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DEL PEZZO SURFACES OF DEGREE 4

AND THEIR RELATION TO KUMMER SURFACES

by Alexei Skorobogatov

Introduction

In this note, which has little pretence to originality, we clarify the relation
between the geometry of del Pezzo surfaces of degree 4 and their realization

as the zero set of two quadratic forms in five variables. We also review the

classical description of the desingularized Kummer surface K constructed from
the Jacobian ./ of a curve C of genus 2 as the zero set of three quadratic forms
in six variables (PIücker, Kummer, Klein [8], [7], see [6] or [3] for a modern

treatment). If C has a rational Weierstrass point, a partial diagonalization
of this system gives rise to a natural projection onto a hyperplane, defining
a finite morphism vr : K —> X of degree 2 onto a del Pezzo surface X of
degree 4 (see [4, §6]). We show that X is the blow-up of Pf in the images of
the five other Weierstrass points of C under the embedding of Pj; as a conic

in Pf. The morphism tt sends the 16 lines on K to the 16 lines on X, and

is equivariant with respect to the action of the subgroup of 2-division points
J[2] c ./. Thus -n gives rise to a morphism from the twisted Kummer surface

to the twisted del Pezzo surface.

In our presentation it is obvious that all del Pezzo surfaces of degree 4
can be obtained in this way, an observation made by Victor Flynn in [5]. The

fact that any 2-covering of J maps to a del Pezzo surface of degree 4 was
first observed in [2], and used in [2], [1] and [4] to construct and visualize
elements of order 2 in the Tate-Shafarevich group of J over Q using the

theory of the Brauer-Manin obstruction on del Pezzo surfaces of degree 4. It
was the author's desire to understand the geometry behind these calculations
that prompted him to write this note. I would like to thank Igor Dolgachev
for useful discussions.
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1. Preliminaries

Let k be a field of characteristic not equal to 2 with separable closure

k, and Galois group T Gal(k/k). Let L be an étale /<;-algebra, that is,

L kj for some finite separable field extensions kj/k. The trace map

TrL/*: L -a k is defined as the sum of traces Tr*y* : kj —> k. Similarly, the

norm map N^y* : L* -a k* is the product of norms N^y*: k* —> k*. Let
n — dim* L. For example, if P(x) is a separable polynomial of degree n,
then L k[x]/(P(x)) is an étale £-algebra of dimension n. Let 0 L be the

image of x. Lagrange interpolation gives rise to the well-known relations

(1) TrL/*CPQT1#) 0, i 0,1,..., n - 2-,

where P'(x) is the derivative of P(x')

Assume that n is odd. Consider the finite étale abelian group k -scheme

G — Rl/*(//-2)/f'-2, where RL/* is the Weil restriction of scalars. The abelian

group G(ic) ~ (Z/2)'!_1 is generated by n elements of order 2 whose product
is the identity. These generators are permuted by F in the same way as the

components of L(&kk ~kn. There is an exact sequence of it-groups

1 —> p2 —> Rz,/kißl) —Ï G —> 1

Since n is odd, the usual restriction-corestriction argument shows that the

map
H2(k,p.2) -A H2 (k, Rl/*(/U2)) H2(L. fi-2)

is injective. Thus we have

(2) H\k.. G) L*/k*L*z Coker [A: k*/k*2 -A JJ kj/kf]
j

where A is the diagonal map.

We shall have to deal with 5-tuples of points on the projective line, as well

as with 5-tuples of points and 5-tuples of lines in the projective plane. Recall
that all these data are equivalent up to projective transformation. Indeed, to
give five distinct points in P| is equivalent to giving five points in P2 in
general position (this means that no three points are on the same line). In

one direction, use the Veronese embedding P| -a 52(P*) P2, where S2

denotes the symmetric square. In the other direction take the unique conic

C ~ Pj[ through five points in the plane. Five lines in general position in P2

correspond to five points in general position in the dual projective plane.
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Similarly, to give six distinct points on a smooth projective curve of

genus 0 is equivalent to giving six points in P| lying on a conic. This is
also equivalent to giving six lines in the dual plane Pf which are tangent to
a common conic.

2. Del Pezzo surfaces of degree 4

2.1 Equations

We assume that k has at least 5 elements. Let X be a del Pezzo surface

of degree 4, i.e. a smooth intersection of two quadrics in P4. Let Q\ and Qz

be quadratic forms in five variables such that X is given by Qi Qz 0.

By [10, Prop. 2.1] exactly five quadrics in the pencil of quadrics containing X
are singular. Using the assumption about k we may assume without loss

of generality that detßi ^ 0. By a linear change of variables and the

multiplication of Q\ by an element of k* we can arrange that detQi 1.

Then the characteristic polynomial P(x) detCQjx— Q2) is a separable monic

polynomial of degree 5, so that P(x) nf=i(x — ^«') f°r some distinct 0-, k.

Then L k[x]/{P{x)) is an étale fc-algebra of dimension 5. Let 6 be the image
of x in L ; then (#,) G k5 is the image of 0 under the map L -¥ L O* k k5.

Over k the quadrics of the pencil can be simultaneously diagonalized
{ibidem). More precisely, we can write P4 P(Rl/T-^l), and let u yj^_0 ut0'
be a variable in A[. For an arbitrary del Pezzo surface X of degree 4 with
characteristic polynomial P(x) there exists q e L* such that X is given by
equations

(3) TrL/k(auz) TrL/k(aOi/) 0,

or, equivalently,

]T aiZj a'°'z^ 0,
i=i i=i

where (a,) G k5 is the image of a in L % &
-

Let G RL/kißi)/ß2- The abelian group G(k) cx (Z/2)4 is generated by
five elements of order 2 whose product is the identity. These generators are

permuted by T in the same way as the indices of the 0,. The -group G

acts on P4 by changing the signs of the coordinates z,, so G leaves invariant

every quadric that contains X, and thus preserves X. From (3) it is clear that
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the natural morphism X -) I/G sends u to if, so that X/'G is the subset

of P(R.£/ÄAjr,) with L-coordinate w u2, given by

In particular, X/G — Pf. Set S aP'(9). By relations (1) the 3-dimensional

subspace of RL/kA[ given by (4) is spanned by ô-1. S~162. Thus we

can write w J-1 (to 4- hd + hd2), where to, t\. tz are coordinates over k.

Therefore, X is given by the vanishing of the 03 - and 04 -terms in

Thus every del Pezzo surface of degree 4 is isomorphic to the surface given

by (5) for some separable polynomial P(x) of degree 5, and S G L*. This
was pointed out by E. V. Flynn [5].

Remark. We note that if S 1, then X contains the line P| with
coordinates (r : s), given by u r + sB, to r2, t\ — 1rs, tz — s2.

2.2 Geometry

To a del Pezzo surface X of degree 4 we associate the reduced closed

5-element subscheme S Sx C P^ parameterizing singular quadrics in the

pencil of quadrics through X.

Definition 2.1. A del Pezzo surface X of degree 4 over k is called

split if all the 16 lines on X are defined over k. Let us call a del Pezzo

surface X of degree 4 quasi-split if it has at least one line defined over k.

Equivalently, X is quasi-split if it is the blow-up of Pf in a Galois-stable set

of five k -points in general position.

To see the equivalence of the two definitions note that the five lines on X
meeting a fixed fc-line are disjoint, and so can be simultaneously contracted,
which gives a morphism X —> P|. Conversely, the blow-up of P| in a Galois-
stable set of five points in general position contains the fe-line which is the

strict transform of the unique conic through these five points.

(4) TrL/*(aw) lrL/k{aOw) 0.

(5)

LEMMA 2.2. Any quasi-split del Pezzo surface Y ofdegree 4 is isomorphic
to the blow-up of Pf in the image of Sy under the Veronese embedding

Pl^S2(Pl) P2k.
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Proof. Let F be a quasi-split del Pezzo surface of degree 4 with a

it-line £. The contraction of the five k-lines of Y that meet I represents

Y as the blow-up of Pf in a Galois-stable set of five &-points,
and identifies I with the unique conic through them. It is enough to

prove that the resulting 5-element subscheme F c i l Pj is projectively
equivalent to Sy. Choose a it-point xq in £ \ F, which is possible since

\k\ > 5. We identify F with the pencil n of quadrics through Y as

follows. The tangent spaces T^.q, where Q is a quadric in n, are

precisely the hyperplanes in P^ containing the tangent plane TX;j. If x is a

F:-point in £ \ F, then the union of £ and the inverse image of the line
(xqx) c Pf in Y is the hyperplane section Txq,qCi Y for a unique non-singular
quadric Q in n. This defines an isomorphism n ~ £ which identifies F
and Sy.

The scheme S Sx defines the étale it-algebra L — it[5] and hence the

it-group G — RL/k(/J.2)/F2- The singular quadrics containing X are cones over
smooth quadric surfaces. The action of G on X has the following geometric

description. The five generators of G(Jc) correspond to the five singular quadrics

containing X, so that each generator acts on X as the deck transformation
of the double covering given by the projection of X from the vertex of the

corresponding quadratic cone to its base.

As a projective variety with an action of G, I can be twisted by a

1-cocycle of the Galois group T with coefficients in G(Jc) (see [11, Ch. 2]

for details). The classes in H1(k, G) bijectively correspond to the isomorphism
classes of fc-torsors under G. A k-torsor r under G is a F:-scheme with an

action of G such that r xkk is isomorphic to G with its action on itself
by translations. The twist TX of X by r is the quotient of r xk X by the

diagonal action of G. This is a del Pezzo surface of degree 4 over k which
is isomorphic to X over k. The action of G on A comes from its action on
PÎ* that leaves invariant every quadric through X. Thus the twisting has no
effect on S Sx- If A A* represents a class in Hl(k, G) given by formula

(2), and X is given by (3), then the twisted surface is given by

TrL/k(a\u2) TrL/k(o.0Xu2) 0.

It is easy to check that G(k) acts simply transitively on the 16 lines of X.
This action defines a k -torsor rx under G, which we call the torsor of lines

of X. A del Pezzo surface of degree 4 is quasi-split if and only if its torsor
of lines is trivial, i.e. has a k-point.
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THEOREM 2.3. Let X be a del Pezzo surface of degree 4, and let Sx be

the attached reduced 5-element subscheme of P]:. Let Xq be the blow-up of
Pf in the image of Sx under the Veronese embedding PJ £—> S2(P|) Pf.
Then Xq is

(a) the unique (up to isomorphism) quasi-split twist of X by a k-torsor
under G ;

(b) the unique (up to isomorphism) quasi-split del Pezzo surface of degree 4
such that Sx and SxQ are projectively equivalent as subschemes of P^.

Proof. The surface Xq is clearly quasi-split, moreover, the subschemes

Sx and Sx0 of Pi are projectively equivalent by Lemma 2.2. Let us show

that X() is the unique quasi-split twist of X. If r is a fc-torsor under G, then
the torsor of lines of the twist TX is r x* tx- The class of this torsor is

[rx\ — [r] H1^, G), hence TX is quasi-split if and only if t rx. Thus the

twist of X by its torsor of lines is the unique quasi-split twist of X. Since the

twisting does not affect Sx we see from Lemma 2.2 that the twist of X by

rx is isomorphic to Xq. This proves (a). The uniqueness in (b) is immediate
from Lemma 2.2.

If X is given by (3), then, by the remark in the end of the previous section,

Xq is given by

TrLA(/"(0)-V) rTvL/k(P,(ß)~19u2) 0,

or, equivalently, by

pî Lp'^rli L- a-
i=l i=l

When all the roots Sj of P(x) are in k, the last set of equations describes a

split del Pezzo surface of degree 4.

We obtain the following classification of del Pezzo surfaces of degree 4:
their isomorphism classes are in a natural bijection with pairs (S. [A]), where

S is a reduced closed 5-element subscheme of P|, considered up to projective
equivalence, and [À] G H1^, Gs). If S is given by P(x) — 0 and A G L*,
then the twisted surface X\ is given by

(7) TrLA(AP'(Ö)-V) TrLA(APfOy'Ou2) 0.

Quasi-split surfaces are those for which [A] is trivial, and split surfaces are

those for which [A] is trivial and S is the disjoint union of five copies
of Spec(k).
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3. Kummer surfaces attached to curves of genus 2

3.1 Multiplication by 2 on the Kummer surface

Let C be a curve of genus 2, and let W C C be the closed subscheme

of Weierstrass points of C. We denote by M k[W] the corresponding
6-dimensional étale fc-algebra. The canonical map represents C as the double

covering k: C m ramified at k(W). Let i, be the hyperelliptic involution

on C (the deck transformation of k). Let J be the Jacobian of C, and let
S2(C) be the symmetric square of C, i.e. the smooth projective surface defined

as the quotient of CxC by the involution that swaps the two factors. Consider
the curve L c S2(C) whose points are the unordered pairs {x, /,(x)}, for all

x £ C(k). It is clear that L ex P^. The Abel map Ab: S2(C) -A J sending

{A, 13} to the class of the divisor A + B — k-1(oo), where oc is some fixed
k -point of P}, is the contraction of L to the identity in ./. It is well known
that J[2] Ab(S2W0. It is also well known that J[2] is naturally isomorphic
to the k -group scheme ß2, defined as the kernel of the norm map
Rm/A(^i)j1*>I —> Hz •

The quotient of J by the antipodal involution x i—> —x is the singular
Kummer surface Ksim. Let J be the blow-up of ./ in the 16 points of ,/[2]. The

antipodal involution extends to J, and the quotient of J is the desingularized
Kummer surface K. We also define a partial desingularization Ko as the

blowing up of ÀLng at the image of 0 G ./(k). Alternatively, Kq is the quotient
of S2(C) by the involution that maps {A, 5} to {i(A), i,(B)\. Finally, K0 also

has the involution a coming from the involution on C2 that sends the ordered

pair (A,B) to (j-(A), B). The quotient Kq/o is the same as the quotient of C2 by
the action of the dihedral group of order 8 generated by t acting on each factor,
and the involution swapping the factors. Therefore, Kq/ct 52(P^) — P2. We

obtain a commutative diagram, where the horizontal arrows are contractions,
and the vertical arrows are finite morphisms of degree 2:

C2

L

J > S\C) > J

K > Kq y Ksing

I

Pf
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It is clear that <p: Ko —» Pf is a double covering ramified in the six k-lines,
which are the images of the six curves Cp C S2(C) whose points are {/\x},
where F is a fixed Weierstrass point from W(k), and x G C(k). Note by the

way that these lines are tangent to a common conic, namely <p(L), where

L ~ is the set of points {x, i(x)}, x G C(k). The six lines are in general

position in the sense that no three of them have a common point. The fifteen

singular points of Ko go to the intersection points of pairs of these six lines.

The multiplication by 2 on J gives rise to a morphism J —> S2(C~) JjJ[2\
which is a torsor under J[2]. It descends to a morphism /: K —y Ko K/J[2],
whose restriction to a certain open subset is a torsor under /[2]. Indeed, /[2]
acts on K, and the set of points with non-trivial stabilizers is (/[4] \ ./[2])/i.
This is a /[2] -invariant set of 120 £-points of K. Let K' be its complement in
K, and let A/sm be the smooth locus of Ko- It is clear by construction that /
sends K' to A"0.sm, and that /: K' —y A"0,sm is a torsor under ,/[2]. We point out
that / sends each of the 16 lines on A" to L. We get a commutative diagram,
where the right arrows are contractions, the left arrows are finite morphisms
of degree 2, and the vertical arrows are finite morphisms of degree 16:

K' c K 4 J > J

j I
Ko.sm c Ko < S2(C) > J

The description of the desingularized Kummer surface as an intersection

of three quadrics in is known since J. Plücker and F. Klein. See [8],

[7], [6, Ch. 6] for the case k C, and [3, Ch. 16], [9] for the case of an

arbitrary field of characteristic different from 2. We give a new proof of this
classical statement using some basic facts from the theory of torsors due to
Colliot-Thélène and Sansuc. Our proof works over any field of characteristic

not equal to 2 that contains more than five elements. If k is such a field we

can choose a coordinate on P| so that k.( W) C A|. Let Q(x) be the monic

polynomial defining k(W), and let 0 be the image of x in M — k[x~\ j(Q(x)).

THEOREM 3.1. The desingularized Kummer surface K is isomorphic to
the closed subvariety of P^ — PfR^/^A^) given by three quadratic equations

(8) TrMßiQ'iOy'u2) TrM/k{Q\0rl0u2) Trw/*(ß'(0)-W) 0,

where u is a variable in A/
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Proof. We refer to [11, Def. 2.3.2] for the definition of the type ofa torsor.
Recall that J[2] is self-dual because of the Weil pairing J[2\ x J[2] —> ft,2,

so that the &-groups J[2] and J[2] are canonically isomorphic.
We claim that there is a natural isomorphism J[2](k) —Pic(A"o.sm)tois,

and that this isomorphism is the type of the torsor f:K' —> Ko,sm. To prove
this we note that K' is the complement of a finite subset in the smooth,

projective and geometrically integral surface K, and hence k[K'Y k* and

Pic(A" Pic(/Q. The latter abelian group is torsion free since K is a K3
surface. Now the exact sequence [11, (2.5)] takes the form

0 -4 J[2](k) -+ Pic(^o,sm) -> Pic(K').

This gives an isomorphism of T-modules J[2](k) —Pic(A"o.sm)tois • This map
is the type of the torsor f :K'—> Ko.sm by Lemma 2.3.1 and the remark after
Def. 2.3.2 of [11].

Recall that 6: Ko —> P2 is a double covering ramified exactly in
the images of the six lines k(P) x P|, P £ W(k), under the morphism
(pl )2 —> S2(P|) — P?. We choose coordinates in P| in such a way that this

morphism sends {(<a : b), (c : 0?)} to (ac : —ad — be : bd). Then the lines have

the form (xO, : —x — yO, : y), and so their equations are

to + h Oi + t2@f 0.

Thus Ko is given by

y2 — aNM/k(to + t\9 + t2&2),

for some a k*. (More precisely, Kq is obtained by gluing together three

affine surfaces obtained by putting t; 1 in this equation, which is possible
since dimkM is even.) The curve è(L) c P2 is the image of the diagonal
P| C (P*)2, and so is the set of points (r2 : —2rs : s2) ; in fact, q(L) is the

conic tangent to the six ramification lines. We see that 0-1(<5(L)) is given by
y2 aNM/k(r— sO)2, which shows that a k*z, so we can take a 1. Thus

Ko has the equation
y2 Nytf/*(£() + hd + ?2^2) •

Let Z c Pf be the closed subvariety defined by (8) or, equivalently, by

Si LwYm=E E Iftr'lf«a-
(=i 1=1 1=1

An easy calculation shows that Z is smooth, and hence is a K3 surface. The
k -group Pm/kUl2)/1>2 acts on P5k — P(RMßA\f) by changing the signs of the

coordinates z, The natural morphism Z —> Zj(RMjk(/j.2)/Pi) sends u to u2,
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so that Z/(RM/k(ji2)/ßz) is the subset of Pf P(RM/ÄA^) with M-coordinate
v.) u2, given by

TrM/k(Q'tfr1) TvM/kiQ'iOr'Ow) TrM/k(Q,(0r1O2w) 0.

In particular, Z/(/kißi)/ßi) — Pf is the projectivizationof the 3-dimensional

subspace of defined by these equations. This space is spanned by
1, B, B2, i.e. we can write w to + tiB + tzB2, where to- h, tz are coordinates

over k. The quotient of Z by the action of the subgroup RlMß(ß2)/ß2 of

elements of norm 1 is identified with Kq by the morphism g: Z —> Ko given
by y It is obvious that RlMjk{j.iz)/ß2 acts freely on the open subset

of P| consisting of the points with at most one zero coordinate. Let Z' be the

intersection of this open subset with Z. The image g(Z') is precisely K0.sm,

hence g.Z'-¥ A"o,sm is a torsor under RlM/k(ß.2)fß>z J[2]- The set Z\Z!
is finite, and the same arguments as in the beginning of the proof show that
the types of g: Z! -A Ko,sm and Ao,sm are the same.

By the exact sequence of Colliot-Thélène and Sansuc (see [11], (2.22)), to

prove that these two torsors are isomorphic it is enough to find a k -point N on
Ko.sm with -points in and in Note that/-1(L) is the union
of the 16 lines on K ; moreover, one of them, namely, the line corresponding
to the identity in J, is defined over k. On the other hand, g~l(L) is given by
the equations u2 (r - sß)2, N^/^«) y. The line u r - sB lies in Z and

projects isomorphically onto L. This proves that Z! and K' are isomorphic
as torsors over Ao,sm.

We end this section with some geometric remarks. Let C'P be the image
of Cp in J. The Riemann-Roch theorem on C implies that C'P fi C'R

{0,(.P — 9?)}, so that 0 is the only common point of these six curves on J.
Let Dp c J be the inverse image of C'P under the multiplication by 2 map.
Since each C'P contains 0, each curve DP contains J[Z\ c J Since the curves

Cp are translations of one of them by points of order 2, the curves DP are

linearly equivalent. More precisely, DP |4©j, where © G Ric(7) is the class

of the theta-divisor C'P for some P G W(k). The curves DP are invariant under
the antipodal involution. The linear system |4© - /[2] | defines a morphism
from J to whose image is K embedded in P| as an intersection of three

quadrics (see [6], p. 786). The images D'P of the DP in K define a basis of
H^A", 0(1)). These curves can also be viewed as the inverse images of the six
lines in Kq, where <p: Kq P| is ramified. Thus the D'P are the coordinate

hyperplane sections. As a smooth intersection of three quadrics, each of these

curves is a canonical curve of genus 5.
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3.2 THE CASE OF A RATI ORAL WEIERSTRASS POINT: FROM KUMMER TO

DEL PEZZO

Now suppose that C has a Weierstrass &-point R. Write k(W) as the

disjoint union of k(R) and a reduced 5-element subscheme S Sc C
This gives a decomposition of the algebra of functions M k[W] into
the direct sum M L 0 k, where L k[S]. We continue to assume

that \k\ > 5, so we can choose a coordinate on P| in such a way that

k(W) C Al Let Be be the coordinate of k(R) Then Q(x) P(x)(x - Of),
where P(x) n^=i('A" — — Nl/aC* — 9). Then S is the closed subscheme

of A\ defined by P(x) 0, and L k[x]/(P(x))
The map (id, NL/k) identifies RL/k(pz)/ßz with RlM,k(ßz)/ßz< thus J[2]

is the k-group G Rt/kipz)!ilz of Section 2. The projective space

pf nR»^Aja=p<:%iAl x

contains Pf P(R£./ÄÄ^) as a hyperplane. The projection

tt: P| \ {(Q : 0 : 0 : 0 : 0 : 1)} -Hilf ICßp#
is a /[2] -equivariant morphism.

PROPOSITION 3.2. Lei X be the quasi-split del Pezzo surface of degree 4
defined by the polynomial P(x). If X is embedded into P^ as the zero set

of equations (6), then the restriction of tt to K is a J[2]-equivariant finite
morphism K —?• X of degree 2. This double covering is ramified in the

hyperplane section K H P(R^^A^) given by Ze 0, which is a canonical

curve of genus 5.

Proof. The elimination of Z6 from (9) gives (6). The ramification divisor
of tt is the curve D'R described at the end of the previous section.

In particular, any quasi-split del Pezzo surface of degree 4 is the quotient
of K by the involution whose fixed point set is the curve D'R.

The k-group Rm/kißz)/Pz is the direct product of /[2] G and the

subgroup uz C Rm/k(iJz)/Pz which changes the sign of the coordinate Z6

corresponding to the rational Weierstrass point R. The morphism n: K —> X
can be viewed as passing to the quotient by the action of this subgroup pz.
Thus the morphism K -p K/(RM/k(ßz)/ßz) — Pf can be written either as the

composition of n: K —» X and X hI/G~ Pf, or as the composition of
K -a K/G K0 and 0: K0 -a Pf.
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The k-group ,/[2] G acts on the projective surfaces J, K and X, thus

for any À L* representing the cohomology class [À] G) L* jk*L*2
we can consider the twisted surfaces J\, K\ and X\. Here J\ is a 2-covering
of J, whereas X\ is the same as in the end of Section 2 and is given by (7).
Since vr : K —> X is ,/[2] -equivanant we obtain a natural morphism K\ -a X\
(cf. [4, §6]). Thus in the case of a rational Weierstrass point for every À G L"
we obtain the following commutative diagram :

X\ < K\ i 7a > J\

Pf 4 K0 < S2(C) > J

Here the morphisms in the upper row are / [2]-equivariant, and the vertical

arrows are the factorization morphisms by the action of /[2]. We note that
the 16 lines on X\ are the images of the 16 lines on the Kummer surface K\.

COROLLARY 3.3. For any del Pezzo surface X of degree 4 there exists a
curve C of genus 2, and a 2-covering J\ of the Jacobian J of C that has

a dominant rational map to X.

The above construction produces such a curve C, with equation y2

aP(x)(x — ; this curve is uniquely determined by X up to the quadratic
twist by a and the choice of the sixth Weierstrass point x Be in Pj; \ Sx
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