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L’Enseignement Mathématique (2) 55 (2009), 359-371

ON THE CAUCHY-KOWALEVSKI THEOREM

by Marc CHAPERON

In memory of Adrien Douady

ABSTRACT. After a short review of the basic properties of analytic functions, we
apply the infinite-dimensional theory to get a simple proof of the Cauchy-Kowalevski
theorem, in an infinite-dimensional version which seems to be new.

INTRODUCTION

Most mathematicians no longer teach differential calculus in Banach spaces,
though the theory has proved increasingly useful since Henri Cartan’s first
lectures on the subject [1]. Paradoxically, Cartan himsell never included
in his lectures the basic properties of analytic functions in Banach spaces,
which his student Adrien Douady had written down 1n a simple and aesthetic
way [6] (more references can be found at the end of the present paper).

After a short introduction to this elegant theory, we recall (in the analytic
case) Joel Robbin’s proof of the existence theorem for differential equations
via the implicit function theorem in Banach spaces [14] and explain how to
adapt it to get the Cauchy-Kowalevski theorem.
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The painless proof casts some light on the reason why this result is true
only in the analytic category. Throughout the paper, £, F denote two Banach
spaces over K=R or C.

1. ANALYTIC FUNCTIONS IN ARBITRARY DIMENSION

POWER SERIES. We let LY%E,F) = LYE,F) = F and, for each positive
integer n, we endow the space L*(E,F) ol continuous n-linear maps
a,: E" — F with its standard norm |a,| := SUP|y, | = = |, | =1 lan(x1y ..oy Xn)]s
which makes it into a Banach space. Denoting by LY(FE, F) the closed subspace
consisting ol symmetric n-linear maps, we associate to each a, € L}(E, F) the
homogeneous polynomials E 3> x — a,x’ € L'%(E,F), 0 < £ < n, defined
as follows: for x,x¢ q,...,x, € E, we have that a,x’(x;y1,...,x,) is the
value of a,(x;,...,x,) when x; =x for 1 < j < £ (hence a,x’ = a,). As
when E = K, the j-th derivative of a,x" is (nfj)!anx"_f for j < n and 0
otherwise. In particular, its #-th derivative is the constant nla, and, if K =C,
the homogeneous polynomial x — a,x" 1s holomorphic, meaning that it 1s
differentiable and that its derivative at each point is C-linear.

A power series on E with values in F' 15 a series of functions u, of
E into F whose general term is a homogeneous polynomial u,(x) = a,x",
a, € L}(E,F). We shall call it the power series ) .\ a,x" or > a,x".

The strict convergence radius p € [0,4+00] of the power series > a,x"
is the supremum of those r > 0 satisfying > |a,|r* < oo. It is given by
p~ ! =limsup|a, ». When p 1s positive, the power series is called convergent ;
it converges at every point of the open ball B,(0), (normally) uniformly in
B,(0) for 0 <r < p. Hence, its sum f: B,(0) — F is continuous and more:

PROPOSITION 1.1.  Every convergent power series Y a,x" on E with
values in F, having strict convergence radius p, converges in the C™ sense
in By(0). Its sum f: B,(0) — F is C> and, if K = C, it is holomorphic. More

(nxj)! anyj X" obtained by j times

precisely, for j € N, the power series .
differentiating > a, X" has the same strict convergence radius p as »_ a, x",
and its sum is DIf: B,(0) — Li(E,F). Hence, D'f(0) = jla;, showing that,
in B,(0), the function f is the sum of its Taylor expansion at 0.
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Proof. For a, € LY(E,F) and 0 < ¢ < n, the symmetric form defining
x — a,x’ has the same norm as a, since a, — ((xl,. cesXp) B> Xy e °.Xg‘)
is an isometric linear map of L(E,F) onto L* (E, L"4(E, F)).

REMARK. For dimE > 1, the ball of strict convergence B,(0), which
depends on the norm and not just on the topology of E, is definitely not
the largest open subset in which the power series converges, as shown by the
power series > b,x"y" on K? when 3 b,7" is convergent in one variable.
However, convergence depends only on the topologies of £ and F'.

ANALYTIC MAPS. A map f of an open subset U of E into F is called
analytic when, for all xy € U, there exists a convergent power series » _ a, x"
such that f(x) = > a,(x—x¢)" in a neighbourhood of x,. By Proposition 1.1,
this implies that f 1s C* (and, if K = C, holomorphic) and can be
expressed in a neighbourhood of every point xo € U as the sum of its
Taylor expansion at xg. As in one variable, the following fundamental result
can be deduced from Cauchy’s formula (see for example [2], chap. 5, théoréme
principal):

PropoSITION 1.2. If K = C, a function f of an open subset U of
E into F is analytic if and only if it is holomorphic. When a sequence
(gn) of holomorphic functions of U into F converges locally uniformly to a
function g, the latter is holomorphic.

COROLLARY 1.3 (analyticity of inverse maps). If an analytic local map
f: (E,xo) — F has invertible derivative at xy, then its local inverse
(F 3 f(xo)) — (E,x0) is analytic. Hence, given a third Banach space A over
K and an analytic local map g: (A X E, ()\o,xo)) — (F,0), If the partial
hg(Mo,x0): E — F is invertible, the implicit function ¢: (A, o) — (E,xo)
whose graph coincides with g=1(0) near (\o,xo) is analytic.

Proof. As the inverse of a C-linear isomorphism is C-linear, this is
obvious if K = C. The real case follows by complexification [2], together
with

COROLLARY 1.4. The sum of a convergent power series is analytic in
its ball of strict convergence. The composed map of two analytic maps is
analytic.
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2. ANALYTIC LOCAIL CAUCHY PROBLEMS

2.1 CAUCHY’S THEOREM ON ORDINARY DIFFERENTIAL EQUATIONS

Let f be an analytic map on an open subset domf of K x F, taking its
values in F. Given (ty,up) € domf, we are interested in the local analytic
solutions of the Cauchy problem

du
(1) F _f(ta M)
ulto) = uo ,

1.e. analytic germs ¢: (K,7) — F which sausly the initial condition
w(to) = up and are solutions of the differential equation % = f(t, ), meaning

that ©'(7) = f (1, p(1)).

THEOREM (Cauchy). Under these hypotheses, the Cauchy problem (1) has
a unique local analytic solution.

Proof. 1If K =R, the complexified map of a solution of (1) is a solution
of the complexified Cauchy problem. Now, if the theorem is true in the
complex case, the solution ¢ of the complexified Cauchy problem must be the
complexified map of a solution of (1) (hence existence and uniqueness in the
real case), since otherwise f +—> W would be another solution, contradicting
uniqueness. This reduces the question to the complex case.

If K=C, (1) is equivalent to the equation

2) v(t) =£(t, uo + [, v(7)dr)

in the unknown local holomorphic function v = %: (C,t5) — F, where

ff; v(7)d7 denotes the local primitive of v which vanishes at 7.
Robbin’s idea 1s to use a small parameter ¢ € C. For ¢ # 0, setting

3) t=to+eT, V(I)=uv@), d7V(T):= [ Vir)dr,
one has |

! — . o
, V() dr =ed YW(T) ; hence, (2) can be written

) V(T) =f (to+ €T, uo + ed ™" V(T)),

an equation which still makes sense for ¢ = 0.

Let Hy(D, F) denote the Banach space (Proposition 1.2) of all bounded
holomorphic maps of the open unit disk D C C into F, equipped with the
norm of uniform convergence |- |, . For nonzero ¢ € C, the “microscope”
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(3) defines a bijection of the set of solutions V € H,(D, F) of (4) onto the
set of those solutions v of (2) which are defined and bounded in the open
disk of radius |5| centred at #y. Therefore, to establish Cauchy’s theorem, we
should just prove that there exist 77 > 0 and r > 0 such that, for |¢| < 7, the
equation (4) has a unique solution V € H,(D, F) satisfying |V — Vglso < r,
where V, € H,(D, F) denotes the constant f(zy, ug).

LEMMA 2.1. The formula ®(c, VI(T) :=f (to + €T, up + ed~*V(T)) de-
fines a local holomorphic map @: (C x Hp(D, F), (0, Vo)) — (?—lb(D, F),VO)
such that ©0,V) =V, and therefore 0yP(0, Vy) = 0.

This yields Cauchy’s theorem: by the implicit function theorem, there exist
17 > 0 and r > 0 such that, for |E| < n, the equation V—®(c, V) =0, 1.e. (4),
has a unique solution V = (c) € Hp(D, F) satisfying |V — Vgl < r.

Proof of Lemma 2.1. @ is obtained by composing two holomorphic maps :
e the polynomial map II: C x Hy(D,F) — HyD,C x F) delined by
(e, VI(T) = (to + T, uo + ed~"V(T))
(indeed, IT 1s a holomorphic polynomial with values in Hp(D,C x F)
because d~' is a continuous endomorphism of H,(D,F) since we have
= V()| < |T] [Vl < |V]eo, V € Hp(D,F), T € D);
* the local map f.: (’Hb(D,C X F),(ro,uo)) — (”H,b(D, F), VO), defined by
fW=foW.
Indeed, if f is well-defined and bounded on the open ball B,(ty,ue) of
radius p > 0 centred at (fo,up), then, for each W € Hp(D,C X F) with
|W — (fo, to)| oo < p, the map foW is well-defined, holomorphic and bounded
on D. To see that £, is holomorphic near the constant (7g, xo), notice that if D*f
satisfies |D?f(z,x)| < ¢ < oo on B,(to, o), then, for all W, oW € H,(D,CxF)
with |W — (fo, tg)|eo < p and |W + W — (fo, u0)|e < p, Taylor’s formula
yields

| F(W(@) + W) = (WD) — DF(W(D))SW(D)]
= ‘fol(l — ) DY (W(T) + soW(T))SW(T) ds‘ < %|6W|io, TeD,

mmplying that f, 1s differentiable at W and that Df,. (W) 1s the complex endo-
morphism of H,(D, CxF) given by (Df.(W)sW)(T) = Df (W(T))sW(T).
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2.2 THE CAucHY-KOWALEVSKI THEOREM

HYPOTHESES AND NOTATION. Let JYE,F) := E x F x I{(E,F) and let
f be an analytic map on an open subset domf of K x J(E,F), taking
its values in F. Given ty € K and an analytic germ ug: (E,x0) — F
satisfying (fo,/'uo(x0)) € domf, where jlug(xg) := (xo, 1o(x0), Dig(xo)) , we
are interested 1n the local analytic solutions of the Cauchy problem

{atu =f(t>x> u, ax“)

u(ty, x) = uo(x),

)

1.e. analytic germs ¢: (K X E, (0, xo)) — F such that, setting ¢,(x) := ©(t,x),
* ¢ is a solution of the partial differential equation du = f(t,x,u,du),

meaning that J,p(t,x) = f (¢, j %)) ;
» the initial condition @, = uy 1s satisfied.

THEOREM (Cauchy-Kowalevski). Under these hypotheses, the Cauchy
problemt (5) has a unique local analytic solution.

REDUCTION OF THE PROBLEM. Denoting by ¢ the analytic function defined
on an open subset domg > 0 of K x JI(E, F) by

g(t,x,v,2) :=f(r0 +t, xo + x, uo(xo +x) + v, Dug(xg + x) + z) 5
(5) 1s equivalent to the local Cauchy problem

{B,w = g(t,x,w, Ow)

© w(0,x) = 0

in the unknown function w(t, x) := u(to+1,x0+x) — ug(xo+x) near 0 € Kx E.
Rep]aCing ’LU(Z‘, x) by ’U)(l', }C)—tg(()) and g(r,x, s Z) by g(ta x,y+tg(0),z)—g(0),
we may assume that

(7) g(0)=0.

Solving (6) in an open convex subset C O 0 of K x E is equivalent to finding
an analytic map v: C — F (the partial derivative v := gyw) such that

®) v(t,x) = g (1, x, 07 "v(t, ), 897 w(1,%))
where, as in [13],

O, x) = fot v(T,x)dr = tfol v(st,x)ds.
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Again, we introduce a small parameter ¢ € K, whose use is subtler than
before, due to derivation with respect to x: for ¢ # 0, setting

(t,x) = (°T,eX), V(T,X)=v(t,x),

one has 97 'v(t,x) = €207 'V(T', X) and 9,07 "v(t,x) = e0x07 'V(T',X), hence
(8) can be written

9) V(T,X) = g (T, eX, 207 ' V(T,X), c0x07 ' V(T, X)) .

THE FUNCTION SPACE. The presence of Oxdp W(T,X) in (9) makes it
harder to find a function space for which the analogue of Lemma 2.1 holds.

PROPOSITION 2.2.  Given Banach spaces Ey,Fy, let B be the open unit ball
of Ey. The set F(E1,Fy) of all V: B — Fy of the form V(x) = ZneN V, x"
with V, € L{(E,F1) and ZneN |Vn| < 0 is a Banach space over K for the
norm |V|y =3 .\ |Vu| and its elements are analytic functions.

Proof. The power series whose sum belongs to F(E;,F;) have strict
convergence radius > 1. Therefore, by Corollary 1.4, the elements of F(E,, F)
are analytic. As each V € F(F;,F;) identifies to the sequence consisting of
the coefficients V, = %D”V(O) of the power series defining 1t, a standard
argument proves that F(Ey, Fy) is a Banach space.

NoOTATION. Let Fo(E7, Fr) be the closed subspace of F(E;, F) consisting
of all V with V(0) = 0. The following result, implicit in [13] (p. 44, estimate
line —4), has no C* analogue. This may be viewed as “the” reason why the
Cauchy-Kowalevski theorem 1s true only in the analytic category:

PROPOSITION 2.3. Let Fy denote the Banach space K x E endowed with
the norm |(7, X)| := |T|+|X|. For V € Fo(E1, F), one has 07V € Fo(E1, F),
OxI7'V € Fo(Er, E. F)), |07'V|i < YV|1 and |0x07' V] < |V,

Proposition 2.3, whose easy proof is given in Appendix 2.2, provides
the analogue of the first point in the proof of Lemma 2.1. We turn to the
second point, again inspired by [13] (Proposition 1.11, p.42) and proved in
Appendix 2.2:

PROPOSITION 2.4. Given three Banach spaces E1, F1, Iy and an analytic
local map g: (F1,0) = (F,0), the formula g.(W) := go W defines a local
analytic map ¢, (fo(El,Fl), O) — (fo(El,Fz),O).
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Proof of the theorem. Here is the analogue of Lemma 2.1:

LEMMA 2.5. With the notation of Proposition 2.3, the formula
(e, VIT, X) := g (T, X, 207 'V(T, X), edxd7 ' V(T, X))
defines an analytic map ®: (Kx Fo(Ey, F), {0} x Fo(E1, F)) — (Fo(Er, F),0).

Proof. Proposition 2.3 asserts that we have (9771 € L(Fo(El,F), FolEq, F))
and hence Oxd; LEE (fo(El,F ), Fo (El, L(E.F ))) , implying that the formula
(e, VYT, X) == (2T, X, 207 'V(T', X), edxd7 "V(T', X)) defines an analytic
map I1: (K x Fo(Er, F), {0} x Fo(Er, F)) — (Fo(Er, K x JHE, F)),0). Since
d = g, o1, we conclude by Proposition 2.4.

As ®0,V) = 0 yields &0,0) = 0 and 9yP(0,0) = 0, the implicit
function theorem implies that there exist n > 0 and r > 0 such that, for
le] < 7, the equation V — ®(g,V) = 0, ie. (9), has a unique solution
V = w(e) € Fo(E1, F) satisfying |V|; < r. Now, if v is a solution of (8)
which is analytic near O, then, for |¢| € (0,7) small enough, the solution
V(T,X) = v(e*T,eX) of (9) is well-defined in B, belongs to Fo(£;, F) and
satisfies |V|; < r, proving the local existence and uniqueness of the solution
of (8), hence of (5).

REMARKS. With the notation of Lemma 2.5, for k € N* and V € F, the
k-th order Taylor polynomial ji®(c,V) of @(z,V) at 0 depends only on &
and j&V. Denoting it by EI\DJ‘(E, JEV) and replacing @ by ®¢ in what we have
just done, we get that the solution of (5) is formally unique.

One can avoid Proposition 2.4 and just show that the map V — (g, V)
is a contraction of the closed unit ball of Fo(E;,F) for small enough ¢.
However, this requires the same ingredients as the proof of Proposition 2.4.

APPENDIX A
PROOF OF PROPOSITION 2.3

For V € Fo(Ei,F), we have that V(T,X) = > . Vu(T,X)" with

V, i= LD"V(0,0) € Li(Ey, F), ie. V(T,X) = Y > ()T Vo(1,0040,X)"*
nCN* k=0
since (7', X) = T7(1,0) + (0,X) ; hence, near 0,
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Tk+l
10) VT, X)) = Z( ) V,(1, 0040, Xy

nEN* k=0 k + 1

=y — Z T V,(1,0)40, X"~
neN* -1 (k + 1)

= .- Z ( )T" Vo1 (1, 00710, Xy
n>2 k=

and, denoting by (0,dX) the injection E > §X — (0,6X) € Eq,

(1) dxop 'V, Xy =) - Z( )(n—k)T"Vn_l(l,O)"_l(O,X)”_k"l(O,dX)

n>2 =

= Z Z (n ; 1) T V,_1 (1,010, X)"*1(0, dX)

a>2 k=1
=2 X (Z) T Va(1,00710,X)" 40, dX) .
neN* k=1

By (10), one has 07 'V(T,X) = zn>2(87?1V)n(T, X)" near 0, where

(8;1V>H<T1,X1) e (T, Xo)

Z Z( ) ey Tow Va1 (1,010, Xogrny) - (0, Xow)

cES, k=1

and therefore !)

107 " V)a(T1,X1) + -+ (Ty X))

1 1 "\ /n
< Vol 2.2, (k)|To(1)|"'|Ta(k)| Xow+n] - [Xowm)

T oeS, k=1

|V—1| Z Z( >|To(1)|“'|Ta(k)| [ Xot+n] - [Xowl

066 k=0

1
= n|V—1|Z:k1 W Z Towl | Towl 1 Xowrivl -+ 1Xowl

I/\

= E|V (T4 | 4+ 1 Xa )= - (T] + |1 XD s

') Using, in the last equality, the fact that there are k!(n — k)! permutations ¢ € &,
preserving a given subset with £ elements.
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which does yield 7'V € Fo(Ey,F) and |97'V]; < 1|V];.

hence, |(97'V),| < L|V,_1| and anz (871 V)| < i #1|Vn| < 1lVh.

By (11), one has dxd7 'V(T,X) = | — (OxO7 'V (T, XY near O, where
Qx5 V)u(T1. X0 - -+ (T, X,)

1 " /n _
- n! Z Z (k) Ty Toq Va(l, O)k 1(O>Xo'(/<+1)) <0, Xom)(0,dX) ,
T oeS, k=1

and therefore

[(0x07 ' V)u(T1,X1) -+ (T, Xo)|

1 e
< |Val— > (k>|Ta(1)|“‘|Ta(k)| (Xowinl - [ Xow)

T ocS, k=1

1 " /n
< |Val— >, (k)|Ta(1)|“‘|Ta(k)| (Xowi| - [Xowm)

oCS, k=0
= |Vn| (|T1| + |X1|) S (|Tn| + |Xn|),

hence, [(Ox07 ' V)al < |Val and 37, [(Ox07 Vil < X en [Val = Vls,
which does yield 0x07'V € Fo(E(, L(E,F)) and |0xd7'V]; < |V];.

APPENDIX B
PRrROOF OF PROPOSITION 2.4

Let W(Z) = 3 o« WoZ" and gw) = > . gaw" be the Taylor
expansions of W and g at 0. Since go W(Z) = 3 .\« 9. W(Z)" near O,
the Taylor expansion »  \. g.,W" of g. at O must be given by g.,W"(Z) =
gn W(Z)", 1e.

(12) Ga(W1, ..., W)Z) = guo(Wi(D), ..., Wa(D)) .

There remains to show that (12) defines a map g., € L (fo(El,F 1), Fo(Er, F 2))
for all » € N* and that the power series > .\ g..W" converges (what follows
1s essentially Proposition 1.11 page 42 of [13] and should be classical).
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Clearly, g., is n-linear and symmetric. To see that it sends Fo(FE, F1)" into
Fo(Ey, F3), we inject into (12) the Taylor expansion W;(Z) = ZEGN* Wie Zv
of W; at 0 for 1 <j < n: denoting by ZkEN* Gun(Wi, ..., W,y Z* the Taylor
expansion of g.,(Wy,...,W,), we get

GenWiye ooy Wk Z8 = D gy (Wie, 25, Wi, Z25)

feN*n
|€]=k

and therefore

g*n(Wl, ceey Wn)k (Zl, il e ,Zk)

1
=4 Z Z Gn (WieZoqy -+ Zowp)s s Wit otemtutty -+ Zow)) »

aeG, LEN™"
|£|=k

hence

|g*n(W1, e ,Wn)/( (Zl, ‘e ,Zk)l

1
< E Z Z |gn||W1,£1|”‘|Wn,Zn

T 0CE; feN™
|£]=+

=lgal D IWigl[Wag,

EGN*H
|6/=+

Zowy| | Zow]

le"'|Zk|

and finally

|g*n(W17"'7Wn)k| S |gn| Z |W1a€1|‘.‘|Wn9£n

EEN*n
2=+

From this, we deduce the inequality

Zlg*n(wla‘“aWn)H = |gn| Z |W17€1|.'.|Wn7£n

kEN LEN*N

= | gl |W1|1"'|Wn|1>

which does prove that g,, € L?(fo(El,Fl),fo(El,Fz)) and |g..| < |gal-
Thus, the strict convergence radius of the power series >, _\. g:.W" is
at least equal to that of )  _\.g,w" and therefore positive, proving our

result.
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NotrEs?).  Unfortunately, this part of the proof requires some modest
calculations with power series?) since we have been unable to stick (as in the
case of differential equations) to Cauchy’s viewpoint on holomorphic maps
and Hadamard’s strong maxim: “The shortest way between two truths in the
real domain passes through the complex domain.”

Cartan’s version of differential calculus a la Fréchet first appeared in
Dieudonné’s famous book [3], whose exposition of analytic functions of several
variables, followed in 1971 by a proof of the Cauchy-Kowalevski theorem [4],
did not venture into infinite dimensions.

Robbin’s celebrated proof [14] of Cauchy’s theorem on ordinary differential
equations (in the usual differentiable setting) is a wonderful application of
infinite-dimensional differential calculus, slightly distorted by lLang in an
otherwise very good book [11] — and by the author in [2].

Before Douady’s thesis [6], the theory of analytic functions between Banach
spaces had been developed by Max Zorn in the mid-forties (see the last chapter
of [7], which provides many references).

Hans Lewy [12, 4] showed that the existence part of the Cauchy-Kowalevski
theorem 1s false in the smooth category without further hyperbolicity hypo-
theses. The uniqueness part is much strengthened by Holmgren’s theorem
[8, 10, 9, 5], of which no infinite-dimensional version seems to be known.
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