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FREE SUBGROUPS IN GROUPS WITH FEW RELATORS

by John 8. WILSON

1. INTRODUCTION
In [11], we proved the following result:

THEOREM 1. Let G be an abstract {resp. pro-p) group which has
a presentation with n generators Xxy.....x, and m relators, where m < n,

and let 'Y be any generating set for G. Then there are n— m elements of Y
that freely generate a free abstract (resp. pro-p) group.

The Freiheitssatz proved by Magnus in [3] in 1930 is essentially the

special case of Theorem 1 for abstract groups with ¥ = {x1,...,x.}
and m = 1. In [5] and [6] Romanovskii proved the case of Theorem 1
in which ¥ = {xj,...,x,}. The proof of the general case in [11] was

indirect, relying on Romanovskii’s result in [6]. In [9] Romanovskil and
the author gave a direct proof of a more general result concerning quo-
tients of a free product of n groups, for the case of abstract groups.
Our first object here is to give a much simpler proof of Theorem 1 in
the abstract case and to indicate the modifications required for the case
of pro-p groups. We shall also prove a result for pro-p groups that is
similar in spirit to the main result of [9]; this result has the following con-
sequence.
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THEOREM 2. Lef G be a finitely generated pro-p group generated by
a family A of n finitely generated pro-p subgroups each having Z, as
an Image, and suppose that the kernel R of the natural map from the free
pro-p product F of the groups in A io G is generated (as a closed normal
subgroup) by m elements, where m < n. Let B be a family of subgroups
of G that generate G. Then |J{B|B c B} contains n — m elements that
freely generate a free pro-p group.

In particular, either |B| = n— m or some subgroup in B contains a
non-abelian free pro-p subgroup.

ACKNOWLEDGEMENTS. The author would like to thank the Forschungs-
institut fiir Mathematik at ETH, Ziirich for its generous hospitality and support
during the writing of this paper. He is also grateful to Pierre de la Harpe for
helpful comments on an earlier version.

2. PROCOF OF THEOREM 1

Theorem 1 is reminiscent of the Steinitz exchange lemma from linear
algebra; indeed, it is a precise analogue of the statement that if V is an
n-dimensional vector space over a field O and R is a subspace of dimension
at most m, then any set ¥ such that RUY spans V contains n —m elements
that are linearly independent modulo R. Most earlier proofs of results like
Theorem 1 have relied on

(a) the above statement from linear algebra, but with V a right vector
space over a skew-field @,
(b) the Magnus embedding, and

(c) a rather complicated induction argument.

In the proof below, (c) is eliminated. We begin therefore with the ingredient (b).

Our notation for conjugates and commutators in a group G is as
follows: we write @ = b lab and [a.b] = a ‘b lab. We shall write
N' for the derived group of a group N; in the case of pro-p groups,
N’ refers of course to the closure of the abstract group generated by all
commutators.
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2.1 THE MAGNUS EMBEDDING

Let H be a group and M a right ZH -module. It is convenient to write
elements of the split extension G = H X M as matrices

(h (1)) (heH me M.

Fiz!

Thus matrix multiplication

hy O hy 0Oy hih, 0

m 1 1 - mhy +m 1
reflects the fact that (hym)(hnn) = (hlhg)(m’?mz). We may regard M as
a ZG-module, and then the map § taking ¢ € G to its (2,1)-entry is a

derivation, i.e. 8(g1gp) = (bg1)ge + 3¢z for all g1, go € G. The Magnus
embedding for abstract groups is the map j from F/R' in (b), (c) below.

LEMMA 1. Lef R be a normal subgroup of the free group F with basis
{x1,...,%.}, and let H=F/R. Let M be a ZH-module and t1,...,t, € M.

(x,-R o)
X; —

1 1
defermines a homomorphism

H 0
;L.F%(M 1).

(b)y R <kerp < R; let § be the map from F/R' induced by .
() If M is the free ZH-module with basis {t1,...,1,} then j is injective.

(2) The assignment

Proof. Assertion (a) is clear, and so is (b) since the image of R under u
is abelian. The following proof of (¢), included for the reader’s convenience,
is due to Romanovskil.

There is certainly an embedding # of F/R' in a group of the form

(v )

for a ZH-module N. Indeed, we can take for N the abelian group B of
all functions #: H — R/R’, which is a right ZH -module with action defined
by (bl(x) = bixh™") for b€ B, h e H, x € H: since the split extension
of B by H is the unrestricted standard wreath produci R/R' Wt F/R, the
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existence of a suitable map 8 follows from the Kaloujnine—Krasner theorem
([1]; see also e.g. [10, Theorem 4.4.1]). Explicitly, # can be defined as follows.
Choose a set-theoretic section o: F/R — F/R’ to the canonical projection
g: F/R' — F/R (that is, a function such that its composite with ¢ is the
identity map on F/R), and for each fR' € F/R' define 5(fR) B by

(S(FRDNuR) = oluf 'R)-fR - (c(RN '  forall uR € F/R.

Simple calculations show that (with B written multiplicatively) we have
8(f1f) = (8f)2(6fy) for all f,f, € F/R" and also that if f € R/R'
and &f is the identity element of B then F is the identity element of R/R’.
It follows immediately that the map & defined by

W ( fR O H 0
B(fR)((j(fR,) 1)E(N 1)

is an injective homomorphism.
To prove (c) it suffices now to show that the diagram

, # H 0
F F/R ; (N 1)

™ A

(4 0)

can be completed with a map #. Define = = N by

HR) = (x*'R (1)) ,
v

and let x: M — N be the ZH-module homomorphisim defined by £ — ;.

Then the map
h O — h 0O
m 1 km 1

LEMMA 2. Let 6: H — W be a derivation from a group H to a right
H-module W. If H=1{(Z} then the subset 0H lies in the ZH -submodule W,
generated by 8Z.

has the required property.

Proof. If 8hy, 6hy € Wy then §(hs ) = (Ghhs ' — (Sh)hs ' € Wy
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2.2 EMBEDDING OF GROUP RINGS IN SKEW-FIELDS3

We recall that a group G is called orderable if it has a total order <
such that if a, b € G and a < b then xay < xby for all x, y € GG; the pair
(G, <) is then an ordered group. It is well known and easily checked that if
G = H x A is a split extension of ordered groups (H,<y), (A, < 4), and if
lg€aacAand he H imply 1 €4 a", then G becomes an ordered group
with respect to the order defined as follows: Aja; < lap if and only if either
hy <ghy, or by = hbp and a; < 4 a». The following lemma is also no doubt
well known.

LEMMA 3. Each group G has a unique normal subgroup K minimal
such that G/K is orderable.

Proof. Let (K))aca be the set of kernels of maps from & to orderable
groups and set K = (K. We fix an order on each group G/Ky, and we may
take the set A to be well ordered. Now we can define an order on G/K by
writing aK < bK if for seme y € A we have aK,, < bK,, and aK, = DK,
for all A < p.

An ordered skew-field is a skew-field @ together with an order <
such that both ( under addition and the set {h€ Q|4 >0} under mul-
tiplication are ordered groups with respect to < ; denote the latter group
by UL(Q).

We need the following result proved by B. H. Neumann [4].

PROPOSITION 1. Let H be an ordered group. Then ZH can be embedded
in an ordered skew-field Q in such a way that the order on Q induces an
embedding of H (as an ordered group) in U (Q).

A standard candidate for Q is the skew-field of formal expressions
q = pep Arh with Ay, € Q for all 2 € H and with support {h € H | Ay, # 0}
inversely well-ordered; then (/,(Q) is the set of elements ¢ such that
Am > 0, where m € H is the greatest element of the support of g¢.
For the details we refer to Neumann [4], or [2, §14 and Corollary 18.6].
(In fact Neumann works with the ring of formal expressions with well-
ordered support, and his embedding of H in (/4(Q) is order-reversing; an
order-preserving embedding is obtained by composing the inversion map on
H with this embedding.)
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LEMMA 4 Let H, Q be as above and let 'V be a finite-dimensional
right vector space over Q; thus V is naturally a ZH-module. Then the split
extension H w V is orderable.

Proof. We may regard V as the space QY0 of n-tuples of elements of Q.
We define an order on V by writing (xy,...,x) < (¥y,....¥0) if ¥y —x; >0
for the first non-zero y; —x;. Thus if O < v € V and h € H then vh > 0,
and so the split extension is orderable from above.

23 PROOF OF THE THEOREM: ABSTRACT CASE

Let G be as in the statement of Theorem 1, and let F be free with
basis {x1,...,x,}. Thus the kernel R of the obvious map from F to G can
be generated as a normal subgroup by elements ry,....Fr,, where m < n.
Lemma 3 guarantees the existence of a smallest normal subgroup § of F
with R £ § and #/S orderable. Write G = F/S.

Let Q be an ordered skew-field containing ZG as in Proposition 1. Let
V be the right vector space over Q0 with basis {#....,4.}, and let M be the
ZG-submodule generated by f,.... f,; thus M is a free ZG-module with

basis {f1,...,%}. Define '
G o xS 0
b (S0 wowe ()

_ _(f§5 0

S F—=M by 3f(6f L
Let I/ be the subspace of V spanned by {dr1,....dr,}, and write W = V/U/,
r=dmW: so r 2 n—m. Let § be the map f — &/ 4+ df. Thus the set
{0x1,...,0x,} spans W.

Consider the map

(G0 G 0
FAM 1 M+U/Uu 1)’

and let i = pf#. By Lemma 4, the codomain of 2 is orderable, and so

and

F/ker+ is orderable. But ker+ < § and ry,....ry € kerd, and hence
kery = §. Therefore 1 induces an injective map

= G 0

i G— (W 1) .

Now let ¥ C F generate F modulo R. Since R < kerv we have SR =0,
and therefore, since &, like &, is a derivation, 6¥ spans W by Lemma 2;
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let {dy,...,dy,} C &Y be a basis. In particular, 8yq,...,8y, generate a free
Z.G-submodule of W.
Let E be the free group with basis {y1,..., v+, and define a: £ — G

by y;— ¥S. Let N =kera. By Lemma 1, the map

o ygS 0
80y &
g (5}’:‘ 1)

has kernel N'. But @ = ja and j is injective, and hence N = N’. Since
N is also a subgroup of a free group, and hence free, we must have N=1.
Therefore the subgroup (v,...,¥,} of F is free modulo §, and so free
modulo R.

The reader will notice that the proof above gives a stronger result than
Theorem 1: with the hypotheses of the theorem there is a homomorphism
from G to an orderable group P such that # — m elements of ¥ map to a
basis of a free subgroup of P. The reader will also notice that there is no
need to introduce M in the above proof. The reason for doing so will appear
in the next section.

2.4 MODIFICATIONS FOR THE PRO-p CASE

The arguments of Section 2.3 apply without essential change in the pro-p
case; all subgroups are now understood to be closed, all maps continuous, and
modules are modules for the completed group ring Z,[[G]] of G over Z,.
For information about pro-p groups and their completed group rings we refer
the reader to [10]. Instead of appealing to the Kaloujnine—Krasner theorem to
embed an extension in a split extenson, we may use the following well-known
result.

LEMMA 5. Let A be a (closed) abelian normal subgroup of a pro-p group
G and let H= G/A. Then G can be embedded in a pro-p group H < B
with B abelian, in such a way that the composite of the embedding and the
map H X B — H is the quotient map G — H.

Proaf. Let (N))aca be afamily of open normal subgroups with (N, = 1.
The Kaloujnine—Krasner theorem for finite groups gives embeddings
j,\i G/N,\ —> G/AN/\ X By

with each B, an abelian p-group, and we consider the subgroup of the
Cartesian product Cr(G/AN, x B,) generated by the abelian normal subgroup
CrB, and the image of G under the map g — (FalgNy)).
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We can no longer use ordered groups as in Section 2.3, because, for
example, we need to ensure that {/ MM is closed in the Z,[[G]]-module M.
Instead we need to use a deep result of Romanovskii [6].

A filtration

A=Ay 2 2Ap 2

of normal subgroups of a profinite with Ay = 1 is called convergent if
each neighbourhood of 1 contains some subgroup Ay . Write N for the
class of all finitely generated pro-p groups having a convergent filtration with
torsion-free central factors. If ( is any finitely generated pro-p group then
G has a unique minimal normal subgroup K such that G/K € N, namely
the intersection of the kernels of all maps from G to torsien-free nilpotent

pro-p groups.

PROPOSITION 2 (cf. [6, Proposition 7]). Let H be a pro-p group in N
and lei L be the completed group ring Z[[H]| of H. Then there exist a
Sfiltration (H);., with forsion-free central factors and a skew-field Q = L
such that the following holds: if n 2 1 and U is a subspace of the vecior
space QU7 then

iy UNLY is closed in I, and
(1) the Z,-module M = L(”)/(UDL(”)) has a filtration (M;)j»1 of closed
submodules such that [M;,H] < My and M,;/M1 is a torsion-free
group for all i, j; moreover
(i) (HiM)i1 is a filtration of H w M with forsion-free central factors, and
so Hx M c N,

In the proof of Theorem 1 for pro-p groups, we take S/R to be the
intersection of the kernels of all maps from £ /R to torsion-free nilpotent pro-p
groups; thus F/§ £ N and § is the smallest normal subgroup containing R
with this property. Define # as in the proof in Section 2.3. It follows from
Proposition 2 that the codomain of + is a pro-p group and is in A", The
rest of the proof from Section 2.3 now applies without any change.

3. IMAGES OF FREE PRODUCTS OF PRO-p GROUPS

3.1 THE MAGNUS EMBEDDING FOR FREE PRO-p PRODUCTS

The Magnus embedding used in Section 2 has been modified by Shmel’kin
and Romanovskii to the case of free products of groups. Everything that we
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require can be deduced from the following special case of Romanovskil [7,
Theorem 3].

LEMMA 6. Let F' be the free pro-p product of the pro-p groups Ay, .... A,
and let H = F/R, where R is a (closed] normal subgroup such that
ANR=1 for i =1,...,n. Let T be the free right Z,[[H]]-module with

basis {f1,...,ta}. Let
Hg 0
o F— (T 1)

be the homomorphism defined on the free factors A; of F by

aR 0
ah}(t;(al) 1) Jor ac A;.

Then kerp = R'.
As observed in [8 Lemma 5], Lemma 6 may be modified as follows.

LEMMA 7. The conclusion of Lemma © remains true if the hypothesis
on T is replaced by the requirement that {tz,...,1,} is a basis of T and
n =0.

Proof. This follows from the formula

1o\ '/ aR 0\ (1 O\ ak 0
ol fla— 1y 1 n 1) \&—ma-1 1)

3.2 DERIVATIONS TO RIGHT VECTOR SPACES

We prove the following result concerning derivations from pro-p groups G
to right vector spaces V over skew-fields containing Z,[[G]]. The derivations
under consideration are understood to be continuous regarded as maps into
finitely generated Z,[[GT]-submodules of V'; a derivation §: G — V' is inner
if there exists some ¢ € V such that dg = v(g — 1) for all g € G.

PROPOSITION 3. Suppose that G is a finitely generated pro-p group such
that Z,\lG]] can be embedded in a skew-field ), and suppose that G is
generated by subgroups A and B. Let § be a derivation from G fo a right
vector space V over Q. If the restrictions §|a, d|g are both inner derivations,
then either G is the free pro-p product of A, B or § is inner.
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Proof. By hypothesis, there are ma, mg € V such that §|a, 8|z are the
maps a > my(a—1), b mp(b—1). Let M be the Z,[[(7]]-module generated
by mg — ma, let F be the free pro-p product of A, B, and N the kernel of
the map ¢: F — G extending the identity maps on A, B.

Suppose that ¢ is not inner; then my # mg and the map . ¢ +—
dg — malg — 1) 1s a non-zero derivation. By Lemma 7 the (continuous)
homomorphism

FiN o)

lF
2 %(M 1

defined on AU B by

NN bN 0
“ 0 1/ b —wSth— 1y 1

has kernel N'. Define ¥: F — V by

_(fN 0
”f(*?f 1)'

Then % and ~q are (continuous) derivations from F that agree on A U B,
and so they are equal. However for n € N we have Fn = ~vgn = 0, and so
pn—= 1. Thus N = N’, and since N is a pro-p group we have N — 1, as
required.

3.3 DI-GROUPS

In order to state and prove the next result concisely, we make a definition,
concerning circumstances under which certain derivations are guaranteed to
be inner. We say that a {initely generated pro-p group G is a DI-group if
its completed group ring Z,[[G]] can be embedded in a skew-field and if
whenever @ is a skew-field containing Z,[[G]] and &: G — V is a derivation
to a finite-dimensional space over Q then 4 is inner. Again, our derivations
are continuous maps into finitely generated Z,[[G]]-submodules.

Clearly Z, is a DI-group, and, by Proposition 3, any pro-p group that is
generated by two DI-subgroups either is the free pro-p product of the two
subgroups or is again a DI-group.

THECREM 3. Let F be the free pro-p product of a family A of n finitely
generated pro-p groups each having £, as an image, and let R be a normal
subgroup of F generated {as a normal subgroup) by m elements of F, where
m < n.Let S be the intersection of all normal subgroups N of F with R < N
and F/N torsion-free nilporent.
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Write G = F/S, and for A € A write A for the image of A in G. Let
B be a family of Dl-subgroups of G, set J = (B| B ¢ BY, and suppose that
for each A in A with A+ 1, the subgroups A and J do not generate their
free product in G. Then |B| 2 n—m, and there are n —m members of B
that generate in G their free product.

Theorem 3 implies the result stated as Theorem 2 in the Introduction.
Assume the hypotheses of Theorem 2 and define §, G as in Theorem 3. Let
B be the family of all procyclic subgroups of groups in B and let B, be the
family of non-trivial images of members of B in G since G is torsion free,
B, consists of DI-subgroups. By Theorem 3 there are n— m members of B
that freely generate a free pro-p subgroup of , and thus their pre-images in
By freely generate a free pro-p subgroup of (. Theorem 2 follows.

3.4 PROOF OF THECREM 3

Assume the hypotheses of the theorem. Write A = A; U Ay, where
A1 contains all subgroups A with non-trivial images in & and A, = A\ A;.
We can replace all sroups A from A; by their images in G and also identify
them with their images in G. Let Q be a skew-field containing Zp[[G]] with
the properties given by Proposition 2. By hypothesis, for each A € A, there
is a non-zero continuous homomorphism 4 from A to the additive group
of Q. Let V be the right vector space over Q with basis {#; | A € A} and
let M be the Z,[[G]]-submodule with basis {t4 | A € A}. Define a group

homomorphism _
) G 0
6 F — (M 1)

by specifying its restriction #|4 to the free factors as follows:

a 0
}_>(IA(31) 1), forae A e A,

1 0
, f A .
H(VA((I)IA 1)) oracAc A

Since the subspace of V spanned by the bottom left-hand entries of the images
of the elements of F' contains all elements 74, it is equal to V.
Let R be generated as a normal subgroup of F by ry,...,r,. The images

fr; have the form
1 0
b 1
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and so they all lie in the subgroup

1 0
unm 1)°

where {7 is the subspace of V spanned by {uy,....,un}. Write W= V/U.
Then the kernel K of the map

‘ G o
P F— (W 1)

induced by # contains R. Moreover K consists of the elements of § whose
images under & have bottom left entry in /MM . It follows from Proposition 2
that {/MM is closed in M and that G (M /(UNMY) € A ; therefore F/K € N,
and by the definition of § we conclude that K = § and that # induces an

injective map _
.= G 0
I G— (W 1) ;

. (g O
J‘q(r’?g 1)’

where §: G — W is a derivation.

We note that ¢4 € U/ for each A € A, ; this follows since A € § =K,
which maps under # to the group of matrices with bottom left entry in U.

Set dm W = r; thus r = n —m. Since all groups in B are DI-groups,
the restriction maps 4|z have the form b —» sp(h — 1) for some elements
sg € W. Let U/h/U be the subspace of W spanned by {sz | B € B}. Fix
A€ A, set L ={J, A and consider the composite & of the restriction §|;,
and the map W = V/U — W/U;. Since L is not the free product of J, A
and since 4 |y =0 and 5 |4 is an inner derivation, Proposition 3 implies that
§d = 0. From the definition of & it now follows that t4 € {/;. Since this
holds for all A € A, we conclude that {/; contains {is | A € A} and hence
equals V. Therefore W is spanned by {sz | B € B}. Choose By € B such
that {sg | B € By} is a basis of V.

We claim that the subgroups in By generate their free pro-p product
in G. Write E for the free product of the groups B € By and consider
the homomorphism «: £ — (B | B € By) < G. Let N = kera.. We have
BN =1 for each B € By and

By construction we have

L b 0
Jab_(.s‘g(b—l) 1) for beBe B .
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By Lemma 4 we have kerjo = N', and hence N = N’ since j is injective.
Since N is a pro-p group it follows that N = 1, so that « is injective. This
concludes the proof of Theorem 3.

(1]

(2]
[4]
[5]
(6]

(8]
(9]

[10]

[11]

REFERENCES

KALOUININE, L. et M. KRASNER. Produit complet des groupes de permutations
et probleme d’extension de groupes. [II. Acta Sci. Math. Szeged 14 (1951),
69-82.

Lam, T.Y. A First Course in Noncommutative Rings. Second edition. Graduate
Texts in Mathematics 737, Springer-Verlag, New York, 2001.

MacNus, W. Uber diskontinuierliche Gruppen mit einer definierenden Relation,
(Der Freiheitssatz). J. Reine Angew. Math. 163 (1930), 141-165.

NEUMANN, B. H. On ordered division rings. Trans. Amer. Math. Soc. 66 (1949),
202-252.

RoMANOVSKIT, N. 8. Free subgroups of finitely-presented groups. Algebra and
Lagic 16 (1978), 62-68.

—— A generalized theorem on freedom for pro-p-groups. Siberian Math. J.
27 (1986), 267-280.

—— On Shmel’kin embeddings for abstract and profimte groups. Algebra and
Lagic 38 (1999), 326-334.

RomANOVSKIT, N. S. and J. S8, WILSON. A Freiheitssatz for free products of
pro-p groups. J. Algebra 254 (2002), 226-240.

ROMANOVSKIL, N. S. and J. S. WILSON. Free product decompositions in images
of certain free products of groups. J. Algebra 310 (2007), 57-69.
WiLsoN, 1. 8. Profinite Groups. London Mathematical Society Monographs.
New Series /9. The Clarendon Press, Oxford Umversity Press, New

York, 1998.

—— On growth of groups with few relators. Bull. London Math. Soc. 36

(2004), 1-2.

(Recu le 7 juiller 2009)

John S. Wilson

University College

Oxford OX1 4BH

United Kingdom

e-mail: wilsonjs@maths ox.ac.uk



	Free subgroups in groups with few relators

