z_’f) solutions, for any fixed ¢ > 0. For arbitrary n and
r a lower bound exp((n®(n — 1)1 — &1~ V7(logry~1/") for the maximum
number of solutions was provided by Evertse, Moore, Stewart, and Tijdeman
[EMST]; this may be compared with the upper bound simply exponential in
r provided by Evertse, Schlickewei and Schmidt, loc. cit..

A more delicate problem has also been treated, namely the study of
the intersection of two distinct recurrences and the “total multiplicity” of a
recurrence, namely A(m) = B(n) and A(m) = A(n) for m # n. Under certain
natural conditions one can prove that the number of admissible pairs (m, n)
for which these equations hold is finite, see Evertse [Ev], Thm.3, for the
equation A(m) = A(n) with recurrences of order at least 2 (this avoids the
example A(n) = n2"), and Laurent [Lau] for qualitative results for the equation
A(m) = B(n). Quantitative results, but not as strong as those mentioned above
for the cardinality of the zero-set of a recurrence, can be found in Schlickewei
and Schmidt [SS].

The reader interested in recurrence sequences and associated problems
may profitably read the book [EvSW], which also contains an impressive
bibliography of 1382 items on the subject.
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The extension of these results to larger classes of polynomial-exponential
equations in several variables remains a central and very challenging open
problem. As an example, the famous Ramanujan equation m* 4+ 7 = 2F has
only the solutions (m, k) = (1,3),(3.4),(5,5),(11,7),(181,15) in positive
integers, which is not difficult to prove using Skolem’s method. The modified
equation m?® + 7% = 2% 4 (r — 1)3" associated to the group of rank 3

{ (1m7 Zk: 3!’7 7n) }m,k.nrzEZ

has, besides the five solutions with # = 1 and r = 1 inherited from the
Ramanujan equation, seven new solutions (m, &, r.n) =(2,1,2,1), (7.1,3,1),
(14,1,4,2), (3,2.3,2), (13,9,1,3), (113,11.7.4), (407,13.9,1). Are there
any other solutions in positive integers to this equation ?
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