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394 G. GINOT AND P XU

(see [25]). Let X; be the set of equivalence classes of cells of dimension i
modulo the SL(3,Z)-action. For ¢ € X;, we denote by SL(3,Z), the
stabilizer of the cell o and write MZ for M7 endowed with the induced
action of SL(3,Z), twisted by the orientation character SL(3,Z), — {£1}.
There 1s a spectral sequence Ei’j =& e, H/ (SL(3,Z)J,M?,) converging (o
H'™(SL(3,Z), M%) (see [10], Section VIL7). The stabilizers SL(3,Z), are
described in [25], Theorem 2. They are all finite. Thus the spectral sequence
reduces to EY° = D.oes, (Mg)SL(S’Z)"

in [25] shows that E’Fl’o =, [, E?O = (Mq)4 and

. Direct inspection using Theorem 2

5= (M) & (M) ® (M%) & (M),

where A, B, C are respectively the matrices

0 -1 0 -1 0 0 -1 0 0
-1 0 0], 0o 0 -1, 0 0 1].
0 0 -1 0 -1 0 0 1 0

The term dy of the spectral sequences 1s described in [10], Section VIL.8. In
our case, since the stabilizers of cells of dimension 3 are trivial, the differential
dy 18 induced by the inclusions (Mg)SL(S’Z)" — M? for each 3-dimensional
cell 7 € 23 with ¢ C 7 a subface of dimension 2. It follows that Elzf >~ 0,
Hence the result follows for [G — Aut™(G)]. The case for [G — Aut(G)]
follows using the Kiinneth formula since GL(3,Z) = SL(3,Z) x Z/2Z. [

REMARK 7.4. For n = dim((g*)?) = 4, it should be possible to compute
explicitly H'([G — Aut' (G)]) and H' ([G — Aut(G)]) using Theorem 7.2 and
the techniques and results of [17]. For n = 5, 6, the results of [14] suggest that
the cohomology groups H'([G — Aut™(G)]) and H([G — Aut(G)]) should be
non trivial. For larger #, it seems a difficult question to describe the spectral
sequences of Theorem 7.2 explicitly.
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