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TORSION AUTOMORPHISMS OF SIMPLE LIE ALGEBRAS

by Mark REEDER *)

1. INTRCDUCTION

An automorphism o of a simple finite-dimensional complex Lie algebra g
is called forsion, if o has finite order in the group Aut(g) of all automorphisms
of g. The torsion automorphisms of g were classified by Victor Kac in [12],
as an application of his results on infinite-dimensional Lie algebras.

Those torsion automorphisms contained in the identity component G =
Aut(g)® are called inner; they were classified in 1927 by Blie Cartan [6]
who used (and perhaps introduced) the affine Weyl group and the geometry
of alcoves for this purpose. This paper extends Cartan’s method to cover all
torsion automorphisms of g, thereby recovering Kac’s classification directly
from the geometry of the affine Weyl group, without the use of infinite-
dimensional Lie algebras.

Kac’s classification can be roughly stated as follows. Each symmetry i
of the Dynkin graph P{g) of g extends to a certain kind of automorphism
of g, which we again denote by #, called a pinned automorphism. The pinned
automorphisms represent the cosets of G in Aut(g), and the order of any
torsion element in G4} is divisible by the order f of ¢ For a given pinned
automorphism 1 of g, Kac defines a certain vector (bg, b1, ..., b) of positive
integers. Here & is the number of -orbits on the nodes of D(y). Then the
G -conjugacy classes of elements in G of order m are parametrized by Kac
coordinates. These are vectors (sp, s1,...,5;) of nonnegative relatively prime
integers s; satisfying

k
f-Zb;S5:m.

i=0

*) Supported by NSF grant DMS-0801177.



4 M. REEDER

For a more precise statement see Theorem 3.7. When ¢ = 1, the integers b;
are the coefficients of the highest root in g. For nontrivial , the A,s are
closely related to the coefficients of the highest short root in the fixed-point
subalgebra g?.

The desire to understand torsion automorphisms and their Kac coordinates
in simple terms arose from the work of Benedict Gross and myself on adjoint
gamma factors of discrete Langlands parameters attached to representations of
p-adic groups [9]. Jean-Pierre Serre pointed us to Cartan’s paper, which led
to the approach to Kac’s classification presented here. A brief sketch of an
approach similar to this is given in [15]. However, the examples and details
worked out herein were useful to us, and I hope they will be useful to others.

Throughout, I make {requent use of Kostant’s theory of the principal PGL;
and of conjugacy results due to Steinberg. [ give many examples of interesting
torsion classes and show how to compute their Kac coordinates. For the
classical Lie algebras, the torsion automorphisms can be classified using linear
algebra; see Section 4, where each simple Lie algebra is examined separately.
I include some facts about centers and component groups of centralizers that
may not have appeared in the literature, and the last section gives a twisted
analogue (Proposition 5.1) of a result of Kostant on principal elements. These
complements are used in [9].

Since [9] was written, Gross, Jiu-Kang Yu and T have found further
connections between torsion automorphisms of simple Lie algebras and the
representation theory of p-adic groups. These applications will not be explained
here, but they have informed some of the examples below.

ACKNOWLEDGEMENTS. Gross’ insights, requests and encouragement helped
form this paper. In particular, he suggested that the inner case be treated
in detail, before studying general torsion automorphisms. Yu and Stephen
DeBacker contributed many beneficial suggestions. The reviewers also made
valuable comments. It is a pleasure to thank all of these mathematicians for
their help.

2. INNER AUTOMORPHISMS

Reviewing Cartan’s classification [6] of inner automorphisms will serve
to introduce some of the structure in what follows, and as a template for
the general case. See [18] for an introduction, and [3] for foundations of the
theory of root systems as used below.
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2.1 BASIC STRUCTURE

Let Aut(g) be the group of automorphisms of a simple complex Lie
algebra g. The identity component G = Aut{g)® is a simple complex algebraic
group with trivial center and Lie algebra g. Let 7 < B be a maximal torus
and a Borel subgroup of G and let @ be the set of roots of T in G, with
positive system @+ given by the roots in B and let A = {a,..., g} DT

be the corresponding simple roots, where # is the rank of G.

Since G has trivial center, A is a Z-basis of the weight lattice X = X*(T)
of algebraic homomorphisms T — C*. We let

(,):)XxY —Z

be the natural pairing between X = X*(T) and the co-weight lattice ¥ = X,.(T)
of algebraic homomeorphisms C* — T. Let {&y,...,<;} be the Z-basis of
Y consisting of fundamental co-weights dual to A:

o ifi=g,
<ai;*“"j>_ o, .
0 ifi#j.

The Weyl group W = N/T, where N is the normalizer of 7 in G, acts on
the real vector space

V=R&Y

as a group generated by reflections ry....r¢, where r; fixes the hyperplane
(a; = 0) pointwise. We regard V as the Lie algebra of the maximal compact
subtorus § C T, via the exponential map

exp: V—= 5§,
which is a surjective group homomorphism defined by the property:
afexp(x)) = AT for all a € @ ;

where on the left side we view « as a character of T restricted to S and on
the right side « is a linear functional on V. Then

Y=kerexp={x€V:{a,x€Z Yoecd},
so exp induces an isomorphism

V/iy = 8.
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2.2 TORSION ELEMENTS IN &

An element s € G is semisimple if 5 acts diagonalizably on g. Any
semisimple element is G-conjugate to an element of T, and two elements
of T are G-conjugate if and only if they are W-conjugate. Thus, the set of
semisimple conjugacy classes in & is in bijection with the set of W-orbits
on 7.

Any torsion element s € G is semisimple and is G-conjugate to an element
of §; we have s = exp(x), for some x € Vg := Q& Y. Our discussion so far
shows that two elements x,x" € Vo give G-conjugate elements exp(x) and
exp(x”) if and only if x,x" are conjugate under the extended affine Weyl group

W=WxY

where Y acts on V by translations. This analysis by Cartan in [6, Part I] is
perhaps the first appearance of the extended affine Weyl group in the literature.

The (unextended) affine Wey! group is a normal subgroup W’ «W which
can be described in two ways: First,

WG=W|><Z&>,

where Z® C Y is the lattice of co-roots of T in G. The group W is also
the group of affine transformations of V generated by the reflections in V
about the affine root hyperplanes with equations o = n, where o € @ and
n e Z. In fact, W is generated by £+ 1 such affine reflections chosen as
follows. An alcove is a connected component € of the set of points in V' not
lying on any root hyperplane. A wall of C is a root hyperplane H meeting
the closure of C in an open subset of H. Each alcove has £+ 1 walls. The
two key facts [3, V.3.2] are first, that W is a Coxeter group generated by
the £+ 1 reflections about the walls of any fixed alcove, and second, that
W’ permutes the alcoves in V f{reely and transitively.

The basis A determines a particular alcove, as follows. Let cip = Ef:l a; o
be the highest root with respect to A (here the a; are positive integers), let
tvg be the affine linear function 1 — &g on V and set g — 1, so that

¢
Za’!‘ = 1.
=0
Then the alcove defermined by A is the intersection of half-spaces:
={xeV: {anx) >0 for 0<i<{}.

It is convenient to set
wp=0eV.
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Then we can write the closure € of € in barycentric coordinates as

£ £
E: {Z.X,u\:/, I 20 and Za,-x,-zl}.
=0 =0

Thus, C is the convex hull of its vertices

~

L‘!-::a.*lw,-, for 0<i<¥.

Nate that #g = &g = 0 is one of the vertices of C.

Since the affine Weyl group W’ is transitive on alcoves, so is the extended
affine Weyl group W. Hence the closure C meets all W orbits in V. This
means that each torsion element s € G is conjugate to exp(x) for some
xeCn Vo . Unlike Wc, however, W does not act freely on the alcoves in V,
so we must also take into account the alcove stabilizer

Q={peW:p.-C=C}.
which is a complement to W in W:
2.1 W=QxW.
If x and x’ are in C, the elements exp(x) and exp(x") are G-conjugate if
and only if x and x" are conjugate under €2. Pictures of C in the case £ = 2,
along with fundamental domains for Q in C, can be found in [6, p.224].

See also Section 2.5 below.
Let x € C and suppose exp(x) is a torsion element of order m. Since

exp(mx) = 1, there are nonnegative integers s, ...,s¢ such that
" £
2.2 = — i v‘,‘ B
(2.2) X p” le w
Since exp(x) has exact order m, it follows that ged{m,s1,....5} = 1. As

x & C, we have
s
1
0 < {omg,xy =1 — ;zojam,

so that the integer sq 1= m — Zf:la,-si is > 0 and sq,81,...,5 satisfy the
equation

r
2.3) > aisi=m,
—
where ag =1, and ged{sg,...,s:} =1. We call the sequence (so,51,...,5¢)

the Kac coordinates of s. They determine the action of s on g explicitly as

follows. If @ = Zlec,-a,- € ® and we set -5 = Zlec,-s,-, then s acts on
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the root space g, by the scalar (*¥, where { = exp(27r\/—_1/m). Two such
elements s = exp(x) and s’ = exp(x”) are G-conjugate if and only if their Kac
coordinates (sg,...,s) and (s),...,s,) are conjugate under the permutation
action of € on {0,1,....€} induced by its action on the vertices of C.
To visualize this action, it is convenient to regard (sp....,Ss¢) as a labelling
of the nodes of the extended Dynkin diagram fJ(g). These nodes correspond
to the vertices of € and €2 acts on the labellings via symmetries of Dig).
Thus, s and s are G-conjugate if and only if their labellings of f)(_g) are
conjugate under €.

To describe the group €, we first observe from (2.1) and the definitions
of W, W' that Q ~ ¥/Z®. In fact, cach coset in ¥/Zd contains a unique
co-weight o; which is a vertex of C; that is, we have a; = 1 and v = &;.
Such co-weights are called minuscule. For each minuscule co-weight @; there
is a unique element p; € £ such that p; - g = v;. This cotrespondence is an
explicit group isomorphism Y/ 7D ~ Q, and we have

Q={p 1 a=1}.
The group € also has a topological interpretation: The lattice Zd is the co-
weight lattice X,.(77), where 77 is a maximal torus in the simply-connected

cover G’ of G. It follows that Q ~ Y/Z® is isomorphic to the fundamental
group 71(G) of G. For more details on the group €2, see [3, VI.2.3].

The above discussion is essentially the classification of torsion inner
automorphisms given by Cartan in [6, Part 1.4-6]. The minuscule vertices
appear in [6, Part [.7], where they are denoted by Oy,...,0,_1, and are used
by Cartan to study =1(G).

EXAMPIE 1. Let g = slg11, sothat G = PGL;, is the quotient of GLs 4
by its center, which consists of scalar matrices. Let [#1, ..., f41] be the image
in G of a diagonal matrix diag(s,ts, ..., f41) € GLeyy . All the coefficients
a; = 1, so that an element in G of order m has Kac coordinates (sp,....8¢),
where the relatively prime non-negative integers s; satisfy sg+s1+---+s5; = m.
An element s € G with these Kac coordinates is given by

(2.4 § = [<-31+5‘z+"'+57; Q5‘2+5‘3+"'+Szf’ . Csl‘, 1],

where ¢ = exp(2m+/—1/m). One can see this from equation (2.2) as follows.
We have

¢
5 = explx) = Hexp(%d’;;).
i=1

The vector space V is the quotient of R*t! by the diagonal, and the
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fundamental co-weight &; is the image in V of the vector (1,...,1.0,...,0),
with 7 entries equal to 1. On the line through &y the exponential map is
given by

exp(es;) = [V L, ., VT 1 1.

so that

where (% appears { times; taking the product over i gives (2.4).

It may seem that s only appears in (2.4) indirectly, via the fact that ¢ has
order m = sg+---+s5¢. In fact s appears on equal footing with the other s,’s.
To see this, one can check that

(2.5) [452+53+“'+5y+5u‘ 453+54+“‘+5v+50 ey cbu’ 1]

= [gfz+&‘3+---+s‘fjCSB+S4+---+Se 1, CS1+32+---+35] :

which is conjugate to the element s in (2.4). This reflects the fact that 5(9)
is an (£ + 1)-gon, on which the group Q= Z/(£+ 1) acts by rotations.

EXAMPLE 2. Fortunately, it is not necessary to have explicit realizations of
co-weights or group elements to get concrete information about torsion classes
in G. We illustrate this by finding the classes of order three in G = Eg. The

diagram ﬁ(eg) and the coefficients «; are given by
1 2 3 2 1
2
1
and the group € is cyclic of order three, acting on ﬁ(eg) by rotations. There
are five classes of elements of order three, with Kac coordinates

01000 00010 00000 00100 10001
0 0 1 0 0
1 1 1 0 1
The first two labellings are conjugate by the reflection of the diagram about
the vertical axis. This means that the union of these distinct classes in G
forms a single class in Aut(es), which contains G with index two.

253 COMPUTING KAC COORDINATES

In practice, one often seeks the Kac coordinates of a semisimple element
s = exp(x) of known order, for which x lies in ¥ but not in C . For this we
have the following algorithm.
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Let s = exp(x) have order m, where x € V is arbitrary. Again there are
integers s1,...,s; with ged{m,s1,...,5¢} =1 such that

£
1 4
X = EZE,‘@,‘.
i=1
As before, we also define sy by the equation Zf:o a;s; = m, and we have
7
xy == fori=0,1,....¢.
{ov, x) — for i=0,1, b

The difference now is that if x & C, then some of the s;’s will be negative.
The algorithm runs as follows. If all s; > 0, then x is already in C.

Otherwise, select some s; < 0 and replace (sg,...,s,) by (5 - .,s;), where
(2.6) S:j = § — <O:,‘5 OV'J:>SJ:.
Repeat the previous steps with the new coordinates (sp, ..., sp). Eventually one

arrives at coordinates s; which are all > 0, and these are the Kac coordinates
of s.

To see that the algorithm works, we recall that the affine Weyl group W
is a Coxeter group generated by the reflections ry,...,r; about the walls
of C; these are given explicitly by the formulas

riex =x — {0y, X)d;

where &; is the co-root correspending to the gradient of the affine root a;.
For w & WO, let £(ur) be the minimal length of a word expressing w in the
generators {r;}. We have {(rpw) < ((w) if and only if w ™ la; is negative
on C. For any x € V, set

dlx) = £(w)

where w € W is of minimal length such that the point y := w ™ 'x is

contained in €. Clearly d(x) = 0 if and only if x € C. Now the transformed
coordinates (sj,...,s,) given by (2.6) are those of r;-x. If s5; < O then

0> 2 = (o) = {apw-y) = (o),

go that u‘_la:j < 0 on C. Hence £(rjw) < £lw). Since y = (rj-u,')_lrj -X, We
have
drixy < frpe) < flu) = dix).

Hence the algorithm succeeds in £(w) steps.
Regard the vector (sqg,.... 5¢) as a labelling of the affine Dynkin diagram

ﬁ(g) by placing s; onthe ™ node of 5(51). We can implement the algorithm by
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manipulating the labelling, as illustrated in the following example. Let G = Gz,
where the coefficients a; are given by 5—53%. Consider the element ¢ € G
of order five with Kac diagram g—ééé. Let us compute the conjugacy
class of s = *, which also has order five. We have ¢ = exp(y), where
¥= %(J}l + ) € C, and 5 = exp(x), where x = 2y = %(25)1 + 2 ¢ C.
Thus, s1=s =2 and s =5—(2-2+3-2) = —5, so the algorithm runs as

-5 2 .2 0 5 =3 2 " 2 3 1 o 2 0 1
O—O0=0  —F 0—O0=0 — 0—O0=0  — 0—D0=0.

The final diagram gives the Kac coordinates of #?, and shows that /% is not
conjugate to ¢ in G.

24 CENTRALIZERS

The centralizer Cg(s) of a torsion element s € G can be described in
terms of the geometry of the alcove € and the action on C by £. The
closure C is partitioned into a disjoint union of 21 — 1 facets:

c=Jc.
J

indexed by the proper subsets J C {0,...,£}. The facet C’ consists of the
points x € C such that {ay,x) = 0 for i € J and {a;,x) > O for i ¢ J For
example, C? = C and for J = {0,...,{} — {i} we have €7 = {u;}. Let
@; be the set of roots in & which are constant on C’. Then @y is a root
subsystem of @ of rank |J|, with basis A;:={a; : jeJ}. If x € C/N Vg,
the Kac coordinates (sq, ..., s¢) of the torsion automorphism s = exp(x) have
s; =0 if and only if j& J.

The subalgebra g* of vectors in g fixed by s is reductive, and depends
only on .J. Namely,

2.7 F=t® ) fa-

aedy;
The (unextended) Dynkin diagram D¢g®) of g* is the subgraph of 5(g)
supported on J.

For example, the element s is regular if g° = t. This occurs exactly when
x € C, or equivalently, when all 5; > 0. Taking all 5;, =1 gives the unique
class of regular elements of minimal order

(2.8) hi=ag+a,4 - +ap,
the Coxeter number of G [3, VI.1.11]. We will return to this in Section 2.5.
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The identity component Cg(s)° of Cg(s) is determined by g°, hence it
too depends only on J. Explicitly, the root datum of Cg(s)° is that of G but
with the roots @ and coroots ® replaced by the roots @®; and the co-roots
b, = {& o € d;}, respectively.

However, the component group A, of Cg(s) is more sensitive: it depends
on the actual point x € ¢/ For example, if g = sal, then V is the set of
vectors in R” whose coordinates sum to zero. The simple roots a; = x; — x4
define the alcove

C={x,...,. 50V i x,+1>x1>x > - >x}.

There is an open dense subset U C C for which Cg(s) = T when s € exp(l).

On the other hand, at the barycenter X := %(n—l,n—S, e, 3—n,1-m of C,
the element 5 = expXx has order » and has Kac coordinates (1,1,....1). The

cenfralizer Cg(3) of § in G = PGLAC) is a semidirect product 7 « {7},
where o« € N 1s a lift of a Coxeter element : € W and has order =.

Since it is the barycenter of €, the point X is fixed by the group £
which is also cyclic of order », generated by the affine transformation

43
can take w to be the projection of p; to W. This example is generalized in

the next section.

P10 (XX, .o X)) (xn+1—l, xl—%, xzf%,...,xn,l—%) and we

The relation between A; and the geometry of C is governed by the alcove
stabilizer @, as follows.

PROPOSITION 2.1.  For s = exp(x) with x € C, the component group A,
of Cg(s) is isomorphic to the stabilizer Q, = {p€Q : p-x =x}.

Proof. Let W, = {w &€ W : w-x = x} be the stabilizer of x in W. This
. . . -0 .
group is finite, and its normal subgroup W, , generated by reflections about
hyperplanes through x, acts simply-transitively on the set of alcoves containing
x in their closure [3, V, Thms1,2]. Tt follows that W, decomposes as

29) We=Q » We.

On the other hand, let W, be the stabilizer of s in W. The projection
7 W — W sends IT/X to W,. Since Wx is finite and Y is torsion-free, the
map 7 is injective on I/T/x. If w-s=s,thenw-xcx+Y, sothereis yeV
such that #,w-x — x. It follows that 7 restricts to an isomorphism ‘I/T/x Oow,.
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The image TF(W;) is the subgroup W7 < W, generated by reflections for
the roots in @ 1= {w € @t : a() =1}, Hence x induces an isomorphism

(2.10) Q — W/ W

The group Cg(s)® is reductive, with maximal torus 7 and Borel subgroup
B, = BN Cg(s). Put

Ne=NNCgls) and N =NNCals)®.
Then W? = N2/T is the Weyl group of T in Cg(s)® [7, 3.5] and
(2.11) W, /W? ~ N, /NS

Since Cp(s)" acts transitively on its Borel subgroups and N acts transitively
on the Borel subgroups of Cg(s)® containing T, it follows that the inclusion
N; = Cg(s) gives an isomorphism

5195 Ny/N; ~ A;.
Combining equations (2.10), (2.11) and (2.12), we get €, ~ A, as claimed.

Finally, since we have seen that € is abelian, it follows that A, is abelian.

In the example for G = Eg in Section 2.2, the first three classes have trivial
stabilizer in £, hence have connected centralizer in &, while the centralizers
of

00100 10001
0 and 0
0 1

have three components.

REMARKS. 1) The projection of € into W is the subgroup I' of W
preserving the set A= {—do,c1,...,a¢} of simple roots augmented by
the lowest root, and €2, projects isomorphically onto the subgroup T’y of T
preserving the base AN @, of @,. This group I'; is a complement to W,
in W;.

2) Recall that we can identify €2 with the fundamental group 71(G) of G.
From this point of view, the embedding A; <= m({z) can be seen as follows.
lLet G — G be the simply-connected covering of G, with kemel =1(G).
Choose a lift ¢’ € G' of every element g € Cg(s). Then the commutator
g — [g', 5] induces a well-defined homomorphism A, — w1(G) which is
injective, since the centralizer of s’ in ¢’ is connected [21, 8.1].
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2.5 KAC COORDINATES OF PRINCIPAL. EIEMENTS

The smallest simple Lie algebra is sl», consisting of all 2 x 2 matrices of
trace zero, with bracket [A, B] = AB — BA. In [14], Kostant showed that sl»
plays a powerful role in the structure theory of an arbitrary simple complex Lie
algebra g. There are finitely many embeddings of sl in g, up to conjugacy
by G = Aut(g)®. One class of embeddings is distinguished by its behavior
on Cartan subalgebras. Fix a Cartan subalgebra tp of sl,. For example, we
could take ty to be the diagonal matrices in sl,. Each embedding sl — g
sends fp into a Cartan subalgebra t of g, and usually into infinitely many
such t's. However, there is exactly one G-conjugacy class of embeddings
w: sl = g with the property that w(lp) is contained in a wunique Cartan
subalgebra of g.

This has the following implication on the level of groups. The auto-
morphism group of sk is PGL,, the quotient of GL, by the scalar
matrices, which acts on sl by conjugation. The above facts mean that
there is a unique conjugacy class of algebraic subgroups Gy € G which
are isomorphic to PGL,, with the property that any maximal torus Ty
of Gy is confained in a unique maximal torus T of G. Such a sub-
group Gy is called a principal PGI, in G. We say that an element
s € G is a principal element if s lies in some principal PGL, in G.
In this section we study the Kac coordinates of principal torsion elements
of G.

We can choose Gy, a principal PGL; in G, along with a maximal torus
To 1n Gp, so that T is the unique maximal torus of ( containing Ty

and the simple roots «j,...,c of T each restrict to the same root o
of Ty in Gy. This means that Ty is the closed subgroup of T defined
by the equations a; = a, = --- = ay, and X, (Ty) is the subgroup of

X.(T) generated by the co-weight g € X,.(T) defined by the conditions
(o, 5) = 1 for 1 < i < £ In the line Vy := R® X.(Ty) we have the
alcove

Co={rp : 0<r<1}CVy.
However, only part of Cy is contained in C. Indeed, we have

p
{ceo, ¥} :1—."211521—!‘(11—1)._

i=1

where we recall from (2.8) that 4 1s the Coxeter number of . It follows
that rp e C if and only if r < (A — 171,
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Suppose s = exp(r{) € Gy has finite order m > 1. Then r = n/m for
relatively prime positive integers n < m. For 1 < < { we then have

ails) = a(s) = exp(2mry —1).

If r<(h—17" so that rpE C, the Kac coordinates of s are obtained as
follows.

Since

we have sy =5, = ---—=s; = r. Then

m:so—i—Zn-ai:so—I—n(h—l).

i=1
Hence the Kac coordinates of s = exp(rj) are

m L,

(2.13) (n—nmh+mun,n,...,n), when r= g

Sl:s

We have x € C if and only if r < 1/(h— 1. For this inequality to hold, we
must then have m > A.

If m=h then n =1 and s is Kostant's principal element, with Kac
coordinates (1.1,...,1), having the smallest possible order A of a regular
torsion element in G [14]. We have § = exp(X), where ¥ = j/h is the
unique point in the alcove C at which all simple affine roots take the same
value, namely 1/h (cf. [14, 8.6]). Kostant's principal elements appeared in
Section 2.4 for &G = PGL,. For a twisted analogue of them, see Section 5
below.

If we continue on the path rj for r > 1/(h — 1), the Kac coordinates
become less obvious than those of (2.13); one must use the algorithm of
Section 2.3, for which the number of steps depends on r, to conjugate back
into C. We need only go up to r = 1/2, since every torsion element of
Go 1s conjugate to some exp(r®) for rational r € [0,1/2]. As we exit C at
r=1/th—1) and proceed, we enter new alcoves, creating segments in each
alcove. Each of these segments is W -conjugate to a unique segment in C.
The resulting collection of segments in C forms the path of a billiard ball
with initial direction from 0 to p.
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16
Pictures for SOs and G, are shown below. The dotted line consists of
points in Cp lying outside C and the points where the billiard path bounces off
a wall of C are labelled by their Kac coordinates. The faint lines intersecting
at Kostant’s principal element (111) are those with equations o; = 1/h, for
i=0,1,2. In the picture for 5§05 we have continued out to j, to show how

the symmetry rp <+ (1 — r)# by conjugation in Gp is transformed into the

nontrivial symmetry of the alcove (.
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2.6 KAC COCRDINATES AND REGULAR ELEMENTS IN THE WEYL GROUP
In the examples above, many of the interesting torsion classes have all of
their Kac coordinates s; € {0,1}. Such classes often come from the Weyl

group of G. For example, Kostant showed that his class of principal elements,
with all §5; = 1, meets the normalizer N of T in a single N-conjugacy class

which projects to the class of Coxeter elements in W.
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Other classes in W arise similarly. Following Springer [20], we say that
an element w € W is regular if w has an eigenvector in ¢ whose stabilizer in
W is trivial. For example, any power of a Coxeter element is regular. Using
Springer’s classification of regular elements, along with more recent results
of Panyushev [16], one can prove!)

PROPOSITION 2.2. Let w € W = N/T be a regular element of order m.
Then

1. w has a representative o € N which has order m and is principal;

2. the G-conjugacy class of o is uniquely determined by the properties
inl.;

3. the Kac coordinates of o (which are well-defined, by 2.) have all
L~ {O, 1} .

We call o the principal lift of w. For a given regular element u:, there
are often several ways to find the Kac coordinates of its principal lift . We
give just one method, which is not the most efficient, nor can we guarantee
that it always works, but it is fun.

As above, let m be the common order of w and ¢. A simple argument,
using the regularity of w [20, Prop.4.1], implies that (w) permutes the
roots in @ in orbits of size m. Let S be a set of representatives for the
{uwy-orbits on @. For each a ¢ §, choose a root vector £, € g, and
let

Z{v::E!|+J'Er1+"'+am71'En-

The set {Z, : « € §}, along with a basis of £, is a basis of g7, so we
have the dimension formula

(2.1 dim g7 = dim t* + i ;
bz

On the other hand, one can tabulate all possible Kac coordinates for
elements of order m, and compute dimensions of centralizers in each
case.

1) Some, if not all of this proposition is known to experts, but I could not find complete
proofs in the literature. These will appear in forthcoming work of B. Gross, J-K. Yu and the
author.
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Let us try this for Eg. Here |®| = 240, and the extended Dynkin diagram
ﬁ(g) has labellings a; given by

1 2 3 4 5 6 4 2
3

There is exactly one regular class in W(£g) for each order m € {1,2,3.4,
5,6,8,10,12,15,20,24,30} (see [20, 5.4]). These are precisely the classes
in Wi{Eg) with irreducible minimal polynomials on ¢ (ef. [17]) and each

nontrivial regular element w has t* = 0. For each of the m > 1 on this list,
we have
: 240
shng"e= S

by equation (2.14). We search through the vectors (56, ..., for which all
st € {0,1} and Zf:o a;si = m. Bach vector corresponds to an automorphism
o' € G of order m and we calculate the dimension of the centralizer g"’,
using (2.7). Remarkably, we find in each case that

dim gUI > E ,
1
with equality for just one vector (sp,...,sy), which must then be the Kac

coordinates of the principal lift ¢ of w.

These Kac coordinates have a deeper meaning, If we omit sp and double
the remaining s;’s, we obtain the weighted Dynkin diagram of another
embedding

¢: PGL, — G

(see [7] for background). This means that & lies in this w(PGl,) as well as
the principal PGL>. The two PGL,’s are conjugate exactly when w is the
Coxeter element. The results are tabulated below, using Carter’s notations [8]
and [7] for Weyl group elements and embeddings : PGL, < G, respectively.
The first four lines of this table appear in Springer [20, 9.11, 2] (who arrived
at them by completely different means). Those entries where sp = 1 are
related to the map between nilpotent elements in g and conjugacy classes
in W defined by Kazhdan and Lusztig (see [13] and [19]). S. DeBacker
informs me that the entries with s; = 0 are related to a varant of the
Kazhdan-T.usztig map. A complete list of Kac coordinates for certain lifts
of all Weyl group elements (for Eg and some smaller groups) can be found
in [5].
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TABLE 1
Principal lifts of regular elements in W(Eg)

Clasy of m=|w|=|c| | dimg” Kac coordinates of o Gy 10k
w = W(Eg) PGLy — G
Es 30 3 1 11 11 ; 11 Es
Batar) 24 T A -
Batar) 20 e RS
Fatas) 15 R I -1
Ey(a) 12 20 (POEO0 L0 R
Ezlag) 10 24 19108 é & ¥ Eglag)
Dy(as) 8 N
Batas) 6 I O 1%
24, 5 a8 0 0 0 0 1 8 0 0 Bl
2D4(ap) 4 6 |0 001D 8 OO0 ardds
4A; 3 80 FEuDa (1) % g Dy(a) + A2
84, 2 120 00000801 24

3. SEMISIMPLE AUTOMORPHISMS

We come now to our main purpose, which is to extend Cartan’s analysis
of inner automorphisms to all torsion automorphisms of g. Recall that we
have fixed a maximal torus and a Borel subgroup T C B in G = Aut(g)°,
and A={ay,...,ar} is the set of simple roots of T in B.
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3.1 PINNED AUTCMORPHISMS

Choose a nonzero vector X; in the root space g,,, for each 1 < i < ¢.
The triple
E=(T.BAX;} D

is called a pinning (Fr. épingiage) and automorphisms of g normalizing T, B
and permuting {X;} are called pinned automorphisms. The group Aut(g, &)
of pinned automorphisms is finite and is a complement to G in Aut(g) :

(3.1 Aut(g) = Aut(g. &) x G .

(See [4, VIII. 5.2].) A pinned automorphism can be viewed as a permutation
of {1,...,¢} which gives a symmetry of the Dynkin graph D(g) of g.
Conversely, for any permutation « of {1,....£} giving a symmetry of D{(g)
there is a unique pinned automorphism « € Aut(g, &) such that o/X; = X,
for all {. More precisely, for each { there exists ¥; € g_,,,, such that the Lie
algebra g is generated by {X.Y; . 1 <i<{} and

0Xi — Xﬁ'i - l?Y, — Y_

W

Thus, Aut(g,£&) is isomorphic to the symmetry group of TXg), hence has
order six when g has type Dy, order two in types A,, D, (n > 5) and Fs, and
is trivial otherwise. The nontrivial pinned automorphisms and their fixed-point
subalgebras are tabulated as follows.

Type | 9 D(g) =19 Dig”) g’
24, |sb0ps1 | 0—0—+ 0—0.-. 0 2 00—+ - —0==0 802,41
=]

SAgn—1| sh O—0—+ 0o —0—0 2 O——0— - —0<—0 | spy,
)

ZDn+1 507,42 O—O——i—@ 2 O——0—: - —0=—= 0 802,41

oy | sos o—i—o 3 o=t} @
2Fs o5 o—o—I—o—o 2 O—OE=0—0 fa

Fix now a pinned automorphism ¥ € Aut(g, &) of order f and denote also
by @ the permutation of {1,...,#} which it induces. We have f € {1,2,3},
and f =1 reduces to the inner case treated above. Let [ be the set of orbits
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in {1,...,¢} under . The fixed-point algebra g is simple and is generated

by the elements
X, =3 X, Y,=3 Y, foriel
i€ ice
(see [10, X.5]).

LEMMA 3.1. For any ) € Aut(g, &), the fixed-point groups T and G?
are connected and TV is a maximal torus in G . If © is nontrivial then G’
is equal to the full automorphism group Aut(g”).

Proof. Since & permutes the basis {&4,...,0¢} of X,.(T), it follows that
TV is connected, of dimension equal to the number of #7-orbits on this basis.
Let G' — G be the simply-connected covering of G with kernel Z' = m1(G)
and let 7’ be the pre-image of T in &’. The set M = {u; : a; = 1} of
minuscule weights of 77 restricts bijectively to the character group of 7',
so that the ¢-invariant elements of M are the characters of Z'/(1 — HZ .

It follows that the map
Z -7 — T /(- T

induced by the inclusion Z’ < T’ is injective. The connectedness of G¥ now
follows from [21, 9.3,9.5].

Since X; + ---+ X; is a regular nilpotent element in g contained in g7,
there is a principal PGI, in  contained in G”. Tt follows that 79 contains
regular elements in G. Since the centralizer of a principal PGL; in G is
trivial, it follows that G° has trivial center.

The nodes of the Dynkin eraph P¢g”) correspond to the ¢-orbits on
{1,...,¢} and from the table above, we see that D(g”) has trivial symmetry
group. Hence Aut(g?y is connected and GY = Aut(g?).

3.2 CONJUGACY RESULTS

The first step in the classification of semisimple inner automorphisms was
the fact that T meets every semisimple conjugacy class in . In the outer
case, we begin with an analogous result.

LEMMA 3.2.  Every semisimple automorphism o of g is G-congugate to
one of the form s, where ¥ € Aut(g, &) and s € T?.

Proof. From [21, Thm.7.5], ¢ preserves a Borel subgroup of G and a
maximal torus therein. Replacing o by a G-conjugate, we may assume that
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these are B and T, respectively. Let & be the projection of & in Aut(g, &)
according to (3.1). So o = Js, for some 5’ € . Since 9 preserves T, B, the
element s’ normalizes T.B. Hence s projects to an element w of the Weyl
group of T which preserves the set of simple roots A determined by B. This
means that w =1, s0 s € T.

Let p: TY — T/(1 —T be the restriction to T of the natural projection
T — T/(1 —HT. The kemnel

kerp=T"1M( —NHT

is finite. Indeed, if f is the order of ¥ then the mapping # ++ t- 5 - ¥ ~1(H
sends (1 —7T to 1 and sends every element of 77 to its f™ power. It follows
that kerp is contained in the f-torsion subgroup of T, hence kerp is finite
of order dividing f’". Since 7% and T/(1 —HT have the same dimension, it
follows that p is surjective. Hence there is ¢ € T such that

st e T
Conjugating in Aut(g), we have
tor = s’ =995 € 9T,

as claimed.

Thus, any element of JG is G-conjugate to one of the form o = s, with
s € T". As a partial step towards torsion automorphisms, we will first restrict
5 to lie in 87, where §:= exp(V) is the maximal compact subgroup of 7.
The conjugation action of G on ¥G induces actions of W? and § on ¥§,
hence an action of WY x § on 45.

LevMA 3.3, If two elements of OS5 are G-conjugate, then they are
conjugate under W% x §.

Proof. Suppose s,5' € § and g € G are such that gisg~! = s’ Writing
g? == 974, this means that

g’} s=3- g.
For the moment we care only that s,s' € T. Following the argument in [1,
Lemma 6.5], we will show that «ts and s’ are conjugate under N*.T. Using
the Bruhat decomposition for G, there is a unique n € N such that g = unv,
with u,v in the unipotent radical U of our -stable Borel subgroup B.
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We can replace ¢ by ». Indeed, we have

wWatv? s =5 unv.

Writing both sides in the form UNU and comparing the parts in & on both
sides, we find that

(3.2) ns=45-n.

This shows that a(#sin~! = ##s', as claimed, and also that the image of n in
W belongs to WY . We have already remarked that every element w € WY
has a representative : € N®_ Hence n = wr, for some 1 & T, so ¥s and s’
are N”.T -conjugate, as claimed.

Now suppose 5,5 € .5. Using the polar decomposition T = S x H, where
Hr~ (R>0)(’, we write ¢ = £.4;, with £, € § and #, € H. From equation (3.2)
we have

) = )’ s )T = @t

1oy, 0,1
S ) R S S

Since both (s and 1. !s belong to §, it follows that #’ = #,, and that

i

2
n, -s=95-n,,

where n, = 4, = N? - §. Since the action of &Y on ¥§ factors through
N?/T? = W* the lemma is proved.

To study S-conjugacy on #8”, we linearize as follows. Our pinned auto-
morphistn ¢ permutes the basis {d;} of Y. Let

Py=f'0+9+ - +¢/™H e EndV)
be the projection onto V% and set
Y’(? = PﬂY .

Then Y, is a lattice in ¥*, and contains the group ¥Y* of @-invariants in ¥
as a {generally proper) sublattice.

LEMMA 3.4, Lei x,x" € V¥ . Then 9 exp(x) and O exp(x") are S-conjugate
if and only if x —x' € ¥y.

Proof. A straightforward calculation shows that

exp(—u) - Pexp(x) - exp(e) = ¢ exp(x”)
for some » € V if and only if
x—x €[l -NHV+YINV.
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We show that
(3.3) [(1—DV+ YNV =¥,.

Since Py kills (1 — )V and is the identity map on v?  the left side of (3.3)
is contained in the right side. The reverse containment follows from the fact
that the polynomial

PO =fd+x+2+ -+

satisfies the differential equation p(x) = (1 — x)p’(x) g,

The W¥-action on V¥ extends to an affine action of the group
Wo =W x Yy,

where y € ¥y acts by the translation #: x +— x +y. Lemmas 3.3 and 3.4
combine to yield

LEMMA 3.5, Lef x,x' € V¥, Then ¥ exp(x) and ) exp(x’) are G-conjugate
if and only if x and X' belong to the same W -orbit on V¥ .

Since exp(x) is torsion if and only if x € Vg := Q& Y, Lemma 3.5
implies

CORCLLARY 3.6. The map x — Pexp(x) induces a bijection between
the set of Wy-orbits on Vg and the set of G-conjugacy classes of torsion
elements in 9G.

33 A FUNDAMENTAL DOMAIN FCR Wy IN V? AND KAC COORDINATES

We shall use the geometry of the Wy-action on V¥ to recover Kac’s
parametrization of the (-conjugacy classes of torsion elements in #G.
Throughout this section it may help the reader to look ahead at Table 2

and Section 4, where the individual cases are treated in detail.

Recall that { denotes the set of orbits in {1,...,¢} under the permutation
induced by the action of ¢ on the set A= {w,..., 0y} of simple roots. For
¢ €I, let w, be the unique element in the subgroup of W generated by the
reflections {r;: ¢ € ¢} such that {w,e,;: i€} ={—cy: i€} Then W’
is a Coxeter group with generators {w, : « € I} and V" is the reflection
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representation of WY (see [21]). The lattice Y, has the Z-basis {fi, : v € I},
where [i, = Py(&p) for any i € . That is,

5 1 5
ft, = m Z Wi,
L=y
where |¢| denotes the cardinality of the «-orbit ¢. The action of Wy on V7
is generated by the reflections w:, and the translations by ji,. As the notation
indicates, W is an extended affine Weyl group, of a root system @, defined
as follows. Say that two roots «. J in @ are #-equivalent if their restrictions
a and 4 to VY are positively proportional: @ = r7 for some r > 0.
A 1 -equivalence class a @ can have one of two types:
I. a={e,Pa. ...} is a ¥ -orbit consisting of mutually orthogonal roots;
. a= {o,de, o0 + dev}, oceurring only in type A,,.

Let &/: denote the set of -equivalence classes of roots in &. For each
aecd/d, set

s Z(x, and @y ={v  ac P/}
xCa
Then @, is a reduced root system and W is its extended affine Weyl group.
Note that ~, is generally not the restriction to V7 of a root in a. If we
choose « € @ as in the definitions of types I and II, i.e, so that & is not
twice the restriction of another root in a, and set 4, = &, then v, = f,3,,
where

iy =

la| in type I,
4 in type II.

A base Ay of @y is obtained from the base A of & as follows. Given a
¥-orbit + € 1, let @, € ® /¢ denote the unique 1 -equivalence class containing
{a; i€}, and set

Yo ir=Ya s foi=fa

Then Ay ;= {7, : ¢ € [} is a base of @y ; we have (v, i, } =01if ¢ # ¢
and

B4 v i) = ho_ 1 if a, has type I,
' l¢| 2 if a, has type 1I.

The equations v, = n, for ~, € &y and n € Z, give hyperplanes in V¥
and the complement of all these hyperplanes is a union of alcoves which
are permuted transitively by the sroup Wy = W¥ x ¥;. Quiside of %45, this
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follows from (3.4), which shows that the ji, are the fundamental weights
for Ay. For A;, see Section 4.1.

Just as in the inner case, the base Ay determines an alcove Cp in V¥,
as follows. Let 5y be the highest root of @, with respect to the base Ay.
We obtain positive integers ¢,, for ¢ € I, defined as

o = E Cu%e -

el

The integers ¢, are found in Table 2 below. As in the inner case, we set

F={0Vur, #%:=1-%, €y=L,

Z = 1

r,Ef

so that

on V? and our alcove is defined by
Co={xeV’ (v, 0)>0 Viel}.
Note that Cy is not equal to €N V¥, in general. The set of vertices of Cy
is {w, : 1 €1}, where
w=jip=0 and v, = {Fo, ) ', for €1,
A point x € Cy may be uniquely expressed in barycentric coordinates as
x:Zx,ﬁu,,., with Zx!_:l and x, >0 viel.
vel el

As in the inner case, any point in AT W” -conjugate to a point in Cy and
two points in Cp are conjugate under Wy if and only if they are conjugate
under the alcove stabilizer

Qs :={p€Wy: p-Cy=0Cy}.

The action of each element p € €25 on Cy is given in barycentric coordinates
as a permutation of [, via the action of p on the vertices of Cy.
We recover the Kac classification by taking a closer look at the vertices

v, = (%0, ji,) Li,. Fraom (3.4), we have
G5 Gio. ) =12
I claim that

(3.6) f divides fie, forall e/l
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This is clear if f= || Otherwise, we are not in type %Az, and since f is a
prime, the orbit « = {7} is a singleton. Being the highest root of @4, 7 is
a long root, hence it is the sum of a ¢-equivalence class (in fact a ¥ -orbit)
ag = {e1,.... a7} of cardinality . From (3.5) we have

fieo = Go fu) = {en + -+ oy, ) = flon, Dy
which is divisible by f, as claimed. If we set
ﬁ) :f1
then ¢(3.6) also holds for + = 0. Thus, we have integers

(3.7) b, ::% for v €7, with bg=1.

We can now state the Kac classification of torsion elements in ¢G.

THEOREM 3.7. The G-conjugacy classes of iorsion elements in 3G are
classified as follows.

1. Every forsion element in WG is G-conjugate to one of the form
o = Jexp(x), where x € Cy M Vg.

2. There are nonnegative integers s,, indexed by 1 & 7, such that
ged{s, : 1 €I} =1, the order m of o is given by

m=f- Z b,s, ,
el

and x is given in barycentric coordinates as

Xie ! é bs,v, .
m ik
el
: ; ' ; ; '
3. Two torsion automorphisms o,0', with coordinates (s,) and (s)), are

G-conjugate if and only if there is a permutation p of [ arising from Qg
such that s, =s,, forall t€1.

Proof. The assertions in parts 1. and 3. are immediate from the above
discussion and Corollary 3.6. Since exp(x) and # commute, the order m of
o = Yexp(x) is divisible by f and we have exp(mx) = 1. Hence there are
integers §1.52,...,8 such that

£
IZ v
X = §;wha
m
=1



28 M. REEDER

Since x is #-fixed, each s; depends only on the #-orbit + containing 7; we
write 5, ;= s; for { € ¢, and we have

1 o
(3.8) x= ;Z (o] 8., -
el
Since x € Cy, we have
—~ 1 —_— 1
1= <')'0=x> = E ZSL |1| <TO:I—‘5'L> = E Zst.czﬁ = ;%szsa -
rel vel el
We define a nonnegative integer sy by

Soz}ﬁfzb,,s,),

LT

f-ZbLs!:m.

tE'f'
If d divides s, for all ¢ €7, then d divides m/f, so f divides m/d and we
have

so that

9"/% =1 = exp (mx/d)

implying that ¢™/4 = 1. Therefore d = 1 and the integers s, are relatively
prime.

From (3.8) and (3.5), the integers (s,) are related to the barycentric
coordinates (x,) of x by

e s, X, elx elxm

mo Gogut  oafe fb]

or

¥ = = b
m

This shows that all s, are nonnegative and completes the proof of part 2.

REMARK. The integers (s,), ; are the Kac coordinates of & (cf. [12,
Thm. 8.5]). The integers b, are the labels of Kac’s twisted affine diagrams,
as we will see in the next section.

3.4 FIXED-POINT SUBALGEBRAS

In this section we determine the subalgebra g” fixed by a torsion
automorphism ¢ € #G, in terms of the geometry of the alcove Cy. The
first step is to compute the matrix of ¢ acting on g. For each J-equivalence
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class a € @/¢, the direct sum

Ga = Z G
vCa

is preserved by 7, the root spaces being permuted. I claim that if a =
{a,de, ...} has type |, then ¢ acts on g, via the permutation matrix of an
Jfacyele. If f;, > 1, and we choose any nonzero X,, € g, then {X,,,9X,....]
is a basis of g, permuted by @. If @ = {a} has type [ with f, =1 then we
can find w € W? and . € I such that v = wi, where 9 € A. By [21] we
can choose a lift n € N” of w so that Ad(n): g5 — g, is ¥-equivariant. By
definition, the pinned automorphism ¢ fixes gz pointwise, so ¢ also fixes
g pointwise, as claimed.

If a={a,9a,a+ da} has type 1I, and we again choose any nonzero
Xo € ga, then (X, UX,,[Xy, 9X,]) is an ordered basis of g, on which ¢

has matrix
0 1 0
1 0 0].
0o 0 -1

Now let ¢ = 95, where s € T”. The characteristic polynomial of ¢ on g,
is given as follows. Recall from the previous section that we defined 3, to
be the shortest restriction to V¥ of a root in «, and that we have

Aﬂ’d :f:ﬂ"ﬁaﬁ .
Our matrix calculations show that

th — G (s)f if & has type I,
(3.9) det(r — olg.) = - i) 1 AR
(% — 3,07t + B,(5)®)  if a has type II.
In all cases, the roots of det(r — #|g,) are distinct and we have
det(l — lga) =1 — Buls) = 1 — 7).

If s =exp(x) with x € V¥ this means that

1 f A'JGI) Z
(3.10) dim g7 = i i) 2

0 if {vo.x) ¢ Z.

Thus, the integrality of (v,,x} determines when g7 is nonzero. However, the
root -y, is not the character of TY on g7 . Indeed, if {v,,x} € Z, the matrix
calculations above show that the line g7 affords the character 3, or 23,, the
latter occurring if and only if @ has type II and {~,.x} is odd.



30 M. REEDER

As we saw for ¢ = 1, the closure
Cy=1xc v 20 Ve ET}
is partitioned into a disjoint union of 2 — 1 facets:
Cy = U Cy,
JCr

indexed by the subsets J C I with J 5= 1. The facet CY, consists of the points
x € Cy such that {y,,x) =0 for & J and {v,x) >0 for 1 € —J. For a
general root ~, € @y, we have {y,.x) € Z if and only if {~,.x) € {—1,0,1}.
Thus, we have proved:

PROPOSITION 3.8. If x € C‘,; and o = Yexp(x), then we have the root-

space decomposition
o =e> u,
a

where the sum is over those -equivalence classes a € ®f for which
{7e,x) € {—1,0,1}. Each such g is a one-dimensional eigenspace for TV,
affording either the root 13, or 23,, the latter occurring if and only if a has
type 11 and {v,,x) = +1.

The root 23, appears only in the case 2A,, ; for more details in this case
see Section 4.1.

Taking x = O, Proposition 3.8 says that g” has root system
@y = {0, ac®/d), withbase Ag:={3 :c€l},

where 3, :f"_lf“;t_. If we set 50 :f_lj*,.vfo, then
(311 Bo= ¥ bl
el

where the integers b, = ¢, f,/f are the ones previoudy arrived at in (3.7
For (G. ) not of type %A,,, the root ’ig is the highest short root of CD;; For
A, .30 is twice the highest short root of CDI; (see 4.1). In all cases, we set
Bo = f 40, and recall that by = 1, so that

> b 3!,

!En’
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To complete the picture, we must also give the co-roots of &\)1‘}. For every
#-equivalence class a € ®/7, the co-root ja is defined by

(3.12) D=3 A%,

xEd

which makes {3,, ,£§a> =2, and we set 3, = ﬁ’a, ,for + € . Then the reflection
w, € Wy about the hyperplane 3, = 0 is given by

(3.13) w, - x=x—{8,.x)3,, foral .el.

We also define ,-1'}?0 so that (3.13) also holds for + = 0. Recall that ap is the
#-equivalence class such that Gy = 3,. Our ,5?0 will be a multiple of .3%,
where the latter has been defined in (3.12). To make (3.13) hold, we must
take

¥ 150 in type ZAs,,
A —,,gan in all other types.

All of this data is displayed in the Kac diagram TXg, ), which has nodes
indexed by ¢ € [ and labelled by the integers b,, for ¢ € [; the number of
bonds between nodes ¢.  is the integer

Pew 1= (;SL: :&c} . (;Br{: j{) = {07 152;3:4} .

We get n,,, =4 only in type A, (see Section 4.1), and we get M =3
only in type 3D, (see 4. If n,,. > 2, then we may order «,% so that
(,[i,,,;'vih,,} = —1 and (,‘-t’i,,v_,;"ﬁ'i_) = —n,,. Then on the bonds we put an arrow
pointing towards ¢, as in the following example:

040 means (.‘8,,,5”,) =1, (.‘SH,_.;?,,) =-3.

The Kac diagrams appear in the fourth column of Table 2. For any x € C,,
deleting from DX(g,¥) the nodes ¢ for which (~,,x) € Z gives the Dynkin
diagram D(g”), by Proposition 3.8. We denote the node corresponding to 3
by e; deleting just this node gives the Dynkin diagram D{g”). Above each
node of D(g, ), we give the integers b,. These integers are denoted by Kac
as @; in [12, Chap. &]; he arrived at them, along with his diagrams (g, ),
in a completely different way.
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TABLE 2

c, b,
Type Dy (@,9-diagram) Dig, D) Dy | Qo]
I
5 1 1 2
Az C: e =0 By 1
. N 2 1|1 % 2 2
Aop C, o—0C—- —O+—0 8— 00— =0 B, 1
> 3 i
(n=d)
1 2 2 2 1 2 2 1
A1 | Ba | —C—---—0=0 D=0 o 2
5 7 3 i
(n3)
1
2 2 2 1 1 1 1 1 1
Doyl | € | 00—+ —0+=0 | #<=0—0—--—0=0 | B, 2
s 1 1 iz
3 2 3 1 2 1 -
1971 Go ?3? *—C&ED G2 1
2 2 3 4 2 1 2 3 2 1 =
Eg Fy (;—Cz)ﬁ?—? *—O—O+—=0—0 Fa 1

On the left side of Table 2, we also give the unextended diagrams of the
root systems @y, along with the integers ¢, and f, above and below each
node, respectively. Recall that these numbers were used to compute the b,’s,
via the relation ¢, f, = b, f. The rightmost column of Table 2 gives the alcove
stabilizer €2, discussed in Section 3.6 below.

3.5 COMPUTING KAC COORDINATES IN THE OUTER CASE

As we saw for ¢} = 1, the subgroup I«T/; of Wy generated by the reflections
w,, for + € I, is the afﬁne Weyl group of the root system @y, and the alcoves
in VY are permuted simply transitively by WU From the formula

W, X =Xx— (“i’i,,,x);i'i,,. for xe V¥ and 1 €1,

we can express the action of W; on V" in terms of Kac coordinates, just as
we did in Section 2.3 if x € V¥ has barycentric coordinates (s,)
some of the s,’s may be negative, then w,,
(s}),7. Where

-t where

- x has barycentric coordinates

Si =8 — <jf 55)5'& .

The algorithm for conjugating x into Cy runs just as in Section 2.3. Thus
the diagram DXg,#) contains instructions for finding the Kac coordinates of
the automorphism +f exp(x), where x is any rational point in V¥,
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3.6 THE COMPONENT GROUP OF (G7

Let x € Cy, with 0 = o - exp(x) as before. Lemma 3.8 determines
the connected centralizer (G“)° up to isogeny, in terms of the facet CJ
containing x. As in case ¢ = 1, the component group A, of G° depends
on the location of x in €}, and is governed by the alcove stabilizer

Qg:{pEﬁ/g cp-Ce=0Cyt.

More precisely, we have:

LEMMA 3.9, [f ¢ = vexplx), with x € Cy, then A, =~ Ly, where L2y ;
is the stabilizer of x in Qy.

Proof. let W, =N/ T% be the subgroup of W whose elements can be
represented by o-fixed elements of N. If n € N7, then ?{n) =»n modulo T.
Hence W, is a subgroup of W Let W,;x denote the stabilizer of x in W;}
I claim that the projection «: Wy — WY sends Wy, onto W, and gives an
isomorphism

(3.14) Wae — Wy

If we W” is the projection of an element of Wy then w.-x —x € ¥y. By
equation (3.3), there are v+ € ¥V and y € ¥ such that

wx—x=@W-—-Dv+y.
Sefting s = exp(x), ¢ = exp(n), we have
wis) = 1D

By [21, 8.2(4)] we may choose 1 € N? such that w = w7 . Then the element
n = iy belongs to N7 and »T = «. Thus, the projection (3.14) maps W‘fg,x
into W, . The argument is reversible, showing that W(Wg‘x) = W, . Finally,
since the kernel of « is torsion free and 'VT/.M is finite, the map (3.14) is
injective, completing the proof of (3.14). With this in hand, the rest of the
argument is entirely similar to that of Proposition 2.1, and is left to the
reader.

REMARK. From Table 2, we see that for ¢ #£ 1 the group G” has at
most two components, is always connected in types 2As,, Dy and 2Eg, and
is disconnected in types 24, 1 and 2D,,+1 exactly when the Kac coordinates
(s,),c7 are fixed by the nontrivial symmetry of D{g,#) (cf. [21, 9.8]).
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3.7 THE CENTER CF GY

Let o = ¥exp(x), with x contained in the facet Cj; of Cy. The center
Z- of G7 centralizes 77 = TY, hence is contained in 7%. Since GY has
trivial center, the character group X*(7'?) is generated by restrictions of roots
of T. It follows that the character group of Z, is

X*(Z,) = X (T /2D) = ZAyJZN)

where B{) is the set of gradients of the affine roots 3, for + € J. Since all
but at most one root of B{, are contained in BI;, the possible exception being
7,:3-0 = — > iy budi, it follows that X*(Z,) has rank equal to |7| —|/| and the
torsion subgroup of X*(Z,) is cyclic of order equal to the ged{b, : ¢ € I-J}.
For example, Z, is connected if O & J.

3.8 [SOLATED AUTOMORPHISMS

A semisimple automorphism ¢ € Aut(g) is isolated if the fixed-point
subalgebra g7 is semisimple. Such a & is necessarily torsion, lest the Zariski-
closure of {#} contain a nontrivial torus in the center of G”. The previous
section shows that, for x € Cy, the automorphism o = #exp(x) is isolated
exactly when x is a vertex of Cy. Hence every isolated automorphism of g
is conjugate to some

o, =dexply), &€ f?
where v, = (3o, p1,) " 1fi, are the vertices of Cy (see Section 3.3). The order
m, of ¢, is given by
m=cf.=rb,.
From Section 3.7, the center of G” is cyclic of order b,, generated by
(rf = exp(fuv,). Equivalently, the center of {7, )G is generated by o,.

4 THE VARIOUS CASES

41 %A,

Here g = sl,q1. Instead of writing V as a quotient, as we did in Example 1
of Section 2.2, it is convenient now to express V as a cross-section of that

quotient :
2n+1

V=A{01,...,%041) € R Z x: =0},
i=1
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We have Aut(g) = () - PGl,, 1 with pinned automorphism ¢ of order two,
acting on V by
(X1, Xzpg1) = (SX2pa1y0e =X
Hence
v¥ = {0y X0 0, =Xy o, —x1) - x; €ERY

can be identified with R" via the first » coordinates and we may take
I=1{1,2,...,n} as the indexing set for the #/-orbits on {1,2,...,2r}. The
lattice ¥y has basis {fi; : 1 <i < n}, where

Gi=2erte+ o te),

and {e1,...,e,} is the standard basis of R". The simple roots o; = x; —xi11
on V restrict to V¥ as

3 — Xi—xiy1 forl <i<n,
0 =
o Xp fori=n.

For 1 < i< n the ¥-equivalence classes a; = {a;, az,1-;} have type 1 and
@y = {n, Gnt1, @y + @peq} has type 1, so we have f; =2 for 1 < i < n,
fi=4 and

- 20 = 20x; — Xiy1) for 1 <i<n,
"= 43, = 4x, fori=n.

The root system ®,, with basis Ag = {y1,..., 7.}, has type C,. The highest
root 7y is given by
Yo=2n+2%n+ "+ 2%-1+m=4%

and arises from the type-1I equivalence class ag = {eg, dag, e+ dag}, where
g =1 o+, =X —Xep1. We have ¢; = (o, iy =2 forall £ Tt
follows that the alcove Cy € V¥ is defined by the inequalities

1> >8n > >x >0

and has vertices w9 =0 and v = %;‘25 for 1 <i<m. For 1 <1< n we have
b,‘ = 26,‘/2 =2 and

Go=f"F =2
(which equals 27 if r =1). Thus, we get the diagrams D(g, ) in Table 2:

1 5 2 2 2 2 .
e —0—0 - 0—O=—>0 if m>1
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1 > . . .
and e=oif n =1. The group £, is trivial, so every torsion element in

#G is G-conjugate to a unique one of the form ¢ exp(x) with x € Cg N Vg.
The isolated automorphisms

a; = dexple)

{2 ifi=0,
m,-:fb,':

4 if1<i<n.

have order

The fixed-point subalgebras are

87 = SPo; © 502t -

By Lemma 3.9 the fixed-point subgroups 7¢ are connected. They have center
of order two, for 1 < i < n with trivial center for i = 0. Indeed, we have

G =~ Spa; % SO%n_y41 -

To see this directly via linear algebra, let (- | - be the usual dot-product
on C*Tl let J be the matrix equal to one on the anfi-diagonal and zero
elsewhere, and let s; be a diagonal matrix with characteristic polynomial
(4 Dt — 191 Then the bilinear form

{u, vy = (s | Ju)

is orthogonal on the 1—eigenspace of s; and symplectic on the sum of the
imaginary eigenspaces of s;. The subgroup of GLs,.; preserving {.,.). is

Sp2i X Ozp—jy+1, whose image in PGL,qq 18 isomorphic to Spz; X SOzp—p+1.-

42 ZAr, 1, 22

Here g = slp, and

We have Aut(g) = () - PGL,, with pinned automorphism ¢ of order two,
acting on ¥ by

Hence
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can be identified with R” via the first n» coordinates and we may take
I={1,2,...,n} as the indexing set for the ¢/-orbits on {1,2,...,2r}. The
lattice ¥y has basis {j; : 1 <i < n}, where

fi=3(e1+e+ - -+e)
and {ej,...,e,} is the standard basis of R*. The simple roots o; = x; —x;11
on V restrict to V¥ as
3 — {x,-x,-+1 forl1 <i<n,
o Dxa fori=n.

All ©#-equivalence classes have type I and are ¢-orbits on the roots. We have

_ 20 = 2x; — Xiy1) forl <i<nm,
= 0, =k, for i = n.
The root system @y, with basis Ay = {~.....%}, has type B, and the
highest root 7 is given by
”n

Yo = Z evi=n+2r+ o+ v+ 2y = 200 + ),
i=1

arising from the @-orbit @y = {x1 —x20—1,%2 — X2, } . It follows that the alcove
Cy < V¥ is defined by the inequalities

- x>xn> o >x >0
and has vertices

’U():O, Ulzll‘ll, v = ,'15 for 2§ISH

L=

We have ,50 = f7 1% = x; + x2, so we get the diagram (g, ) in Table 2:

1 2 2 1
o_T_. R aE——JoN
1

The group €2y has order two, and the nontrivial element p € Q4 acts en V?
by

p : (XI:XZ: T 3 “-xnfl',xr!) - (% - xl:-x2: el 1xn*1:xn) T
Hence p-vg = 1 and p gives the nontrivial symmetry of the diagram D(g, ).
For 1 < { < n, the isolated automorphism

o; = dexp(y;)
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has order

i iy 2 %fizlorn,
4 ifl<i<n.

We will ignore i = 1, since o is conjugate to g =¢. For 0 <i<m, i# 1,
the fixed-point subalgebra is

8% = 502 © 5Py -

For i = 0 the fixed-point subgroup G” = Spa,/{+1} is connected with trivial
center. For 1 < i < n the fixed-point group G has two components and has
center of order two. Indeed, we have

Ga( s [025 X sz(n,!)]/{ilgn} .

To see this directly via linear algebra, let (- | -) be the usual dot-product
on C? let J be the matrix equal to one on the anti-diagonal and zero
elsewhere, and let s; be a diagonal matrix with characteristic polynomial
(# 4+ 19 — 15¥ . Then the bilinear form

() = (s | Jv)
is orthogonal on the 1—eigenspace of s; and symplectic on the sum of the
imaginary eigenspaces of s;. The subgroup of GL», preserving (.,.); is
Oz % Span_pn, which has kernel {+h,} when projected into PGla,.
43 I,y
Here g = so2,42 and ¥V = R*T!. We have
Aut(g) = () - PSOznt2 = Ozt /{L1}

with pinned automorphism  of order two, acting on V by

e (g ey X Bapt = (s o0 su Xme—Fngeafe
Hence
V=, 5 0) 0 x ER}

can be identified with R” via the first » coordinates and we may take
f=1{1,2,....,n} as the indexing set for the #-orbits on {1,2,...,n +1}.
The lattice Yy has basis {ji; : 1 <i < n}, where

. e1+---+e if1<i<n,
Hi = o
%(el+---+en) ifi=n.
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The simple roots

o =x —x1 (1 <i<n), Qpl = Xp + Xnp1
on V restrict to V¥ as

g — Xi — Xi+1 f0r1§i<n,
;=
' o fori=n.

All & -equivalence classes have type I, and are & -orbits on the roots. We have

_ .3,':]{5*](;_1_1 forl <i<n,
=128, = 2% for i=n.

The root system @, with basis Ay = {~1,...,7.}, has type C, and the
highest root 7 is given by

n
Yo=Y e =2M+2% 4 +2% 1+ =2x,
i—1

arising from the @-orbit ap = {x1 —x441,%1 +xsr1}. It follows that the alcove
Cy < V? is defined by the inequalities

%>xl X > > X, >0
and has vertices
=0, w= %(el—l—---—l—e,-) for 1<i<n.
We have §0 = f 1% = x1, so we get the diagram D{g,+) in Table 2:
1 11 1 1

I E—O0—0O— . D20,

The group €y has order two, and the nontrivial element p € Q4 acts on v
by

1 1 1 1
,U‘(.?Cl,xz,.. ':xnfls-xn) Z(E 7xn_-§ 7.7(”,13....2 7.7C2..Z 7-X1)-

Hence p- v = v,; and p gives the nontrivial symmetry of the diagram
D(g,?. For 1 <i < n, the isolated automorphism

o= vexp(u)

has order
m,-:fb,-:Z for 1 SISR
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The fixed-point subalgebra is
g7 ™ $02(a_pq1 (O H02i41 -

Since all b; = 1, the fixed-point subgroup G7 has trivial center for all §
and is connected unless r is even and i = /2. In that case, there are two
components. More precisely, for i £ n/2 we have

G~ 805011 X 802041,
and for # = 2k we have
G™ = 2-[802 11 % SO2141] .

where the outer involution switches the two components.

To see this directly via linear algebra, note that the automorphism e;
is conjugation by an element of order two in O,,.» having characteristic
polynomial (¢ 4+ 1)X#=9F ¢ — 1%+

44 3p,

Here g = sog has Aut(g) = §3 - PSOg and we take 4 € §;3 of order
three. Denote the set of simple roots of Dy by A = {on, 0, a3, au}, where
oz corresponds to the branch node, and let &; be the fundamental co-weight
dual to ;. We write [ = {0,1,2}, where “1” and “2” stand for the -orbits
{1,3,4} and {2}, respectively. The equivalence classes @ and corresponding
restricted roots &, € CB@ and roots vy, € dy are as follows:

T
]
as B 11 =33
ay
@ fo7) n=
ay + o
a + o3 B+ 8 11+ 3% =3 + )
ay + g
az + a3 + oy _
g+ org + ) 2+ = | Tvi+3n =T =3QH + &)
ap + o+ o3
el +oa +an oy 331+ 3 Mt =35+3
o]+ 200 + o + oy 3814+ 23 M+2vm =35 +25
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From Table 2 we have the Kac diagram D(g, &), with label b, above the
node (&):

1 2 1

O—D<@
which shows that the isolated automorphisms o, = ¢exp{v,), of order
m, =c,f, =fb,, where v, are the vertices of Cy, have semisimple fixed-

point groups G of types Gz, A X Ay, A, for + = 0,1, 2 respectively. More
precise information, including the exact isomorphism type of G7+, is given
in the next table.

| ’ |fa ‘ €, | b, | m, = |o| | i, | a, | G |
o3 |1 1 3 0cv? 0cve G
13|22 6 $E@ s+ @0 | O+ a3 400 | SO
21|31 3 & to PGy

Since Qy — 1, Lemma 3.9 shows that each G- is connected. From

Section 3.7, the center of G”+ is trivial for + = 0,2. This gives G? ~ G, and
G™ ~ PGls . Since 3.7 also shows that the center of G™ has order two, we
can pin down the isomorphism type of G7' as follows. Its simply-connected
cover G7! ~ §I, x §L,. The weight [3; appears in g and

{8 ) = — (81, %) = 1.

Hence the center of each SL, factor is nontrivial on g, so the kemel of the
covering GY! — G7' must be the diagonal embedding Ape of p, = {+1}
into the center of Gf!. Thus, we find that G"' >~ §04.

With more work, one can also see this by decomposing g = sog under G7.
Let Sym™ be the irreducible representation of $£, on the m™ symmetric power
of C? and write Sym™" := Sym™ & Sym" for the irreducible representations
of SI; < SL,. For each ¢ -orbit & we compute the polynomial

det(t — oy |gg) = 14 — g27rn)

as in (3.9). This leads to the decomposition of the representation of G”' on
the oj-eigenspace g(¢) for each sixth root of unity (, as follows:

g(1) ~ Sym™® & Sym®?, g(—1) =~ Sym™,
1 G273

o 3~ (e Sym®2, G(e™/3y ~ ("™ ~ Sym™! .

The parity of m,n for the various Sym™”" appearing in g and the fact that
G7' is faithful on g, confirm that G°' ~ 50(4).
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4.5 EXAMPLE: 2Fg

We label the Eg Dynkin graph as: (D—2—3—05—6), so that the
€)

+#-orbits of simple roots are

a) = ‘{ﬁb@ﬁ}’; = {Oc'zfﬂ's}g a3 = {Q’ﬁ}a a4y = {@4} )
and
=20, w=2%h, wm=0. wu—0.
The highest root of @y is 4 = 7, , Where
ag = a1 + 20 + 205 + o + as +ag, g +ap+ 205 + s+ 205 +ogk,

so that
Yo=271+3%2+43+2%,
and therefore
Go=2531+33 4+ 253+ 54,
giving the Kac diagram from Table 2, with label b, above the node (¢):
1 2 3 2 1
O—0—0=3—.
Since ¥ acts by inversion on £ ~ Z/3, we have Q4 =1, so Lemma 3.9
shows that each G9+ is connected for all . From Section 3.7, the center
of G+ is trivial for ¢ = 0,4. This gives G’ ~ Fy and G”* ~ PSpg. The
remaining centers have orders b, = 2,3, 2, for + =1, 2,3 respectively. We can
pin down the isomorphism types as we did for 3Dy, by computing (,6,-.;§;i1},
to arrive at the table below, where Ay, denotes a diagonal embedding of the

group of n'™ roots of unity into the center of a product of simply connected
aroups.

vl e | B | m= e iy U, G
o111 2 0ev? 0ev? Fy
1l2|2]2 4 f@ +ae) | 2+ | [SLo % Spsl/Au
21233 6 FGn + &) | 3 +am) | [SLs x SL)/Aw
31142 4 i 1 [SLs % SL31/Aus
41121 2 ! 24 PSps
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5. TWISTED COXETER EIEMENTS

We close with a twisted analogue of Kostant’s result on principal elements,
mentioned in Section 2.5. Let w € W be the product, taken in any order,
of a set of representatives for the oJ-orbits on the set {r;, : 1 < i < {}
of simple reflecions in W. The element dw € dW is called a @ -twisred
Coxeter element [20]. Such elements form a single W-conjugacy class in oW,
independent of the choice of representatives or the order in the product.
The order Ay of dw is the &-twisted Coxeter number. By construction, the
length #(20) = £ 1s the rank of G, These are tabulated below, along with
the sum ht() of the labels of the diagrams (g, v), and the degrees of
the basic W-invariant polynomials affording a primitive £™ root of umity as
7 -eigenvalue.

Type Dig. Dy hy ht(/30) f-degrees
2 1 2
A =0 B 6 3 3
5 1 5 2 2 2
Az *—0—0— —0—0 | Ba dn+2 | 20411 3,5...,2a+ 1
(hz2)
1 2 2 1
2Agn_1 R ) Co | 4n—2|22—1]3,5....,22a-1
(n23)
1
5 1 11 1 7
Dy & =0—C—- . - —0=—0 B, 2n+2 n—+1 n+1
(n>2)
3 O o
Dy —CES G 12 4 4.4
5 12 3 i1 -
Es *— 00— 5<—0—0 Fa 18 9 59

B. Gross pointed out to me that Ay = f - ht(/%;), meaning that a torsion
automorphism ¢ € #G with Kac coordinates s, = 1 for all + € { has order
hy . In fact, the table shows that twisted Coxeter numbers have the properties:

hy =f-ht(3p) = % = f - largest f-degree
o
generalizing other well-known properties of ordinary Coxeter numbers. This
indicates that & might be a lift to Aut{G) of a twisted Coxeter element. We

will prove that this is the case:
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PROPOSITION 5.1. Let o € 3G be a torsion automorphism with Kac
coordinates s, =1 for all € I. Then ¢ preserves a Cartan subalgebra of
g and acts there via a 9 -twisted Coxerer element.

For # = 1 this is Kostant’s result, proved in [14], and mentioned in
Section 2.5 above. We will use some of Kostant’s arguments in what follows,
but instead of his theory of cyclic elements, we will invoke the classification
of torsion automorphisms. The main point is the following lemma, which is
also used in [9]:

LEMMA 5.2. Let o € &N be a torsion automorphism of 9 of order m,
let L denote the number of o-orbits on the set ® of roots of T in g. Then
(5.1 dim ¢ < dim ¢” + L

and equality implies the following :
1. @7 is abelian and t° = 0, so that dim Y =1;
2. the projection of o to VW has the same order m as o ;

3. m > hy, with equality if and only if o has all Kac coordinates s, = 1.

Proof. Partition ® = &y U --- U Py into ¢-orbits of size n; = |®;] and
let g; be the span of the root vectors X, for « € ®;. Then

L
o=t 0
=1

Since o™ fixes every root in &;, it acts on g; as scalar multiplication by
some z; € C* and we have

i g 1 ifZ“:].,
dim g7 = :
0 lfzi‘%l.

On the other hand, since ¢ € ¥G, the subalgebra t” is G-conjugate to a
Cartan subalgebra of g7. It follows that

dmt” < dimg” = dim " + |{i : z; =1} < dimt" + L.
If equality holds at both steps, then t” and g” are G-conjugate and z; = 1

for all 1 <i< L. Hence g7 is abelian and

L
g7 ="+ > _CX;,
i=1
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where X; is a nonzero vector in g7 . If H € t7 then the value w; = (o, H} is
constant for o € ®;, and [H,X;] = n:X;. But since g” is abelian, we have all
7 =0, 50 {a,H) =0 for all & € @, meaning that # = 0. Hence t7 = 0 and
assertion 1 holds. Moreover, since g” is abelian it has empty root-system, so
the Kac coordinates s, of ¢ are all non-zero and the order m of o satisfies
the inequality
m=f3 " b, 2f ) =hy,
hEi

with equality if and only if all s, = 1. Assertion 3 is proved. The projection
of ¢ to YW has order equal to the least common multiple # of {n.....nc}
and ¢®" =7 on t. If z; =1 for all {, then ¢”" =1 on g; for all i, s0 n=m,
completing the proof of the lemma.

Next, following Kostant, we have an inequality in the reverse direction.
Assume now that t° = 0. Let N, = {a € @7 : goa € —@©F}. Then
|N,| = #w), where @w is the projection of o to ¥W, and £(w) is the
Coxeter length of w with respect to the base A. For each {, the intersection
®; NN, is nonempty. For otherwise, all roots in @; would have the same sign,
so their sum would be non-zero and ¢ -invariant, contradicting our assumption
that t© = 0. Therefore, we have
L

(5.2) fw) = |&;NN;| > L,
i=1

with equality if and only if |@; MN,| =1 for all i.

We now prove Proposition 5.1, by computing the Kac coordinates of a lift
o ¢ 9N of a twisted Coxeter element Jw in dW. From [20, 7.4(1)] we have
that t = 0. By the construction of w, we have £(w) = dim t!. From (3.2)
we have dimt” > [.. Hence we have equality in Lemma 5.2, so ¢ and #w
have the same order, namely Ay, and s, = 1 for all ¢. Since there is a unique
torsion class in @G with these Kac coordinates, this proves Proposition 5.1.
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