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A WREATH PRODUCT APPROACH
TO CLASSICAL SUBGROUP THEOREMS

by Luis RIBES and Benjamin STEINBERG ™)

ABSTRACT. We provide elementary proofs of the Nielsen-Schreier Theorem and
the Kurosh Subgroup Theorem via wreath products. Our proofs are diagrammatic in
nature and work simultaneously in the abstract and profinite categories. A new proof
that open subgroups of quasifree profinite groups are quasifree is also given.

1. INTRCDUCTION

The purpose of this paper is to provide a conceptual framework for simple
algebraic proofs, in both their abstract and profinite versions, of the classical
subgroup theorems [rom combinatorial group theory: the Nielsen-Schreier
Theorem and the Kurosh Theorem. Qur proof of the Nielsen-Schreier Theorem,
for instance, could very easily be presented in a first course introducing free
groups. The fundamental idea is to exploit the functoriality of the wreath
product in order to reduce these theorems to diagram chasing. By removing
as much as possible the combinatorics on words, we are able to present proofs
that also work in the profinite category. Traditionally, the subgroup theorems
for profinite groups are obtained via a reduction to the abstract case; here we
prove the abstract and profinite theorems simultaneously.

In addition to proving the classical subgroup theorems, we also give a
very simple and natural proof of a result of the first author, Stevenson and
Zalesskii [17] on open subgroups of quasifree profinite groups.

The origins of our approach via wreath products lie in two sources:
profinite group theory and profinite semigroup theory. The genesis of the
wreath product technique for subgroup theorems is [4], where Cossey, Kegel
and Kovics used wreath products to prove that closed subgroups of projective
profinite groups are again projective. The usual proofs of this result rely on

*) The authors gratefully acknowledge the support of NSERC.
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the Nielsen-Schreier Theorem for abstract free groups or on cohomological
techniques, see [18, Theorem 7.7.4] for example. The wreath product approach
was further developed by Haran to study closed subgroups of free products
of profinite groups [8]. Ershov [6] seems to be the first to have attempted to
use wreath products to deal with subgroup theorems for discrete groups. In
particular, he gives a proof of the Kurosh Theorem using Haran’s notion of
a projective family. However, his proof is not conceptually appealing since it
follows this route of projective families, and moreover it relies on the Nielsen-
Schreier Theorem, which normally should be deducible as a special case of
the Kurosh Theorem.

The same wreath product techniques arose independently in the work
of semigroup theorists investigating the structure of free profinite monoids.
Wreath products were first introduced into semigroup theory by Schiltzen-
berger [19] and came to play a major role in the subject with the advent
of the Krohn-Rhodes Theorem [12], which definitively established the wreath
product as the principal instrument for decomposing semigroups into simpler
parts; see Eilenberg’s book [5] or [16] for details. There is no Nielsen-Schreier
Theorem for free monoids; also cochomological techniques do not work well
for semigroups because the Eckmann-Shapiro Lemma fails in this context.
Semigroup theorists were then naturally led to the wreath product to prove
structural results about free profinite monoids. Margolis, Sapir and Weil [14]
first exploited this technique in order to show that those finitely generated
clopen submonoids of a free profinite monoid that have any chance to be
free are indeed free; this was extended to the non-finitely generated case by
Almeida and the second author [1]. Rhodes and the second author rediscovered
the proof from [4] that closed subgroups of projective profinite groups are
projective and used an analogous argument to establish that closed subgroups
of free profinite monoids are projective profinite groups [15]; see also [20]
where a similar idea was used.

We soon came to realize that the theorems for abstract groups should also
be amenable to these techniques, leading to the current paper. The paper is
organized as follows. The first section sets up our notation for wreath products
and establishes the basic functorial properties of this construction. Next we
turn to the Nielsen-Schreier Theorem, which is proved for abstract groups and
then adapted to profinite groups. The Nielsen-Schreier Theorem is followed
up by the Kurosh Theorem, which is the most technical part of the paper. The
paper closes with a proof that open subgroups of quasifree profinite groups are
again quasifree. The aim of this paper is to be a self-contained and elementary
exposition, so many well-known results are included.
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2. NOTATION AND CONVENTICNS

If K and L are groups, K < L indicates that K is a subgroup of L.
Composition of maps in this paper is always assumed to be right-to-left, except
when dealing with permutations in a symmetric group Sz, which we multiply
left-toright. If x,y € L, we define ¥ =y~ 'xy and K* =y 'Ky. The inner
automorphism inn, of L determined by y is the automorphism x — yay !
(x e L).

2.1 THE SEMIDIRECT PRODUCT

Recall that a group G is said to act on a group R on the left, if there
exists a homomorphism «: G — Aut(R) denoted by g +— «, (g € G).

Equivalently, G acts on R on the left if there is a function G« R — R
denoted by (x,r)— *r, such that

@ r=r, ¥YreR,
by Pr="Cr, YrerR, xyeG,
(c) Xrr)="r"r, ¥Yrn.n el xeG.
Indeed, just define % = a.(r).
Given such an action, define the corresponding semidirect product R © G
to be the group with underlying set R x G and multiplication given by

(r, x)(r, x1) = rCr),xx) (r,rieR x,x1€G.

One checks that indeed this multiplication makes R » & into a group with
identity element (1,1). Note that

1
o= ¢Tha™h, 40D, = 01D,
Moreover, the maps
R—SRXG r—=(r1) (reR) and G—RXNG x—=(lL,x) xe®

are injective homomorphisms. If we identify R and G with their images under
these injections, we have R X G = RG, with RNG =1 and R <« R < G. When
using this identification we sometimes write the elements of R 4 G = RG as
r-x (r € R, x € ). Throughout the paper we use the notation (r,x) or r-x
for an element of R x (G, according to convenience.

2.2  PERMUTATIONAI. WREATH PRODUCTS

Fix a set T. Given a group A, define A% to be the group of all functions
f: T —= A We write the argument of such a function f on its right; thus the
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operation on AZ? is given by

(fo)(s) = fa(s)  (fge A, se).

We denote by &§: A = A% the diagonal homomerphism: it assigns 1o a € A
the constant function 8, € A defined by d4(s) = a, for all s € . The image
of 4 is denoted §,4.

Assume that a group G acts on X on the right Define the permutational
wreath product A1 G (with respect to the G-set X) to be the semidirect
product

AIG=A* %G,
where the action of G on A* is defined by
5f(s) = flsg) (6eG,fecA, scT).

The usage of left exponentiation follows Eilenberg [5]. Observe that G
centralizes d4 in A1 G, so that {4, G) =84 X G.

22.1 ELEMENTARY PROPERTIES. Several fundamental properties of the
wreath product are recorded in the following proposition.

PROPOSITION 2.2.1. (ay If B < A are groups, and H < G, then

BIH=B2xH<AIG=AxG.

(b) Funcroriality on A: (=)1G is a functor, i.e., for each homomorphism
o A — B, there is a homomorphism

lG AIG=A" NG BIG=BEXG

given by (f.q) — (af,y), where fc A2 and g € G, so that
(bl) ldA 1 G = idAzG: and

(b2) if A B By C are group homomorphisms, then

BalG=(B16G)aiG).

(c) Furthermore, a} G is an epimorphism (respectively, a monomorphism) if
and only if « is an epimorphism (respectively, a monomorphism).
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23 THE STANDARD EMBEDDING

Let H be a subgroup of a group G. Let T = H\G be the set of all
right cosets of H in G. Denote by p: G — Sz the associated permutation
representation of G in Sy, i.e., p is the homomorphism defined by p(g) = g
(¢ € ), where §: £ — Z is the permutation Hx — Hxg (x € G). Note that

ker(p) = (| xHx™! = Hg,
xcG

the core of H in G.

Fix a right transversal T of H in G, i.e., a complete set of representatives
of the right cosets Hx (x € G). We denote the representative of Hx in T by
either fm, or X, as convenient. Define sy € G* as the map that assigns to
each right coset of H in G its representative in T :

sp(HX) = tg, =X €T xe ().

Consider the monomorphism of groups ¢: G — G i p(G) given by the
composition of homomaorphisms

G 2 86 % PG G HG) —5 GIAG) .
Explicitly, if g € G, then
Plo) = sr(dy - gD st = fy - plg)
where f, € G? is defined by fi= s;r(i_,,f’(»‘:’)(sgl), ie.,
fotHo) = tmegtyy,  xEG).

We remark that $(G) < Hlp((), because f,(Hx) = tyxgt;f;y cH(xeG)
Therefore, we have proved

THEOREM 2.3.1 (Embedding Theorem). Let H < G be groups.
(a) There is an injective homomorphism . G — H | p(G) defined by
og) = fo - P9,

where f,: T = H\G — H is given by f,(Hx) = tyxglggq (g, xeG).
®) ¢lu(H) < HE % p(H) = H U p(H).

We record the following facts for future use; they follow by routine
computation in the wreath product.
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LEMMA 23.2. Let A be a group and . G — Alp(G) be a homomorphism
such that

G Y AL

\ lg
2l

G

computtes, where 0 is the projection. Put i(g) = (fgjp(g)) (g € G). Then
the following hold :

(B) fys = 9 F ) =T for g€ G

REMARK 233. If H < G, then X has the structure of a group that
we denote K. Identifying K with its canonical image in Sy = Sg, we have
K = p(G), so that ¢ G = Ht K. This is the so called Kaluznin-Krasner
Theorem: every extension of a group H by a group K can be embedded in
H 1K [11]. The standard embedding is very closely related to the monomial
map [7, Chap. 14] and the theory of induced representations; see [21] for a
detailed discussion.

From now on we shall use the notation 7 = {# | i € I} (if T is finite,
we write T = {1,....%4}), and we shall assume that there is a symbol 1 €/
such that #; = 1 is the representative of the coset H, ie., fg =1 = 1.
Fix i € /. Then the action of H% = £ 'Ht; on T = H\G fixes the element
Ht; € T. Hence if A is a group and f € A%, one has AWf(H1) = f(HL), for

all x € H%. Therefore, the copy
{ftH) |[feA*}=A

of the group A corresponding to the Hr, ¢ £ component of the direct product
AZ centralizes p(H™) in At p(H*) Thus

ALpiHD = A = p(H"y = A x (A2 5 o)
We denote by ma;: Al p(H") — A the corresponding projection:
malf - p) =fHE)  (x€ H', f € AY).

The case i =1 will be used so often, that it is convenient to set w4 = wa,1.
Part (b) of the following lemma expresses the naturality of wy,;.
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LEMMA 234, We continue with the above setting. Let i € 1.
(a) There is a commuftative diagram

W‘Hfi

Hif ——————— H 1 p(H")
\ lm,‘(
inng| e
H.

In particular, for i=1, mpyly = mpaw|p = idy.

M) If oo: A — B is a homomorphism of groups, then the diagram

clplH)

Al p(HS B p(H™)
A B

commiites.

(c) One has ﬂig(A LplHY = Al plH ) = AX where Hg is the core of H.
The resiriction (wa)|4z: A2 — A is the usual direct product projeciion.

Proof. To prove (a) observe that, for r € H%, one has
T, = FUHE) = tyrty,, = tirtT

since H' stabilizes Hi;. The proof of (b) follows directly from the definitions
of ma;, 7p,i, and ! p(H*). Part (¢) is clear, as [;; H* = Hg = ker p.

24 THE EMBEDDING THEOREM FOR PRCFINITE GROUPS

By a variefy of finite groups we mean a nonempty class € of finite
groups closed under taking subgroups, finite direct products and homomorphic
images. In this paper, we assume in addition that the variety € is closed under
extensions of groups (we say then that € is an extension closed variety of
finite groups). A pro-C group is a profinite group whose continuous finite
quotients are in €, i.e., an inverse limit of groups in €. Suppose now that G is
a pro-C group and H is an open subgroup of G (cf. [18] for basic properties
of profinite groups). Let £ = H\G; then X is finite, and the quotient topology
on X is discrete. Let p: G — Sz be as before; since Hg = kerp is open
in &, the homomorphism p is continuous. If A is any pro-€ group, then
AZ is a pro-© group and the left action p(G) x AT — A2, as defined above,
is continuous since X and G) are finite and the action just permutes the
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coordinates. Thus the wreath product A: p(G) = A% 1 p(G) is a pro-€ group
(here we use that € is extension closed). Moreover, if T is a transversal for
=, then it follows immediately from the definition that the standard embedding
w: G — Hp(G) is continuous.

3. THE NIELSEN-SCHREIER THEOREM

We present an elementary proof of the Nielsen-Schreier Theorem, stating
that subgroups of free groups are free, using wreath products. Our proof
is algebraic in nature, rather than combinatorial, and proceeds by direct
verification of the universal property. Let F' be a free group on X and H a
subgroup. Elements of F can be viewed as reduced words over XUX ™! [13].

3.1 SCHREIER TRANSVERSALS

A Schreier transversal for H < F is a right transversal T of H in F
that is closed under taking prefixes (and in particular contains the empty
wordy: if yy-- ooy, €T with vy,..., v, € XX ! in reduced form, then
vy €T, forall i=0,..., n — 1. The existence of Schreier transversals

is a standard exercise in Zorn’s Lemma.

LEMMA 3.1.1. There exists a Schreier transversal T of H in F.

Proof. Caonsider the collection P of all prefix-closed sets of reduced words
in X JX! that intersect each right coset of H in at most one element, and
order P by inclusion. Then {1} € P, so it is non-empty. It is also clear that
the union of a chain of elements from P is again in P, so P has a maximal
clement T by Zorn’s Lemma. We need to show that each right coset of H
has a representative in T. Suppose this is not the case and choose a minimum
length word w so that HwNT = @& . Since 1 € T, it follows that w # 1 and
hence 2 = ux in reduced form, where x € X LUX~!. By assumption on u:, we
have Hu = Ht for some ¢ € T. If #x is reduced as written, then T U {zx} € P,
contradicting the maximality of T. If # is not reduced as written, then x € T
by closure of T under prefixes and Hw = Hix, contradicting the choice of
2. This completes the proof that T is a transversal.

3.2 THE NIELSEN-SCHREIER THEOREM

We now proceed with our proof that subgroups of free groups are free via
wreath products.
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THECREM 3.2.1 (Nielsen-Schreier). Subgroups of free groups are free.
More precisely, let F be a free group on X and let H be a subgroup. Let T
be a Schreier transversal for H and

(3.1) B={ax@ |0 cTxX, (@1 #£1}.
Then H is freely generated by B.

Proof. Our goal is to show that any map a: B — G with & a group
extends uniquely to a homomorphism ~:  — G. First define an extension
@ BU{l} = G by a(l) = 1. Denote by = the set H\F of right cosets
of H in F and let p: F — §3 be the associated permutation representation
of F.

To motivate our construction of the extension, we start with a proof of
uniqueness. So let v: H — G be any homomorphism extending . Consider
the standard wreath product embedding ¢: FF — H p(F) of Theorem 2.3.1.
The functoriality of the wreath product and Lemma 2.3.4 yield the commutative
diagram

5 W)
F —V>H2p(F) S G p(F)

] J

Hence ~ is uniquely determined by (v p(F))y, which is in turn determined
by its values on X. But if x € X, then (v1p(FNelx) = (v fe. p(x)). Now recall
that fu(Hu) = tg.xtgl, € BU{1} and hence +f; = af,. Thus the unique
possible extension of ¢« to a homomorphism is given by we(7|p), where
T: F — G p(F) is the homomorphism defined on X by 7(x) = (o fi. px)).
Let us show that ag(7|z) extends .

let b€ B. Then b = txi(x)™! for some 1t € T, x € X. Let us suppose
that + = x;-+-x;_q and (FO~! = Xg41 '+ Xp 1n reduced form. We put x; = x
so that b = x; ---x,, although this product may not be reduced as written.
Set ;, =x1---x;, for i =0,...,n. Using that Schreier transversals are prefix-
closed one easily deduces the formulas:

L=X1""X; fori<k,

(3.2) L .
=X, X, for i > k.



58 L. RIBES AND B. STEINBERG

Indeed, the first formula is clear. The second follows because, for i > k—+1,
Hty = Hixxp g - -x = Hxn_1 . vxkjrllka e Hx;l .. vx;rll.

Our aim now is to verify wgr(b) = a(b). Put 7(r) = (f], p(r)), for r £ F.
We claim that if fgxfL, =1 (x € XUX™! w € F), then f/(Hw) = 1. This
is immediate if x € X, since f) = af, and fi(Hw) = tH.“_,xt,},i,x. Next assume
x € X~1. Hence, taking into account that x~! € X

FllHw) = (o fo (Hux) ™! = (oltgax tigln ™t =1,

since fr X Mgl = Gy x gl = 1.
In light of (3.2) it follows that #_; x; tfl =1 for all i # k. Thus by the
claim and Lemma 2.3.2,

weT(b) = fo(H) = fi,.. ()
= [ D fL (Hxy) <+ ff (Hxy <+ X 1)
= f1,(Hig) f1,(HI) -+ fl (Hy 1)
= fi(Ht ) = a1y ) = alb)

as required. This completes the proof that H is freely generated by B.

REMARK 3.2.2. Notice that the above proof only shows that B is a basis
for H. It does not follow from the proof that B is in bijection with the set
of pairs (f,x) € T x X such that ()1 =# 1, although this can be deduced
by straightforward combinatorial reasoning.

3.3 THE NIELSEN-SCHREIER THEOREM FOR FREE PROFINITE GROUPS

Let X be a profinite space (i.e., a compact Hausdorff and totally
disconnected topological space). Then a pro-C group F is said to be a
free pro-C group on X if there is a continuous map ¢: X — F such that
if o: X — (G is any continuous map into a pro-C group G, then there is a
unique continuous homomorphism #: F — G such that

X—=F

\ L
(o2 5
¥

G

commutes. If (X, «) is a pointed profinite space, one defines in an analogous
manmer the concept of free pro-€ group on (X,=): it satisfies the same
universal property as above, but with all the maps assumed to be continuous
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maps of pointed spaces (the maps send distinguished points to distinguished
points; the distinguished point of a group being its identity element). The map
¢ 1s an embedding, and we identify X with its image ¢(X).

Observe that a free pro-C group F on a profinite space X can be viewed
as free pro-€ group on the pointed profinite space (X1 {*}, ) in an obvious
way; so we deal here only with pointed spaces. Let @ denote the abstract
subgroup of F' generated by X. Then (cf. [18, Propositions 3.3.13 and 3.3.15]),
@ is a free abstract group with basis X — {x}; furthermore @ is dense¢ in £.

Let H be an open subgroup of F. Then the natural map

HNOND —» H\F =X
is a bijection. Choose a Schreier fransversal 7 of H M@ in ®. The map
TxX—=B={a@ ' |teT,xeX} CH<F

given by (£,x) > (@) = tx(rﬂ(m))’l (where n: F — X = H\F is the
projection) is continuous, since m and the section Hf — gy from H\F to F
are obviously continuous. And so, B is closed by the compactness of T x X,
ie., B is profinite. Observe that 1 € B. We think of B as a pointed space
with distinguished point 1. The proof of the Nielsen-Schreier Theorem that
we have presented above now goes through mutaris mutandis to show that H
is a free profinite group on the pointed space (B,1). Thus we have:

THEOREM 3.3.1. Let € be an extension closed variety of finite groups.
Let F be a free pro-C group on a pointed profinite space (X, %) and let H be
an open subgroup of F. Then H is a free pro-C group on a pointed profinite
space.

4. THE KUROSH THEOREM

In this section, we give what may arguably be considered the first algebraic
proof of the Kurosh Theorem on subgroups of free products. The original
proof is essentially combinatorial, while modern proofs have a topological
character. Perhaps, Higgin’s proof can also be considered algebraic, but it
relies on groupoids [10]. Our proof has a similar flavor to the above proof
of the Nielsen-Schreier Theorem in that it relies on wreath products. A key
difference is that the transversals used are more complicated.
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4.1 FREE PRODUCTS

Let G = * ¢4 G, be the free product of the groups G, & € A. We shall
freely use the Normal Form Theorem for free products [13, Chap. 1V], stating
that each non-trivial element g of G can be uniquely written in the form
g = 9192 - g where each ¢ belongs to some &, and g € G, implies
git1 ¢ G, for i =1,...,m — 1. The number m will be called the syllable
length of ¢ and we write f(g) =m. If § C G, denote by £(S) the smallest
syllable length of an element of §. By convention, the syllable length of the
identity is 0. If g, € G, then we shall say that g ends in the syliable a or

that v is the last syllable of ¢.

4.2 KUROSH SYSTEMS

Let us begin by setting up notation. Suppose that G = *¥,c4 G, . Let
H < G and set ¥ = H\G. Denote by p: G — Sz the associated permutation
representation. Let {H; | i € I} be the right cosets of H and assume there
is a symbol 1 € f such that Hy; = H. Assume that we have a transversal
T, of the right cosets of H in G for each o« € A. Denote by «o(H;) the
representative of H; in T,,. We require sl ) =1, all a € A.

DEFINITION 4.2.1 (Kurosh system). A collecion D = {D, | « € A}

of systems D,, of representatives a(HgG,,) of the double cosets H\G/G,,,
e € A, together with a system {7, | e € A} of transversals for H\G is
called a Kurosh system if the following holds:

) if g=alHgG,), then ¢ = aw(Hy);

(i) a(HgG,,) is either 1 or ends in a syllable 3 # o ;

(iiy H; € HgG,, and o(HgG,) = ¢ implies o(H;) € ¢G, ;

(iv) if 1 # g =o(HgG,) ends in the syllable 3, then 3(Hg) =g;

(V) Ua(HgGy) = t(HgG,L).

PROPOSITION 4.2.2.  Kurosh systems exist.

Proof. We proceed by induction on the length of the double cosets HgG,, .
If é(HgG,) =20, ie. HyG, = HG,, choose a(HgG,) =1 and a(H)=1;
if H# H; C HG,, choose a, € G, so that H; = Ha,, and put a(H;) = a,.
Then conditions (i)(v}) hold. Let » > 1, and assume representatives 3(Hr(y)
and J(H;) have been chosen whenever H; C HrGg and {HrGg) < n—1
(3 € A,r € (), satisfying conditions (1)—(v). Let #/(HgG,) = n with #{g) = n.
Then g = jag, where &g =n—1, 1 # ag € Gz and 3 # «a. Since
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B(HgGg) < n—1, representatives 3(HgGg) = ¢ and F(Hg) = thg (bs € Gg)
have already been chosen; in particular, £(z) < rn—1 by (v). Since #{Hg) = n,
we deduce that bg # 1 and £(ibg) = n. Define alHyGn) = thg = a(Hy),
and whenever Hyg #+ H; C HgyG,,, choose ¢, € G, so that H; = Hyc,,, and
put o(H;) = thge,, . Clearly, conditions (i)-(v) are satisfied.

Let us define some key elements of H. Fix an index ag € A. For x € G,

and H; € H\G, define:

Yix = alHxeHx) ™

G = Q(HaoH)
It is immediate that y;., z;, € H for all i, x and «. Notice that
Ua=1=Zia foral a €A, icl If H =Hg, we often write yg, . and
Zfge for y;, and z;,. We begin with some simple observations concerning
these elements.

PROPOSITION 4.2.3.  Retaining the above notation, we have:
(L) if x1.x2 € Go, then ¥in¥ix, = Yigen Where Hixy = H;;
2) if xe G, H; C HuG,, with u= olHuG,), then y;, € uGou'NH;
(3) if h € uGou *NH with u = o(HuG,), then h = y, . for some x € Gy ;
4 if 1 #u=a(HuG,) ends with the syllable 3, then g, o = Zg.3-

Proof. First we handle (1). The definition yields
Vio¥ie = el ol x) el Hix o a(Hx )™ = Vi,

Next we turn to (2). By condition (iii) of a Kurosh system, «(H;) = ug and
a(Hx) = ug' for some g,¢' € G,,, whence v, = ugx(ug "' € uG u"' NH.
To prove (3), suppose # = wxu~! with x € G,. Then Hu = Hux and
a(Hw) = u by (i). We conclude that ya,. = o{HwxedHu) ™ = wxu ! = h.
For (4) we simply observe that a(Hu) = u = 3(Hu) by (i) and (iv).

43 THE KUROSH THEOREM
Set Z={zin|i€l,0 €A 5, #1} and F = {Z). Our goal is to prove

H:*[

KX WGu nH) | v F

Dy,

and F' is freely generated by Z. We use wreath products and the universal
property to effect this proof. From now on we work with a fixed Kurosh
system. If ¢: Z — K is a map, with K a group, then we extend ¥ to
ZU{1l} by setting (1) =1.
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PROPOSITION 43.1.  Given a family F = {4, uGou 'NH = K} ycaucn.,
of group homomorphisms and a map 1. Z — K, there exists, for each o € A,
a homomorphism W,.. G, — K1 p(G) defined by W.(x) = (fe, p(x)) with

FH) = 12 o) 0¥ ()

where Hix = H; and u = o(H;G,). If W: G — K p(G) denotes the induced
homomorphism, then the following diagram commutes :

G K1 p(G)
4.1 \ Ja
g
G,

where  is the projection.

Moreover, the construction of W is funcitorial in the sense that given
another family of homomorphisms T' = {4 uG "' NH — KV eruen., »
a map ¢ Z — K' and a homomorphism . K' — K such that the diagrams

zZ

uGﬂu’l nH
4.2y
K K >

K'——K

commute, then the following diagram commutes :

K" plG)

lp:‘
43) / lylp(G)

G Kip(G),

where W' is the map associated to the family F'.

Progf. We begin by verifying that W, is a homomorphism. Proposi-
tion 4.2.3(2) implies that v, € uG.u ' N H so that W, makes sense.
Let x1,x € G,. Clearly, Hix1Gn = HixoGon = HxixoGy = HiGy , set
u = a(H(G,). From

(Fas P Fps pG2)) = (i (PR, plaia))

it follows that we just need f, (H)f, (Hix)) = fo (). Putting H; — Hix
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and Hy = Hix1xz, an application of Proposition 4.2.3(1) yields

FolHD fo (Hix1) = 92 o)™ 0310 VO 0082 00 ()2 V0 Tk )
=) e P ) = Fem (L,

as required. The W, induce the desired map ¥ by the universal property of
a free product. The commutativity of (4.1) and (4.3) are immediate {rom the
definition of W, and the universal property of a free product.

From the proposition and Lemma 2.3.4, we obtain

CORCLLARY 432, Let W, W and ~ be as in Proposition 43.1. Then
there is a commutative diagram

Kol ——— o g
|, L l
(4.4 Fip(H) ¥
—_— —_—
H g K oD —— K.

Our next lemma is where we make use of the full strength of the Kurosh
system.

LEMMA 433, Let u= alHu). Then f,(H) = ¥ (Zy.0).

Proof. 'We induct on the syllable length of u. If u =1, there is nothing
to prove as zm. = 1 for all «. So assume u # 1. The proof divides into
two cases.

CASE 1. Assume u % a(HuG,). Then (iii) implies that we can write
u = vx with v = a(HuG,,) and x € G,,. Moreover, () < £(u) by (ii).
Since a(Hu) = v by (i), by induction f,.(H) = (25, ). Then we find by
Lemma 2.3.2

ﬁe (H) = ﬁ! (H)f:r(HQ‘) = ?‘-"‘I"(ZH'H ;(\') t:b(ZH't:,r} )7 L t;"i?u (yH'n‘x) ’ts"j"(ZHu:(r)
= ?‘-‘f"'n(yﬁ'u,x)'QEE(ZHM,U. )

But yg, .= alHOxoHo) ™" = alHvixofHw ™! = vau™! = 1, establishing
fu(H) — ?w’s)(zﬁu(a)-
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CASE 2. Suppose u = «(HuG,). Since u #* 1, (ii) implies that u
ends in a syllable 8 with 8 # « and (iv) yields Z(Hu) = u. By (ii)
u# HHuGg), so Case 1 implies that £,(H) = ¥(zp. ). Proposition 4.2.3(4)
provides za, 5 = ZHu,a, 50 fullD) = ¥{(Zhu.0).

This establishes the lemma.

An important special case is when K = H and the #, and
are the inclusions. Let us denote the induced map in this case by
W G — HplG).

PROPOSITION 4.3.4.  The map UG H 1 p(G) is the standard wreath
product embedding associated 1o the transversal T, . Consequenily, gW¥|y
is the identiry.

Proof. Writing W(g) = (F,, p(g)), if x € G, and Hyx = H,, then

FolH) = 2709 12,0 = coltHDoUH) ™ el HDxaltH) ™ e HoogH) ™
= ag(H)xaa(Hx) ™.

Thus W is the standard embedding associated to the transversal T, .

In the proof of the next theorem, we retain all the notation introduced in
this section.

THEOREM 4.3.5 (Kurosh). Ler {D,,T. | a € A} be a Kurosh system for
H<G= *%,c4G,. Then

H:*[

ol * (uGQu_l QH)} * F

wel,
and F is a free group with basis Z.

Proof. Let {iy: uGau ' NMH — Klaecauep, be a family of group
homomorphisms and : Z — K a map. Let ¥: G — K p(G) be as
in Proposition 4.3.1. We show that 7xW¥|y extends the ¢, and ¢, where
T = k.1 is as in Lemma 2.3.4. Suppose u = a(HuG,,) and h € uG,u"'NH.
By Proposition 423(3), & = y;, for some x € G,, where H; = Hu.
Setting H; — Hix, an application of Lemmas 4.3.3 and 2.3.2 (and the fact
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Ho(H;) = Hy) yields

TP = £ 1) = famyeamy -1 (H)

= Fura D FCHD (Frry HyaHy™H)

= Facary D FlHD ooy DY ™!

= 1) [0z ) ™ PG i )
= Pulyie) = k).

Similarly, we calculate using Lemmas 4.3.3 and 23.2

TP (Z0) = fir o (H) = fupHD (fonan HiaoH)™H) N
= foty D gy N

i i -1 i
== 'l;'r’(Zi:(y)li-’(Zi:(\U) - ?.‘"«"(Zi,ry)

since z; 4, = 1.

The uniqueness of 7xW|y follows from the functoriality of our construc-
tion. Namely, in Proposition 4.3.1 take K’ = H and «, ' the inclusions
(and so ¥': G — HIHG) is W from Proposition 4.3.4). Suppose v: H —+ K
is an extension of the 7, and . Then (4.2) commutes and so diagrams (4.3)
and (4.4) commute. Since g%y = WH@|H is the identity in this case by
Proposition 4.3.4, we conclude that v = 7xPly.

REMARK 4.3.6. As we mentioned earlier, there is a close relationship
between the standard embedding and induced representations [21]. From this
viewpoint, our proof of the Kurosh Theorem has a similar flavor to Mackey’s
Theorem on the restriction to one subgroup of a representation induced from
another.

4.4 THE KUROSH SUBGROUP THEOREM FCR PROFINITE GROUPS

Let T be a pro-€ group and let {T, | & € A} be a collection of pro-€
groups indexed by a set A. For each «« € A, let ¢,: T, — ' be a continuous
homomorphism. One says that the family {i, | & € A} is convergens if
whenever U is an open neighborhood of 1 in T', then U contains all but a
finite number of the images 1,([y). We say that T' together with the 4, is
the free pro-C product of the groups I',, if the following universal property
is satisfied: whenever K is a pro-€ group and {M\, T, = K| a e A} is a
convergent family of continuous homomorphisms, then there exists a unique
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continuous homomorphism A: ' — K such that

Loy

Fu —I

i
N

v
K

commutes, for all & € A. We denote such a free pro-€ product by
['= ][,caTa. Free pro-€ products exist and are unique. To construct the
free pro-€ product I' one proceeds as follows: let G = * .4, be the free
product of the groups T, as abstract groups. Consider the pro-€ topology on
G determined by the collection of normal subgroups N of finite index in G
such that G/N € €, NN T, is open in [, for each @ € A, and N > [,
for all but finitely many «. Then

I =1lmG/N.
w

It turns out that & is naturally embedded in I' as a dense subgroup. Cne can
take the homomorphism ¢, to be the composition of inclusions

r,—=¢—=r (@ cA).

If the set A is finite, the ‘convergence’ property of the homomorphisms i,,
is automatic.

For such free products, one has the following analogue of the Kurosh
Subgroup Theorem [3].

THEOREM 4.4.1. Let H be an open subgroup of the free pro-C product

F:HF(Y.

A

Then, for each « € A, there exists a set D, of representatives of the double
cosets H\I'/T',, such that the family of inclusions

{MF”.M71 NH<—H | e D(NHQ = A}

converges, and H is the free pro-C product

H= [ Il waw'nuo|o,
aEA, wel,,

where @ is a free pro-C group of finite rank.
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Proof. TFirst we show that we may assume that A is finite. Consider the
core Hr = ﬂgEFgHg_l of H in I'. Since H is open, we have that Hr is
open in I'. So there exists a finite subset B of A such that T, < Hr for all
a€A—B Pt I"=[],., gla; then

e {H 1“] ur

ChH

is a free pro-C product of finitely many factors, and one easily sees that it
suffices to prove the theorem for this product. Indeed, observe first that for
all « € A— B, Hr > T’y and since Hr <1 ', one has Hul',, = Hu = Hul/
wel),ie, H\I'/I" = H\I' = H\I'/', ; on the other hand,

ullw "N =ul'u ! = H ulou ' = H wlou PN H).
afA—R aEA—B

Hence from now on we assume that A is a finite indexing set.

Choose a Kurosh system {D,.T. | @ € A} for the subgroup GNH of
the abstract free product G = *,.4 [, and observe that, for each «, T,
and D, are systems of representatives of the cosets H#\G and of the double
cosets HA\I'/T,,, respectively. The remainder of the proof can be carried out
mutatls mutandis as is done in the proof of Theorem 4.3.5 (one simply has to
require initially that the homomorphisms i, are continuous, and then verfy
that all the maps involved in the proof are also continuous; this is an easy
consequence of our comments in 2.4).

Let us point out that this proof is independent of the result for abstract
free products (Theorem 4.3.5); it simply follows the same procedure.

We leave open the question of whether or not the same simple procedure
works in case one deals with pro-€ products of pro-€ groups indexed by a
profinite space [22].

5. QUASIFREE PROFINITE GROUPS

This section contains a simpler proof of the main result of [17]. A similar
approach, using the twisted wreath product, was independently discovered by
Bary-Soroker ef al. [2].
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5.1 QUASIFREE GROUPS

An epimorphism of groups is termed proper if it is not an isomorphism.
Let € be an extension closed variety of finite groups and let m be an infinite
cardinal number. A pro-€ group G is called m-quasifree if whenever A and
B are groups in €, ¢: A — B is a proper epimorphism of groups that splits
(i.e., there is a section o: B - A of . o = idg), and 3: G — B is a
continuous epimorphism,

.G

"

A—ﬂ»-

\_____/

o

then there exist precisely m different continuous epimorphisms A: G — A
such that aA = F. See [17, 9] for motivation and elementary properties
of these groups; one knows in particular that the minimal number &(() of
generators converging to 1 of such an m-quasifree group G is m (see [17,
Lemma 1.2]). In [17] it is proved that open subgroups of m-quasifree groups
are m-quasifree. Here we provide a simpler and more natural proof of this
result by means of wreath products.

THECREM 5.1.1. Let G be an m-quasifree pro-C group, and let H be
an open subgroup of G. Then H is m-quasifree.

Proof. Given A,B € €, a proper split epimorphism a: A — B and
a continuous epimorphism 3: H — B, we need to prove the existence of
exactly m continuous epimorphisms A: f — A such that al = 3.

Set £ = H\G and let p: G — §3 be the corresponding permutation
representation as in Section 2. Consider the standard embedding

v G—= HiplG

constructed in Theorem 2.3.1. Note that ot p(G): At p(G) — Bl plG) 18 a
split proper epimorphism by Proposition 2.2.1; observe also that A: p(() and
Bip(G) are finite groups in €, as € is extension closed. Let B' = (R p(GHa(G)
and A' = (a1 p(G)H(B"). Then A’,B' € €, and the restriction o': A’ — B
of @) p(G) to A is a split proper epimorphism. See Figure 1. Since G
is m-quasifree, there exists a continuous epimorphism A: G — A" such that
A= (31p(G))p. Then, for each g € G, X(g) = (fq,p(g)), for some fg e A%,
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alpl(G)

A plGy ————— B p(()
A = B
v
- BLolG
X HipG)
G
FIGURE 1

A commutative diagram

Let T = {n = l,f2,...,%} be a right transversal of H in G. For
k, define A0 HY — A to be N = my e, Lo, NE) = f(H),
for x € H'®. According to Lemma 2.3.4, the diagram

a

:J Brp(H"

AZ :\‘H‘( H} p(Hi") % H

|

inn |,y

Alrg

commutes. Thus 7 o inng|g: = ah;.
We claim that X; is surjective. Let a € A and let b = «ala). Since

3 is surjective, the commutativity of the above diagram ensures that there
exists (f. pO0O0 € (B p(H'YN B, where x € H*, with f(Hr) — k. Choose
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f'iE — A to be any function such that f(Hz) = a and af = f; then
(f',plx)) € A'. Therefore, ma,; takes A" M (A} p(H")) onto A. Because
ker A < kerp = Hg < HY, it follows that A(g) € A p(H*) implies g € H'.
We deduce that X|m: HY — A DA p(H™) is an epimorphism, and hence
so is J\;, proving the claim.

Since & is quasifree, the total number of epimorphisms X G — A such
that o'\ = (31 plGNe is m. Since Hg = ﬂi.;l HY% has finite index in G,
these A restrict to m different homomorphisms

Mg.: Hg — Al p(Hg) = A%

Recalling from lemma 234 that the 74, A2 —+ A (i = 1,....k) are the
direct product projections, we conclude that X\HG is determined by the maps
ﬁA_;X\HG = Mg, i=1,...,k Itfollows that there exists some j € {1,...,k},
such that the number of different maps M|y, constructed in this manner is
precisely m.

For each of these A;, define A = Ajoinntj—l‘ﬁ. Then, since Hys has finite
index in H, we have constructed m different epimorphisms A: H — A such
that «vA = 3. Finally, observe that there cannot be more such A’s since the
minimal number &(H) of generators of A converging to 1 is m and A is

finite. This completes the proof.

It is an open question whether the results of [2] for semifree profinite
groups also hold for quasifree groups.
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