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COHOMOLOGY OF LIE 2-GROUPS

by Grégory GINOT and Ping XU *)

ABSTRACT. We study the cohomology of (strict) Lie 2-groups. We obtain an
explicit Bott-Shulman type map in the case of a Lie 2-group corresponding to the
crossed module A — 1. The cohomology of the Lie 2-groups corresponding to the
universal crossed modules G — Aut(G) and G — Aut™(G) is the abutment of a
spectral sequence involving the cohomology of GL(n,7Z) and SL(n,7Z). When the
dimension of the center of G is less than 3, we compute these cohomology groups
explicitly. We also compute the cohomology of the Lie 2-group corresponding to a

crossed module G = H for which Ker(i) is compact and Coker(i) is connected,
simply connected and compact, and we apply the result to the swring 2-group.

1. INTRODUCTION

This paper is devoted to the study of Lie 2-group cohomology. A Lie
2-group 1s a Lie groupoid I'; =2 I'y, where both the space of objects T’y
and the space of morphisms are Lie groups and all the groupoid structure
maps are group morphisms. This is what is usually referred to as “groupoids
over groups”. It is well known that Lie 2-groups are equivalent to crossed
modules [11, 2]. By a crossed module, we mean a Lie group morphism G — H
together with a right action of H on G by automorphisms satisfying certain
compatibility conditions. In this case, Keri 1s called the kernel, and H / i(G)
the cokernel, of the crossed module.

*) Research partially supported by NSF grant DMS-0605725 & NSA grant H98230-06-1-0047.
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Lie 2-groups arise naturally in various places in mathematical physics,
for instance in higher gauge theory [4]. They also appear in the theory of
non-abelian gerbes. As was shown by Breen [8, 9] (see also [15]), a G-gerbe
i1s equivalent to a 2-group principal bundle in the sense of Dedecker [13],
where the structure 2-group is the one corresponding to the crossed module
G - Aut(G), where i denotes the map to the inner automorphisms.

As 1n the 1-group case, associated to any Lie 2-group I, there is a
simplicial manifold N.I", called the nerve of the 2-group. Thus one defines the
cohomology of a Lie 2-group T" with trivial coefficients R as the cohomology
of this simplicial manifold N.I' with coefficients R. The latter can be computed
using a double de Rham cochain complex. A very natural question arises as
to whether there is a Bott-Shulman type map [6, 7] for such a Lie 2-group.
Unfortunately, the answer seems to be out of reach in general. However,
we are able to describe a class of cocycles in Q¥ (|G = H]) generated by
elements in § ((g* )oH [3]) , the symmetric algebra on the vector space (g*)%

with degree 3. Here we denote by [G = H] the Lie 2-group corresponding to
the crossed module G = H. As a consequence, we explicitly describe, for any
abelian group A, cocycles in Q([A — 1]) which generate the cohomology
group H'([A — 1]). These cocycles are given by skew-symmetric polynomial
functions on the Tie algebra a of A. Such an explicit map is also obtained
in the case where the cokernel of G — H 1s finite. Our approach 1s based on
the following idea. A lie 2-group [G — H] induces a short exact sequence
of Lie 2-groups:

1= [Keri— 1] =[G — H]—= [1 — Cokeri] — 1

which in turn induces a fibration of 2-groups. As a consequence, we obtain a
Leray-Serre spectral sequence. Discussions on these topics occupy Sections 4
and 5.

We also use the spectral sequence to compute the cohomology of a
2-group [G = H] with connected and simply connected compact cokernel
Coker(i) = H/i(G) and compact kernel Ker(i). In general, the cohomology of
[G < H] depends on a transgression homomorphism

T: H([Ker(i) = 1) = H*([1 = H/i(G)]).

An example of such a 2-group 1s given by the string 2-group [3] for which
we recover computations also independently due to Baez and Stevenson [5].
Next we apply our result to study the cohomology of particular classes

it i .
of 2-groups: [G — Aut™(G)] and [G = Aut(G)], where Aut™(G) is the
orientation-preserving automorphism group of G. If G is a semi-simple Lie
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group, the result is immediate since both the kernel and the cokernel are
finite groups. However, when G 1s a general compact Lie group, the situation
becomes much subtler. This is due to the fact that the connected component of
the center Z(G) is a torus 7", and therefore Out’ (G) and Out(G) are no longer
finite groups. Indeed they are closely related to SL(n,Z) and GL(n,Z), whose
cohomology groups are in general very difficult to compute : this still remains
an open question for large n. Nevertheless, we obtain a spectral sequence
involving the cohomology of these groups, converging to the cohomology of
the 2-group. For n < 3, using a result of Soulé [25], we are able to compute
the cohomology groups explicitly.

One of the main motivations for studying the cohomology of 2-groups is to
study characteristic classes of gerbes. Since G-gerbes correspond to principal

[G = Aut(G)]-bundles, any nontrivial cohomology class in H*([G = Au(G)])
defines a universal characteristic class for G-gerbes. And a Bott-Shulman type
cocycle allow one to express such a universal characteristic class in terms of
geometric data such as connections just like in the usual Chern-Weil theory.
This will be discussed in detail in [15].

Note that the constructions in this paper can be defined in the more
general context of weak Lie 2-groups as defined by Henriques in [16] since
the cohomology and homotopy groups are defined using the nerve.

ACKNOWLEDGEMENTS. The authors would like to thank A. Ash, L.. Breen,
A. Henriques, K. Mackenzie, C. Soulé, J. Stasheff and the referee for many
useful comments and suggestions.

NoOTrATIONS.  Given a (graded) vector space V we denote by V[k] the
graded vector space with shifted grading (V[k])" = V"~%. Thus if V is
concentrated m degree 0, V[k] is concentrated in degree k. The graded
symmetric (or free commutative) algebra on a graded vector space V will be
denoted by S(V). We write S(V)? for the subspace of homogeneous elements
of total degree ¢, that is,

SWVY ={x1..x, €S(V)| r20 and |x;|+---+|x,|=q} .

In particular, if x € S(V)? and y € S(V)?, one has x:y = (—1)"?y-x. Thus if
V 1s concentrated in even degrees, S(V) 1s a polynomial algebra. On the other
hand, if V is concentrated in odd degrees, S(V) is an exterior algebra. Unless
otherwise stated, all cohomology groups are taken with real coefficients.
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2. CROSSED MODULES

A crossed module of Lie groups is a Lie group morphism G LH together
with a right H-action (h,g) — ¢" of H on G by Lie group automorphisms
satisfying:

1. for all (h,qg) € G x H, i(¢") = h~ig)h ;
2. forall (x,y) € Gx G, x® =y~ lxy.

A (strict) morphism (Gz i) Hz) — (G1 l—1> Hl) of crossed modules
1s a pair (¢: Gy — Gy,¢: Hy — Hy) of Lie group morphisms such that
Yoy =1i0¢ and Hg¥® = p(g") for all g € G,, hE€ H,.

There 1s a well-known equivalence of categories between the category of
crossed modules and the category of (strict) Lie 2-groups [11]. Recall that
a Lie 2-group 1s a group object in the category of Lie groupoids, which
means that it is a Lie groupoid I'; == I'; where both T'; and I'; are Lie
groups and all structure maps are Lie group morphisms. Such a 2-group
will be denoted by T, = I'; = {*}. The crossed module G = H gives
rise to the 2-group G x H = H = {*}. The groupoid G x H = H is the
transformation groupoid: the source and target maps s,7: G x H — H are
given by s(g,h) = h and (g, h) = h-i(g), respectively. The (so-called vertical)
composition is (g, 1) x(g’, h-i(g)) = (9¢', h). The group structure on H is the
usual one, while the group structure (the so-called horizontal composition) on
G x H is the semi-direct product of Lie groups: (g, h) (¢, k') = (gh'g', hh'y.
Conversely, there is a crossed module associated to any Lie 2-group [11]. In
the sequel we make no distinction between crossed modules and 2-groups.
We use the short notation [G — H] for the Lie 2-group corresponding to a
crossed module G = H.

DEFINITION 2.1. Let (¢,v): (Gz 2, Hy) — (G i, H;) be a morphism
of crossed modules, where 7 is a submersion. The kernel of the map (¢, ) is,
by definition (see [21]), the crossed module (G, = L X 1, G1), where { is the
natural group morphism induced by i, and ¢. The H; Xy, G-action on Gy is
induced by the H,-action: gg”’gl) = g;“. The structure map H, xgy, G; — H,

induces a natural crossed module morphism (G, i) Hyxpy Gy) = (Gz Jox H2) .

A Lie group G can be seen as a Lie 2-group with trivial 2-arrows,
i.e. as the Lie 2-group G = G = {x}. The associated crossed module is
1 — G. It yields an embedding of the category of Lie groups in the category
of Tie 2-groups. As in the case of groups, associated to a Tie 2-group
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[: Ty = Iy = {*}, there is a simplicial manifold N.T", called its (geometric)
nerve. It 1s the nerve of the underlying 2-category as defined by Street [20].
In particular, NoT' = {«}, Ny[' = Ty and N,T consists of 2-arrows of T,
fitting in a commutative square :

Ay
b2 fo
2.1) / “a\
Ao - A, .

N,T" 1s naturally a submanifold of I'; x I'y X I'y x I';. For p > 3, an element
of N,I' is a p-simplex (labelled by arrows of T") such that each subsimplex of
dimension 3 1s a commutative tetrahedron, whose faces are given by elements
of NoI' (see (3.5) below or [21, 20, 26]). See also Remark 3.7 below.

The nerve N. defines a functor from the category of Lie 2-groups to
the category of simplicial manifolds. The nerve of a Lie group considered
as a Lie 2-group is isomorphic to the usual (1-)nerve [23]. Taking the fat
realization of the nerve defines a functor from Lie 2-groups to topological
spaces. In particular, the homotopy groups of a lie 2-group can be defined
as the homotopy groups of its nerve.

Note that Lie 2-groups embed in an evident way in the category of weak
Lie 2-groupoids (see for instance [2] and [16]). There is a notion of fibration
for (weak) Lie 2-groups due to Henriques [16, Sections 2 and 4] (see also
[27, 28]). We also refer the reader to [20, 21] for an excellent exposition in
the case of discrete 2-groups. In the present paper, however, we use only a
special kind of fibration, which 1s given by the following lemma :

LEmMA 22, Let (¢,v): (Gz Ay Hz) > (Gl L Hl) be a morphism
of crossed modules where ¢ and 1 are surjective submersions. Then
(b, [Ga 2 Hyl — [Gy 2 Hi] is a fibration of Lie 2-groups. The
kernel of the morphism (¢.,1) (as in Definition 2.1), i.e. the Lie 2-group

Gy = Hy xg, Gil, is a homotopy fiber of (¢,v) and is equivalent to
[Ker(¢) = Ker()].

Proof. Let I'y and T’y be the Lie 2-groups corresponding to the crossed
modules (G4 Ly Hy) and (G, 2 H,) respectively, and ®: I'y — T’y the map
mduced by (¢, ¢): (Gz 2 Hz) — (Gl 2 Hl). Since ¢ and ¢/ are surjective
submersions, N, $: N,,['; — N,[1 1s a surjective submersion for all .
Since T, and Ty are (strict) Lie 2-groups, their nerves NI', and N.I'; are
simplicial manifolds satisfying the Kan condition for simplicial manifolds as
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in [16, Definiton 1.2 and Definition 1.4]. Thus, for all m,j, the canonical maps
NpI's = Hom(A", N.I';) — Hom(A[m, j]., N.I';) are surjective submersions for
m < 2 and diffeomorphisms for m > 2. Here A™ 1s the simplicial m-simplex
and A[m,j]. its j”-horn,i.e. the subcomplex generated by all facets containing
the j"-vertex. The same results holds when T is replaced by T';.

The map N,I; = Hom(A™ N.I';) — Hom(A[m,j].,N.I';) and the map
N,,I'» = Hom(A”,N.T';) - Hom(A",N.T'y) = N,I'; induced by &: T, — Ty
yield, for all j, a smooth map from N,,I"; to the space C[m,j], which consists
of the commutative squares

Alm,jl. —— N.I

l im

AT ——= NI .

See [16, Definition 2.3]. Note that C[m,j] can be identified with the
fiber product Hom(A[m,jl., NI'2) X#omApn .. n.ry Hom(A",N.I'1). By the
definition of a fibration [16, Definition 2.3], it suffices to prove that (for
all m,j) the map N,y — C[m,j] 1s a surjective submersion. For m > 2,
Hom(A[m, jl.,N.I';) = N,I'». Thus Clm,j] &£ N, and we are done. For
m =1, C[1,j] £ H; and the map NI, = H, — C[l,j] = H; is . For
m =2, C[2,j] is identified with H;* x G, and the map NIz — C[2,]

id* g ¢ ; 8 ;
i H2><2 x Gy. The latter is a surjective submersion

becomes H}? x G,
since ¢ 1s a submersion.

The fiber F. of N.® is the pullback pt. Xy, N.I';, where pt, = N [1 — 1]
1s the point (viewed as a constant simplicial manifold). Thus, F. 1s the
nerve of the Lie 2-groups [Ker(¢) 2 Ker()]. Here the crossed module
structure of Ker(¢) = Ker(z)) is induced by that of G, 2> H,. The inclusions

Ker(¢) — G, and the map Ker(y)) — H, AN T, g, Gy yield a crossed

module homomorphism (Ker(¢) by Ker(w)) — (Gz 4 Hy xg, Gl) , which
1s an equivalence of crossed modules. See [2, 20, 21, 27, 15] for the
definition of equivalence of crossed modules, or Lie 2-groups. It follows that

N.[G» L> Hy g, G1] 1s weakly homotopic to F.. Furthermore, the natural

diagram

(G 5 Hy xg, Gi]

|

[Ker(¢) 2 Ker(y)] — [Gy 2 1]
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is commutative. Thus [G2 i> Hy xy, G1] 1s a homotopy fiber of the map
(6,9): [Gy = Hy] — [Gy = Hy].

As far as the present paper is concerned, it is sufficient to consider
Lemma 2.2 as a definition of a fibration of Lie 2-groups. In particular all
fibrations of Lie 2-groups in this paper arise as in Lemma 2.2. That 1s, they
are induced by a morphism (¢,1) of crossed modules where both ¢ and
are surjective submersions.

ExXAMPLE 23. The main examples of interest in this paper are obtained

as follows (see Section 3). Let G L. H be a crossed module and Pv: H—=K
be a Lie group morphism such that (i(g)) = 1 for all ¢ € G. Then the map
(1,4): [G = H] — [1 = K] is a map of 2-groups and it is a fibration if
1 18 a surjective submersion. The kernel of the map (1,%) (as defined in
Definition 2.1) 1s the Lie 2-group [G <5 Ker(z))], which is equal to the Lie
2-group [Ker(1) = Ker(y/)].

REMARK 2.4. We recall that a 2-group 1s a group object in the category of

groupoids. Then the Lie 2-group [G, X Hy X g, Gy] 1s the (weak) fiber product
(of Lie groupoids, see [19]) [1 — 1] ><[G LA [G, 2 H,]. In particular 1t is

1 1
the correct fiber product to look at if one 1s interested in group stacks rather

than Lie 2-groups.

3. COHOMOLOGY OF LIE 2-GROUPS

The de Rham cohomology groups ol a Lie 2-group I' are defined as the co-
homology groups of the bicomplex (Q(N.I'), dgr, J), where dgg: QP (N,T') —
QPYN,T) is the de Rham differential and O: QP(N,T) — QP(N,~1I) is in-
duced by the simplicial structure on N.I': 9 = (—=1)? Z?:OI(— 1)'d; , where
d;: NI' = N._iT" are the face maps. We use the shorter notation €2; (T") for

the associated total complex. Hence Qi (I = € QPWV,I") with (total) dif-
pta=n
ferential dgg + 0. We denote by H'(I') the cohomology of T. It is well known

that H'(I") is naturally isomorphic to the cohomology of the fat realization of
its nerve N.I' (see for instance [7]).

The simplicial structure of the nerve N.I" of a Lie 2-group I' gives rise to a
structure of cosimplicial algebra on the space of de Rham forms €2; (T"). Thus,




380 G. GINOT AND P XU

there exists an associative cup-product U: €; (I') @ € ,(I") = €;,(I") which
turns (i, (D), dar + 0,U) into a differential graded algebra and, therefore,
(H'(T),U) is a graded commutative algebra. The same holds for singular
cohomology.

If G = H is a crossed module, we denote by Qi ([G — H]) the
total complex of the corresponding Lie 2-group. A map of Lie 2-groups
f: ' = G induces a simplicial map N.I' — N.G, and by pullback, a map of

cochain complexes Q' (N.G) i+ Q(N.I'). A similar construction, replacing the
de Rham forms by the singular cochains with coeflicients in a ring R, yields the
singular cochain functor C*([G %5 H],R) of the Lie 2-group [G — H] whose
cohomology H'([G = H],R) is the singular cohomology with coefficients
in R. If R =R, the singular cohomology groups coincide with the de Rham
cohomology groups. The cohomology of a Tie group considered as a Lie
2-group 1s the usual cohomology of its classifying space since, in that case,
the 2-nerve is isomorphic to the 1-nerve of the Lie group [26].

Given a crossed module G < H of Lie groups, i(G) 1s a normal subgroup
of H. Hence, the projection I/ — H/i(G) induces a Lie 2-group morphism

(3.1) [G 5 Hl — [1 = H/iG)]

which is a fibration (by Lemma 2.2) in which the fiber is the 2-group
G —’> i(G)]. The canonical morphism of crossed modules (Ker(i) — 1) —
(G 5 i(G)) is an equivalence (see [2, 20, 21, 27, 15] for the equivalence
of crossed modules or Lie 2-groups) and in particular, the Lie 2-groups
[G = i(G)] and [Ker(i) — 1] have weakly homotopic nerves. It follows that
there 1s a Leray-Serre spectral sequence.

LEMMA 3.1. There is a converging spectral sequence of algebras
32) 159 =HP([1 - H/i(G)], Hi([KerG) — 1)) = HTI(G 5 HY),

where HI([Ker({) — 1)) is the de Rham cohomology viewed as a local
coefficient system on [1 — H/i(G)].

Proof. It follows from the main theorem of [1] that the realization of
the map [G = H] — [1 — H Ji(G)] is a quasi-fibration whose homotopy
fiber is the (fat) realization of [Ker(i) — 1]. Indeed, this fat realization is
homotopic to the fat realization of [G = i(G)]. In fact, one can show that
this quasi-fibration 1s indeed a fibration. The spectral sequence (3.2) is the
Leray-Serre spectral sequence of this (quasi-)fibration.
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By the same argument, it also follows that there is a long exact sequence
of homotopy groups!)

33) ... m(1 = H/i(G)]) = mo([Ker(d) — 1])
= mo(IG 5 H]) = mo([1 = H/IG)]) — 0.

REMARK 3.2. The algebra structures in L.emma 3.1 are induced by the
algebra structure on the singular or de Rham cohomology of the respective
Lie 2-groups.

REMARK 3.3. A similar proofl implies that if [G, By ] — [Gy Ay Hi]
is a fibration of 2-groups with fiber F, then there 1s a Leray spectral
sequence

154 = 1P (IG1 = Hi, HAUF)) = HPV9(G, 2 ).

REMARK 3.4. In the special case of discrete 2-groups, the Leray-Serre
spectral sequence (3.2) has been studied in [12]. In this rather different context,
the higher differentials in the spectral sequence are related to the k-invariant
of the crossed module.

We now give a more explicit description of the complex Q; ([G — H])
in degree < 4, which will be needed in Sections 4 and 7. Until the end of
this section, we denote by I' the 2-group G x H —t H —% {*} associated to
the crossed module G — H. One has No[' = = and N;T" = H. Since there
is only one object in the underlying category, all 1-arrows can be composed.
Thus, a triangle as in Equation (2.1) is given by a 2-arrow o € G X H and a
1-arrow fy. Hence, N,oI' 22 (G x H) x H. With this choice, for (g,h,f) € N,T,
the corresponding 2-arrow o and 1-arrows fo,f1,/2 in Equation (2.1) are
respectively given by

GdH  a=@h, f=f, fi=hip, LH=hf".
The three face maps d;: NoI' = N1 (i =0,1,2) are given by di(g,h.f) = f;.
i=0,1,2 (see Equation (3.4)).

REMARK 3.5. Of course the choice of f; 1s a convention, we could
equivalently have chosen to work with f;.

') The sequence should not be confused with the long exact sequence of simplicial homotopy
groups in [16, Section 3].
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N3IT is the space of a commutative tetrahedron labelled by objects and
arrows of T :

3.5)

A

Commutativity means that one has (o *fo1) x 1 = (fo3 * ig) % ap, where * 1s
the vertical multiplication of 2-arrows and = is the horizontal multiplication.
Since there is only one object, such a tetrahedron is given by oy, fo1, 02 and
a3 satisfying s(az) = s(ay).(t(ao)) " s(vg). fo;t . Thus N3T' =2 G* x H°. The
face maps d; (i =0,...,4) are given by the restrictions to the triangle which
doesn’t contain A; as a vertex. Thus, given (go., g2, g3, ho.fo1, 2) € G° x H>,
one has

(3.6) do(go, 92, 93, o, for, h2) = (go, ho, for)

3.7) d1(go, G2, 3, ho, for, ) = ((93_1)f°1932i(g°_1)h0_192, ha, for)
(3.8) d2(go, 92+ 93, hos for, ) = (92, ha, ho-i(go))

B9 ds(go, 9. 95, ho.Sor, ) = (g5, ha-ilgg fer' s o).

REMARK 3.6. The choice of indices in (go, 92, 93, fio, for, f1z) 18 reminiscent
of the tetrahedron (3.5). That is the 2-arrow «y = (go,ho) € G x H, the
1-arrow from A, to Az 1s fy; and so on .... For instance, the 2-arrow

L1y —1
a1 = (g1, h1) € GXH 15 given by Equation (3.7),1.e. g, = (ggl)fmggl’(go My &

and hl = hz.

Applying the differential form functor, we get
(a) QG = H]) = Q) R,
(b) QUG = H)) = Q).
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© (G 5 Hl) = QUH) @ Q%G x H x H). The differentials from
Qi([G = H]) to Q2(G ~ H]) are given by

dag: QUH) — QUH) C Q2,(G 5 HY)
and
O=di —d +di: QU — QUG x H x H) C QG = HY).

d QG EN H]) = QLUH)DQRUGCx Hx H)YDRYUG* x H?). The differentials
are quite similar.

() (G5 H]) = 3D ® QUG x H x ) @ QUG x H) & QUN,T).

REMARK 3.7. For p > 4, an element in N,I" 1s a commutative p-simplex
labelled by arrows of T whose faces of dimension 2 are elements of N,I" with
compatible edges. If we denote by Ay, ..., A, the vertices of the p-simplex, the
commutativity implies that it is enough to know all the 2-faces containing Ag.
Reasoning as for NsI, it follows that N,I" = Gp(pz_l) x HP . Details are left to

the reader.

Let g be the Lie algebra of G. There is an obvious map (g*)? < QY(G)
which sends ¢ € g* to its left invariant 1-form ¢&. By composition we have
a map

(3.10) (69)? — QYG) o, QUG x H x H) — (IG5 HY),

where p,: G x Hx H — G 1s the projection.

The action of H on G induces an action of H on g, and therefore an
action on g*. The above composite map I clearly restricts to (g*)%¥ . the
subspace of g* consisting of elements both g- and H -invariant. Assigning
the degree 3 to elements of (g*)%7, i.e. replacing (g")® by (g*)®[3], we
have the following

PROPOSITION 3.8.  The map 1: ((g)*#[3],0) = (Qi([G L HY, dar +0)
is a map of cochain complexes, i.e. (dg + 0)(I) = 0.

Proof. We have (g*)Y = 3(g)*, where 3(g) 1s the center of the Lie algebra
g. Since the de Rham differential vanishes on (g*)#, it remains to prove that
QoI =0. For any £ € (g")* and left invariant vector fields
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m*(gL)(yga ?h) — SL(m*(yg, ?h)) = fL(th:mgh)
= £00) + &(T)
= (P +p3E) Xy, Y,

where m, p1, p2: G X G — G are respectively the product map and
the two projections. If, moreover, £ € (g")®7 then m* = pi, where
m,ps: G X H— G are respectively the action map and the projection. Since
1) ¢ QUG) Cc QUG x H x H) C @ ([G L H]), the result follows from a
simple computation using formulas (3.6)—(3.9).

By Proposition 3.8, the images of the map I: (g*)®#[3] — @3 (IG 5 H))
are automatically cocycles. Recall that § ((g*)g’H [3]) 1s the free graded
commutative algebra on the vector space (g*)#[3] which is concentrated in
degree 3. Thus § ((g*)ﬁbH [3]) is indeed an exterior algebra. By the universal
property of free graded commutative algebras, we obtain:

COROLLARY 3.9. The map I: (g")*H[3] — H3(|G s H]) extends uniquely
to a morphism of graded commutative algebras

1: S((@H*B]) = H'(G = HY).

In fact, the class 1(&y - ---- &), where &y,...,& € (g")?, is represented by
the cocycle 1(€)U---UI(E) € Q¥ (G 5 H)).

4. COHOMOLOGY OF [A = 1]
The following lemma 1s well known.

LEMMA 4.1. The nerve N.([S' — 1]) is a K(Z,3)-space.

Proof. Since Z is discrete, [Z — 1] 1s a K(Z,2)-space (see for
mstance [18, 20, 21]). Furthermore, [R — 1] 1s homotopy equivalent to
[1 — 1]. Thus the result follows from the fibration of 2-groups [Z — 1] —
R—=1] —[S' = 1].
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Let A be an abelian compact Lie group with Lie algebra a. Then [A — 1]
1s a crossed module. By Corollary 3.9, we have a map [: S(a™[3]) —
H(JA — 1]).

PROPOSITION 4.2. Let A be an abelian compact Lie group with Lie
algebra a. The map I: S(a*[3])y — H ([A — 1)) is an isomorphism of graded
algebras.

Proof.  Since our cohomology groups have real coefficients, it is sufficient
to consider the case where A is a torus T*. Indeed, writing Ag = T* for the
connected component of the identity in A, we have a fibration :

[Ag = 1] = [A = 1] = [4/A, — 1].

Since A is compact, A/Ay is a finite group. Thus N[A/Ay — 1] is a
K(A/Ao, 2)-space; in particular it is simply connected. Then the Leray spectral
sequence (Lemma 3.1 and Remark 3.3) simplifies as

Ly = H'(K(A/Ap.2)) @ H'(JAg — 1) = H'([A — 1]).
Since A/Ag is finite, H>(K(A/Ao,2)) =2 0. Hence
H(A—= 1) S H (A — 1]).

Now assume A = T*. The Kiinneth formula implies that H'([A — 1]) =
(H‘([S1 — 1]))®k as an algebra. Since / is a morphism of algebras, it is
sufficient to consider the case k=1, i.e. A= S!.

Lemma 4.1 implies that H'([S* — 1]) & S(x), where x is of degree 3. It
remains to prove that the map (3.10),

I: R = Q'S = (s — 1)),

generates the degree 3 cohomology of [S' — 1], ie. that /(1) is not a
coboundary in Q3([S! — 1]). Clearly, I(1) is the image of the fundamental
1-form on S' by the inclusion Q'(S') — *(S* — 1]). By Section 3,
it is obvious that Q*([$* — 1]) = Q%SY) and that the only component
of the coboundary operator §: Q*([S! — 1]) — Q*(S! — 1]) lying in
QIS — Q3([S! — 1]) is the de Rham differential dgr: Q°(S") — Q'(SY).
Since the fundamental 1-form is not exact, the result follows.
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5. THE CASE OF A FINITE COKERNEL

In this section, we consider the particular case of a Lie 2-group [G Xt H]
with finite cokernel.

THEOREM 5.1. Let [G 5 H] be a Lie 2-group with finite cokernel
C := H/i(G) and compact kernel Ker(i). Let ¢ be the Lie algebra of Ker(i).

There is an isomorphism of graded algebras
; i - wrany N C
H(G = H) = (S Bl)) .
In particular, the cohomology is concentrated in degree 3q, q > 0.

Proof. The 2-group [1 — C] is naturally identified with the 1-group C.
Thus its nerve N.[1 — C] coincides with the classifying space BC of C.
Furthermore, since C 1s finite (and thus discrete), the cohomology (with
local coefficients) H‘([l — C],Hi([Ker(i)) — 1])) 1s 1somorphic to the
usual group cohomology H' (C, Hi([Ker(i) — 1])) , where the C-module
structure on HY([Ker() — 1]) 1s induced by the C-action on Ker(i).
Since Hi([Ker() — 1]) 1s an R-module and C is fimte, the cohomology
m (C, Hi([Ker(i) — 1])) is concentrated in degree zero so that the speciral
sequence of LLemma 3.1 collapses. Hence

H'(IG %5 H]) = H*(C, HY([Ker(i) — 11))
= H9([Ker(i) — 11)C 2= S(((¢")' 3.

According to Proposition 4.2 they are also isomorphic as algebras, due to
the multiplicativity of the spectral sequence and the freeness of S (({3* )t [3]) .

REMARK 5.2. One can find explicit generators for the cohomology
H(|G — H]) as follows. For all y € K := Ker(i), x € G, y~lxy =2 = x.
Thus K C Z(G) and 3(g) splits as a direct sum 3(g) = £$n. We denote by J
the map g? = 3(g) — €. The composition of J*: §* — g* with the map (3.10)
1s the map

I e 5 (g%) = QUG x HY) € @3 (G — HI).
If x1....x, € S722(£*[3]), then I(x))U---Ul(x,) lies in QYN (IG — H]) C
Qf’(f{([G — H]). Note that the action of # € H on K depends only on the
class of h in C. Since C is finite it follows that, for any x € S9(¢*[3]), 1(x)
is a cocycle if and only if x is C-invariant. Let [(x) = I ( I xc). Then
I (x) is indeed a cocycle and [ (E* ) generates the cohomology H'([G Ay H]).
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Tet 1 >A—G% H— 1 bealLie group central extension. Since A is
central, there 1s a canonical action of H on G. It is easy to see that G Lo
18 a crossed module.

COROLLARY 53. Let [G % H] be the Lie 2-group corresponding to a
central extension of H by a compact abelian group A. There is an isomorphism
of graded algebras

H (G = H]) = S@*BI)

where a is the Lie algebra of A.

Recall that S(a*[3])" 1s a graded commutative algebra generated by
generators of degree 3 (given by any basis of a*).

Proof. Since G L Hisa surjective submersion, the cokernel H/p(G) =

{¥} is trivial. Moreover the kemel of [G & H] is [A — 1]. Hence the
conclusion follows from Theorem 5.1.

REMARK 5.4. Identifying the crossed module A — 1 with the kernel of
G4 H yields a canonical morphism of 2-groups p: [A — 1] =[G — H]. It
follows from the proof of Theorem 5.1 that the isomorphism H([G L HD S
S(a[3]) 1s given by the composition

S@BI =5 H([A — 11) 2 H(G & H]).

EXAMPLE 5.5. let G be a compact Lie group. It is isomorphic to a
quotient of Z x G’ by a central finite subgroup. Here G’ is the commutator
subgroup of G. Hence there is a map G — Aut(G’) yielding a Lie 2-group
[G — Aut(G')] through the action of Aut(G') on G’ (see Section 7 below).
Theorem 5.1 implies that

H([G — Auw(GH)) == S((g")°B1)

6. THE CASE OF A CONNECTED COMPACT COKERNEL

The results of Section 3 can be applied to a more general type of 2-groups
[G = H], where G and H are Fréchet Lie groups (thus possibly infinite-
dimensional). See [3] for more details on Fréchet Lie 2-groups. In such a
case, instead of the de Rham cohomology, singular cohomology with real
coefficients can be used.
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We start from the following lemma.

LEMMA 6.1. Let G and H be Fréchet Lie groups. Assume that C =
H/i(G) is a connected compact Lie group, and Ker(i) is compact. Then the

third page L, of the Leray spectral sequence (3.2) is concentrated in bidegree
(P.39), p=20, g =20, and

6.1) 1279 = HP(BC) & SU(a*[3]).

Here BC is the classifving space of C = H/i(G), and a is the Lie algebra
of A = Ker(i).

Note that since S(a*[3]) is a graded commutative algebra?) generated by
elements of degree 3, it lies in degree 3g (where 0 < g < dim(a)).

Proof. Note that C 1s the cokernel [1 — C] of [G 4 H] (see Section 2).
Since C = H/i(G) is connected, its classifying space BC is simply connected.
It follows that the L;’j term of the Leray spectral sequence in Lemma 3.1 is
1somorphic to

LY = H'(BC) % H/([A — 1])

as an algebra. By Proposition 4.2, H'([A — 1]) =2 S(a*[3]) 1s concentrated
in degree 3¢ (q > 0). Since the differential dy: L;’j — L;+2’j_1 1S a
derivation, it follows that d, = 0 for degree reasons. Similarly, d5 = 0.
Thus Ly =L =L

The (higher) differential d4: Li[j — Lﬁl+4’j ~ induces a transgression
homomorphism

(6.2) T:a* 2 19% & 140 ~ gYBC).

PROPOSITION 6.2.  Under the same hypothesis as in Lemma 6.1, there is
a natural linear isomorphism

H(IG & H]) = (H'(BC)/(Im T)) & S(Kex(1)[3])’

which is an algebra isomorphism if we assume, moreover, that C = H/i(G)
is simply connected.

Here BC is the classifving space of C and ImT s the ideal generated
by the image of T.

2) S(a*[3]) is in fact an exterior algebra, since it is generated by odd-degree generators.
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Proof. Since dy: Li;j — L2+4’j ~3 is a derivation, it is uniquely determined
by 7. From Lemma 6.1, it follows that

Ly = (H'(BC)/(ImT)) ® S(Ker(D[3]) .

For degree reasons, d, = 0 for all » > 5. Thus L;" = L as an algebra, and the
linear 1somorphism H'([G 4 H]) (H'(BC)/(Im ﬂ) ® S(Ker(T)[3])' follows
since our ground ring is a field. If C is furthermore simply connected, then
H(BC) is a polynomial algebra with generators x; of even degree |x;| = 2i,
i > 2. In particular, H*BC) has no decomposable elements, thus L3 1s a
polynomial algebras with graded generators. It follows that L3, = H'([G = H])
as an algebra.

As an application, we compute below the cohomology of the string
2-group String(G) (see [3]). Let G be a connected and simply connected
compact simple Lie group. There is a unique left invariant closed 3-form
v on G which generates H>(G,Z) = Z. By transgression, the form v
corresponds to a class [w] € HYBG,Z), which determines the basic central
extension [22, 3]

158 =25 Q6 —1

of the based (at identity) loop group QG of G. Associated to v is a (homotopy
class of) map QBG — G — K(Z,3) = N.([S' — 1]) which induces an
1somorphism on 73. Let PG denote the space of paths f: [0,1] = G starting
at the idenuty. The conjugation action of PG on QG lifts to QG. The string
2-group (see [3]) 1s the Fréchet 2-group corresponding to the crossed module

String(G) = [QG L PG,

where p 1s the composition

p QG L oG PG.

By construction, Ker(p) = §!, PG/p(/QSé) = (G, and also m3(String(G)) =0
(as follows from [3, Theorem 3]). Recall that the cohomology H'(G) is the
exterior algebra on generators xy,...,x,, where x; is of degree 2¢; + 1 and
e,...,e, are the exponents of G. Note that we can choose x; = ». Similarly,
H'(BG) is the polynomial algebra on generators yi, .. .,y, of degree |y;| = 2e;,
where y; can be taken to be [w]. To apply Proposition 6.2, it suffices to
compute the transgression homomorphism 7: R — HYBG) =2 R, where the
domain R is identified with the Lie algebra of S!. Since [w] € HYBG) is
obtained by the transgression from [v] € H3(G) = H3(NQG), it follows that
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T(1) is the generator of H*BG). Indeed, there is a commutative diagram of
Fréchet 2-group fibrations

[1 = QG ——[1 = PG] == [1 = G]

| L

[Sl - 1] — [§é i QG| — Sl‘rmg(G) - [1— G]

where the right horizontal arrows are induced by ev: PG — G, f > f(1) and

the canonical inclusion [ST — 1] — [56 2 QG| = Ker(ev) is an equivalence
of Fréchet 2-groups. Thus the transgression map 7 is the composition 7' o j*
where 77: H*(G) = HP([1 = QG| — HY[1 — G]) = H¥BG) is the
transgression map associated to the fibration [1 — PG| & [1 — G]. Since
PG is contractible, 77(v) is a generator®) of HYBG). It also follows from
the exact sequence (3.3) that j is an isomorphism on 73, and so is

FREH(S - 1) = H([1 — QG) = HP(BRG) = H(G).
Hence T =T oj*: R — H*BG) =R is an isomorphism. Thus, we recover

the following result of Baez-Stevenson [5]:

PROPOSITION 6.3.

H (String(G)) £ SOz, ..., y) = H(BG)Y/([w)) ,

where the y;’s are the generators of H*(BG).

7. THE CASE OF [G — Aut™(G)] AND [G — Aut(G)]

Let G be a compact Lie group. There is a canonical morphism G = Aut(G)
given by inner automorphisms which is also a crossed module. Since inner
automorphisms are orientation-preserving, we also have a crossed module

G i> Aut™(G), where Aut (G) is the group of orientation-preserving
automorphisms.

Now, assume G is a semi-simple Lie group. Then both Out(G) and
Outt(G) are finite groups. Moreover, Ker(;) and Ker(iT) are also finite.
Thus, by Theorem 5.1, we obtain

3) as for the case of the “universal” fibration G — EG — BG
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PROPOSITION 7.1. Let G be a semi-simple Lie group. Then

0 if n>0,
HY([G — Au(G)]) = H([G — Autt (G)]) = { no

i+
For general compact Lie groups, the cohomology of [G — Aut™(G)] and
[G 5 Aut™(G)] can be computed with the help of spectral sequences.

THEOREM 7.2. If G is a compact Lie group, there are converging spectral
sequences of graded commutative algebras

(7.1 E"" = H(SL(n,Z), SWg")°I3])) = H"™([G o, Aut™ (G)]),
(7.2) ES% = H?(GL(n,Z), S((g")°131)7) = H'([G ty Au(G)]),

where n = dim((g*)?) is the dimension of (g*)?, and the SL(n,Z)-action
(or GL(n,Z)-action) on S((g*)®[3])? is induced by the natural action on
(g)7 =R".

In particular the spectral sequences are concentrated in bidegrees (p,3k)
(p and k> 0) and

(7.3) EfY7 M 20 and B =P R,
(7.4) B0 and  E)'=R,

Proof. Let g be the Lie algebra of G and j3(g) the Lie algebra of its
center Z(G). Then 3(g)* = (g*)¥. Since the kernel of G 5 Aut(G) is Z(G),
we have the fibration

(7.5 [Z(G) — 1] N [G L Aut(G)] — [1 — Ou(G)],
where j is the inclusion map. By Lemma 3.1, we have a spectral sequence

H?([1 = Out(G)], HI(IZ(G) — 11)) = H1([G 5 Au(G)])

and similarly for [G i> Autt(G)]. By Proposition 4.2, HI([Z(G) — 1]) =
S((g*)[3D)?. Since G 1s compact, the group Out(G) 1s discrete. Thus, the
ES? and E; #9 _terms of the spectral sequences become the group cohomology
groups H? ( Out(G), S((g*)*[31)7) and H? (Out’ (G), S((g*)*[3])?) respectively.
Note that the center of G 1s stable under the action by any automorphism.
Hence, there are canomnical group morphisms Out(G) — Ouw(Z(G)) and
Out "(G) — Out™ (Z(G)).
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First assume that G =2 Z(G) x G, where Z(G) = $!' x --- x §' is a torus
of dimension n and G’ = [G,G] is semi-simple. Then the canonical map
Out(G) — Out(Z(G)) has an obvious section Out(Z(()) — Out(G) given by
¢ — ¢xidg . Since G’ is the commutator subgroup of G, it is also stable under
automorphisms. It follows that Out(G) & GL(n, Z) x Out(G’) and Out'(G) =
SL(n, Z) x Out™(G") since Aut(Z(G)) = GL(n,Z). We now need to find out the
Out(G) and Out™ (G)-actions on H'([Z(G) — 1]) = S((g")?[BD?. If #,...,1,
are coordinates on Z(G), then (g*)® = Rdf & --- & Rdt, and, according
to Proposition 4.2, the elements I{(dt), ..., I(dt,) € QY(S' x -+ x §') =
Q3([Z(G) — 1]) form a basis of H([Z(G) — 1]). It follows that the Out(G)
and Out™(G)-actions on H'([Z(G) — 1]) reduce to the standard GL(n,Z)
and SL(n,Z)-actions on the vector space Rdi; @ --- @ Rdt,. Since Ou(G)
and Out™(G’) are finite and act trivially on H'([Z(G) — 1]), the spectral
sequences (7.1) and (7.2) follow from the Kiinneth formula.

In general, since G is compact, it is isomorphic to the quotient G =
(Z x G")/A, where Z is the connected component of the center Z(G) and
A = Z(G)NG' is finite central. Let G’ be the universal cover of G, which is
a compact Lie group, and p: Z x G' — G be the covering of G given by the
composition Z X G' = Zx G — G. Let f € AuG), then fop: ZxX G — G
1s a Lie group morphism. There is a unique lift

s, -
Zx G e >7Zx G

l f J

G——=G

of the map fop: ZxG' — G into amap f: Zx G’ — Z x G’ preserving the
unit. Indeed, to see this, it is sufficient to check that ( fio p*)(frl(Z X 6')) -
ps(m(Z x G"). Clearly p.(mi(Z x G)) = p+(Z™) is the non-torsion part of
m1(G). It is thus stable by any automorphism, therefore by f,: 71(G) — m(G).
Since p is a group morphism and f c Aut(Z x G’ ), it follows that any
automorphism of G lifts uniquely into an automorphism of Z x G'. We are
thus back in the previous case.

By the above discussions, we already know that the action of SL(n,Z)
and GL(n,Z) on (g*)® = R" 1is the standard ome. Since the symmetric
algebra on odd generators is isomorphic to an exterior algebra, Eg’q and
E;“ “ are respectively isomorphic to AF (R”)GL(H’Z) (as a GL(n,Z)-module)
and Af (R”)SL(H’Z) (as an SL(n,Z)-module). Furthermore, if g # 3k, Eg’q

and E;r ®? yanish for degree reasons. In particular, the GL(n,Z)-action is
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trivial for £ = 0, and for k& = n, it reduces to multiplication by the
determinant on A”(R”) =~ R. For 0 < k < n, SL(n,Z) (and thus also
GL(n,Z)) has no fixed points in A"(R") besides 0. The last assertion
follows.

In general, the description of the group cohomology of GL(n,Z) and
SL(n,Z) with arbitrary coefficients for general n 1s sull an open question
unless n < 4 (see for instance [25, 17]).

COROLLARY 7.3. Let G be a compact Lie group. Assume that n =
dim(g?®) < 3. Then

HY([G = Aut™(G)]) = {R if p= 9, 3n
0 otherwise
and
R ifp=0
HP(IG — Au(G)]) =
(IG — Aut(G)]) {0 A

Proof. If n =0, this reduces to Proposition 7.1. For n =1, GL(1,Z) =
Z/2Z and SL(1,Z) = {1}. The spectral sequences of Theorem 7.2 are
concentrated in bidegrees (0,0) and (0,3), and hence collapse.

For n = 2, SL(2,Z) is an amalgamated sum Z/4Z %7,z Z/6Z over a
tree [24]. For any SL(2,Z)-module M, the action of SL(2,Z) on this tree
vields an exact sequence

.. = H(ZJAZ, M) & H(Z/6Z, M) — H(Z/2Z, M) — HH'(SL2,Z), M) — ...

Since the cohomology of a finite group acting on an R-vector space vanishes
in positive degrees, the only non trivial terms in the spectral sequence E;r P
are those for p = 0. It follows that the spectral sequence collapses and the
result is given by Equation (7.3) in Theorem 7.2. A similar computation gives
the result for GL(2,Z) = SL(2,Z) x Z/2Z.

For n = 3, one uses the fundamental domain introduced by Soulé in [25].
Tet M9 be the SL(3,Z)-module S7((g")?[3]) = AR (g = 0,...,3).
Since M® and M are isomorphic to R with trivial action, the groups
HP>O(SL(3,Z), MY) are trivial for ¢ = 0,3. Now assume that g = 1 or g = 2.
The group SL(3,Z) acts by conjugation on the projective space of symmetric
positive definite 3 x 3 -matrices. Let D3 be the subset of such matrices whose
diagonal coefficients are all the same. The orbit X3 = D5 - SL(3,Z) of Ds
under SL(3,Z) is a homotopically trivial triangulated space of dimension 3
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(see [25]). Let X; be the set of equivalence classes of cells of dimension i
modulo the SL(3,Z)-action. For ¢ € X;, we denote by SL(3,Z), the
stabilizer of the cell o and write MZ for M7 endowed with the induced
action of SL(3,Z), twisted by the orientation character SL(3,Z), — {£1}.
There 1s a spectral sequence Ei’j =& e, H/ (SL(3,Z)J,M?,) converging (o
H'™(SL(3,Z), M%) (see [10], Section VIL7). The stabilizers SL(3,Z), are
described in [25], Theorem 2. They are all finite. Thus the spectral sequence
reduces to EY° = D.oes, (Mg)SL(S’Z)"

in [25] shows that E’Fl’o =, [, E?O = (Mq)4 and

. Direct inspection using Theorem 2

5= (M) & (M) ® (M%) & (M),

where A, B, C are respectively the matrices

0 -1 0 -1 0 0 -1 0 0
-1 0 0], 0o 0 -1, 0 0 1].
0 0 -1 0 -1 0 0 1 0

The term dy of the spectral sequences 1s described in [10], Section VIL.8. In
our case, since the stabilizers of cells of dimension 3 are trivial, the differential
dy 18 induced by the inclusions (Mg)SL(S’Z)" — M? for each 3-dimensional
cell 7 € 23 with ¢ C 7 a subface of dimension 2. It follows that Elzf >~ 0,
Hence the result follows for [G — Aut™(G)]. The case for [G — Aut(G)]
follows using the Kiinneth formula since GL(3,Z) = SL(3,Z) x Z/2Z. [

REMARK 7.4. For n = dim((g*)?) = 4, it should be possible to compute
explicitly H'([G — Aut' (G)]) and H' ([G — Aut(G)]) using Theorem 7.2 and
the techniques and results of [17]. For n = 5, 6, the results of [14] suggest that
the cohomology groups H'([G — Aut™(G)]) and H([G — Aut(G)]) should be
non trivial. For larger #, it seems a difficult question to describe the spectral
sequences of Theorem 7.2 explicitly.
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