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UNSOLVABLE PROBLEMS
ABOUT HIGHER-DIMENSIONAL KNOTS AND RELATED GROUPS

by F. GONZALEZ-ACUNA, C. MCA. GORDON and J. SIMON

Dedicated to the memory of Michel Kervaire

1. INTRCDUCTION

In the present paper we consider the classes of groups Ko, Ky, Kz,
Ks, & M and G (each properly containing the preceding one) related
to codimension 2 smooth embeddings of manifolds. A, is the class of
fundamental groups of complements of n-spheres in §7t2: & (resp. M, §)
is the class of groups of complements of orientable, closed surfaces in §*
(resp. in a 1-connected 4-manifold, in a 4-manifold). In fact, G is the class of
all finitely presented groups, and K, contains only the infinite cyclic group.
We are interested in the problem of recognizing when a group in one of these
classes belongs to a smaller class. In general, this is an unsolvable problem.

THECREM 1.1. Let A and B be members of {Ko, K1,K2.K5,5, M.G}
such that B C A and A > Ks. Then there does not exist an algorithm that
can decide, given a finite presentation of a group G in A, whether or not G
isin B.

For A = K;, B = Ky one can prove, using Haken’s theorem [Hak],
that such an algorithm exists. We conjecture that Theorem 1.1 also holds for
A = K> ; we show that this is true if there is a group in X; with unsolvable
word problem.
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The case A = K5 and B = Ky of Theorem 1.1 implies that the
isomorphism problem for K5 and the other three classes containing it is
unsoclvable. Conjecturally this should hold also for Al.

Though we do not know whether 2-knot groups with unsolvable word
problem exist, we prove (Corollary 3.5) that there are 3-knot groups with
unsolvable word problem. This is a consequence of Theorem 3.6 which states
that every finitely presented group embeds in a 3-knot group.

We often use methods from [Gor2], in which, in fact, the case
(A, B) = (G.X3) of Theorem 1.1 is proved. The cases (A, B) = (G.K)),
i=0.1, actually follow from [R1, Theorem 1.1] and the fact that the groups
of Ky are torsion free [P]; they were known to Baumslag and Fox (see [St]).

It is also proved in [Gor2] that the problem of deciding if the second
homology of a finitely presented group G is trivial is unsolvable. The case
(A, B) = (8,K5) of our theorem actually states that one cannot decide if a
group in & has trivial second homology.

We show (Theorem 5.1) that, in general, problems concerning the compu-
tation of the integral homology of finitely presented groups are unsolvable. We
also prove (Theorems 5.6 and 5.8) incomputability results about the Whitehead
groups Who((G) and Whi((7), and Wall’s surgery groups L,(G).

In the last two sections we prove a geometric unsolvability result: If
K, contains a group with unsolvable word problem then there is no algorithm
which decides whether or not an nr-sphere in S$"*? is unknotted. As we
mentioned above, A, contains groups with unsolvable word problem if n > 3;
it follows that no algorithm to decide whether n-knots are trivial exists if
n > 3. This result has been proved by Nabutovsky and Weinberger [NW]. In
contrast, Haken’s classical result [Hak] asserts thatif » = 1 such an algorithm
exists.

In Section 2 we define the various classes of knots being considered and
give characterizations of the corresponding classes of groups. In Section 3
we give a particular way of effectively embedding an arbitrary group in
a perfect group which will be useful in subsequent constructions. We then
prove that some 3-knot groups are universal, that is, contain copies of every
finitely presented group and, therefore, have unsolvable word problem. Also
in Section 3 we prove Theorem 1.1 except for the case (A, B) = (G. M).
We do this by using what we call an (A, B, C)-construction to show that the
solvability of the problem in question would imply the decidability of the
triviality problem for finitely presented groups.

In Section 4 we do the remaining case (A, B) = (G, M) here the proof
is based on the existence of finitely presented groups with unsolvable word
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problem. In Section 5 we show that problems dealing with the homology,
Whitehead groups and surgery groups of finitely presented groups are, in
general, unsolvable. In Section 6 we give a recursive enumeration of n-knots;
this is used in Section 7 where we derive the undecidability of the knotting
problem for n-spheres from the existence of groups in A, with unsolvable
word problem. As we mentioned above we do not know if such groups exist
in ]Cz.

ACKNOWLEDGEMENTS. The first-named author would like to thank Jon
Simon, Dennis Roseman and the University of lowa for their kind hospitality

when he was a Visiting Professor; part of the present work was developed
there.

2. CLASSES OF KNOT GROUPS

In this section we define the classes of groups we are interested in. We
will be working in the PL. category, and all embeddings will be locally flat.
An n-knot is an n-sphere X" embedded in the (n 4 2)-sphere §"T2 . the
fundamental group of its complement, #(§"*> — =), is called the group of
the n-knot.

Two n-knots (§"12,EP), (5§72, %) are equivalent if there is a PL-
homeomorphism from §"*? to §"*? mapping =7 onto =}. An n-knot type
is an equivalence class of n-knots.

An n-knot (§*t2,=%) is trivial if there is an (n + 1)-disk D"t in §7+2
such that gD+ — 37

For n > 0 we define K, to be the class of groups of r-knots. It is well
known (see [Ar2], [Hi], [Fa], [Fol, [Kel], [Z]) that {Z} =Ky T K1 S K ©
Ks =K, for n > 3.

Define &, (resp. M,) to be the class of fundamental groups of com-
plements of closed orientable n-manifolds embedded in §7t2 (resp. in a
1-connected (z+ 2)-manifold). One has K1 = & = M; by the 3-dimensional
Poincaré Conjecture. Also, if n > 2, & = &, (see [Si]) and My = M, so we
set § =&, and M = M. In fact M is the class of groups of complements
of a 2-sphere embedded in a manifold of the form §% x 5% # --- # 5% x §%
(see [Gonl]). Let G be the class of all finitely presented groups.
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Kervaire [Kel] has given the following “intrinsic”™ (i.e. not involving
presentations) group-theoretic characterization of X5. The symbaol {{#) denotes
the normal clesure of ¢.

THEOREM 2.1 (Kervaire). K3 ={G e G H(G =Z, H:(G) =0 and
there exists t € G such that {(f)) =G }.

Also it is easy to see that
M ={G e : there exists t € G such that {)) =G} .

We have
KsoSoMOqg,

The fact that the inclusions & C M and M C G are proper is obvious. The
existence of groups G € § with Hx(G) # 0 [BMS], [Gorl], [Li], [M] shows
that the inclusion X3 C & is also proper.

Before giving a group-theoretic characterization of the class & we recall
the definition of the Ponfrjagin product of two commuting elements of a
group. Suppose a.b € G and [a,b] = 1. Then the Pontrjagin product of a

and b, which we denote by a A b, is the image of the canonical generator of

H-(Z x ) under Hx(Z x 7 % Hy(G), where . Zx Z — G is the

homomorphism such that ¢, ,(1,0) =a and ¢, 0, 1) =5. If € G and C,
is the centralizer of ¢ in G, then we write t AC, = {tAc:c € C}.

Nofice that if C; is cyclic then ¢ A, = O because (i, .). factors through
the trivial group H»(Cy).

The following characterization of the groups in & is a slight reformulation
of a theorem of Simon [$i], using a remark in [BT].

THECREM 2.2 (Simon). & ={G € G : H1(G) = Z and ithere exists t € G
such that {t) =G and t AN C, = Ho2(G)}.

We now give characterizations using presentations. A Wirtinger presentation
is a finite presentation {x1,...,Xn ! r1,....7,> such that each relator r is

of the form x71w™lxw. The following holds (see [Si]):

THEOREM 23. & = {G € G : WG = Z and G has a Wirtinger
presentation } .

In [Arl] Artin gave a characterization of 1-knot groups using presentations.
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THECREM 2.4 (Artin). A group belongs to Kq if and only if it has a

presentation <x1, s s 1 xf1,13j, 1<j< n> such that
(1) for j=1,...,n, 3 is conjugate to x,, in the free group F generated
by djiges sk

@ [ 8 =11L% in F, and
(3) p is the permuftation (1 2 --- n).

There are also characterizations of 2-knot groups (see [Gon2] and [Ka]):

THECREM 2.5 (Gonzalez-Acufia). A group belongs to Ko if and only if
it has a presentation of the form

(xt, e Dy, 73, L <<k, 1< j<n)

satisfying (1) and (2) above and also

(3) the permutations i and H?:1(2i—1 2i) generate a fransitive group of
permutations of {1,2,... n};

B (s s e s X7 By 1 2T80S and Gpys ol s 5 00 L €95 1)

present free groups, where

Xip1 3 xj;ll if j is odd and j < 2h,
3} =4 31 if j is even and j < 2h,

We recall that a set § is recursively enumerable if there is an algorithm
(effective procedure) that lists the elements of §. For example it is clear that
the set of all finite presentations of groups is recursively enumerable. If' § is
recursively enumerable, a subset R C § is recursive if both R and S\ R are
recursively enumerable; equivalently, there is an algorithm to decide whether
or not a given element of § belongs to R. Clearly the set of presentations
in Theorem 2.4 is a recursive subset of the set of finite presentations and, as
explained in [GonZ], so is the set of presentations in Theorem 2.5.

If AcCg, let P(A) denote the set of all finite presentations of members
of A. In order for the decision problem for 8 C .4 in Theorem 1.1 to be
well-posed, it is necessary that the corresponding set of presentations P(A)
be recursively enumerable. We now show that if A4 is Ko, K1, K2, K3, 8 or
M then P(A) is recursively enumerable.
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Let ‘P be the finite presentation {x1,...,%u © F1,.... 7). Al identity in P

is a ¢-tuple = = (py....,p,) where each p; is a conjugate, in the free group
F on x1,...,%, of an element of {_rl,rl_l,...,rn,r;l} and py---pr = 1
in F.

If K is the standard 2-complex associated to P (well-defined up to
homotopy equivalence) and = is an identity in 7, then there is an associated
map f of an orented 2-sphere §° into Kp (for details see [LS, p. 157,
150 and 1511); denote by [#] the image under f,: H»(5%) — Hy(Kp) of the
canonical generator of H»(§2). If #y,...,w, are finitely many identities in
{X1y e oXm | Floenes Jrny we Will say that {xy,...,%m @ Fleoe Tl Tlae.e, M)
is a presentation with identities. If P is a presentatlon, |P| will denote the
group presented by 7.

LEMMA 2.6. Let | be a recursively enumerable set of finite presentations.
Then {P € R: Ho(|'P|) = O} is recursively enumerable.

Proof. There is a recursive enumeration £ of all the presentations
with identities {(x1,....%n © F1....,Fq; T1,..., %) Such that P € R and

[m]l.....[=s] generate H>(Kp), where P = (xq,..., X D Flyeeoy o).

Notice that if (x1,...,x, : rl,...,r,,;m,....n) is in £ and P =
(X1, . Xm  F1,...,) then HR(|P|) = O since every element of H>(Kp)
is spherical. Conversely if HH(|P)) =0 where P = {x1,....%m @ F1,... 80}
then {x1,...,%n | F1,- . Fn; T1,..., 75y isin £ for some choice of 1dent1tles
TMlye ey Ty in P.

Hence, if we strike out the identities in £ and eliminate repetitions we
obtain a list of all the finite presentations P € ® such that H>(|P|) = 0.

LEMMA 2.7, Let W be a recursively enumerable set of finite presentations.
Let R be the set of finite presentations P such that |P| = |P| for some
P cR. Then R is recursively enumerable.

Proof. Let P, P2, P5,... be a recursive enumeration of the elements
of ®. Using Tietze’s Theorem one can give, for any #, a recursive enumeration
Pi1. P, Ps, ... of all finite presentations defining the same group as ;.
Hence, from Py, i,j € N one obtains a recursive enumeration of R.

We use the notation of Lemma 2.7 in the proof of the following thecrem.

THEOREM 2.8. Let A be one of the classes Ko, K1,K2,K5,8, M. Then
P(A) is recursively enumerable.
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Proof. (1) For A=Ky, take R={{x: )} in Lemma 2.7.

(2) A= K;i: By [Arl, Satz 10] (see, for example, [N, Theorem 9.2.2])
there is a recursive set | of finite presentations such that R is the set of
presentations of members of K.

(3y A = K, : Use the same argument appealing to [Gon2] instead of [Arl].

(49 A =38 Again, use the same argument taking R to be the set of
Wirtinger presentations.

(5 A = M : Using Tietze’s Theorem enumerate recursively all finite
presentations of the trivial group with a positive number of generators. Deleting
the first relator from each presentation in this list we obtain a list, with
repefitions, of all the presentations of members of A{ with a positive number
of generators.

(6) A = K5 : Take a recursive enumeration 3 of the presentations P of
members of S and apply Lemma 2.6.

If Bc A (C @), and P(A) is recursively enumerable, we say that the
recognition problem Rec(A, B) is solvable if there exists an algorithm which
decides, given a finite presentation of a group G € A, whether or not G € 3;
otherwise, unsolvable. Clearly if C < B C A, with P(4) and P(B) recursively
enumerable, then Rec(B, C) unsolvable implies Rec(A, C) unsolvable. The fact
that Rec(G, {1}) is unsolvable underlies many of our results.

3. EFFECTIVE EMBEDDING THEOREMS
AND THE UNSOLVABILITY OF SOME RECOGNITION PROBLEMS

In this section we prove Theorem 1.1 except for the case (A, B) = (G, M).
The proofs will make use of the following proposition.

PROPOSITION 3.1.  There is a computable function which takes an arbitrary
finite presentaiion of a group G and produces a finiie presentation of a group
P such that

(1) G embeds in P;
(2) P is perfect, ie., Hi(P)=0;
@ifG=1, then P=1.

ADDENDUM 3.2. [In Proposition 3.1, we may assume in addition that
@ if GF#1 then Hx(P) is infinite.
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Proof of Proposition 3.1. Suppose we have a finite presentation for G
with m generators, xi,....x,. Adjoin new genecrators «,a, b, 3 to form the
iterated free product (G {a, a:)) *{b, #) of G with two free groups of rank 2.
Now add m + 4 additional relations, as follows, to obtain P (compare [Gor2,

proof of Theorem 3]):
i) aaa™! = b
(i) aaa~!= bﬁb‘l
(iii) a®x® = JFtepg—ri=2 G=1,....m)
iv) [x1,al - [xn a] = b3
(v) [, 0] [xg. o] = 3b36~ 1371

We can see from relations (iv) and (v) that abelianizing P gives b= 3 =0,
then (i) and (ii) imply @ = o« = 0, so by (iii), each x; = 0. Thus P is perfect.
If G=1 then Gv) and (v) imply b = 3 = 1, so, as above, we conclude
a =« = 1 as well. To show that the natural map from & to P is an
embedding, we claim that when G # 1, P is an amalgamated free product
(G« {a,a)) xg (b, 3), where E is a free group of rank m + 4. One can
check that the words in b and & on the right side of equations (i)—(v) freely
generate a subgroup E of (b, 3}, and that the elements on the left are a basis
for a free subgroup of G = {a, ). To verify this, one shows that any product
corresponding to a freely reduced non-trivial word in those elements represents
a non-rivial element in (b, 3} or the free product G = {g,e), respectively,
by showing that it has positive length when expressed in normal form [LS,
P 187]. We suppress the details, but have chosen the elements such that the
possibilities of cancellation are sufficiently restricted that these may readily
be supplied. It should be noted that the possibility that several x; = 1 does
not make the elements a®x;a ill behaved, but we need G # 1 to guarantee
that the products [[[x;,al and [][x;«] do not disappear completely.

Proof of Addendum 3.2. Construct P as above except add an additional
relation in (iii) with i = m+1 and x,,, = 1. Everything is unchanged except
that if G # 1 then the amalgamating subgroup E in the amalgamated [ree
product decomposition of P is now a free group of rank m + 5. The Mayer-
Vietoris sequence of this amalgamated free product decomposition gives an
exact sequence

Hs(Py — 7" s G 74

Since H (G is generated by m elements, it follows that H>(P) is infinite.
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The application of Proposition 3.1 to our recognition problems will make
use of the particular construction employed in the proof. Here we pause to
note that statements (1) and (2) of Proposition 3.1 alone quickly yield the
following embedding theorem.

THEOREM 3.3. There is a computable function which takes a finite
presentation of a group G and produces a finite presentation of a group
K € K5 and an embedding of G in K.

Proof. By Proposition 3.1 (1) and (2) we can construct a finite presentation
of a perfect group P in which G embeds. Let K be the iterated HNN extension
of Px P

(Px P, s, tu:s M, ps=(p.1)forpe P, i1, pyr=(p,p)forpe P,
W lu=5, u ltu="~ ).
Note that after the first two HNN extensions, the stable letters s,¢ are a basis
for a free subgroup of rank 2.
Since H1(P) = 0, we clearly have Hj(K) = Z. Also, the Mayer-Vietoris
sequence for HNN extensions implies that H>(K) = 0. Finally, K = {u}).
Hence K € K5 by Theorem 2.1. Since G embeds in P, it embeds in K.

CORCLLARY 3.4. There is a group K € K5 which contains an isomorphic
copy of every finitely presenfed group.

Proof. This follows from Theorem 3.3 and Higman’s theorem that there
exists a finitely presented group which contains an isomorphic copy of every
finitely presented group [Hig].

CORCLLARY 3.5, There is a group K € K5 with unsolvable word problem.

Corollary 3.5 will be used in Section 7 to show that the triviality problem
for n-knots, n > 3, is unsolvable.

We prove the unsolvability of the various recognition problems that we
consider in this section by showing that their solvability would imply the
solvability of Rec(G,{1}). The proofs all follow the same pattern, which
can be described in the following way. Suppose C € B C A (C G). An
(A, B, C)-construction is a computable function

f1 PG, PHLD, PG —{1}) — (PLA), PO, PLA - B)).
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In words, an (A, B, C)-construction is an effective procedure which takes an
arbitrary finite presentation of a group  and produces a finite presentation
ofagroup Ae A suchthatif G=1then Ac € andif G#1 then A ¢ B.
Hence if D is any class of groups such that C € D C B, then A € D if
and only if G =1. It follows from the unsolvability of Rec(G. {1}) that if
an (A, B.C)-construction exists (and P(A) is recursively enumerable) then
Rec( A4, D) is unsolvable. We remark that all our (A, 3. C)-constructions will
actually produce an embedding of G in A.

THEOREM 3.6. (K3, K», {Z})-constructions exist.

Proof. Given a finite presentation of a group G, we must produce a finite
presentation of a group K € K3, such that if ¢ =1 then K =2 Z and if
G#1 then K ¢ K.

Let P be the finitely presented group described in the proofs of Propo-
sition 3.1 and Addendum 3.2 Let Q be the HNN extension {P X P, s :
s’l(l,p)s = (p,1), pe€ P} let ¢ =(a,a) € PxP, and let R be ob-
tained from the free product Q; + O of two copies of ( by adjoining
the relations sy = ¢z, ¢1 = s2. Here, a letter with subindex 1 (resp. 2)
represents an element of the first (resp. second) copy of Q. Finally, let
K= (Rrt: ', p)t=(pip). pi€ P, i=1,2). Note that we can write
down a finite presentation of K.

If G=1,then P=1,andhence R =1 and K & Z. From now on, assume
that G # 1. We will show that G € K3—K,. First note that ¢” ¢ (1 xPYU(Px1)
for n # 0, and so, by Britton’s Lemma, the subgroup {s,q)} of Q is a free
group of rank 2. Hence R is a free product with amalgamation Q; %5, Q2.
Since, in @, (1 x P)N {s.q} = {1}, the subgroup § = {1 x Py, 1 x P2} of
R is the free product (1 x Pp) (1 X Pp). Also, the map é: § — R given by
01, pH = (pi,ps), pi € Py, i = 1,2, is a monomorphism, since, if A is the
diagonal subgroup of P x P, then AN {s,¢} = {1} in Q. Hence K is an
HNN extension of R. Note that {(#)) = K, and that H{(K) = Z.

Let ¢: § —+ R be the inclusion map. Using the Mayer-Vietoris sequences
for free products with amalgamation and HNN extensions [Bie] one sees that
L. Hp(S) = HR(R) is an isomorphism. Also, for x € H(8), d.(x) = 26,.(x).
Hence, again using the Mayer-Vietoris sequence for HNN extensions, we
obtain H>(K)= 0. Hence K € k5.

To see that K ¢ K, we examine H(K"), j=1,2, where K’ is the commu-
tator subgroup of K. Consider spaces Xgr, X5, where Xz denotes an aspherical
complex with basepoint = and m(Xgy,x) = H. Let f,¢: (Xg. %) — (Xp. =) be
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cellular maps inducing, respectively, the maps ¢ and & on fundamental groups.
In the disjoint union of Xz and Xs x [0, 1], identify (x,0) € X x [0,1] with
fx) and (x,1) € X = [0,1] with g(x), obtaining an aspherical complex X .
Then H,.(K" =2 H*()?K), where )?K is the universal abelian (infinite cyclic)
covering of Xp. As in [L, p. 43] one gets an exact sequence

S HAS) Gz A HRY @z A s HK') > Hi () Dz A — -+,

where A = Z[7,+~'] is the integral group ring of the infinite cyclic group
generated by ¢ and o is given by d(x & A) = 6.(x) DA — 1,0 B A

Note that d: Hp($)&zA — Ho(R)3zA can be identified with 1+—1: A — A,
which is injective. Since R is perfect, it follows that Hi(K') = 0.

Recall that ¢, : H>(S) = H>(R) is an isomorphism, and that, for x € H»(S),
d.(x) = 2e.(x). Hence the exact sequence above shows that H>(K') is
isomorphic to the cokernel of the map &: H(5) %z A — Ho(S5) @z A defined
by d'x & N = x 2 (2t — DA, Thus Hx(K") = Ha(S) © (A2t — DA) =
Hx(S) © Z[1/2]. Since H($) = Hx(P) & H2(P) is infinite (Addendum 3.2) it
follows that H>(K'; Q) # 0. This, together with the fact that H;(K'; Q) =0,
implies that K ¢ K, [Fa], [Hi], [Milnl].

COROLLARY 3.7. If Ko C B C Xz then Rec(Ks, B) is unsoivable.

THEOREM 3.8. (8. K5, {Z})-constructions exist.

Proof. Let G = (x1,....xn ! r1,....F,) be a finitely presented group.
Embed G in a perfect group # as in the proof of Proposition 3.1. Consider the
groups As = {¢,d : F =d =(cd’ =1) and Z, = (e : & =1). Let O be
the group obtained from P#As + Z; by adding the relation b = de. Let é be
the universal central extension of the perfect group Q (see [Miln2]). Then é
has a presentation with generators xi,...,x,, @,a,b, 3.¢,d, e, and relations
¢i) through (v) of the proof of Proposition 3.1, together with & = d° = (cd)®,
b=de, and [r,g] = 1 where r runs over the words ry,...,¥r,, &, €& and g
runs over the generators of é (Compare the proof of Lemma 2 in Section 10
of [VKF].) The kernel of the natural epimorphism from é to @ is (contained
in) the center of Q; also Hg(é) = 0. Now adjoin to é the relation & =1
to get the group R. Let K = Z x R. Tt is not difficult to verify that if G =1
then K =2 Z.

Assume in the rest of the proof that G # 1 ; we claim that K ¢ §—K5. First
note that ¢ is a central element of order 2 in As — oy 1 2 =l =lpd)¥y

and that @ = [¢, (ded '¢)2d] in As and therefore in Q. To see that ¢2 is non-
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trivial in Q, adjoin to @ the relations # =1, ...,#22 =1, ¢® = 1 to obtain the
iterated free product with amalgamation § = (P x Zp) 7.7, (As sy, (£ X 7).
Here As and Zp x Zp = (y,e : ¥ =¢* =[y,el = 1) are amalgamated by
& =y: PxZ, and As g, (Z, x Z,) are amalgamated by b = de, z = &,
where z generates the second factor of P x Z». Since ¢ is non-trivial in Es,
it is non-trivial in § and therefore in é

Hence we have a short exact sequence 1 — Zp — é — R — 1 with
Z, contained in the center of é . The associated 5-term exact sequence then
yields Hp(R) = Z, ; therefore Hx(K) = 7Z; and so K ¢ X5.

To see that K £ & first note that, if 7 is a generator of Z, then
(Z x é)/((rc)} — 1. Since, in addition, Ha(Z x Q) =0, Z % Q has a Wirtinger
presentation with a generator representing 7¢ (see [Y] or [Si]). Finally, K is
obtained from Z x Q by adding the relation [re. (ded 'c)?d], so K also has
a Wirtinger presentation.

CORCLLARY 3.9. If Ko C B C K5 then Rec(S. B) is unsolvable.

THEOREM 3.10. (M, 8, {Z})-constructions exist.

Proof. First embed G in a perfect group P as in (the proof of)
Proposition 3.1. Let K = (P,s : s 'bs=5"). Then (s = K, and so
KeM.

If G=1then P=1 and K = Z. Now assume G #+ 1. Then K is an
HNN extension of P, and the Mayer-Vietoris sequence of this extension gives
an exact sequence

H(K) — (L) — H(P)=0.

Hence H>(K) £ 0. This already shows that K ¢ 5. To show that K ¢ & we
use Theorem 2.2.

Let t € K be an element such that {r)) = K, and let ¢ € C;, the centralizer
of rin K. Then {¢,c} either is isomorphic to Z or does not split non-trivially
as a free product with amalgamation or HNN extension. If the latter holds
then (see [SW, Corollary 3.8]) {r,c), and therefore ¢, lies in a conjugate
of P, which contradicts our assumption that {(#)} = K. Hence {¢,¢) = Z, and
80 tAc=0. Since H>(K)+# 0, Theorem 2.2 implies that K ¢ §.

CORCLLARY 3.11. If Ky C B C S then Rec(M, B) is unsolvable.
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4. HAVING WHGHT 1 1S UNRECOGNIZABLE

Let U/ = {u1,up : ...} be a 2-generator, finitely presented, torsion-free
group with unsolvable word problem. Such a group exists by [Bo] or [Mill].
Let K be the iterated HNN extension

(Uyyyyo.z ¥y lwyi =t (i=1,2), 7lyz=3 G=1,2)).

K is still torsion-free and is normally generated by z. Also, for any non-trivial
element w of {/, the subgroup {z,w) of K is isomorphic to F», the free
group of rank 2.

Consider the group Q@ = (r,s.f: s7lrs =%, r~lst =) It is torsion-
free, normally generated by ¢, and the subgroup (r, s} 22 Fs.

For any word w in uy,u», let D, be obtained from the free product K = Q
by adding the relations w = ¢, z = r. If w represents the trivial element of
{/, then D,, =1, while if w does not represent the trivial element of I/ then
D, is a free product with amalgamation K #p, !, and hence is torsion-free
and non-trivial. Let Gy, = Z * D,,. Then, by Klyachko’s theorem [Kl], G,
has weight 1 if and only if w represents the trivial element of U. Thus we
have proved

PROPOSITION 4.1.
(1) If w represents the trivial element of U then Gy, = Z;
(2) if w does not represent the trivial element of U then G,, ¢ M.

Since [/ has unsolvable word problem we get

COROLLARY 4.2, If Ko € B C M then Rec(G,B) is unsolvable.

5. UNSOLVABLE PROBLEMS ABOUT HOMOLOGY, WHITEHEAD GROUPS
AND SURGERY GROUPS

By the Poincaré Conjecture [Pel], [Pe2], [Pe3] and the recognizability of
the 3-sphere [Ru], it follows that there is an algorithm which decides whether
or not a given closed 3-manifold is 1-connected. It is interesting to note that one
can phrase this in terms of homology of groups. Let Arf be the set of ordered
presentations (x1,...,%, : Fi,...,7,) such that [[", raxar7t =[]0, in the

free group with generators xi,...,x,. The groups defined by the members
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of Art are precisely the fundamental groups of closed orientable 3-manifolds.
This follows from the fact that every closed orientable 3-manifold is an open
book with planar pages (see e.g. [Ro, p.340-341]) and from a theorem of
Artin (see [Bir, Theorem 1.9]; see also [Wi] and [Gon3]).

Thus the question of deciding whether a closed 3-manifold is 1-connected
is equivalent to that of deciding whether a member of Ars presents the trivial
group. This in turn can be phrased in terms of homology, as follows.

Let M Dbe a closed orientable 3-manifold and let

M- M EN # - #NES x8%#- - #£8 x &7

be the connected sum decomposition of M into prime manifolds [Miln3], where
m1(M;) is infinite non-cyclic, 1 <7 <r, and a1 (N is fnite, 1 <j < 5. Let
n; be the order of m(N), 1 <j<s. Then HiylmiM)W =2 Z DLy O - TZy,,
and so mM) = 1 if and only if Hy(m(M)) =0 and Hs(m(M)) = 0. Thus
the simple-connectedness problem is equivalent to deciding, for members 4
of Art, whether the finitely generated abelian groups H1(A) and Hs;(A) are
trivial. (Here, and in the sequel, if F is a functor defined on the category
of groups, and P is a group presentation, we abbreviate F(|P|) to F(P))
As noted above, it is known (albeit indirectly) that this decision problem is
solvable.

However, it is natural to ask the question for the class of all finite
presentations. We shall see that this and many other problems concerning
the computation of the homology of groups in dimensions greater than 1 are
algorithmically unsolvable. We will also prove incomputability results about
Whitehead groups Wh,(G) and Wall’s surgery groups L,(G). H,.(G) will
denote the infinite sequence (H1(G), H(G), H3(G), ...) of integral homology
groups of the group G.

THEOREM 5.1. Let C be a class of infinite sequences (A1, Az, Az, ...)
of abelian groups which is closed under isomorphisms!). Suppose there are
finitely presented groups Gy, Gz such that H\(Gy) = H(Gp), H.(G) € C
and H,(G2) & C. Then the set of finite presentations P such that H.(P) € C
15 not recursive.

QUESTION 5.2. When can one replace recursive by recursively enumer-
able ?

Uy (A1, Az, Az, .. ) is isomorphic to (AL AL AL L) i Ay =2 A forall 4
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REMARK 53. For a class C, closed under isomorphisms, which does not
satisfy the hypothesis of the theorem, a finite presentation 7 has integral
homology belonging to € if and only if H1(P) € (3, where C; is the class of
finitely generated abelian groups which are first terms of sequences belonging
to C; hence {P : H.(P) € C} is recursive if and only if C; is recursive.

Proaf of Theorem 5.1. (Call a finite presentation {(x1,...,%m @ F1,. . Fn)
freely related if ry,...,r, generate a free group of rank n in the free group
on Xi,...,xy. Clearly every finitely presented group has a freely related
presentation. If we have a freely related presentation of deficiency & of a
group we can find a freely related presentation of deficiency & — 1 of the
same group by adjoining, for example, new generators z;, z» and relators
21, 23 and 271z

It follows that G; and G» have freely related presentations with the
same deficiency d. Writing s = dim H(G1; Q) = dim H1(G2; Q), let G= Gz
(resp. Gp) if the sequence (H1(G1), Z*~%,0,0,...) belongs to ¢ (resp. does
not belong to £).

Let (x1,...,%y © F1,...,7,) be a freely related presentation of G of defi-
ciency d. Let U = {1,..., 4, © -..) be a finite presentation of an acyclic (.e.
with trivial integral homology in all positive dimensions) group / with unsolv-
able word problem. Such a group exists by [N] ¢or [Bo]), [BDM, Theorem E]
and [R2]. Consider also a finite presentation Y = {yp,..., ¥ ... ¥y 1 -}
of an acyclic group Y such that y;....,y, represent » different non-trivial
elements of Y. Denote by P, =If =) the presentation whose generators are
XlyevosXm, fily-..sfp, V1,...,Y, and whose relators are those of ¢f and ).

To a word w in the generators py....,u, of I we associate the
presentation I, obtained by adjoining to P, «l{* ) the relations r; = [w, %],
i=1,...,n. If w=11in U then Il presents G=U/*Y so H.(Il,) = H.(G).
If w#1in U then [w,v],..., [w,y,] (resp. ¥y, ...,r,) generate a free group

of rank # in U xY (resp. in the free group F, on x1,...,X,) so that IT,
presents a free product of F,, and U %Y amalgamated along a free group
of rank n; the Mayer-Vietoris sequence for free products with amalgamation
then yields H(I1,,) =0 for i > 2, Hpx(I1,) = 75— and H(T1,) = Hi(G).
Since precisely one of the sequences H.(G), (H(G), 27%,0,0,..) belongs
to C, it follows that an algorithm which decides whether or not groups given
by finite presentations have an integral homology sequence which belongs to
C could be used to solve the word problem for /. Since ¢/ has unsolvable
word problem, the existence of such an algorithm is impossible. Thus, the set
of finite presentations P with H,.(P) € C is not recursive.
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REMARK 5.4. Recall that a property P of (isomorphism classes of) finitely
presented groups is a Markov property if there exist finitely presented groups
G and G such that

(1) G has property P; and

(2) if G; embeds in a finitely presented group H then H does not have

property P£.

If C is an isomorphism closed class of sequences of abelian groups and if
H.(G) € C for some finitely presented group ( then “having a homology
sequence which belongs to C7 is not a Markov property since any [initely
presented group embeds in a finitely presented acyclic group A ([BDM])
and therefore in A % (G, a group whose homology belongs to C. There-
fore Theorem 5.1 cannot be derived from Rabin’s theorem (Theorem 1.1
of [R1]).

CORCLLARY 5.5 If I is a sei of natural numbers containing a number
greater than 1 then the sef of finite presentations P such that H,(P) =0 for
every i €1 is not recursive.

Proof. Take Gy to be the trivial group and, if » € I — {1}, take
G: = A X SL(2,5).

The case = {1.3} is the one which we were discussing above in relation
with the simple-connectedness problem for 3-manifolds.

The case I = {1,2} corresponds to the problem of deciding whether or
not a finitely presented group is the fundamental group of a smooth homology
n-sphere, n > 5, that is (see [KeZ2]), a group with trivial first and second
homology. This problem is, therefore, unsolvable.

We now prove an incomputability result for Why and Why, where
Who(G) = Ko(ZG), the reduced projective class group [Milnd, p. 419], and
Whi(G) is the usual Whitehead group [Milnd, p.372].

THEOREM 5.6. Let { be a class of pairs (Ao, A1) of abelian groups which
is closed under isomorphisms. Suppose (0,0) € C and (Who(G), Whi(G) ¢ C
for some finitely presented group G. Then the set of finite presentations P
such that (Who(PY, Whi(PY) € C is not recursive.

Progf. By [W3], for a free product with amalgamation H = A «¢ B with
F free one has a Mayer-Vietoris sequence
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Whi(F) — Whi(A) & Whi(B) — Whi(H)
— Who(F) — Who(A) & Who(B) — Who(H) — 0,

and Why(F) = Whi(F) = 0.

In [Rot, Chapter 12] a sequence of finitely presented groups Gi, Gz, ....G;
is constructed such that & is free, (, has unsolvable word problem
and, for 1 < ¢ < s, (1 is an HNN extension of G; along a free
group; see [CM]. Therefore G, belongs to Waldhausen’s class C/ in [W3]
and hence (Who(G,), Whi(G,)) = (0,0). Let U = G = G,. Then U has
unsolvable word problem and, using the Mayer-Vietoris sequence above,
(Who(L), Whi(L)) = (Who(G), Whi(G) # C.

Let IT = {x1,...,Xn | F1....,F; be a finite presentation of U/, and let
w be a word in xq,.... Xxm. Let I1,, be the presentation obtained from IT by

adjoining additional generators a,«, b, 3 and additional relations

aca ! = b

aac” ' = b3b™!

dixad = Jitipyrice |, L5 m
[w,a] = Fbd?
[w, ] = Bbab 1371

as in [Gor2].

If w=1in U, then II,, presents a trivial group so that (Why(I1,,),
Wh(I1,,)) = (0,0)  C.

If w#1in U, then IT, presents a free product with amalgamation
(U * F2) xp,,, o (where F, is a free group of rank r). The Mayer-Vietoris
sequence above and the fact that free groups have trivial Why and Why implies
that if w # 1 in U then (Who(IL,.), Whi(TL,.)) = (Who(U), Whi(U)) ¢ C.

Since the set of words w which represent the trivial element of G is
not recursive, it follows that the set of finite presentations 7 such that
(Who(P), Whi(P)) € C is not recursive.

CORCLLARY 5.7. Let i =0 or 1. Then the set of finite presentations P
such that Wh,(P) = 0 is not recursive.

Proof. There is a finitely presented group A whose i-th Whitehead group
is non-trivial (for example, Z»; for i =0 [Milnd, p.419], and Zs for i =1
[Miln4, p.374]).
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Finally, we turn to surgery groups [Wa]. Let Lﬁ(G) (resp. L((7)) denote
Wall’s group of surgery obstructions for the problem of obtaining homotopy
equivalences (resp. simple homotopy equivalences) for orientable manifolds
of dimension n and fundamental group G. For x =h or s, L} is a functor
from groups to abelian groups with 13 = [ ,. Write L3(G) = zﬁ(G)%‘BLﬁ(l).
Note that Lﬁ(G) % Q= LG & Q by the Rothenberg exact sequence. (See
Section 17D of [Wa].)

THEOREM 58. lei n > 0 and x = h or s. Then the set of finite
presentations P such that I(P) =0 is not recursive.

Proof. Let U be a 2-generator, finitely presented group with unsolvable
word problem (see [LS, Chap. 1V, Thm3.1]). Let G = &/ = Z° and let
M= {x1,....58 . r1,....Fy; be a finite presentation of G.If w is a word in

X1,...,xg, let TI,. be the presentation defined in the proof of Theorem 5.6.
If w=11in G then Li(Il,) = Li1) = 0. If w # 1 in G then TI,
presents a free product with amalgamation (G % Fo) g, F2 so, from [C2,

Corollary 6], we obtain an exact sequence
P12 Q — (LXG+ ) DL R) % Q — LXIL)® Q.

By [C1, Theorem 16], dim L5(F12) & Q < 12 and, using Corollary 6 of [C2],
Corollary 15 and Theorem 16 of [C1] one sees that

dim(L(U * Z° % Fp) e Ly(Fo) 2 Q > 16

so that dim L¥(I1,.) ® Q > 4 and dim Zﬁ(l"[w) ©Q>3. Thus, if w##1in G
then Zﬁ(l‘l“,) is non-trivial.

As above, the non-recursiveness of the set of words representing the trivial
element of & implies the non-recursiveness of the set of finite presentations
P with L(P)=0.

6. ENUMERATICN OF KNOTS

In this section we define presentations of (locally flat PL) n-knots and show
that they can be recursively enumerated. A presentation will be a description
of a knot type in finite terms.

Any abstract (simplicial) complex considered, A, will be assumed to have
as its set V(A) of vertices a finite set of natural numbers. Any simplicial
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complex A will be finite, its set of vertices will be denoted by V(A) and its
underlying polyhedron by |4].

When we consider pairs (A, B) (resp. (A, B)) of simplicial (resp. abstract)
complexes, B (resp. B) is a subcomplex of A (resp. A) and A—B (resp
A — B) denotes the smallest subcomplex of A (resp. A) containing A — B
(resp. A—B).

A realization (A, ¢) of the abstract complex A is a simplicial complex A
together with a bijection ¢: V(A) — V(A) such that, a subset s of V(A) is
a simplex of A if and only if the convex hull of ¢(s) is a simplex of A. We
also say that A is a realization of A.

If (A,¢) is a realization of A and B (resp. B) is a subcomplex of A
(resp. A) such that (B, ¢ | V(B)) is a realization of B then we say that (A, B) is
a realization of (A, B). Notice that if (A3, B1), (Az,B) are two realizations of
(A,B) then (|A;|. [B1]) == (|42, |Bz]), where a2 denotes PL-homeomorphism.

Let Ay, Az be two abstract complexes with realizations Ay, Az respec-
tively. Ay is equivalent to Ap (we write Ay ~ Az) if 4] & |4a|.

DEFINITION 6.1. A presentation of an n-knof is a pair (A, B) of abstract
complexes having a realization (A, B) such that |A| ~2 $*72 and |B| a2 " x D%,

We will see that a presentation defines a unique knot type.

If T is a polyhedron PL-homeomorphic to §7 x D9 a core of T is the
image of $¥ x {0} under a PL-homeomorphism from $% x D4 onto T.

LEMMA 6.2. Let T be PL-homeomorphic to " x D? and let K, K' be
two cores of T. Then there is a PL-homeomorphism from T onto T, mapping
K onto K', which is the identity on OT .

Proof. We may assume T = §" x D* and K = §° x {0}. Let
f: 8" % D* — T be a PL-homeomorphism mapping §* x {0} onto K’. Now, if
n > 2, the proof of Theorem 2 of [Sw] shows that, if a PL-autohomeomorphism
h of §7x JD? can be extended to a PL-autchomeomorphism of §” x D?, then
it can be extended to a PL-autohomeomorphism of (§" x D?, 5% x {0}) (both
conditions being equivalent to the vanishing of the second Stiefel-Whitney
class of 5" x D? U, §" x D*). For n =1 this fact is well known.

Hence f | §(§" x D?) can be extended to a PL-homeomorphism ¢ mapping
K onto itsell. Then fg~! maps K to K’ and is the identity on &7T.
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Let (A, B) be a presentation of an n-knot. If (A,B) is a realization of
(A, B) then the knot type represented by (|JA|, K), where K is a core of |B|,
is the knot type presented by (A,B). This is well-defined because, if K" is
another core of |B|, there is, by the previous lemma, an autchomeomorphism
of |A|, which is the identity on |A| — |B|, mapping K onto K'. The group of
the n-knot presenfation (A,B) is the group of a knot in the type presented
by (A.B), that is, m(JA| — |B]), where (A,B) is a realization of (A, B).

Next, we want to give a recursive enumeration of presentations.

A simplicial complex B is a subdivision of the simplicial complex A if
every vertex of A is a vertex of B and every simplex of B is contained in a
simplex of A.

If B is a subdivision of A, (B,¢) is a realization of the abstract complex
B and A is the abstract complex consisting of the family of subsets s of
V(B) such that the convex hull of ¢(s) is a simplex of A, then we say that
B is a subdivision of A.

The following proposition is the Corollary to Lemma 1 of [BHP].

PROPOSITION 6.3.  There is a recursive funciion X(A, k), A ranging over
all finite abstract complexes, k = 1,2, ..., that recursively enumerates for an
arbitrary complex A the subdivisions of A, ie. for fixed A the sequence
XA 1) = A, X(A,2), ... is a recursive enumeration of all subdivisions
of A.

COROLLARY 6.4. Let A be an abstract complex. Then there is a recursive
enumeration of all abstract complexes equivalent to A.

Proof. let Ay, A,.... be a recursive enumeration of all abstract com-
plexes. Then A = A, say Recursively enumerate all triples (i.j.k) such
that X{A,,? is isomorphic to X(A; k). Let (iy,f1, k1), (%, /2. k2),... be this
enumeration. Eliminating repetitions in the sequence A;, A;, ... Wwe obtain
a recursive enumeration of the complexes equivalent to A.

Now, for any n, choose one abstract complex A" (resp. B") with a
realization having underlying polyhedron PL-homeomorphic to §72 (resp.
S"x D*). Let A7, AZ ... (resp. Bf,B%,...) be a recursive enumeration of all
abstract complexes equivalent to A” (resp. B”). From these two enumerations
we obtain an enumeration of all pairs (Af, B}’) such that Bj? is a subcomplex
of A?. We have therefore proved:
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THEOREM 6.5. For any n > O there is a recursive enumeration of the set
of all n-knot presentations.

It now makes sense to talk about recursively enumerable and recursive sets
of presentations of nr-knots.
Here is a consequence of Theorem 6.5.

CORCLLARY 6.6. Given a finite presentation Il of an n-knot group one
can find a presentation P of an n-knot whose group is isomorphic fo the
group presented by T1.

Proof. Let P1,P»,... be an enumeration of the presentations of n-knots.
For every i one can find a finite presentation of the group G; of the knot type
presented by P; and, therefore, using Tietze operations, recursively enumerate
all finite presentations of ;. Now, enumerate recursively all pairs (F;,I1;)
such that the finite presentation IT; presents the group of ;. Take the first
pair (P, I1) in this enumeration such that I1 =TII; and take P = P;.

As a consequence we have the following geometric version of Corollary 3.7.

THEOREM 6.7. Let 0 < m < 3 < n. Then there is no algorithm which
decides if the group of an n-knot preseniation is the group of an m-knot.

Proof. By Theorem 3.6 and Corollary 6.6 there is a recursive function
associating to every finite group presentation TT an n-knot presentation (IT)
such that:

(i) if IT presents the trivial group then the group of ¥(IT) is Z, which is

an m-knot group;

(ii) if TI presents a non-trivial group then the group of (TT) is not a

2-knot group (and, therefore, not an m-knot group).
The theorem then follows from the undecidability of the triviality problem for
group presentations.

7. THE KNOTTING PROBLEM

Haken proved in [Hak] that there is a procedure to decide if a given 1-knot
is trivial. In this section we prove that if n is such that there is a group in K,
with unsolvable word problem then it is impossible to find such a procedure
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for n-knots. Thus, if »n > 3, there is no algorithm to decide if a given n-knot
is trivial; this has been proved by Nabutovsky and Weinberger [NW].

Recall that we have given a recursive enumeration of all n-knot presen-
tations Py, Ps,.... A set {P }cs of n-knot presentations is recursive if and
only if S is recursive. Intuitively, {P;}ics is recursive if and only if there is
an algorithm for determining whether or not a given knot presentation belongs
to {Pities.

THECREM 7.1. Let n be a natural number. If there is a group in K,
with unsolvable word problem then the set of presentations of n-knots which
present the trivial knot is not recursive.

Proof. We may assume #n > 1 since the groups in X’; have solvable word
problem (see [W2]). We give first a sketch of the proof.

Suppose U = [{p,X1,...,Xu I '1,...,5,| is the group of the n-knot
(572, T, where U/ has umsolvable word problem and pu represents a meridian
of T Consider the knot (§772, A") obtained by taking the connected sum of
(772 ™) with the trefcil spun (r — 1) times.

Let M"* be the manifold obtained by surgery on (§772, A®): the knot A”
is replaced by a 1-sphere §'. Let =7 be a trivial n-sphere in M**+2 — 5! Then,
the fundamental group of M”12, which is isomorphic to that of §772 — A", is

TMT) = Usg ¥
— <,U'7 Kly evey Xy Y102 0 F1y0n vy s y1y2YIYE1yf1y£1= ,uyf1>,

where Y is the trefoil group and the amalgamating subgroup Z is generated
by ». Also

UM ™ —E") = {0,y Xle ey Xy Y1 V2 5 FLoee o Fpe Y1Y2V1Y 7 V5 b, )

where u represents S' and ¢ a meridian of E7.

To a word aw in g,x1,...x%, associate a knot (§7+2 3"y where §71% is
obtained by sureery cn (M, «), ¢ being a 1-sphere in M™t? — X" representing
o w, v1 Lolw, v2lp € m(M™? — =% Notice that, as a 1-sphere in M™%,
o represents pi € m{M"T2) and is therefore isotopic to §'; this implies that
Sﬁfrz is the (n + 2)-sphere. Also, as we explain at the end of the proof,
(72 2 is trivial if and only if w =1 in /.

We show below that this function associating knots (or rather knot
presentations) to words can be defined effectively. Hence if there were an
algorithm deciding whether or not n-knots are trivial, there would be an
algorithm which would solve the word problem in .
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We now proceed to give a more rigorous proof. A simplicial complex T
with underlying polyhedron PL-homeomorphic to the manifold M7 described
above can be obtained by pasting together suitable simplicial complexes £ and
F with |E| PL-homeomorphic to the exterior of A” and |F| = S§'x D™ Also
we may assume £ has subcomplexes £y and E; with |E;| PL-homeomorphic
to the exterior of T, |E;| PL-homeomorphic to the exterior of the spun
trefoil and |£;] N |Ez| = S* x D* with &(|E;| N |£,]) containing a meridian
of A" We think of £ and F as subcomplexes of T. We can assume T
contains a subcomplex S, disjoint from F, such that |§| == §” x D* and a
core T of |§| bounds a PL (n+ 1)-disk in |T| — |F|. Choose a vertex
in [Ei| N |Ex| N |F|. One can find presentations {fe.Xi,...,Xm @ Fi,...,Fp},
Voo s PE 081,00 880, (GX1, o X V1o oo Vi rl,...,rp,sl,....w,;tyl_l)
and <0’. VU TN, N, DL . TR ... A ,Sf_,,u,yfl) of m(|E1], ),
mi([Ez], %), wi(|T|. %) and = {|T| — [5], +) respectively, by the usual method
of taking a maximal tree in the 1-skeleton containing =, letting the generators
be in a one-to-one correspondence with the remaining edges of the 1-skeleton
and reading the relations from the 2-simplices. We can assume that a meridian
of A" contained in O(|&;| N |£2]) is represented by i and by y;, a meridian
of X is represented by ¢, and ¥, represents an element of wi(|Ez|, %) which
does not commute with any non-trivial power of y;. The inclusion-induced
homomorphism 7 (|T| — ||, #) — w1 (|T],#) sends o to 1, g to u, x; to x;,
and ¥i to ¥i.

For each r > 1, consider the r-th barycentric subdivision (T*?,57) of
the pair (7,5). Every element of m(|T| — |§],%) can be represented by an
oriented PL. 1-sphere containing * which, by [Hu, Corollary 1.6] can be taken
to be a subcomplex of TV for some r. We may assume that we know,
for a given vertex v of the subdivision 7%, the simplices of 7 to which
# belongs. This enables one to give, for any =-based edgeloop (see [HW,
Sec.6.3]) o in TV, not meeting |S|, a =-based edge-loop in 7 homotopic
to it and, therefore, a word in o, 1, X1,. .., Xm, ¥1,. - ., ¥, Tepresenting it; one
can then recursively enumerate all words in &, j, X1, ..., Xu, ¥1,. ...V T€pre-
senting [«] € m1(|7| — |S]. ) since the words representing the trivial element
of [{ary phX1, oo Xy ¥1o oo ¥k 0 Plyeeos¥py 81, -, 8¢)| can be recursively enu-
merated.

Let €2 be a recursive enumeration of the friples (r,C,u) such that
(1) r is a positive integer,

(2) C isan oriented 1-sphere in |T'|—|S| containing #, which is a subcomplex

of T,

(3) wisawordin o, f, Xy, .« Xy V1, e s v representing [C] € wy(|T|—|5], #).
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We now give a recursive function associating to every word w in
X1, ... 5 Xy A presentation Plw) of an n-knot. If w is such a word, let Q(;) =
(r,C,u) be the triple with smallest j such that ¥ = o~ '[w, y217" o[ew, y21 1t
in the free group generated by &, g1, x1,...,Xs, ¥, and let L = {r € TV+2 .
7N |C| = @}. Notice that §? is a subcomplex of L so that, for every
g, SUT2HD  the g-th barycentric subdivision of §“T2 is a subcomplex
of 19, the g-th barycentric subdivision of L. Recursively enumerate all
triples (A, D.B) such that (A,D) is a presentation of an n-knot and B is
a subcomplex of A — D in this enumeration take the first triple (A,D,B)
such that (a realization of) (A — D, B) is isomorphic to (L9, U2+ for
some ¢, and define P(w) = (A,B).

To show that P(w) is well-defined we need only prove that in the
last enumeration there is at least one triple (A,D,B) such that (A—D.B)
is isomorphic to (£ §C+2+9y for some ¢. Since ¢ = 1 in m(|T],#),
[C] € m1(|T|, #) is represented by g so € is homotopic, and therefore isotopic,
in |T|, to a core of |F|. Hence, |L| is PL-homeomorphic to the knot exterior
|E|. Let D be a simplicial complex such that |D| ~ §" x D*. Denote by
D (resp. OL) the subcomplex of D (resp. L) such that |3D| = 3|D| (resp.
|OL| = DIL]) and let f: O|D| — G|L| be a PL-homeomorphism such that
\D| Uy |L| is PL-homeomorphic to $"t2. By [Hu, 1.10,1.6,1.8 and 1.3(2)] one
may assume that £: 8D — (L) is a simplicial isomorphism for some ¢.
Take an abstract complex pair (D,dD) (resp. (L, B)) having (D,9D) (resp.
(1@ §U+2+2yy ag a realization and let ¢ V(D) — V(L) correspond to f.
By changing the names of the vertices of D if necessary, we can assume
that w(v) = v for every v € V(dD) and that DML = JdD. If we now define
A =LUD, then the triple (A, D, B) has the required properties. Hence P(u:)
1s well-defined.

If ww=11in U then C is isotopic, in |T| — ||, to a core of |F| and,
therefore, there is a PL. (m+1)-disk in |7, bounded by a core of |§|, which
does not intersect €. This implies that P(w) presents the trivial knot type.

Now, the group G, of a knot in the knot type presented by P(w) is

[6a, Wi e oy By P e Vil Fr = Ly 15 =01,

si=1,...,50=1, o '[w,ylo = [w,ylp).
Furthermore, [w,y2]p¢ has infinite order in |[{ g, X1, -y Xms ¥1e oovs Va0
Fly ooy Fpy 81, -ony Sg, ,uyl_1> = m(§"*2 — A™. If w does not represent the
trivial element of [{s,x1,...,%m : F1....,Fp)| then also [w,y,] has infinite

order in m(§"t* — A" (here cne uses that [¥i,¥1 %1 for any r# 0) and
therefore G, is an HNN extension of (S — A").
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Thus if w # 1 in [{u,X1,....%m © F1,-...Fp)| then P(w) presents a
non-trivial knot type.

Hence, if the set of presentations of n-knots defining the trivial knot type
were recursive, the word problem in I/ would be solvable, which is not the
case.

Since X, = K5 for n > 3 and K5 contains groups with unsolvable word
problem by Corollary 3.5, one has the following corollary (cf. [NW]).

CORCILARY 7.2 (Nabutovsky-Weinberger). If # > 3 then the ser of
presentations of n-knots which present the trivial knot is not recursive.

REMARKS. (1) If in the proof of Theorem 7.1 one can take I/ torsion-free
(as one may if n > 3), a slightly simpler proof can be given: there is no
need to take the connected sum with a spun trefoil and, instead of the word
o w, y2]1 " olw, y21, one can take o~ lwlowe.

(2) If » > 3 then any property enjoyed by the trivial »-knot but not by
any of the knots P(w) of the proof of Theorem 7.1 with w # 1 is not
algorithmically recognizable. Among these are:

(i) Being a fibered knot.
(ii) Having a group with finitely generated (or presented) commutator
subgroup.
(iii) Having a group with solvable word problem.
(iv) Having a torsion-free group (here take U/ with torsion).
(v) If H is a non-trivial group with H % Z, having a group not
containing H as a subgroup (here take I/ containing H).

To conclude, here are some questions.

(1) Is there a 2-knot group with unsolvable word problem?
Conjecture: Yes.

(2) Does each finitely presented group embed in a 2-knot group ?
Conjecture: Yes.

(3) If g is a non-negative integer, is there an algorithm to decide whether or
not a given locaily flat PL-embedded surface of genus ¢ in S§* is unknotted ?
Conjecture: No for any value of g.
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