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THE PLANAR ROOK ALGEBRA AND PASCAL’S TRIANGLE

by Damiel FLATH, Tom HALVERSON and Kathryn HERBIG *)

Surely the best known recursively defined integers are the binomial
coefficients (7) = (Z:}) + (”;1) appearing in Pascal’s triangle. They admit
many interpretations, the most familiar of which are

1. Algebraic: Expansion of (x + y)" with recursion
X+ =@+ +y).
2. Combinatorial : Number of subsets of [1,n] = {1,2,...,n} with recursion
[1,n] =[1,n— 11U {n}.

In this paper we propose a linear algebra interpretation rooted in represen-
tation theory. We construct natural vector spaces V' with dim V] = (Z) and
direct sum decompositions V;' = V,?__ll o Vy ~1. The vector spaces are natural
m the sense that the V' are the spaces of all the distinct irreducible represen-
tations of an algebra CP,, the planar rook algebra. The direct sums describe
decomposition upon restriction arising from an embedding CP,_, — CP,.
Even the multiplicative structure of the binomial coefficients arises from the
representation theory of the planar rook algebras, as we discover upon de-
composition of tensor product representations.

The planar rook algebra is an example of a “diagram algebra”, which
for our purposes is a finite-dimensional algebra with a basis given by a
collection of diagrams and multiplication described combinatorially by diagram
concatenation. When the basis diagrams can be drawn without edge crossings,

*) Halverson and Herbig were supported in part by National Science Foundation Grant
DMS-0100975.
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we get a planar algebra. There 1s a growing theory of planar algebras imtiated
by V. Jones (see [Jo]) that uses a more refined definition of planarity than
what we give here.

The main goal of this paper 1s to work out the combinatorial representation
theory of the planar rook algebra CP, and to show that it is governed by the
theory of binomial coefficients. The following are the main results:

1. A classification of the irreducible CP,-modules (Theorems 2.1 and 3.2).
2. An explicit decomposition of the regular representation of CP, into a

direct sum of irreducibles (Theorem 3.2).

3. A computation of the Bratteli diagram for the tower of algebras

CPy CCP; CCP, C ... (Section 4).

4. A computation of the character table for CP,.

1. THE PLANAR ROOK MONOID

Let R, denote the set of n x n matrices with entries from {0, 1} having
at most one 1 m each row and m each column. For example,

{0 0)-6 00 o) 0606 D0 o)

We call these “rook matrices”, since the 1s correspond to the possible
placement of non-attacking rooks on an »n x n chessboard. The rank of a
rook matrix is the number of 1s in the matrix, and so to construct a rook
matrix of rank %k, we choose k£ rows and k columns in (2)2 ways and then
we place the 1s in k! ways. Thus the cardinality of R, is given by

IR,| = Z (Z)Zk!.

k=0

We let Ry = {@}. There is no known closed formula for the sequence
|Rx|, n > 0, which begins 1,2,7,34,209,1546,13327,... (see [OEIS,
A002720]). The set R, contains the identity matrix and is closed under
matrix multiplication, so R, 1s a monoid (a set with an associative binary

operation and an identity, but where elements are not necessarily invertible).
The invertible matrices in R, are the permutation matrices (having rank n);
they form a subgroup isomorphic to the symmetric group S, C R,.
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We associate each element of R, with a rook diagram, which 1s a graph
on two rows of n vertices, such that vertex 7 in the top row is comnected to
vertex j in the bottom row if and only if the corresponding matrix has a 1
in the (i,j)-posiion. For example in R¢ we have

01 000 0
00010 0
\\{\ 00 00 0 0
. ; “ loo 100 0
00000 1

0 0 0 0 0 0

Matrix multiplication is accomplished on diagrams d; and d, by placing
dy above d, and identifying the vertices in the bottom row of d; with the
corresponding vertices in the top row of dp (i.e., connecting the dots). For

example,
d1::% % e
c ., = = did
dzz:\//. .X.. 162

is the diagrammatic representation of the matrix product,

0 0 0 00 01 0 0 0 0 0 0 0 0
0 0 010 00 0 0 0 0 01 00
1 00 0 0 00000 |=]101U0¢900O0
01 0 00 001 00 0O 0 0 0 0
0 01 00 00 010 0 0 0 0 O

We say that an element of R, 1s plgnar if its diagram can be drawn
(keeping inside of the rectangle formed by its vertices) without any edge
crossings. We let P, C R, denote the set of planar elements of R,. Our Rg
example 1s not planar. In the multuplication example above, the diagram d,
1s planar and d; 1s not. Below are a few more examples of elements in Ps
(of rank 4, 2, 0, and 5, respectively). The fourth diagram is the identity in
Ps C Rs, and the third corresponds to the matrix of all Os.

171 N oo ==
It is easy to see (by drawing diagrams) that the product of two planar rook
diagrams 1s again planar, so P, also forms a submonoid of R,. The only
mvertible (rank 7) planar rook diagram is the identity id.

To construct a planar rook diagram of rank &, we choose k vertices {from
each row. Then there is exactly one non-crossing way to connect them. Thus
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there are (2)2 planar rook diagrams of rank k, and the number of planar rook

diagrams 1s
"\ 2n
Pr.l = E = )
k=0

where we will let P, = {&}. The last equality above is a well-known binomial
identity. To see it in this setting, choose any #n of the 2xn vertices in the rook
diagram. Iet £ be the number of these chosen vertices that are i the top
row (thus there are n — & 1n the bottom row). Connect (in the one and only
non-crossing way) the k£ chosen chosen vertices from the top row to the &
not chosen vertices from the bottom row.

The algebraic properties of the rook monoid are studied in [So], [Gr], [Re],
and [Ha]. The planar rook monoid appears in [Re] as the order preserving
“partial permutations” of {1,2,...,n}, and some combinatorics of P, arise

in [HL].

2. PLANAR ROOK DIAGRAMS ACTING ON SETS

In this section, we construct (Z) -dimensional vector spaces V|, for
0 <k <n, and we will define a natural action (as linear transformations) of
P, on these vector spaces. In this way, we can homomorphically represent
multiplication in P, by multiplication of (Z) X (Z) matrices. Furthermore, we
show that these matrix representations are all different, are irreducible, and
include all the irreducible representations of P, .

For a planar rook diagram d, let 7(d) and F3(d) denote the vertices in
the top and bottom rows of d, respectively, that are incident to an edge. For

example,

it d= //\ then 7(d) = {2,3,4} and B(d) = {1,2,5}.

The sets 7(d) and [(d) uniquely determine d since there is only one planar
way to connect the vertices by edges. We can view d as a 1-1 function with
domain 3(d) and codomain 7(d). So, in our example, d(1) = 2, d(2) = 3,
and d(5) = 4.

Now consider a subset § = {s,...,s¢} of order k chosen from the set
{1,2,...,n}.If d € P, and if S is a subset of the domain 3(d) of d, then
we can define an action of d on S by d(S) = {d(s1),d(s2),...,d(s;)}. Notice
that d(S) and S have the same cardinality.
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There are 2" subsets of {1,2,...,n}, and we define a vector space V"
over C with dimension 2" having a basis {vg} labeled by these subsets
SC{1,...,n}. Thus

(2.1) V"= C-span{vg | SC{1,...,n}} .

We define an action of P, on V" as follows. For d € P, and S C {1,...,n},
define

if §C
2.2) O
0 otherwise .

This defines an action of ¢ on the basis of V” which we then extend linearly

to all of V". To illustrate with some examples, if we again let d = ://. :\. ,
then dV{I,Z,S} = V{2’3:4}, dV{Z,S} = V{374}, and dV{l,Z,S’} =0.

It follows from diagram multuplication that (didz)vs = di(da(vs)). This
means that V”* 1s a “module” for P,. The map {rom P, to the set End(V")
of linear transformations on V" 1s an injective monoid homomorphism.

For 0 < k£ < n consider the subspace of V" spanned by subsets of
cardinality &,

(2.3) Vi = C-span{vs | S C{l,...,n} and |S| =k} .

Since the action of P, preserves the size of the subset (or sends it to the
zero vector) we see that the V! are P,-invariant submodules. The following
theorem describes the structure of V" as a module for P,.

THEOREM 2.1. For all n > 0 and 0 <k <n, we have
(a) VI is a P,-module, and the V' are non-isomorphic for different k.
(b) Vi is irreducible (it contains no proper, nonzero P,-invariant subspaces).
(c) V" decomposes as

H

vie @ vy,
k=0

where each irreducible module appears with multiplicity 1.

Proof.  (a) The fact that V' is a module follows from the discussion
preceding the theorem. Since the dimensions of these modules are binomial
coefficients, the only possible isomorphism could occur between V' and V) .

The element of the form 7, = I I I . .» Which has £ vertical edges, acts by
zero on V', with k£ > (. So the set of these 7y, 0 < ¢ < n, will distinguish
the V! from one another.
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(b) To show that V' is ureducible, suppose that W C V! 1s a
P, -invariant subspace, and that 0 # w € W. We expand w in the basis as
w = Z\s\:k Asvs, with Ag € C. Since w # 0, there must be at least one
As # 0. Let d € P, be the unique planar diagram with 7(d) = 5(d) = S.
Then dw = Agvs, so vs € W. Now let S’ be any other subset of order k£ and
let & € P, be the unique planar diagram with 3(d’) = S and (") = .
Then, d'vs = vysy = vsr, s0 vgr € W. This shows that all the basis vectors
of V' must be im W and so W = V.

(¢) The fact that V" decomposes as stated follows immediately from the
fact that each vy appears in exactly one of the V;'. In Section 3 we will
prove that these are all of the irreducible representations by showing that these
are the only representations that show up in the regular representation of P,
acting on itself by multiplication.

Let Po = {@} and view Py C Py C P, C ... by placing a vertical edge
on the right of each diagram in P,_;, i.e., an edge that connects the n™
vertex in each row. For example,

ANS/ANE

It is natural to look at the restriction of the action of P, on V! to the
submonoid P,_;. To this end, we construct the following subspaces of V} :
V¢, = C-span {vg ’ S| =k, neS},

VZ:H = C—span{vs ’ S| =k, n¢ S}.

If d € P,_y, then by the way we embed P,_; mto P,, we have n € 7(d)
and n € 3(d). Thus it is always the case that for a subset S C {1,... n}, we
have n € d(S) if and only if n € S. This means that under the action defined
n (2.2), the subspaces V', and V,’in are P,_;-invariant.

From the point of view of P,_;, we see that

7 n—1 7 n—1
Vi, 2V, and V., =V,

since, in the first case, we are simply ignoring the element 7, and in the second
case, the basis vectors already are of the form vy with S C {1,...,n— 1}.
Thus, the vector space V}' is irreducible under the P, action, but it breaks
up into the following direct sum of irreducible P,_;-invariant subspaces,

24 i=visievT,
where we drop the V'~ if k=0 and drop the V;™' if k=n.
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3. THE PLANAR ROOK ALGEBRA

In this section we let P, act on itself by multiplication; this is called the
regular representation of P,.

The Artin-Wedderburn theory of semisimple algebras (see for example
[CR, Ch. TV] or [HR, Sec. 5]) states that if the regular representation of an
algebra decomposes into a direct sum of irreducible modules, then (1) every
irreducible module of the algebra is isomorphic to a summand of the regular
representation and (2) every module of the algebra is 1somorphic to a direct
sum of irreducible modules. With this motivation, we construct an algebra
associated to P,, the planar rook algebra, and show explicitly that its regular
representation reduces into a direct sum of modules cach isomorphic to one
of the V.

We define CP, to be the C-vector space with a basis given by the elements
of P,. That is,

Cr, = Cspan{d [dep,} = {3 d | nech
deb,

This is the vector space of all (formal) linear combinations of planar rook
diagrams, and it has dimension equal to the cardinality |[P,| = (Znn) This
complex vector space CP, is also equipped with a multiplication given by
extending linearly the multiplication of diagrams in P, . This makes CP, an
algebra over C which we call the planar rook algebra.

It is interesting to notice that the diagram associated to the zero matrix,
:::::: , 1s a basis element in this vector space, whereas the 0 vector is the
linear combination with all the A; = 0.

Since CP, is spanned by planar rook diagrams, an element d € P, acts
naturally on the vector space CP, by multiplication on the left. That 1s, if
de P, and v = ZbePn b € CP, we have

av=a(d " wmb) =" Mab.

bePp, bep,

Multiplication of planar rook diagrams has the property that rank does not
go up, i.e.,
rank(dydy) < min(rank(d; ), rank(d,)) .

Thus if we let X7 be the span of the diagrams with rank less than or equal
to k, we have a tower of P,-invariant subspaces Xj C XJ C --- C X7,
These X} are not irreducible and they do not decompose the space CP, into
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P, -invariant subspaces. To accomplish such a decomposition, we first need to
change to a different but closely related basis.

If di,d» € P, we say that d4 C dp if the edges of the diagram
dy are a subset of the edges of the diagram d,. If dy C dr, we let
|dy \ di| = rank(d,) — rank(d;), or the number of edges in d, minus the
number of edges in d;. Now define

(3.1) x=y plnla.

&Cd

For example, if d = :/:/: I: then

/A WA /AN S/A0E SO SE VA /AUNE IO
Under any ordering on the planar rook diagrams that extends the partial
ordering given by rank (i.e., ¢ comes before b if rank(g) < rank(b)), the
transition matrix from the basis {d | d € P,} to the set {x; | d € P,} is upper
triangular with 1s on the diagonal. Thus {x; | d € P,} is also a basis for CP,,.

This change of basis was necessary in order to obtain the conclusion

“dx, = 0 otherwise” in (3.2) below. Notice how close this statement is
to (2.2). We are now realizing the subset action inside of CP,,.

PROPOSITION 3.1. Let a,d € P,. Then

i {xda if (@) < B),

(3.2)
0 otherwise .

Proof. Ut 7(a) C ((d) then multiplication on the left (or top) by d on
any d’ C a simply rearranges the top vertices of ¢’ to their corresponding
position in da, and the result follows by the definition of x,.

If r(a) € B(d), then let i € 7(a) such that i ¢ (3(d). Consider the
diagram p;, which is the same as the identity element id except that the edge

connecting the i™ vertex in each row is removed. For example, in Ps;, we
have py = I I I : I Then dp; = d, since i ¢ 3(d), and

pixa =Y (=D = 3l pa + 3 ol ipa
&'Ca d Ca d'Ca
icT@d") ig¢rd)
Now, if i & 7(d") then p;d = d', and if i € 7(d") then p;d’ is the same
diagram as ' except with the edge connected to the i™ vertex (in the top
row of d') removed. There is a bijection between {d’' Cd |i¢€ 7(d")} and
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{d Cd|i¢ ()} given by removing the edge connected to the i™ vertex
a\d’

(equivalently, multiplying by p;). This bijection changes the sign (— 1)|
so the two summations displayed above cancel one another giving p;x, = O.
Thus dx, = dp;x, = 0.

For diagrams g and d we have rank(g) = rank(da) if and only if
7(a) C B(d). Thus from (3.2), we see that dx, = O unless rank(aq) = rank(da).
It follows that the subspace

Wk = C-span {xa | rank(a) = k}

is a P,-invariant subspace of CP,. Notice that the action of d on x, in
(3.2) does not change the bottom row F(a). That 1s, F(@) = [(da) when
7(a) C B(d). Thus, if we let

Wit = C-span {x, | rank(a) = k, B(a) = T},

then for each such 7, we have that W;’k is a P, -invariant subspace of Wk
and for any subset U with |U| = |T| =k, we have
(3.3) W;’k B W["jk =W as P,-invariant subspaces of CP, .

The last 1somorphism comes from the fact that the action of d € P, on x,
in (3.2) 1s the same as the action of d on vy in (2.2), where S = 7(a).
For subsets 5,7 of {1,...,a} with |S| =

, we define

where ¢ 1s the unmique planar rook diagram
with 7(d) = S and B(d) =T.

For example, the diagram in the example after equation (3.1) is denoted
X{2.3.4} {124} - In this notation, the isomorphism in (3.3) is given explicitly on
basis elements by X, <> X, <> Vs.

Inside of W”* we have found (Z) copies of the P,-invariant subspaces

XS,T = Xd

Wr § (one for each choice of T'), and each of these is isomorphic to V}'. Thus
we have explicitly constructed the decompositions in part (a) of the following
theorem. Part (b) follows from the fact that every irreducible module must
appear as a component in the regular representation.

THEOREM 3.2.
(a) The decomposition of CP, into P,-invariant subspaces is given by

cP, _EBW”k ee @ ""NS'EO(;)V,g.

=0 k=0 |T|=k

(b) The set {Vi |0 <k <n} is a complete set of irreducible CP,-modules.
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In the previous theorem, the modules W”* are the “isotypic components”
which consist of a sum of all of the rreducible subspaces that are 1somorphic
to Vy. Notice also that the dimension and the multplicity of V! m CP,
18 (Z) Finally, since the irreducible modules that appear in CP, are exactly
the V[, we know that these form a complete set of irreducible modules as
claimed in Theorem 2.1.

PROPOSITION 3.3. For subsets S,T,U,V of {1,...,n} with |S| = |T|
and |U|=|V| we have

) Xy ifT=1U,
xs,rxu,v - 0 lf T 7£ [

Proof. I T # U, then there exists i€ T with i¢ Uorie U withi¢T.
The same argument as in Proposition 3.1 shows that x,,x,, =0.If T =U
then let a,b € P, be the diagrams such that x; . = x, and x, , = x5. By (3.2)
we have that ax, = X and a’x, = 0 for every @' C a with @’ #£ a. So by
the definition of x, we sce that x,Xp = X .

Proposition 3.3 tells us that the x;, behave just like the matrix units
E;; which have a 1 in row i and column j and O everywhere else. This
correspondence reveals the structure of the planar rook algebra, given in the
following corollary.

COROLLARY 34. CP, = EBMat((Z), (Z)) where Mat(n, m) is the
k=0

algebra of all m x m complex matrices.

4. THE BRATTELI DIAGRAM 1S PASCAL’S TRIANGLE

The binomial coefficients have appeared in a very natural way throughout
the representation theory of P,. For example, by comparing dimensions on
both sides of the decomposition of V" in Theorem 2.1, we get

1) r=3 (Z) .

k=0

By computing dimensions on both sides of the decomposition of CP, in
Theorem 3.2, we have
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B

By comparing dimensions of the decomposition of V| into irreducible modules
for P,_; in (2.4), we get

(43) (Z) - (Z: D - (n; 1) |

These are well-known binomial identities. For a beautiful discussion of
combinatorial proofs of binomual identities such as these, see [BQ]. We can
view the work in this article as representation-theoretic interpretations of these
binomial identities.

Pascal’s triangle itself arises naturally through the representation theory
of P,. The Bratteli diagram (see for example [GHJ]) for the tower
PoC Py C Py, C... 1s the infinite rooted graph whose vertices are the
irreducible representations V;' and whose edges correspond to the restric-
tion rules from P, to P,_;. Specifically, there is an edge from V' to Vg’_l
if and only if Vg’_l appears as a summand when V[ is viewed as a module
for P,_;. According to the rules in (2.4) we get the Bratteli diagram shown
in Figure 1. The dimensions of these modules give Pascal’s triangle.

/\
/\/\
/\/\/\
/\/\/\/\
/\/\/\/\/\

FIGURE 1

The Bratteli diagram for the tower of containments of planar rook monoids
Py C Py C Py C - ; counting dimensions gives Pascal’s triangle
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5. THE CHARACTER TABLE IS PASCAL’S TRIANGLE

For each mrreducible representation V', its character x{ is the C-valued
function that gives the trace of the d € P, as a linear transformation on V} .
In this section, we show that the table of character values for P, is given by
the first n rows of Pascal’s triangle. The characters are linearly independent
functions (over C), so from the character of any finite representation you can
identify the isomorphism class of the representation.

For a planar rook diagram d € P, we say that an edge in d 1s vertical if
it connects the i™ vertex in the top row to the i™ vertex in the bottom row
for some 1 <i<n. We also say that a vertex that is not mcident to an edge
in d is an isolated vertex. Suppose that d is a diagram such that its i™ vertex
in the top row is isolated. As in Section 3, let p; be the diagram obtained
from the identity id by deleting the i™ edge. Then p;d = d and d’ = dp; has
the property that the i™ vertex in both the top and bottom rows is isolated.
For example,

T e ) B
= m=i] 4

Now, the point of all this is that for any matrix trace Tr we have
Tr(ab) = Tr(ba), so in this case Tr(d) = Tr(psd) = Tr(dps) = Tr(d’). So by
iterating this process, we see that for any matrix trace we have Tir(d) = Tr(d"),
where ¢’ is the diagram ¢ with all of its non-vertical edges removed.

Furthermore, we can use the following trick to move all of the vertical
edges to the left of the diagram. In the pictures below, we see that d = RLd
and d’ = LdR has the vertical edge moved one position to the left. Furthermore
Tr(d) = Tr(RLd) = Tr(LdR) = Tr(d').

VAR L=]I\]
a~[[1=1IN[=2  waa=][][ =]]].] -0
1] =a r=]171

By iterating this process, we see that the character value of d will be the
same as the character value on one of the diagrams,

m=[ L]0 osesn

[ —
£
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where ( 1s the number of vertical edges i . The set of diagrams
{me | 0 <i<n} is analogous to a set of conjugacy class representatives in
a group in the sense that any trace i1s completely determined by its value on
one of these diagrams.

In the next theorem, we show that the trace of ¢ € P, on the representation
V{ 1s a binomial coefficient. The proof is to count subsets fixed by d.

THEOREM 5.1. For O < k <n and d € P,, the value of the irreducible
character is given by

Xe(d) = { 0 ifk>¢,

where { is the number of vertical edges in d.

Proof. The elements d € P, permute (or send to 0) the vectors vg which
span V. The vg-vg entry of the matrix of 4 will be 1 if d(S) = S and O
otherwise. This tells us that the character Y} (d) gives the number of fixed
points of d. By our discussion above it suffices to let d = my. Now, 7, will
fix S if and only if S C {I,...,¢}. And for vg to be a basis element of V7,
S must be a subset of {1,...,n} with cardinality k. Thus, the trace is the

number of subsets of {1,... ¢} of cardinality k, or (2) , as desired.

6. FURTHER THOUGHTS

Here are a few more observations that make fun exercises.

1. Let ¢"(d) denote the trace of d € P, on the regular representation
CP,. Then by a counting argument "(d) = ("f) , where ¢ is the number
of vertical edges 1n ¢. Using the decomposition of the regular representation

into wrreducibles we arrive at the binomial 1dentity

S (o2 (0 - (7

2. In the x; basis, the irreducible character values are

1 if d has exactly k£ vertical edges and no other edges,

Xi(Xa) = {

0  otherwise .
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3. The center of CP, has a basis given by the elements

Z=Y X, 0<(<n,
a

where the sum is over all diagrams @ with exactly ¢ vertical edges and no
other edges.

4. The character ring A, of CP, is the algebra with basis given by the
n+ 1 functions xi(d) = (i) (where d has £ vertical edges), for 0 < k£ < #n.
For A,, these functions have domain 0 < ¢ < 5. Since the irreducible characters
form a basis of this algebra, we can re-express the product of any two characters
in terms of the basis. The structure constants for the character ring come {rom
the multinomial coefficients in the following polynomial identity (see [Ru,

S 14]): y X
@@: 2 <i+J—k,i—i,k—f)(k)'

k=max(i,j)

In the application o A,, the upper limit in the sum is taken to be
k = max(i + j,n) since (i) =0 for k > n > x = £. This gives the
corresponding decomposition of the tensor product (see [CR, §11] for an
explanation of tensor products) V/®QV/ = o~ (i +j_k=,’§_irk_j) V. This illustrates
that even the multiplicative structure of the binomial coefficients is captured

in the representation theory of P,.

5. Some of the first examples of diagram algebras are the group algebra
of the symmetric group, with a basis of permutation diagrams, and the Artin
braid group, with a basis of braid diagrams. The Brauer algebra was defined
in the 1930s, and its planar version, the Temperley-Lieb algebra, is important
in statistical mechanics. The papers [CES], [HR], [GL], and the references
therein, give definitions and examples of these and other diagram algebras.
The planar rook algebra was constructed to be a diagram algebra whose
Bratteli diagram 1s Pascal’s triangle. A good project 1s to find algebras whose
Bratteli diagrams match the lattice of other recursively defined integers such
as the Stirling numbers or the trinomial numbers.

6. The planar rook algebra also has representation theoretic importance as
the centralizer algebra of the general linear group G = GL;(C) = C\ {0}. Let
V =Vo@® V; such that Vg and V; are the 1-dimensional G-modules where
Z(vo+v1) = vg +zvg for v; € V; and z € G. Then CP, =2 Endg(V®"), which
is the algebra of all endomorphisms of the tensor product V®" that commute
with G (i.e., CP, is the centralizer of G on V®"). This is analogous to
classical Schur-Weyl duality, where the group algebra of the symmetric group
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CS, is the centralizer of GLi(C) on W*", for k > n, where W = CF is the
representation of GLi(C) by matrix multiplication on column vectors. If we
replace a simple tensor with the subset indexed by the binary string in its
subscripts — for example v; @ vo @ v; @ v; ® vo & 10110 & {1,3,4} —
then the action on simple tensors is the same as the action of P, on subsets
in Section 2.

ACKNOWLEDGEMENTS. We are grateful to Arun Ram who, at the 2004
AMS sectional meeting in Evanston, helped the second author discover the
planar rook monoid as an example of an algebra whose Bratteli diagram is
Pascal’s triangle. We also thank Lex Renner for other important suggestions
at that same meeting.

REFERENCES

[BQ] BENTAMIN, A.T. and J.J. QUINN. Proofs that Really Count: the Art of
Combinatorial Proof. The Dolciani Mathematical Expositions 27.
Mathematical Association of America, Washington DC, 2003.

[CFES] CARTER, J.S., D. FLATH and M. SAITO. The Classical and Quantum
6j-Symbols. Mathematical Notes 43. Princeton University Press,
Princeton, 1995.

[CR] CurtIS, C. W. and 1. REINER. Representation Theory of Finife Groups and
Associative Algebras. Pure and Applied Mathematics 71. Wiley, New
York, 1962.

[GHJT] GOODMAN, EM., P DE 1.A HARPE and V.F R. JONES. Coxeter Graphs

and Towers of Algebras. Mathematical Sciences Research Institute
Publications 4. Springer-Verlag, New York, 1989.

[GL] GRAHAM, J. J. and G.1. LEORER. Cellular algebras and diagram algebras
in representation theory. In: Representarion Theory of Algebraic
Groups and Quantum Groups, 141-173. Advanced Studies in Pure
Mathematics 40. Math. Soc. Japan, Tokyo, 2004.

[Gr] GRrROOD, C. A Specht module analog for the rook monoid. Electron. J.
Combin. 9 (2002), R2.

[Ha] HAIVERSON, T. Representations of the g-rook monoid. J. Algebra 273
(2004), 227-251.

[HL] HarversoN, T. and T. LEWANDOWSKIL RSK insertion for set partitions and
diagram algebras. Electron. J. Combin. 11 (2004/06), R24.

[HR] HA1vERSON, T. and A. RaM. Partition algebras. Furopean J. Combin. 26
(2005), 869-921.

[Jo] JONES, V.E R. Planar algebras, [. Preprint arXiv:math.QA/9909027 (1999).

[Re] RENNER, L.E. Linear Algebraic Monoids. Encyclopaedia of Mathemat-

ical Sciences 7134. Invariant Theory and Algebraic Transformation
Groups, V. Springer-Verlag, Berlin, 2005.




92 D. FLATH, T. HALVERSON AND K. HERBIG

[Ri] RIORDAN, 1. Combinatorial Identities. John Wiley & Sons, Inc., New York-
London-Sydney, 1968.

[OEIS] SLOANE, N.J. A. The On-Line Encyclopedia of Integer Sequences (20006),
http://www.research.att.com/~njas/sequences/A002720.

[So] SoLoMoN, L. Representations of the rook monoid. J. Algebra 256 (2002),
309-342.

{Recu le 22 aoiit 2007 ; version révisée recue le 18 février 2008)

Daniel E. Flath
Tom Halverson

Department of Mathematics and Computer Science
Macalester College

1600 Grand Avenue

Saint Paul, MN 55105

U.S.A.

e-mail : flath@macalester.edu, halverson@macalester.edu

Kathryn Herbig

e-mail : kherbig@ gmail.com




	The planar rook algebra and Pascal’s triangle
	...


