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(see [25]). Let 2, be the set of equivalence classes of cells of dimension i
modulo the SL(3, Z) -action. For a G 2,, we denote by SL(3,Z)a the

stabilizer of the cell <j and write Mq for Mq endowed with the induced
action of SL(3,Z)a twisted by the orientation character SL{3,Z)a -4 {±1}.
There is a spectral sequence El(J (x),Tcv II1 (SL(3,Z)a. A//) converging to

Hi+j(SL(3,Z),Mq) (see [10], Secüon VII.7). The stabilizers SL(3,Z)a are

described in [25], Theorem 2. They are all finite. Thus the spectral sequence
reduces to E'f cBCri: 'Ht ' ". Direct inspection using Theorem 2

in [25] shows that E[-u° 0, /if" & (/Vf)4 and

E2y° è (M?)4 © (MqAf © (MqB) © (,!/"')2

where A, B, C are respectively the matrices

0 -1 0 \ /-I 0 0\ f—l 0 0\
-1 0 0 j 0 0 -1 J I 0 0 1 I.
0 0-1/ V 0 -1 0 / \ 0: 1 0/

The tenn di of the spectral sequences is described in [10], Section VII.8. In
our case, since the stabilizers of cells of dimension 3 are trivial, the differential
dy is induced by the inclusions Mq for each 3-dimensional

cell T C 23 with a C r a subface of dimension 2. It follows that E'2j 0.
Hence the result follows for [G -f. Äut+(G)]. The case for [G —> Aut(G)]
follows using tlie Künneth formula since GL(3,Z) SL(3,Z) x Z/2Z.

REMARK 7.4. For « dim((g*)B) 4, it should be possible to compute

explicitly H'([G —Y A lit1 (G)|) and //'([G —> Aut(G)]) using Theorem 7.2 and

the techniques and results of [17]. For n 5,6, the results of [14] suggest that

the cohomology groups II'(\G —> Aut^(G)]) and H'([G —> Aut(G)|) should be

non trivial. For larger n, it seems a difficult question to describe the spectral

sequences of Theorem 7.2 explicitly.
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