Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique
Band: 56 (2010)

Artikel: Del Pezzo surfaces of degree 4 and their relation to Kummer surfaces
Autor: Skorobogatov, Alexei
DOl: https://doi.org/10.5169/seals-283515

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-283515
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 56 (2010), 73-85

DEL PEZZO SURFACES OF DEGREE 4
AND THEIR RELATION TO KUMMER SURFACES

by Alexei SKOROCBOGATOV

INTRODUCTION

In this note, which has little pretence to originality, we clarify the relation
between the geometry of del Pezzo surfaces of degree 4 and their realization
as the zero set of two quadratic forms in five variables. We also review the
classical description of the desingularized Kummer surface K constructed from
the Jacobian ./ of a curve € of genus 2 as the zero set of three quadratic forms
in six variables (Plicker, Kummer, Klein [8], [7], sec [6] or [3] for a modemn
treatment). If C has a rational Weierstrass point, a partial diagonalization
of this system gives rise to a natural projection onto a hyperplane, defining
a finite morphism w: K — X of degree 2 onto a del Pezzo surface X of
degree 4 (see [4, §6]). We show that X is the blow-up of P% in the images of
the five other Weierstrass points of € under the embedding of P} as a conic
in P%. The morphism  sends the 16 lines on K to the 16 lines on X, and
is equivariant with respect to the action of the subgroup of 2-division points
J[2] € J. Thus « gives rise to a morphism from the twisted Kummer surface
to the twisted del Pezzo surface.

In our presentation it is obvious that all del Pezzo surfaces of degree 4
can be obtained in this way, an observation made by Victor Flynn in [5]. The
fact that any 2-covering of J maps to a del Pezzo surface of degree 4 was
first observed in [2], and used in [2], [1] and [4] to construct and visualize
elements of order 2 in the Tate—Shafarevich group of J over Q using the
theory of the Brauer—Manin obstruction on del Pezzo surfaces of degree 4. It
was the author’s desire to understand the geometry behind these calculations
that prompted him to write this note. I would like to thank Igor Dolgachev
for useful discussions.
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1. PRELIMINARIES

Let & be a field of characteristic not equal to 2 with separable closure
k, and Galois group T' = Gal(k/k). Tet I be an étale k-algebra, that is,
L= @}"Zlkj for some finite separable field extensions &;/k. The trace map
Trysx: L — k is defined as the sum of traces Ty pac: k; — k. Similarly, the
narm map Npp: L™ — k% is the product of norms Ny /x kj* — k. Let
n = dim; L. For example, if P{x) is a separable polynomial of degree =,
then L = k[x]/(P(x)) is an étale k-algebra of dimension n. Let ¢ € £ be the
image of x. Lagrange interpolation gives rise to the well-known relations

(1 T aP @00 =0, i=0,1,...,n—2,

where P/(x) is the derivative of P{x).

Assume that n is edd. Consider the finite étale abelian group 4-scheme
G = RL/k(p,z)/,u,z, where Ry is the Weil restriction of scalars. The abelian
group G(k) =~ (Z/2y""! is generated by n elements of order 2 whose product
is the identity. These generators are permuted by I' in the same way as the
components of L&, k~ k”. There is an exact sequence of k-groups

L= = Rpplpe) = G— 1.

Since n is odd, the usual restriction-corestriction argument shows that the
map
H2(k, pi2) — H? (k, Ry i) = HA(L, pr)

is injective. Thus we have

) Hl(k, G) = L™ /k* L = Coker [A: &* /&% — ] & /&7],
J

where A is the diagonal map.

We shall have to deal with 5-tuples of points on the projective line, as well
as with 5-tuples of points and 5-tuples of lines in the projective plane. Recall
that all these data are equivalent up to projective transformation. Indeed, to
give five distinct points in P} is equivalent to giving five points in PZ in
general position (this means that no three points are on the same line). In
one direction, use the Vercnese embedding Pi — S*(Pl) = PZ, where §?
denotes the symimetric square. In the other direction take the unique conic
C ~ P! through five points in the plane. Five lines in general position in P2
correspond to five points in general position in the dual projective plane.
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Similarly, to give six distinct peoints on a smooth projective curve of
genus 0 is equivalent to giving six points in PZ lying on a conic. This is
also equivalent to giving six lines in the dual plane PZ which are tangent to
4 COIMIMON COnic.

2. DEL PEZZO SURPACES OF DEGREE 4

2.1 EQUATIONS

We assume that & has at least 5 elements. Let X be a del Pezzo surface
of degree 4, i.e. a smooth intersection of two quadrics in P,f(‘. Let &1 and Q>
be quadratic forms in five variables such that X is given by Q3 = > = 0.
By [10, Prop. 2.1] exactly five quadrics in the pencil of quadrics containing X
are singular. Using the assumption about & we may assume without loss
of generality that det(, # 0. By a linear change of variables and the
multiplication of @; by an element of &* we can arrange that detQ; = 1.
Then the characteristic polynomial P(x) = det(Q;x — Q) is a separable monic
polynomial of degree 5, so that P(x) = H?Zl(x— #,) for some distinct 8; € k.
Then L = &x]/(P(x)) is an étale k-algebra of dimension 5. Let # be the image
of xin L: then (8) € £* is the image of # under the map L = L& k= &°.

Over k the quadrics of the pencil can be simultanecusly diagonalized
(ibidem). More precisely, we can write P§ = P(R;;A}), and let u = Z?:o w0
be a variable in A}. For an arbitrary del Pezzo surface X of degree 4 with
characteristic polynomial P(x) there exists e« € L* such that X is given by
equations

3 Tty jplan’) = Try p(ab’) = 0,

or, equivalently,

where (q;) € &° is the image of o in L&y k=&,

Let G = Ryil(p2)/p2. The abelian group G(k) =~ (Z/2)* is generated by
five elements of order 2 whose product is the identity. These generators are
permuted by [ in the same way as the indices of the #;. The k-group G
acts on P} by changing the signs of the coordinates z;, so G leaves invariant
every quadric that contains X, and thus preserves X. From (3) it is clear that
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the natural morphism X — X/G sends u to #%, so that X/G is the subset
of P} = P(R;A}) with L-coordinate w = u?, given by

() Try plow) = TrL/k(aﬂw) == @

In particular, X/G ~ P%. Set § — aP'(#). By relations (1) the 3-dimensional
subspace of Ry Al given by (4) is spanned by 7', 6714, 6716°. Thus we
can write w = 8~y + 1n6 + 667, where fo, 11, 1 are coordinates over k.
Therefore, X is given by the vanishing of the ¢*- and ¢*-terms in

4 2
(5) o+ 00+ 066 = 5@ = 5(Dud) .

i=0
Thus every del Pezzo surface of degree 4 is isomorphic to the surface given
by (5) for some separable polynomial Pix) of degree 5, and & £ L*. This
was pointed out by E. V. Flynn [5].

REMARK. We note that if § = 1, then X contains the line P} with

coordinates (r:s), given by u=r+3s8, tp =1, {1 =2rs, tp = 5°.

2.2 GEOMETRY

To a del Pezzo swface X of degree 4 we associate the reduced closed
S-clement subscheme § = Sy C P} parameterizing singular quadrics in the
pencil of quadrics through X.

DEFINITION 2.1. A del Pezzo swface X of degree 4 over & is called
spiit if all the 16 lines on X are defined over k. Let us call a del Pezzo
surface X of degree 4 quasi-splif if it has at least one line defined over k.
Equivalently, X is quasi-split if it is the blow-up of P? in a Galois-stable set
of five k-points in general position.

To see the equivalence of the two definitions note that the five lines on X
meeting a fixed k-line are disjoint, and so can be simultaneously contracted,
which gives a morphism X — Pf. Conversely, the blow-up of P in a Galois-
stable set of five points in general position contains the %-line which is the
strict transform of the unique conic through these five points.

LEMMA 2.2, Any quasi-split del Pezzo surface Y of degree 4 is isomorphic
to the blow-up of Pi in the image of Sy under the Veronese embedding
P} — 3Py =P;.
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Proof. let Y be a quasi-split del Pezzo surface of degree 4 with a
k-line £. The contraction of the five k-lines of ¥ that meet ¢ repre-
sents ¥ as the blow-up of P in a Calois-stable set of five k-points,
and identifies ¢ with the unique conic through them. It is enough to
prove that the resulting 5-element subscheme F C £ =~ P{ is projectively
equivalent to Sy. Choose a k-point xp in €\ F, which is possible since
k| = 5. We identify ¢ with the pencil IT of quadrics through Y as
follows. The tangent spaces 7, ;, where ( is a quadric in II, are pre-
cisely the hyperplanes in P} containing the tangent plane 7. y. If x is a
k-point in £\ F, then the union of ¢ and the inverse image of the line
(xox) € PZ in Y is the hyperplane section Ty, oMY for a unique non-singular
quadric @ in II. This defines an isomorphism IT ~ £ which identifies F
and Sy.

The scheme § = Sy defines the étale k-algebra L = &[S] and hence the
k-group G = Ry (j2)/ p2. The singular quadrics containing X are cones over
smooth quadric surfaces. The action of & on X has the following geometric
description. The five generators of G(k) correspond to the five singular quadrics
containing X, so that each generator acts on X as the deck transformation
of the double covering given by the projection of X from the vertex of the
corresponding quadratic cone to its base.

As a projective variety with an action of G, X can be twisted by a
1 -cocycle of the Galois group I' with coefficients in G(k) (see [11, Ch. 2]
for details). The classes in H'(4, G) bijectively correspond to the isomorphism
classes of k-torsors under G. A k-forsor 7 under G is a k-scheme with an
action of G such that 7 x, k is isomorphic to G with its action on itself
by translations. The rwist "X of X by 7 is the quotient of 7 x; X by the
diagonal action of G. This is a del Pezzo surface of degree 4 over k which
is isomorphic to X over k. The action of G on X comes from its action on
P} that leaves invariant every quadric through X. Thus the twisting has no
effect on § = Sy. If A € L™ represents a class in H(k, G) given by formula
(2), and X is given by (3), then the twisted surface is given by

TrL/k(Of)\uz) = TI'L/}((OH)\MZ) =0.

It is easy to check that G(k) acts simply transitively on the 16 lines of X.
This action defines a k-torsor 7x under G, which we call the torsor of lines
of X. A del Pezzo surface of degree 4 is quasi-split if and only if its torsor
of lines is trivial, i.e. has a k-point.
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THECREM 2.3. Let X be a del Pezzo surface of degree 4, and let Sy be
the attuched reduced 5-element subscheme of PL. Let Xo be the blow-up of
PZ in the image of Sx under the Veronese embedding P} <> S*HPl) = P%.
Then Xy is
(a) the unique {up to isomorphism) quasi-split wist of X by a k-torsor

under G ;

(b) the unique (up fo isomorphism) quasi-split del Pezzo surface of degree 4

such that Sx and Sx, are projectively equivalent as subschemes of P}.

Proof. The surface Xy is clearly quasi-split, moreover, the subschemes
Sx and Sy, of P} are projectively equivalent by Lemma 2.2. Let us show
that Xp is the unique quasi-split twist of X. If 7 is a k-torsor under G, then
the torsor of lines of the twist "X is 7 x4 7x. The class of this torsor is
[tx] —[7] € HYk. &), hence "X is quasi-split if and only if 7 = 7x. Thus the
twist of X Dby its torsor of lines is the unique quasi-split twist of X. Since the
twisting does not affect Sy we see from Lemma 2.2 that the twist of X by
Tx 1s isomorphic to Xy. This proves (a). The uniqueness in (b) is immediate
from Lemma 2.2.

If X is given by (3), then, by the remark in the end of the previous section,
Xp 1s given by

Try (P01 = Try P/ (@) 106y = 0,

or, equivalently, by

5 5
(6) D P@)'E =) P®) g = 0.

i=1 i=1
When all the roots &; of P(x) are in 4, the last set of equations describes a
split del Pezzo surface of degree 4.

We obtain the following classification of del Pezzo surfaces of degree 4:
their isomorphism classes are in a natural bijection with pairs (§,[A]), where
S is a reduced closed 5-element subscheme of P}, considered up to projective
equivalence, and [A] € Hl(k: Gg). If § is given by P(x) = 0 and A € L~
then the twisted surface X, is given by

D Try n (AP (0 '3) = Trp n PO 06 = 0.

Quasi-split surfaces are those for which [A] is trivial, and split surfaces are
those for which [A] is trivial and § is the disjoint union of five copies
of Spec(k).



DEL PEZZO SURFACES OF DEGREE 4 79
3. KUMMER SURFACES ATTACHED TO CURVES OF GENUS 2

3.1 MUITIPLICATION BY 2 ON THE KUMMER SURFACE

Let C be a curve of genus 2, and let W C C be the closed subscheme
of Weierstrass points of C. We denote by M = k[W] the corresponding
6-dimensional étale k-algebra. The canonical map represents € as the double
covering x: C — P} ramified at x(W). Let ¢ be the hyperelliptic involution
on C (the deck transformation of k). Let J be the Jacobian of €, and let
S*(C) be the symmetric square of C, i.e. the smooth projective surface defined
as the quotient of C x C by the involution that swaps the two factors. Consider
the curve L C §*(C) whose points are the unordered pairs {x,u(x)}, for all
x € Cky. Tt is clear that L ~ P. The Abel map Ab: S*(C) —» J sending
{A,B} to the class of the divisor A+ B — &~ 1(o0), where oc is some fixed
k-point of P}, is the contraction of L to the identity in J. It is well known
that J[2] = Ab(§?W). It is also well known that J[2] is naturally isomorphic
to the &-group scheme R}, /k(,u.z)/ ji2, defined as the kernel of the norm map
Rasalpad/ 12 — g

The quotient of J by the antipodal involution x +— —x is the singular
Kummer surface Ko . Let J be the blow-up of J in the 16 points of J[2]. The
antipodal involution extends to J, and the quotient of J is the desingularized
Kummer surface K. We also define a partial desingularization Ky as the
blowing up of K, at the image of 0 € J(k). Alternatively, Ky is the quotient
of $2(C) by the involution that maps {A, B8} to {u/(A), (B}, Finally, K, also
has the involution ¢ coming from the involution on C? that sends the ordered
pair (A, B) to (i«(4), B). The quotient Ky /o is the same as the quotient of Cc? by
the action of the dihedral group of order 8 generated by + acting on each factor,
and the involution swapping the factors. Therefore, Ky/o = SZ(P}{) — P%. We
obtain a commutative diagram, where the horizontal arrows are contractions,
and the vertical arrows are finite morphisms of degree 2:

CZ

I

J—— 820 ——— I

| | l

K —— Ky — Kiing

|

L+
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It is clear that ¢: Ky — Pi is a double covering ramified in the six k-lines,
which are the images of the six curves Cp < §2(C) whose points are {P.x},
where P is a fixed Weierstrass point from W(&), and x € C(k). Note by the
way that these lines are tangent to a common conic, namely (L), where
L~ P}{ is the set of points {x,ux)}, x € C(k). The six lines are in general
position in the sense that no three of them have a common point. The fifteen
singular points of Kp go to the intersection points of pairs of these six lines.

The multiplication by 2 on J gives rise to a morphism J — §*(C) = J/J[2]
which is a torsor under J[2]. It descends to a morphism f: K — Kp = K/J[2],
whose restriction to a certain open subset is a torsor under J[2]. Indeed, J[2]
acts on K, and the set of points with non-trivial stabilizers is (J[4]\ J[2])/¢.
This is a J[2]-invariant set of 120 k-points of K. Let K’ be its complement in
K, and let Kpsp be the smooth locus of Kp. It is clear by construction that f
sends K’ to Ky g, and that f: K’ — Kq o 1s a torsor under J[2]. We point out
that f sends each of the 16 lines on K to L. We get a commutative diagram,
where the right arrows are contractions, the left arrows are finite morphisms
of degree 2, and the vertical arrows are finite morphisms of degree 16:

11

KD,sm C Ky +— SZ(C) —

The description of the desingularized Kummer surface as an intersection
of three quadrics in Pi is known since J. Pliicker and F. Klein. See [8],
[7], [6, Ch. 6] for the case &k = C, and [3, Ch.16], [9] for the case of an
arbitrary field of characteristic different from 2. We give a new proof of this
classical statement using some basic facts from the theory of torsors due to
Colliot-Thélene and Sansuc. Our proof works over any field of characteristic
not equal to 2 that contains more than five elements. If & is such a field we
can choose a coordinate on P,{ so that s({W) C A]{. Let Q(x) be the monic
polynomial defining (W), and let ¢ be the image of x in M = k[x] /(Q(x)).

THEOREM 3.1. The desingularized Kummer surface K is isomorphic to
the closed subvariety of P; = P(Ry Al given by three quadratic equations

(8 Try(Q' @) ") = Try u(Q' () 0u™) = Ty (Q' () ' 67°) = 0,

where u is a variable in Al,.
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Proof. We refer to [11, Def. 2.3.2] for the definition of the fype of a torsor.
Recall that J[2] is self-dual because of the Weil pairing J[2] x J[2] — pa,
so that the k-groups .f[E] and J[2] are canonically isomorphic.

We claim that there is a natural isomorphism J[2](k) — Pic{Ky emlions.
and that this isomorphism is the type of the torsor f: K’ — Kygm. To prove
this we note that K’ is the complement of a finite subset in the smooth,
projective and geometrically integral surface X, and hence k[K']* = k* and
Pic([?’) = Pic(K). The latter abelian group is torsion free since K is a K3
surface. Now the exact sequence [11, (2.5)] takes the form

0 = J[21k) = Pic(Kosm) — Pic(K ).

This gives an isomorphism of I'-modules J[2](k) — Pic(Ko sm)ios. This map
is the type of the torsor f: K/ — Kpsm by Lemma 2.3.1 and the remark after
Def. 23.2 of [11].

Recall that ¢: Ko — P? is a double covering ramified exactly in
the images of the six lines w(P) x P!, P € W), under the morphism
(PH* — §%(Py) = P2. We choose coordinates in P7 in such a way that this
morphism sends {(z: b),(c: d)} to (ac: —ad — bc: bd). Then the lines have
the form (x¢; : —x — yf}; : v), and so their equations are

fo + 1o + r26‘!-2 =
Thus Ky is given by
¥ = aNy o + 10 + 6%,

for some a € k. (More precisely, K, is obtained by gluing together three
affine surfaces obtained by putting f; = 1 in this equation, which is possible
since dim; M is even.) The curve ¢(L) C P is the image of the diagonal
P! C (P}, and so is the set of points (r* 1 —2rs: 57); in fact, ¢(f) is the
conic tangent to the six ramification lines. We see that ¢~ !(¢(L)) is given by

¥ = aNy(r— s0)*, which shows that a € £*%, so we can take @ = 1. Thus
Ky has the equation

¥ = Nypllo + 16 + 26%).
Let Z C P} be the closed subvariety defined by (8) or, equivalently, by

6 6 6
© QWIS =Y Q6 TNE = 066 = 0.

i=1 i=1 i=1
An easy calculation shows that Z is smooth, and hence is a K3 surface. The
k-group Ryrni2)/ iz acts on P} = P(Ry/cA}y) by changing the signs of the
coordinates z;. The natural morphism Z — Z/(RM/k(Mz)/Mz) sends u to u®,
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so that Z/(Rys/(u2)/p2) is the subsct of P} = P(Ry;zA}) with M -coordinate
w = u?, given by

TrM/k(Q’(H)ilw) = TTM/k(Q’(Q)flﬁ'w) = TrM/k(Ql(6)71927L') =0.

In particular, Z/(Rpys/(p2)/ piz) = P? is the projectivization of the 3-dimensional
subspace of RL/kAi defined by these equations. This space is spanned by
1, 6, 6% ie. we can write w = fy+ 160 +566%, where 5. 11, £ are coordinates
over k. The quotient of Z by the action of the subgroup lew /k(,u.z)/p,z of
elements of norm 1 is identified with Ky by the morphism ¢: Z — Ky given
by y= Ny (). It is obvious that R}./,v/k(,“-z)/!iz acts freely on the open subset
of P} consisting of the points with at most one zero coordinate. Let Z' be the
intersection of this open subset with Z. The image g(Z") is precisely Kpsm,
hence g: Z' — Kggm 18 a torsor under R}Wk(,uz)/,u.g = J[2]. The set Z\ Z’
is finite, and the same arguments as in the beginning of the proof show that
the types of ¢: Z' = Kosm and f: K’ — Koo are the same.

By the exact sequence of Colliot-Théléne and Sansuc (see [11], (2.22)), to
prove that these two torsors are isomorphic it is enough to find a k-point N on
Ko gm with k-points in £71(N) and in g~'(N). Note that £=1(£) is the union
of the 16 lines on K ; moreover, one of them, namely, the line corresponding
to the identity in J, is defined over k. On the other hand, g~!(L) is given by
the equations #% = (r —s6)%, Ny k() = y. The line u = r— 38 lies in Z and
projects isomorphically onto £.. This proves that Z’ and K' are isomorphic
as torsors over Kogn -

We end this section with some geometric remarks. Let €% be the image
of Cp in J. The Riemann—Roch theorem on ¢ implies that Cp N Ch =
{0,(P — R)}, so that 0 is the only common point of these six curves on .J.
Let Dp C J be the inverse image of C} under the multiplication by 2 map.
Since each C} contains 0, each curve Dp contains J[2] < J. Since the curves
C}p are translations of one of them by points of order 2, the curves Dp are
linearly equivalent. More precisely, Dp € 48|, where @ < Pic(J) is the class
of the theta-divisor Cp for some P € W(k). The curves Dp are invariant under
the antipodal involution. The linear system |4®& — J[2]| defines a morphism
from J to P{ whose image is K embedded in P§ as an intersection of three
quadrics (see [6], p.786). The images D} of the Dp in K define a basis of
HYK, (1), These curves can also be viewed as the inverse images of the six
lines in Ky, where ¢ Ky — P% is ramified. Thus the Dp are the coordinate
hyperplane sections. As a smooth intersection of three quadrics, each of these
curves is a canonical curve of genus 5.
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3.2 THE CASE OF A RATICNAL. WEIERSTRASS POINT: FROM KUMMER TO
DEL PEZZO

Now suppose that C has a Weierstrass &k-point K. Write x(W) as the
disjoint union of x(R) and a reduced 5-element subscheme § = S¢ C P;{.
This gives a decomposition of the algebra of functions M = 4[W] into
the direct sum M = L &k, where L = &[S]. We continue to assume
that |k| > 5, so we can choose a coordinate on P} in such a way that
w(W) C A]{. Let &5 be the coordinate of x(R). Then Q(x) = Px)(x — fs),
where P(x) = H?Zl(x = Nz elx — ). Then § is the closed subscheme
of Ai defined by P(x) = 0, and £ = &[x]/(PG)).

The map (id,Ng ) identifies Ryp(uiz)/ 2 with R;Mk(,ug)/,uz, thus /(2]
is the k-group G = Ry (pp)/p2 of Section 2. The projective space

P} = PRy Al = PRy AL X AD
contains P{ = P(R;;;A]) as a hyperplane. The projection
m PIA{(0:0:0:0:0: 1)} — P} = P(R; 1A}

is a J[2]-equivariant morphism.

PRCOPOSITION 3.2. Let X be the quasi-split del Pezzo surface of degree 4
defined by the polynomial P(x). If X is embedded inio P} as the zero set
of equations (6), then the restriction of w to K is a J[2]-equivariant finite
morphism K — X of degree 2. This double covering is ramified in the
hyperplane section K N P(RL/kAi) given by zg = 0, which is a canonical
curve of genus 5.

Proof. The elimination of z from (9) gives (6). The ramification divisor
of m is the curve D} described at the end of the previous section.

In particular, any quasi-split del Pezzo surface of degree 4 is the quotient
of K by the involution whose fixed point set is the curve Dj.

The k-group Rys;lpe)/pz is the direct product of J[2] = G and the
subgroup jiz C Ryyyx(p2)/p2 which changes the sign of the coordinate z
corresponding to the rational Weierstrass point . The morphism 7: K — X
can be viewed as passing to the quotient by the action of this subgroup ;.
Thus the morphism K —» K/(RM/,:((u-g)/,uz) ~ P% can be written cither as the
composition of 7: K = X and X — X/G ~ P, or as the composition of
K—K/G=Ky and ¢: Ky — P%.
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The k-group J[2] = G acts on the projective surfaces J/, K and X, thus
for any A € L* representing the cohomology class [A] € HYX(k, G) = L* /k*L*?
we can consider the twisted surfaces Jy, Ky and X, . Here Jy is a 2-covering
of J, whereas X, is the same as in the end of Section 2 and is given by (7).
Since 7: K — X is J[2]-equivariant we obtain a natural morphism K — X
(cf. [4, §6]). Thus in the case of a rational Weierstrass point for every A € L*
we obtain the following commutative diagram :

Xy < Ky, .7)\ — S
| | | |
P Ky SHC) — J

Here the morphisms in the upper row are J[2]-equivariant, and the vertical
arrows are the factorization morphisms by the action of J[2]. We note that
the 16 lines on X, are the images of the 16 lines on the Kummer surface Ky .

CORCLLARY 3.3. For any del Pezzo surface X of degree 4 ihere exisis a
curve C of genus 2, and a 2-covering J, of the Jacobian J of C that has
a dominant rational map to X.

The above construction produces such a curve €, with equation y* =
aP(x)(x — Og); this curve is uniquely determined by X up to the quadratic
twist by a and the choice of the sixth Weierstrass point x = fg in P\ Sx.
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