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ON THE QUANTIZATION OF CONJUGACY CLASSES

by Eckhard MEINRENKEN

ABSTRACT. Let G be a compact, simple, simply connected Lie group. A theorem
of Freed-Hopkins-Teleman identifies the level k£ > O fusion ring Ri(G) of G with
the twisted equivariant K -homology at level k + h", where hY is the dual Coxeter
number of G. In this paper, we will review this result using the language of Dixmier-
Douady bundles. We show that the additive generators of the group Ri(G) are obtained
as K-homology push-forwards of the fundamental classes of pre-quantized conjugacy
classes in G.

1. INTRODUCTION

A classical result of Dixmier-Douady [10] states that the integral degree
three cohomology group H>(X) of a space X classifies bundles of C* -algebras
A — X, with typical fiber the compact operators on a Hilbert space. For any
such Dixmier-Douady bundle A — X, one defines the twisted K-homology
and K -cohomology groups of X as the K -groups of the C™ -algebra of sections
of A, vanishing at mfinity:

KQ(X: A) = Kq(FO(X7 A)) 3 Kq(Xr A) = Kq(]-—‘O(Xv A)) :

If a group G acts by automorphisms of A, one has definitions of G -equivariant
K -groups.

The twisted K -groups have attracted a lot of interest in recent years, mainly
due to their applications in string theory. For the case of torsion twistings,
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they were pironeered by Donovan-Karoubi [11] in 1963, while the general case
was developed by Rosenberg [36] in 1989. Rosenberg also gave an alternative
characterization of K°(X,.A) as homotopy classes of sections of a bundle of
Fredholm operators; this viewpoint was further explored by Atiyah-Segal [4]
(see [6, 43] for alternative approaches).

One of the most natural examples of an integral degree three cohomology
class comes from Lie theory. Let G be a compact, simple, simply connected
Lie group, acting on itself by conjugation. The generator of HA(G) = Z is
realized by a G-Dixmier-Douady bundle A — G. Let hY be the dual Coxeter
number of G, and k > 0 a non-negative integer (the level). A beautiful result of
Freed-Hopkins-Teleman [13, 14, 15, 16, 17] asserts that the twisted equivariant
K -homology at the shifted level k+h" coincides with the level k fusion ring
(Verlinde algebra) of G :

(1) K$(G, Ay = RU(G).

Here Ri(G) may be defined as the ring of positive energy level k representa-
tions of the loop group LG, or equivalently as the quotient Ri(G) = R(G)/I(G)
of the usual representation ring by the level & fusion ideal. The quotient map
R(G) — Ri(G) 1s realized on the K-homology side as push-forward under
inclusion {¢} — G, while the product on Ri(G) is given by push-forward
under group multplication.

As a Z-module, the fusion ring Ri(G) 1s freely generated by the set A
of level k weights of G. In this paper the isomorphism Ri(G) = Z[A] 1s
realized as follows. Given g € Af C t*, (where t is the Lie algebra of a
maximal torus), let C be the conjugacy class of the element exp(u/k) € G,
where the basic mner product is used to identify ¢ = . We will show
that there is a canonical stable isomorphism between the restriction A lc
and the Clifford algebra bundle CI(7C). This then defines a push-forward
map in twisted K-homology, and the image of the K-homology fundamental
class [C] € Kg (C,CI(TC)) under the push-forward is exactly the generator
of Ri(G) labeled by . This i1s parallel to the fact that the generators of
R(G) = Z|A] are obtained by geometric quantization of the coadjoint orbits
through dominant weights. In fact, as shown in [15] the generators of Ri(G)
can also be obtained by geomeltric quantization of coadjoint orbits of the loop
group of G. Hence, our modest observation 1s that this can also be carried
out in finite-dimensional terms. In a forthcoming paper with A. Alekseev, we
will discuss more generally the quantization of group-valued moment maps
[1] along similar lines.
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A second theme in this paper 1s the construction of a canonical resolution
of Ry(G) in the category of R(G)-modules,

) 0G50, % %0, S RG) — 0,

where [ = rank(G). In more detail, let {0,...,/} label the vertices of the
extended Dynkin diagram of G. For each non-empty subset 7 C {0,... [},
let G; C G be the maximal rank subgroup whose Dynkin diagram 1s obtained
by deleting the vertices labeled by 7. These groups have canonical central
extensions 1 — U(1) — (A}] — G; — 1 (described below). Let R(@I)k denote
the Grothendieck group of all G -representations for which the central circle
acts with weight k. Define

3 G = @ RGr.
|=p+1

The differentials @ in (2) are given by holomorphic induction maps relative
to the inclusions G; < Gy for J C 1. As we will explain, the chain complex
(C.,0) arises as the E'-term of a spectral sequence computing K&(G, A"+hv),
and the exactness of (2) implies that the spectral sequence collapses at the
E?-term. Since Ri(G) is free Abelian, there are no extension problems, and
one recovers the equality Kg (G, Ak“‘v) = Ri(G) as R(G)-modules, and hence
also as rings.

This article does not make great claims of originality. In particular,
I learned that a very similar computation of the twisted equivariant K -groups
of a Lie group had appeared in the article Thom prospectra for loopgroup
representations by Kitchloo-Morava [25]. The argument itself may be viewed
as a natural generalization of the Mayer-Vietoris calculation for G = SU(2),
as explained by Dan Freed in [13]. Independently, the chain complex had
been obtained by Christopher Douglas (unpublished), who used it to obtain
information about the algebraic structure of the fusion ring Rp(G).

ACKNOWLEDGEMENTS. [ would like to thank Nigel Higson, John Roe and
Jonathan Rosenberg for help with some aspects of analytic K -homology, and
Nitu Kitchloo for his patient explanations of [25]. I also thank Christopher
Douglas, Dan Freed and Reyer Sjamaar for very helpful discussions.
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2. REVIEW OF TWISTED EQUIVARIANT K-HOMOLOGY

Throughout this paper, all Hilbert spaces H will be taken to be separable,

but not necessarily infinite-dimensional. All (topological) spaces X will be

assumed to allow the structure of a countable CW-complex (respectively
G-CW-complex, in the equivariant case).

2.1

DIXMIER-DOUADY BUNDLES
[10, 35, 36] For any Hilbert space H, we denote by U(H) the unitary

group, with the strong operator topology. Let K(#H) be the C*-algebra of
compact operators, that is, the norm closure of the finite rank operators. The
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conjugation action of the umitary group on K(#) descends to the projective
unitary group, and provides an isomorphism, Aut(K(H)) = PU(H). A Dixmier-
Douady bundle A — X 1s a locally trivial bundle of C*-algebras, with typical
fiber K(#) and structure group PU(H), for some Hilbert space H. That 1s,

(4) A=7P XPU(H) K(H)

for a principal PU(H)-bundle P — X. Dixmier-Douady bundles of finite
rank are also known as Azumava bundles [26, 27]. A gauge transformation
of A is a bundle automorphism inducing the identity on X, and whose
restriction to the fibers are C* -algebra automorphisms. Equivalently, the group
of gauge transformations consists of sections of the associated group bundle,
Aut(A) = P xpyueny Aut(K(#)). This group bundle has a central extension

(5) 1 = X x U(1) = Aut(A) — Aut(A) — 1,

where Tllt(.A) =P XPU(H) U(H).

If A, Ay are Dixmier-Douady bundles modeled on K(%;), K(#>), then
their (fiberwise) C*-tensor product A; & A, is a Dixmier-Douady bundle
modeled on K(H; @ Hy). Also, the (fiberwise) opposite AP of a Dixmier-
Douady bundle modeled on K(H) is a Dixmier-Douady bundle modeled on
K(H°PP). Here the Hilbert space HP is equal to H as an additive group,
but with the new scalar multiplication by z € C equal to the old scalar
multiplication by Z.

A Morita isomorphism between two Dixmier-Douady bundles A;, A, — X
is a lift of the structure group PU(H,) x PUH™) of A, @ AT" to
the group P(U(Hz) x U(H,™)). It is thus given by a bundle & — X of
Ay — Aj -bimodules, modeled on the K(#H,) — K(#H,)-bimodule K(H;,H,).
We will write A, ~g A, if £ defines such a Morita isomorphism, and
Ay~ Ay if Ay, Ay are Morita isomorphic for some £. Morita isomorphism
is an equivalence relation: In particular, if A; ~¢ A, and A; ~r A3z, then
the bundle F & 4, £ (a completion of the algebraic tensor product over A, )
defines a Morita isomorphism between A;, As. The set of Morita isomorphism
classes of Dixmier-Douady bundles over X is an Abelian group, with sum
[Ai]+[Az2] = [A1®2.A,], neutral element 0 = [C], and inverse —[A] = [.A°PP].

In particular, a Morita trivialization C ~¢ A is a Hilbert space bundle £
together with an isomorphism A = K(£). The obstruction to the existence
of a Morita trivialization is given by the Dixmier-Douady class!) [10, 35]

DD(A) € H3(X).

1) We take all cohomology groups with integer coefficients, unless indicated otherwise.
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The Dixmier-Douady class descends to a group isomorphism between Morita
isomorphism classes of Dixmier-Douady bundles A — X and H3(X).

EXAMPLE 2.1. Let V — X be an oriented Euclidean vector bundle of
rank &, and let CI(V) — X be the complex Clifford algebra bundle. If £
1s even, the bundle CI(V) 1s a bundle of matrix algebras, and hence 1s a
Dixmier-Douady bundle. A Morita trivialization

C ~¢ Cl(V)

is equivalent to the choice of a spinor module S — X, which in turn
1s equivalent to the choice of a Spm, structure on V. For details, see
Plymen [34]. The canonical anti-involution of CI(V) defines an isomorphism
CI(V) = CI(V)°PP | thus

DD(CI(V)) = DD(CI(V)°?") = — DD(CL(V)),

showing that DD(CI(V)) 1s 2-torsion. The Dixmier-Douady class DD(CI(V))
is the third integral Stiefel-Whitney class W3(V) € H3(X) of the bundle, i.e.
the image of w,(V) € H*(X,Z,) under the Bockstein homomorphism. In the
case of k£ odd, the even part Cl"'(V) 1s a Dixmier-Douady bundle, and a
similar discussion applies.

If both £, — X define Morita isomorphisms 4; ~ A4,, then the bundle
of bi-module homomorphisms 7. = Hom 4, 4,(£,£’) is a Hermitian line
bundle. We will call £,&" equivalent if this line bundle is isomorphic to
the trivial line bundle. Conversely, if £ 1s a Morita isomorphism then so is
& =E@L, for any line bundle L. Thus, if A;, A, have the same Dixmier-
Douady class, then the equivalence classes of Morita isomorphisms A; ~¢ A,
are a principal homogeneous space (torsor) over H*(X,Z). (In the example
A = CI(V), this is the usual twist of Spin,-structures by line bundles.)

Given a compact Lie group G acting on X, one may similarly define
G-equivariant Dixmier-Douady bundles. All of the above extends to this
equivariant setting: In particular, there is a G-equivariant Dixmier-Douady
class DDg(A) € H3.(X), which classifies G-Dixmier-Douady bundles up to
G-equivariant Morita isomorphisms. The extension of the Dixmier-Douady
theorem to the G-equivariant case was proved by Atiyah-Segal [4].

Stull more generally, one can also consider Z,-graded G-Dixmier-Douady
bundles A — X. Here, isomorphisms and tensor products are understood in the
7, -graded sense, and the bimodules in the definition of Morita isomorphism
are Z,-graded. We continue to denote by DDg(A) the Dixmier-Douady class
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of A as an ungraded bundle. If DDg(A) = 0, so that C ~¢ A, there is an
obstruction in H'(X,Z,) for the existence of a compatible Z,-grading on &.
Hence, the map from Morita isomorphism classes of Z,-graded (-Dixmier-

Douady bundles to those of ungraded G-Dixmier-Douady bundles is onto,
with kernel H'(X,Z,). See Parker [32] and Atiyah-Segal [4] for details.

2.2 DIXMIER-DOUADY BUNDLES RELATED TO CENTRAI EXTENSIONS

We assume that G is compact and connected. Then Hi(pt) = 0, while
HZ(pv) is the group of G-equivariant line bundles over a point, or equivalently
HZ(pt) = Hom(G,U(1)). The group Hx(pt) is realized as the isomorphism
classes of central extensions of G by U(1),

(6) 15U1) —»G—G—1.

For any such extension there is an associated (-equivariant line bundle
L=G xvuay € =+ G from which G is recovered as the unit circle bundle.
The group structure is encoded in an isomorphism

Mult* L 2 pri L ® pr; L,

where Mult: G x G — G 1s group multiplication, and pr; are the two projec-

tions. For any [ € Z, the ™ power (A}(l) of the extension is defined in terms
of the /™ power of the corresponding line bundle. More generally one defines
products of central extensions of G by U(1) in terms of the tensor products
of the corresponding line bundles. The group of gauge transformations of a
given central extension B (i.e. group automorphisms covering the identity
on G) is Hi(pt) = Hom(G, U(1)).

From the interpretation via Dixmier-Douady bundles, the identification
of HZ(pt) with isomorphism classes of central extensions may be seen as
follows : Given a (G -equivariant Dixmier-Douady bundle A — pt, the action
of G defines a group homomorphism G — Aut(A), and hence a central
extension of G by pull-back of (5) (in the case X = pt). Conversely, given
a central extension G, choose a unitary representation G — U(E) where
the central circle U(l) acts by scalar multiplication. Then K(£) — pt 1s a
G -Dixmier-Douady bundle with the prescribed class in H.(pt). Note that we
may take € to be of finite rank, reflecting that H(pt) is torsion. (Recall that
HZ(pt,R) = H?(BG,R) = 0 for p odd.)
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Suppose X is a connected space, with H'(X) torsion-free, and with the
trivial action of G. The Kinneth theorem [38, Chapter 5.5] for H,(X) =
H'(X x BG) gives a direct sum decomposition,

Hy(X) = H(X) @ (H'(X) ® Hi(pv) © Hipl).

For any G-Dixmier-Douady bundle A — X, we obtain a corresponding
decomposition of DDg(A). The first component is the non-equivariant class
DD(A). The last summand is the class of the central extension of G, defined
by the homomorphism G — Aut(A,,) at any given base point X, € X. To
describe the middle summand, note that the family of actions G — Aut(A,)
defines a family of central extensions, by pull-back of (5),

12U = Gey — G — 1.

For any x' € X, there exists an isomorphism é(x) —% (A}(x:) of central
extensions, unique up to Hom(G, U(l)) >~ HZ(py). Since the latter group
1s discrete, it follows that the family G(x) carries a flat connection: Any
path from a base point x, to x defines an isomorphism G :— G(xo) — G(x),
depending only on the homotopy class of the path. We therefore obtain
a holonomy homomorphism 7: m(X;x0) — Hz(pt), hence an element of
H'(X) ® H(pt) C Hy(X). This element is identified with the corresponding
component of DDg(A).

REMARK 2.2. Any element of H'(X) @ HA(pt) is realized in this way.
Indeed, let H = L*G) with the left-regular representation of G. The
homomorphism 7: 71(X) — HZi(pt) = Hom(G, U(1)) defines a unitary action
of m(X) on H, where A € m(X) acts as pointwise multiplication by the
function T()\) The actions of G and m(X) commute up to a scalar. The
bundle A = X x =) K(H) associated to the universal covering X = X is
a G-equivariant Dixmier-Douady bundle, with DDg(A) the prescribed class
in HY(X) @ H%(pt). Note that the component in H*(X) is zero, since non-
equivariantly A = K(€) for £ =X X, H.

23 TWwISTED K-HOMOLOGY

The input for the twisted equivariant K-homology of a G-space X is a
7 -graded G-Dixmier-Douady bundle A — X. From now on, we will usually
omit explicit mention of the Z,-grading (which may be trivial), with the
understanding that all tensor products are in the Z, -graded sense, isomorphisms
should preserve the Z,-grading, and so on.
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Given A — X, the space A = T¢(X, A) of continuous sections of
A vanishing at mfimty 1s a (Zp-graded) G — C*-algebra, with norm
||s|]] = supyex ||5x||.a, . Following J. Rosenberg [36], we define the twisted
equivariant K-homology and K-cohomology groups as the equivariant
(" -algebra K-homology and K -cohomology groups of A:

KJ(X, A) = KEToX, A), KX, A) = KJ(To(X, A)).

In this paper, we will mostly work with the K-homology groups. See
Appendix B for a quick review of the K-homology of C™-algebras, and
some examples. We list some basic properties of the K-homology groups.

(1) Morita isomorphisms. Any Morita isomorphism A; ~¢ A, of
G-Dixmier-Douady bundles over X induces an 1somorphism in K -homology,

KJ(X, A1) = KX, Ay

(i1) Push-forwards. The morphisms in the category of G-Dixmier-Douady
bundles (X,.A) are the equivariant C*-algebra bundle maps A; — A, for
which the induced map on the base f: X; — X, is proper. Any such morphism
induces a morphism of G-C*-algebras f*: I'o(Xa,.A2) — To(X1,.41), hence
a push-forward in K -homology

KJ(f): KJ(X1, Ay — KJ (X2, Ay) .

In this way KC becomes a covariant functor, invariant under proper
G-homotopies.

(ii1) Excision. For any closed, invariant subset ¥ C X, with complement
U= X\Y, there is a long exact sequence?)

s S KJ(Y, Al = KX, A) = KS(U, Alp) = K3 (Y, Aly) = -+

Here the restriction map KS(X, A — Kg(U,A]U) is induced by the
C* -algebra morphism To(U, A|ly) — To(X,.A), given as extension by 0.
More generally, one obtains a spectral sequence for any filtration of X by
closed, invariant subspaces.

(iv) Products. Suppose A — X and B — Y are two G-Dixmier-
Douady bundles. Then the exterior tensor product AKX B — X x ¥V is
again a G-Dixmier-Douady bundle. Its space of sections is the C*-tensor
product of the spaces of sections of A,55. As a special case of the
Kasparov product in K -homology, one has a natural associative cross product,

KX, )@ KS(Y,B) > KX x Y, AXB).

2y Note that K-homology is analogous to Borel-Moore homology (homology with non-
compact supports), rather than ordinary homology.
P pp ry gy
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(v) Module structure. The group KS(pt) is canonically identified with the
representation ring R(G). The ring structure on K¢S (pt) is defined by the cross
product for CXIC — pt x pt. Similarly, if A — X is a G-Dixmier-Douady
bundle, the cross product for CX|.4A — pt xX makes KC(X, A) into a module
over R((). The maps Kg( f) are R(G)-module homomorphisms.

If M is a manifold, one has the Poincaré duality isomorphism relating
twisted K-homology and K -cohomology,

(7) KJ(M, Ay = KLM, AP © CI(TM)) .

Here CI(TM) 1s the Clifford algebra bundle for some choice of invariant metric.
For A = C the Poincaré duality was proved by Kasparov in [21, Section 8];
the result in the twisted case was obtained by J.-L.. Tu [41, Theorem 3.1].
(See also [9, Section 2].) The image of 1 € KX(M) under this isomorphism
is Kasparov’s K-homology fundamental class [24],

[M] € K§(M, CI(TM)) .

REMARK 2.3. Note that CI(TM) i1s a Dixmier-Douady bundle only if
dimM 1s even. However, the definition of the twisted K-groups works for
arbitrary bundles of C*-algebras, and the 1somorphism (7) holds in this sense
(but with A a Dixmier-Douady bundle). Alternatively, one may state the result
in terms of Dixmier-Douady bundles, using Cl(TM) = C1T(TM) @ CI(R) and
the isomorphism Kg_H(M, b)) = Kg(M, B & CI(R)).

The following basic computations in twisted equivariant K -homology may
be deduced from their K -theory counterparts, using Poincaré duality.

(a) It M = pt, the twisted K-homology is
K§ (ot A) = R(G)-1

while K%pt, A) = 0. Here G is the central extension deﬁned by the action
G — Aut(A), and R(G) 1 1s the Grothendieck group of B -representations
where the central U(1) acts with weight —1.

(b) Suppose H is a closed subgroup of G. For any H -Dixmier-Douady
bundle B — Y, there 1s a natural isomorphism

I K}/ (v.B® Cla/0) — KJ(G xu ¥, G < B),

which is Poincaré dual to the isomorphism Ki(G xpy ¥, G xy BPP) =
Ki(Y,B%). If ¥ = pt, the left hand side may be evaluated as in (a).
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If HC H' C G are closed subgroups, we have
=15 ol .

Here we are identifying Cl(g/h) = Cl(g/h") ® Cl(h'/h), and we are using the
canonical isomorphism H’ <z Cl(g/h") = H'/H x Cl(g/h’).

(c) Let A — pt be a G-Dixmier-Douady algebra as in (a), and let H
be a closed subgroup of G. Then G xpy A is canonically isomorphic to
7" A, the pull-back under the map =: G/H — pt. By composing the map
I with the push-forward Kg(ﬂ'), we obtain an induction homomorphism,

indf: KZ(pt, A @ Cl(g/b)) — KZ(pt, A).

An H-mvariant complex structure on g/h defines a spinor module S, hence a
Morita trivialization C ~g Cl(g/h). In this case the induction map simplifies
to a map

ind%: K2 pt, Ay = R(H)_; — KS(pt, A) = R(G)_;

known as holomorphic induction.

For other examples of calculations of twisted K-groups, see [6, Section 8].

3. THE DIXMIER-DOUADY BUNDLE OVER G

For the rest of this paper, G will denote a compact, simple, simply con-
nected Lie group, acting on itself by conjugation. Then Hy(G) is canonically
isomorphic to Z. Hence there exists a G-Dixmier-Douvady bundle A — G,
unique up to Morita isomorphism, such that DDg(G, A) corresponds to the
generator 1 € Z. Any two bundles A4, A" — G representing the generator
are related by a G-equivariant Morita isomorphism, unique up to equivalence
(since H%(G) = 0). The quickest construction of A is as an associated bundle

./4 :PeG XL.G K(H),

where P,G is the space of based paths in G, L.G = LGN P,G the based loop
group, and H a representation of the standard central extension LG of LG
where the central circle acts with weight —1. The construction given in this
section 1s essentially just a slow-paced version of this model for A, avoiding
some infinite-dimensional technicalities. Our strategy is to give first a direct
construction of the family of central extensions of the centralizers G, C G,
corresponding to their action on A.
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3.1 PULL-BACK TO THE MAXIMAL TORUS

Let T C G be a maximal torus of G, with Lie algebra t. Consider the
map

(8) HNG) — HNT)

obtained by first restricting the action to T and then pulling back to 7. We will
compute the image of the generator of I2(G) under this map. Denote by A C t
the integral laitice (i.e. the kernel of exp: t — T). Recall that the basic inner
product B on the Lie algebra g 1s the unique invariant inner product, with
the property that the smallest length of a non-zero element A € A equals /2.
One of the key properties of B 1s that it restricts to an integer-valued bilinear
form on A. That is, B|; € A* ® A* where A* = Hom(A,Z) C t* is the (real)
weight lattice.

PROPOSITION 3.1. The map (8) is injective, and takes the generator of
HX(G) to the element

©) —Bli € A" ® A" = Hi(pt) @ H'(T) C H)(T)
given by minus the basic inner product.

Proof.  Since Hg(G) and Hp(T) have no torsion in degree < 3, we may
pass to real coefficients, and hence work with Cartan’s equivariant de Rham
model QL(M) = ®2i+j:p(5ig* & QIMNY for the equivariant cohomology
Hg(M,R) of a G-manifold, with differential (dga)(€) = da(€) — w(E)a(€),
where &, is the vector field defined by £ € g. Note that H}(T,R) =
t* Q HYT)@ H3(T, R) since the T-action on T is trivial. Let 6%, 0F € QYG, g)
be the left-, right-invariant Maurer-Cartan forms. The generator of Hz(G) is
represented by an equivariant de Rham form,

(10) 16(€) = 5BO", 10,0") — BO" +0°,€).

Its pull-back to T is tinc(&) = —B(0r, &), where fy € QYT,t) the Maurer-
Cartan form for T. Thus

vilne] = (B (0r)] € © @ HY(T,R) C HXT,R).

The identification H'(T, R) = t* takes [B’(fr)] to Blietrot. O
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3.2 THE FAMILY OF CENTRAL EXTENSIONS Ty

As discussed in Section 2.2, any element of HZ(pt) ® HY(T) is realized
as the holonomy of a family of central extensions. For any p € A* let
T — U(l), t — t* be the corresponding homomorphism. Let the lattice A
acton T =T x U(l) as

AxTST, A= 0nFVy.
Then the holonomy of the family
(11) txaT 5 /A=T

is the element B|;. The action of the Weyl group W = N(T)/T on T lifts to
an action on this family, by

(12) w . [(§:h,2)] = [(w: wh, 2)].

Let T([) be the fiber of (11) over ¢ € T. The choice of ¢ with expf = ¢
defines a trivialization

(13) T Ty, ho[EnD]etxaT.

Shifting & by A € A changes the trivialization by the homomorphism
T = U, h— i~ B0,

3.3 SIMPLICIAL DESCRIPTION

It will be useful to have the following equivalent description of the bundle
(11). Let t4 C t be the choice of a closed Weyl chamber, and let A C t; be the
corresponding closed Weyl alcove. Recall that A labels the W-orbits in 7', in
the sense that every orbit contains a unique point in exp(A). Label the vertices
of A by 0O,...,]=rank(G), in such a way that the label O corresponds to the
origin. For every non-empty subset I C {0,...,1} let A; denote the closed
simplex spanned by the vertices in I, and let W; C W denote the subgroup
fixing exp(A;) C T. Then the maps W/W; x Ay — T, (wWr, &) — wexpé
define an isomorphism

(14) T%HW/WI X Apf~
1

using the identifications

(15) o, 5©) ~ (9] (0,8,  JcI.

Here L§: Ay = Ay is the natural inclusion, giving rise to an inclusion W; — W;
of Lie groups and hence to the projection ¢f: W/W; — W/Wj.
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Let A;: W; — A be defined by wA; = Ay — A(w). It 18 a group cocycle,
Ar(uv) = Af(w)+u-\(v), and As|w, = A; for J C I. We thus obtain compatible
actions of wy on T =T x U(1):

(16) w.(h,2) = (wh, k=8 ® @™y

LEMMA 3.2. The isomorphism (14) extends to an isomorphism of the
Jamily (11) of central extensions,

(17) UTi=txa T2 [JW xw, T) x A/~
teT I

Proof. The maps TxAr — tfo, (h,z;€) — [(&, h, )] are Wr-equivariant,
by the calculation (for £ € A;, w € W)

w. 16,291 = (w8 wh, ] = [€ = M(w); wh, 2)]
= [€wh, (wh)” M0V] = [(€wh, A5 M),

They hence extend to W-equivariant maps (W x, f) x Aj — t xo T, which
glue to the desired isomorphism. [

3.4 THE CENTRALIZERS (; AND THEIR CENTRAL EXTENSIONS

For any g € G, we denote by G, its centralizer. For any given I, the
centralizer Gegpe for £ in the interior of A; is independent of the choice
of £, and will be denoted by G;. Equivalently, G; is the closed subgroup
of G fixing expA;. Each G; 1s a connected subgroup containing 7', and we
have W; = Ng,(T)/T. For J C 1 we have G; C G;. The description (14) of
the maximal torus extends to the group G :

(18) G=][6G/Gix A/~
i

using the equivalence relations (15) for the natural maps ¢]: G/G; — G/G;
for / C I. In this section, we generalize (17) to define a G-equivariant
collection of central extensions,

| Go 2 TI(G %6, Gy x A/~
geG 1

(Of course, this is no longer a fiber bundle.) Our construction of A — G will
realize G, as the opposite of the central extension, defined by action of G,
on the fiber A,.
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LEMMA 33. There are distinguished central extensions
15U =G — G =1,

together with lifts TIJ @1 — @J of the inclusions ij : Gy — Gy for J C I,

such that

@ Gy =T,

(b) the lifted inclusions satisfy the coherence condition T8 =7X of} for
KcJicl,

(c) the Wr-action on TC @1 (c¢f. (16)) is induced by the conjugation action
of Ng,(T).

Proof. Recall that 71(Gy) = A/A;, where A; is the co-root lattice of G
[8, Theorem (7.1)]. But

A E A, [ € exp(Ar) = FO

(see [28, Proposition 5.4]). Hence, for any given f € exp(A;), there 1s a
homomorphism

o TG = A/A; = U(1), A Ay 8O

We therefore obtain a family of central extensions é[y(;) = 6} X Gp U()
parametrized by the points of exp(A;). Since exp(A;) = A; i1s contractible,
we may use the flat comnection on the family of central extensions (cf.
Section 2.2) to identify all @1,@. The resulting G; has the desired properties.
In particular, if J C I and ¢ € exp(Ay) C exp(4;), the homomorphism g, ;
is given by the inclusion 7(G;) — 7(Gy) followed by p;;. This defines
an inclusion GI,(I) - (A}Jj([), compatible with the flat connection and (hence)
satisfying the coherence condition. Fix £ € A with expy & = . The inclusion
of T =T xU(l) into @1 = @1,([) is explicitly given as

(19) i': (expy C.2) + [(expg, ¢, eV 1BE0)]
for (e, zeU(). If g € Ng,(T) lifts w € Wy, we have
9. [(expg, ¢, eV 1PEO)] = [(expg, (w. Q), e~V =1HEOy)]
= i'(expy(w. (), e 27V THECw Oy
= i'(w. (expr ¢, 2),

proving that i’ is equivariant for the actions of Wy and Ng/(T). [
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REMARKS 3.4. (1) The central extension (A}I admuts a trivialization if and
only if the affine span of B’(A;) C t* contains a point in the weight lattice, A* .
In particular, this is the case whenever 0 € I. If G 1s of type A, or C,, then
all @1 are 1somorphic to trivial extensions.

(1) The choice of any [ exp(A;) gives a trivialization g; =~ g7 = g1 XR,
by the defimtion of G; « as a quotient of GI x U(1).

3.5 CONSTRUCTION OF THE DIXMIER-DOUADY BUNDLE A4 — G

Our construction of the Dixmier-Douady bundle A4 — G involves a suitable
Hilbert space H.

LEMMA 3.5. There exists a Hilbert space H, equipped with unitary
representations of the central extensions Gy such that

(1) the central U(1) acts with weight —1, and
() for J C 1 the action of (A}J restricts to the action of (A};.

One can construct such an H using the theory of affine Lie algebras. Let
L(g) = g* @ Clz,z~"] be the loop algebra associated to g. For all roots « of
G, let e, € g© be the corresponding root vector. Then g¢ is spanned by ¢
together with the root vectors e, such that {a,&) € Z for £ € A;. The map
ji: g% — L) given by (> (® 1 for ( € ¢ and

for («,&) € Z is an injective Lie algebra homomorphjsm (independent of £).
Consider the standard central extension E(g) L(g) & Cc¢, with bracket

[C1 @f1+ 516, G R fr + $2¢]l = ([Gr, R ® /1 2) + B(Cr, ) Res(fidfa) e

Its restriction to constant loops is canonically trivial, thus t 1 is embedded
1n L’(gc) by the map ((,s) — ¢ + sc. The 1nclus10ns Jjr lift to inclusions
]1 gr — E(g) extending the g1ven inclusion of t€. To see this, take £ €A
(defining a trivialization g; = g7 expsy — @7 X R). Then the desired lift reads

Je Blepe = L@, 71.6¢,9) =ji(Q) + (s + BE, O

By the theory of affine Lie algebras [20], there exists a unitarizable Zﬁ -module
where the central element ¢ acts as —1. Unitarizibility means in particular
that the t-action exponentiates to a unitary T -action, and hence all gr -actions
exponentiate to unitary G -actions.
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With H as m the lemma, put A; = G xg K(H). For J C I, the
map ¢!: G/G; — G/Gj is covered by a homomorphism of Dixmier-Douady
bundles, A; — Ay. Hence we may define a G-Dixmier-Douady bundle,

(20) A=A < Ap/~
l

with identifications similar to those in (18). By construction, the central
extension of G; defined by the restriction A|expa,) coincides with the opposite
of G;. Hence, the famuly of central extensions defined by the action of
T on Alr is the opposite of the family 7. We saw that the class in
Hi(pt) @ HY(T) € H}(T) is the class defined by —By, and hence coincides
with the image of the generator of H:(G) = Z. It follows that DDg(A) is a
generator of H2(G).

4. CONJUGACY CLASSES

As 1s well known, coadjoint orbits OO C g* carry a distinguished invariant
complex structure, hence a Spin, -structure. If O admits a pre-quantum line
bundle L — O (1.e. a line bundle with curvature equal to the symplectic form),
one may twist the original Spin,-structure by this line bundle. The resulting
equivariant index is the irreducible representation parametrized by O. In this
section, we will describe a similar picture for conjugacy classes C C G.

4.1 PULL-BACK TO CONJUGACY CLASSES

Given £ € A, define a G-equivariant map
¥Y:G/T— G, gT — Ady(exp¢).

The pull-back W* A admits a canonical Morita trivialization, defined by the
Hilbert space bundle & x7H. More generally, for any / € Z and any weight
@ € A" there 1s a Morita trivialization,

(21) Cr~ewr A E=Gxr(H ®C),

where C,, is the 1-dimensional 7 -representation of weight ;. Equivariant
Dixmier-Douady bundles over G, together with Morita trivializations of their
pull-backs by W, are classified by the relative cohomology group H(W).
(See Appendix A.) The map W =: W, is equivarianly homotopic to the
constant map Wo: g7 — ¢, by the homotopy W:(¢97T) = exp(f Ad,(£)). Hence
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H(W) = HY(Wo) = H5(G/T) & HY(G). 1dentifying HA(G/T) = Hi(p) = A"
and H3.(G) = Z, we obtain an isomorphism

HW) =A*DZ.

The element (u,[) € HA(W) is realized by the Morita trivialization (21).

Now let C be the conjugacy class of exp(£), and ®: C — G the inclusion.
Let 7: G/T — C be the G-invariant projection such that W = ® o 7. We
obtain a map of long exact sequences in relative cohomology,

— 0 — HAC) — HAD) — HHG) — HC) — -

L l -

- — 0 — HiG/T) — H)(W) — HYG) — 0 — -

From the identifications
HE(C) = Hom(Gexpe, U(1))  and  HE(G/T) = Hom(T, U(1)),

it 1s evident that the second vertical map is injective. Hence the 5-L.emma
implies that the map Hi(®) — HA(W) is injective. Hence we obtain an
injective map,

HL(®P) = H.(W¥) =A@ Z.

By a parallel discussion with real coefficients, there is an injective map
HM D, R) — HL(W,R) = t* & R.

4.2 PRE-QUANTIZATION OF CONJUGACY CLASSES

We return to Cartan’s de Rham model for Hg(M,R) (cf. the proof of
Proposition 3.1) with ng € Q%L(G) representing the generator of HXA(G).
The conjugacy class C carries a unique invariant 2-form w € Q*(C)¢ C Q4(C)
with the property [1, 18] that

(22) de = (D*T)G .

The triple (C,w,®) is an example of a quasi-Hamiltonian G-space in
the terminology of [1]. Equation (22) together with dgne = 0 say that
(w,nG) € QL(P) is a relative equivariant cocycle. Let [(w,ns)] be its class
in HX(®,R).
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LEMMA 4.1.  The inclusion Hg(®,R) — t* & R takes the class [(w,n6)]
to the element (B*(£),1).

Proof. Let h: Qu(G) — Qi '(G/T) be the homotopy operator defined
by homotopy W,. Thus doh; + h;0d =W, — W, Then

Qe(¥) = Qu(Wo), (o, B) = (& — I(B), B)

18 an isomorphism of chain complexes, inducing the isomorphism H;(W;, R) —
H;(Wo,R). In particular, the isomorphism HX:(¥;,R) — H;(Wo,R) takes
[(w,n6)] to [(w— hine, ne)l.

The family of maps W, is a composition of the map f: G/T — g,
9T +— Ady(§) with the family of maps g — G, ¢ — exp(#(). Let
jri Qu(G) — Q' ~!(g) be the homotopy operator for the second family of
maps. Then /i, = f* o j,. By [28], we have jing = we, where wg € Q4(g)
is of the form wg(()|e = w|e — B(, ). It follows that the image of [(w,ne)]
under the map to t* & R 1is (B"(E), . @O

As a special case of pre-quantization of group-valued moment maps [2],
we define :

DErFINITION 4.2. A level k € Z. pre-quantization of a conjugacy class C
is a lift of the class k[(w,n¢)] € Ha(®,R) to an integral class.

By the long exact sequence in relative cohomology, if C admits a level &
pre-quantization, then the latter is unique (since H%(C) has no torsion).

PROPOSITION 4.3.  The conjugacy class C of the element exp& with £ € A
admits a pre-quantization at level k if and only if (B°(k€),k) € A* x Z.

Proof. According to the lemma, k[(w, ng)] maps to (B'(k€),k) € t* xR.
Since all maps in the commutative diagram

H}{®) —— AN Z
H}®,R) —— "®R

are injective, it follows that k[(w,ns)] 1s integral if and only if
(B (k&) k) e A* xZ. [
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Geometrically, a level k& pre-quantization 1s given by a G-equivariant
Morita trivialization of ®*A*. This can be seen explicitly, as follows.

LEMMA 44. Let £ € Ay, and suppose that B°(k€) € A*. Then the k™
. . . e ~ (k)
power of the central extension of Gy admits a unique trivialization G — G

extending the map

23) T T S Tx Uy, hes (0.

Proof. By Gy-equivariance, a trivialization Gy — @Ek) is uniquely deter-
mined by its restriction to 7. For existence, recall that { = exp£ determines
an identification @1 ~ (A}L(t) = 51 X mGp U(1), using the homomorphism
o1 TG = AJAr = UL, A+ A — =B The powers G\(D are obtained
similarly, using the I™ powers of the homomorphism g, ;. Since B (k&) is a
weight, we have

(o) N+ Ap) = e~ 2mVEIBREN) _

This defines a trivialization,

~(k) ~(k)
G] = GI,(L‘) = G[ X U(l) .

. C e g . . . . = (k) ~k)
By (19), this trivialization intertwines the standard inclusion 7 — G; ~ with
the map

T—TxU) = G xUQ), (1,2~ (h,h=5 &g,
The composition of this map with (23) is i +— (h, 1), as required. L]

Let ®: C — G be the conjugacy class of = exp§, and let I be the
unique index set such that ¢ lies in the relative interior of A;. If C is pre-
quantizable at level &, so that Bl’(kﬁ) c A™, the lemma defines a trivialization
of Gﬁk)‘ Hence, its action on H* descends to an action of Gy, and the Hilbert
bundle £ = G x, H* defines a Morita trivialization of ®*AF.

PROPOSITION 4.5, The relative Dixmier-Douady class DDg(AF, £) € Hé((b)
(cf. Appendix A) is an integral lift of the class k[(w,nc)] € HAG,C,R).

Proof. 'We have to show that the image of DDg(A, £) in H3.(W) = A*&Z
is (B°(k¢), k). But this follows from the discussion in the last section, since
the pull-back of £ under the map w: G/T — C is

T =G xp (H @ Cpoge)). O
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43 THE hY-TH POWER OF THE DIXMIER-DOUADY BUNDLE

For any coadjoint orbit O C g*, the compatible complex structure defines
a G-invariant Spin, -structure, i.e. Morita trivialization of CI(70). We show
that similarly, for all conjugacy classes C C G, there is a distinguished Morita
isomorphism between CI(TC) and .Ahv|c, where hY is the dual Coxeter
number. That 1s, conjugacy classes carry a canonical ‘twisted Spin, -structure’.
There are examples of conjugacy classes that do not admit Spin,-structures,
let alone almost complex structures.

EXAMPLE 4.6. The simplest example of a conjugacy class not admitting an
almost complex structure is the conjugacy class C = Spin(3)/ Spin(4) = §* of
the group Spin(5). (Its image in SO(5) is the conjugacy class of the matrix
with entries (—1,—1,—1,—1,1) down the diagonal.) Similarly, the group
G = Spin(9) has a conjugacy class G/H with H = (SU(2) x Spin(6))/Z, that
does not admit a Spin, -structure. Indeed, if such a Spin_-structure existed it
could be made G-equivariant (since G 1s simply connected), hence it would
give an H-mvariant Spin,-structure on g/h. Since H is semi-simple, this
is equivalent to the condition that the half-sum of positive roots of H is a
weight of H. But by explicit calculation, one checks that this 1s not the case.
I thank Reyer Sjamaar for discussion of these and similar examples.

We will need some further notation. Let &g = {1, ..., )}, | = rank(G),
be a set of simple roots for g, relative to our choice of fundamental Weyl
chamber. We denote by oy = —a,x minus the highest root, and let

6:60U{&0}:{O{07...,a1}.

Thus A C ty is the [-simplex cut out by the inequalities {c;,:) + d;g > 0
for i =0,...,[, and t; is cut out by the inequalities with i > 0. The roots
of G; are those roots o of G for which («,&) € Z for £ € A;, and a set of
simple roots 1s

Sr={eS|idl}.

That 1s, the Dynkin diagram of G; is obtained from the extended Dynkin
diagram of G by removing the vertices labeled by [ € I. Let p be the
half-sum of positive roots of G, let pf = Bl(p) with B! = (B”)~!, and let

hY =1 + <Oémaxapﬂ>

be the dual Coxeter number.
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THEOREM 4.7.  For any conjugacy class ®: C — G, there is a distin-
guished G-equivariant Morita isomorphism CI(TC) =~ o AN

Proof. Let £ € A be the umque point of the alcove corresponding with
exp€ € C, and [ the index set such that & € int(A;). Thus C = G/G; and
CITC) = G %, Cl(g;), where gi- is the orthogonal complement of g; in g.
By construction, A =G X G K(’Hhv). Hence it is our task to construct
a Gr-equivariant Morita isomorphism

Cl(g) ~ KH").

Let GI be the central extension of G; defined by its action on Cl(g; ). It fits
into a pull-back diagram,

GI — Spin, (g )

l |

Gy —— SO(g;).

Equivalently, G\; = G X G U(1) where G; is the universal covering group,
and the homomorphism 7,(G;) — U(1) 1s defined by the commutative diagram

1] —— mG) — G —— G — 1

l ! l

1 —— U(1) — Spin(g}) —— SO@gt) —— 1.

Let A; be the co-root lattice of Gy, so that 7(Gr) = A/A;. By a direct
calculation (cf. Sternberg [40, Section 9.2]), the homomorphism 71(Gy) — U(1)
is

24) (G = AJA; = U(L), A &VHommd) — 4

where p is the half-sum of positive roots of G, and p; 1s the half-sum of
positive roots of Gy, relative to the given system &; of simple roots. Let

1
(25) vi=(p=—pn. vi=Bw).

The element I/}j is contained in the the interior of the face A; (see e.g. [30]).

Hence, the homomorphlsm (24) 1s _]llSt the —h"- th power of the homomorphism
011, I — exp yI in the definition of G1 o = G1 That is, we have identified

~1 (=hY)
G =G
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-~ /\—hv

Recall that G; acts with weight —hY on HY, or equivalently G,

acts with weight 1. Hence, if S; is any spinor module over Cl(g;"), the
Cl(gi) — K(H"")-bimodule

Hom(?-[hv ,S1)

is G;-equivariant, and gives the desired Morita isomorphism Cl(gi-) =~ K(?—[hv).
An explicit spinor module S; for Cl(gi) is constructed as follows. Let
ny C g“ and w4 C g% be the sum of root spaces for positive roots of
G and Gy, respectively. (Here positivity 1s defined by the respective sets
S, S, of simple roots.) Then S = An. is a spinor module for Cl(tl), and
5 = Anz+ is a spinor module for Cl(g; N t1). (Cf. [40, Section 9.2].) We
define

(26) S; = Homeyg,n o8, S). O

The spinor modules S, S’ are T -equivariant, since they are constructed
using 7-invariant complex structures on t, g;Nt" . Hence S; is T-equivariant
as well.

PROPOSITION 4.8. Let C be the conjugacy class of exp&, £ € A. The pull-
back of CI(TC) under the projection map

7: G/T = C, gTw— Ady(exp(§))
admits a canonical G-equivariant Morita trivialization
27 C~n"CITC).

Proof. Let I be the index set such that Gj is the stabilizer of expé.
We have 7*CI(TC) = Cl(z*TC) = G xr Cl(g;). Hence we need a
T -equivariant Morita trivialization of Cl(g; ), and this is provided by S;. [

If the conjugacy class C is pre-quantized at level &, the Morita equivalences
CTC) ~ ®* A" and C =~ &*A*, combine to a Morita isomorphism

(28) CUTC) ~ d* A+

Recall that ¥ = ® o 7: G/T — G. The composition of the Morita isomor-
phisms (27) and CI(TC) ~ ®* A" is the Morita trivializaton C ~ W* A"
defined by the bundle G xp HM . 1t is thus labeled by (0,hY) € A* & Z.
Hence, in the pre-quantized case, the composition of (27) and (28) is the
Morita trivialization of W* A%+h” parametrized by (B’ (k€),k+hY) e A* & Z.
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4.4 FREED-HOPKINS-TELEMAN

The twisted equivariant K -homology group
KE(G, A=)

carries a ring structure, with product given by the cross-product for G x G,
followed by push-forward under group multiplication Mult: G x G — G.
Indeed, since Mult* x = pr} x + prj x for all x € H3(G,Z), there is a Morita
1isomorphism,

pri A & pry AR~ Muler AR

The Morita bimodule is unique up to equivalence since H(G x G) = 0.
It defines a product structure

KEMuly: KE(G, A7) @ KS(G, Ay - KOG, A,
given by the cross product
K8(G, Ay & KS(G, A7) 5 KS(G x G, pr A ol b+

followed by KE(Mult). The product is commutative and associative, again
since the relevant Morita bimodules are unique up to equivalence. (For non-
simply connected groups G, the existence of a ring structure on the twisted
K -homology is a much more subtle matter [42].)

The inclusion ¢: {¢} < G of the group unit induces a ring homomorphism

(29) K8(): R(G) = KS(pt) — KE(G, Ay,

THEOREM 4.9 (Freed-Hopkins-Teleman). For all non-negative integers
k > 0 the ring homomorphism (29) is onto, with kernel the level k fusion
ideal I(G) C R(G). That is, KE(G, A"y = 0, while KS(G, A"y is
canonically isomorphic to the level k fusion ring, Rie(G) = R(G)/I(G).

We will explain a proof of this theorem in Section 5. The ring Ry (G)
may be defined as the ring of level k projective representations of the loop
group LG or, in finite-dimensional terms (cf. [3]):

Let

A = A* N B (kA)

be the set of level k weights. Identify R((G) with the ring of characters of G.
Then R(G) = R(G)/Ii(G), where I(G) is the vanishing ideal of the set of
elements {t, € T, v & A;}, where

Ba= exp(Bﬁ(ﬁ)) .
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It turns out that as an additive group, Ri(G) 1s freely generated by the images
of ureducible characters y,, for p € A{. Thus Ri(G) = Z[A[] addiuvely.

REMARK 4.10. If G has type ADE (so that all roots have equal length),
the lattice BY(A*) C t is identified with the set of elements & € t with
exp& € Z(G), the center of G. Hence the 1deal [;(G) may be characterized,
in this case, as the vanishing ideal of the set of all g € G2 such that
g e 2(G).

REMARK 4.11. Freed-Hopkins-Teleman compute twisted K-homology
groups of G for arbitrary compact groups, not necessarily simply connected.
The case of simple, simply connected groups considered here is considerably
easier than the general case.

REMARK 4.12. It is also very interesting to consider the non-equivariant
twisted K-homology rings K.(G, AH"V). These are studied in the work of
V. Braun [7] and C.L. Douglas [12].

4.5 QUANTIZATION OF CONJUGACY CLASSES

Suppose @: C — G is the conjugacy class of exp&, £ € A, pre-quantized
at level k> 0. Thus p:= B°(k€) is a weight. The Morita isomorphism (28)
defines a push-forward map in K-homology,

(30) KS(®): KS(C,CUTC)) — KS(G, ANy

where @: C — ( 1s the inclusion.

THEOREM 4.13.  The push-forward map (30) takes the fundamental class
[C] € Kg(C,Cl(TC)) o the equivalence class of the character x, in
R(G) = R(G)/I(G).

Proof. Let m: G/T — C and ¥ = ®onm: G/T — G be as in Section 4.1,
The Morita trivializations
C ~ CIT(G/T)), C =~ 7*CKIC)

defined by G x7 S resp. G X7 S; (cf. Proposition 4.8) define a push-forward
map

K§(m): K§ (G/T,CUT(G/TY)) = K§(G/T) = K§(C,CUIC))
with K§(m)(IG/T]) = [C]. Hence
K5 (@)([C]) = K§ (P)([G/T]).
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Recall now that W = W 1s equvariantly homotopic to the constant map Wy
onto ¢ € G. That 1s, the diagram

G/T —— C
pl l@
p —— G
commutes up to a G-equivariant homotopy. As discussed at the end of

Section 4.3, the composition of the Morita isomorphisms C ~ 7* CI(TC) and
CITE) o= o AF+h" (see Equations (27) and (28)) is the Morita trivialization,

WA = K(G xp (C, @ HIN))
On the other hand, (*.A¥h" — K(?—[k+hv) by construction of A, hence
Wy AR 2 p R = K@ xp HT).

The two Morita 1somorphisms are thus related by a twist by the line bundle
G xrC,,. It follows that Kg (W) is the automorphism of Ko(G/T) defined by
the class of the line bundle & xy C,,, followed by Kg (W) = KOG (t)o Kg(p).
But K§(p) is just the equivariant index map for G/T. As is well known,
it takes [G/T], twisted by G xr C,, to the class [V, ] € KOG(pt) of the
irreducible (G -representation labeled by p. We conclude that

KSW(G/T = K§W(V,.D).

The identification Kg (pH) = R(G) takes [V, ] to the character x,. [l

46 TWISTED K-HOMOLOGY OF THE CONJUGACY CLASSES

Suppose ®: C — G is an arbitrary conjugacy class (not necessarily
pre-quantized) corresponding to & € A. Let I be the index set such that
£ € int(Ay), thus ¢ = G/G;. Write B = K(H) so that A; = G xg, B.
In 43 we constructed a Gj-equivariant Morita isomorphism Cl(g;-) ~ B,
or equvalently C ~ B" & Cl(g; ), since Cl(gj) = Cl(g; )°P?. We have, by
2.3 (a)(c),

KO, & A = KOG /Gy, G %6, B
= KS(pt, B © Cl(gH)
_ G k
= K."(pt, BY).
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~(—k
This vamshes for ¢ = 1, and 1s equal to R(G; ))_1 for ¢ = 0. But a

; ~(—k) ; S : :
representation of (; , where the central circle acts with weight —1, 1s the

same as a representation of G, where the central circle acts with weight k.
Thus

G31) KS(@C, o* Ay = KS(G/Gr, G xg, B 2 R(Gie

as R(G)-modules. (The module structure is given by the restriction homo-
morphism R(G) — R(Gy) = R(@[)O, which acts on R(@I) by multiplication.)
If J C I, we have a natural map ¢]: G/G; — G/G; covered by a map of
Dixmier-Douady bundles G, B — G X, B. Hence we obtain a push-forward
map,

G2 K§O): KSG/Gr, G x6, BH) = KS(G/Gr, G o, BH).

The naturality of the maps 1§ (cf. 2.3 (b)) and the definition of ind{ = indgj
(cf. 2.3 (c)) gives a commutative diagram,

1.3
ind;

K3'(pt, B Cl(a/a1) — Ky'(pt, B Clig/a0)
lxg; J:
K§' (G1/Gr, (Gy x, B ) & Claa/a))) —— Ky'(pt, B Cl(g/g,)
| |
K9 (a7
KS(G/Gy, G xg, B") YD KG(GGr, G X, B,
That is, KS(¢]) o Ig{ = IgJ oind]. The entries on the top row are identified

with R((A}I)k and R(a])k, and (cf. 2.3 (¢)) the map ind{ is the holomorphic
induction map

(33) ind}: R(Gp)r — R(Gy),

relative to the complex structure on Gj /Gy = (A}J / @1 defined by the collections
of simple roots &; C &;. To summarize,

PROPOSITION 4.14.  The identifications K$(G/Gy, G % g, B = R(Grw
intertwine the push-forward maps KS(¢]) with the holomorphic induction
maps indj .
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5. COMPUTATION OF KS(G, A%y

The Dixmier-Douady bundle .4 — G, as described in (20), may be viewed
as the geometric realization of a co-simplicial Dixmier-Douady bundle, with
non-degenerate p-simplices the bundle [],_ ., A; over [[;_ ., G/G;. This
defines a spectral sequence computing the K-homology group K&(G, Ak+hv),
in terms of the known K -homology groups KS(G/ GhAII‘JrhV) = R((A}I)k and
the holomorphic induction maps between these groups. As it turns out, the
spectral sequence collapses at the FE;-stage, and computes the level k& fusion
ring.

5.1 THE SPECTRAL SEQUENCE FOR KZ(G, AM+"")

The construction (20) of A — G as a quotient of
[TA xa = [[6/G =< A
1 i

may be thought of as the geometric realization of a ‘co-simplicial Dixmier-
Douady bundle’. See [37] and [31] for background on co-simplicial (semi-
simplicial) techniques. Here the G-Dixmier-Douady bundles

IT 44— ][ ¢/G
[T|=p+1 [|=p+1

are the non-degenerate p-simplices; the full set of p-simplices is a union
[T, Arapn — 11 G/Grapy over all non-decreasing maps

F [p]:{oaap}%{oaﬂ‘,}

By the theory of co-simplicial spaces (see [37, Section 5]), one obtains a

spectral sequence E;‘ .= K% (G, Ak"'hv), where

p+q

v
(34) El,= @ KSG/G,LA™).
[|=p+1

The differential d': E} , — E!

. ; G k+hY
b_1, 18 given on KZ(G/Gr, A" ) as an

alternating sum,
4
d'=3% (K.
r=0
Here 6,1 is obtained from 7 by omitting the r™ entry: 6,7 = {ip,... 5, -.., i}
for I = {ig,...,ip} with ip < +++ < i,. Recall that ¢]: G/G; — G/G; are
the natural maps for J C I.
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By mod 2 periodicity of the K-homology, we have E;,q — E1=
Since the groups G; are connected, and since dimG/G; is even, one has
Kf(G/GI,A'f+hV) = 0, thus E,l‘1 = 0. Hence, the E'-term is described by a
single chain complex (C.,d), where

C,=E,, 8=d.

The map R(G) — K&(G, .A’H'hv) defined by the inclusion +: ¢ — G may also
be described by the spectral sequence. Think of ¢ as the geometric realization
of a map of co-simplicial manifolds, given as the inclusion of {¢} = G/Gyqy
mnto Hé:o G /Gy, . The co-simplicial map gives rises to a morphism of spectral
sequences, E° — E*, where

12

El B Kg(pt,C) if p=0,
0 otherwise .

At the E'-stage, this boils down to a chain map
(35) RG) = G,

where R(G) = l:fol,o carries the zero differential. Our goal i1s to show that the
homology of (C.,d) vanishes in positive degrees, while the induced map in
homology R(G) — Ho(C,d) is onto, with kernel I(G).

5.2 THE INDUCTION MAPS IN TERMS OF WEIGHTS

To get started, we express the chain complex in terms of weights of
representations. Recall that R(7) is isomorphic to the group ring Z[A*].
The restriction map R(G) — R(T) is injective, and identifies

R(G) = Z[A Y .

Let us next describe R((A}I)k in terms of weights. Each (A?I has maximal torus
T =T x U(l), hence the weight lattice is

A =A"XZC T =t"xR.

The simple roots for @1 are (a;,0) with a; € &y, the corresponding co-roots
are

(36) (a),8i0) €t=t xR, a; € 6.
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These define a fundamental Weyl chamber
(37) 1, ={@w9) | {ro)) + 560 >0, €&}

The elements vy satisfy (17, a’)+ 6,0 = 0. Hence, (v,5) € E:-&- if and only if
v—sv; € . Let Aj, C A" be the intersection of (37) with A* x {k} = A*.
Thus

Afp={veAN | (na/)+kbio>0, i¢l}

labels the irreducible (A}I -representations for which the central circle acts with
weight k. The Weyl group W; of Gy is also the Weyl group of Gy . Tts action on
A preserves the levels A* x {k}, hence it takes the form w. (v, k) = (wev, k)
for a level k-action v — werr on A*. Explicitly,

(38) wery = w(v — kvp) + kvy .

Fix k, and denote by Z[A*]"'~* the anti-invariant part for the W;-action
v — wepepvy at the shifted level £+ hY . Observe that this space is invariant
under the action of Z[A*]Y. Let

SK': Z[AT] = Z[ATTY TS, v Y (s ey
weW;

denote skew-symmetrization relative to the action at level k+h" . For p € A},
let XL, € R(Gp)r be the character of the irreducible Gj-representation of
weight (u, k).

LEMMA 5.1. The map Xf,, — Sk(1w + p) extends to an isomorphism
(39) R(Gx — ZIAT]V™™.

Under this isomorphism, the R(G) =2 ZIA*1Y -module structure is given by
multiplication in the group ring. I urlhermore the zdemlﬁcatzon (39) intertwines
the holomorphic induction maps md, R(Gl)k — R(G])k Jor J C I with skew-
symmelrizations

Skj = ‘W|Sk ZIA* ] ZIA

Note that the statement involves a shift by p, rather than p;. Thus, even
in the case 7 = {0,...,I} where G; = T and W; = {1}, p; = O, the
identification R(f)k — Z[A*] involves a p-shift.
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Proof. Let A;,ijighv be the intersection of A* x {k+h"} with int(/t\}: L)
Since obviously R((A?I)k = Z[A] ], the first part of the lemma amounts to the
assertion that

pEA S utpe A}:’,:fhv _
We have p € Aj, if and only if (p, ) 4+ kéjo > O for i ¢ I. Since
{p, )y +hVd; o = 1 this is equivalent to (;—+p, o)+ (k+ h¥)sio > 1, i¢1,
ie. putpe Ay as claimed. The assertion about the R(G)-module structure
is obvious. Fihally, for J C I the holomorphic induction map ind{ 1s given
by
ind{(xﬂ) =|- Dlength(m X'Jlru'k(u-l-m)—m
if there exists w € Wy with we (e + py) — py € Aj ., while ind}r(XL) =0 if
there is no such w. Using (38) together with p; — kv = p — (k+hY)y; (by
the definition of 17), this may be re-written in terms of the action at level
k+hY:
wer(u+ pr) — pr = woenv(@w+p)—p. O

By combining this discussion with Proposition 4.14, we have established
a commutative diagram

K$(G/Gr ATy —— R@Gye —— ZIAY

(40) Tm(p{) Tindf Tsk;
K§(G/Gr, A™™) —— RGe —— ZIAT™.

We can thus re-express the chain complex (C.,0) in terms of weights:

P
(1) C= @ ZIAT™,  a¢' =) (-1 Sk '(¢),
|{|=p+1 =0
for ¢! € Z[A*T"1=3. The map R(G) — Co C C. given by (35) is expressed
as the inclusion of Z[A*]" % i.e. as the summand corresponding to 7 = {0}.
By construction, C. is a complex of R((G)-modules, and the map (35) 1s an
R(G)-module homomorphism.

53 LUSION RING

Let us also describe the fusion ring in terms of weights. The subset
B’(kA) C t* defining the set A¥ = A* N B*(kA) of level k weights is cut out
by the inequalities

(v,a) + kb > 0.
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It 1s a fundamental domain for the level & action v — wegr of the affine
Weyl group, generated by the simple affine reflections

v v—({v,of) +s6i0)ai, i=0,...,1.

This 1s consistent with our earlier notation : the level k action of Wy restricts
to the level £ action of the subgroup W;, generated by the affine reflections
with i ¢ 1.

Let Z[[A"]] be the Z[A*]-module consisting of all functions A* — Z,
not necessarily of finite support. Let

Skar: ZIA™] = ZIA™ N, v Y (D)™™ e pvw
wE W

be skew-symmetrization, using the action at the shifted level k£ + hY. The
map f — Skys(pe 4+ p) extends to an isomorphism, Z[Af] — ZI[A* ]V
This identifies

(42) Ri(G) = Z[[A*]]Waff—as

as an Abelian group. For any I we have R(G) = Z[A*]" -module homomor-
phisms R(Gpr — Re(G),

1

(43) Z[A*]W[_as - Z[[A*]]Waff_as ’ ¢I - |WI|

SKagt @1 -
For I = {0} we may use the obvious trivialization G =G x U(1) to identify

R(G) = R(@O)k. The following 1s clear from the description of the quotient
map R(G) — Ri(G) (see e.g. [3D):

LEMMA 5.2. The identifications R(G) = ZIA*1Y =2 and (42) intertwine
the quotient map R(G) — Ri(G) with the skew-symmetrization map,

1

7 Skug: ZIAY ™2 — Z[IA ]V .

(44)
In particular, (42) is an isomorphism of R(G) = ZIA 1Y -modules.

In fact, we could define the ideal I(G) C R(G) as the kernel of the
map (44). Let e: Cy — Ri(G) be the direct sum of the morphisms (43)
for |I| = 1.
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54 A RESOLUTION OF THE R(G)-MODULE Ri(G)

THEOREM 5.3. For all k > O the chain complex (C.,d) defines a resolution
0= 5 ¢S RG) =0

of Ri(G) as an R(G)-module.

The proof will be given below. As mentioned in the introduction, Theo-
rem 5.3 1s implicit in the work of Kitchloo-Morava [25].

REMARK 54. It turns out that the twisted representations R(@I)k are
projective modules over R(G), hence (by the Quillen-Suslin theorem) free
modules over R(G). That is, (C.,d) is a free resolition of the R(G)-module
R(G). If G = G; x U(l), the R(G) module R@Gy) is isomorphic to
R(Gy), and the claim follows from the Pittie-Steinberg theorem [33, 39]. The
general case requires a mild generalization of the Pittie-Steinberg theorem [29].

REMARK 5.5. Theorem 5.3 implies the Freed-Hopkins-Teleman theo-
rem (1): By acyclicity of the chain complex C. the spectral sequence E"
collapses at the E?-term, with

B g Ri(G) if p=0 and g even,
me b 0 otherwise .

Since Ri(G) 1s {ree Abelian as a Z-module, there are no extension problems
and we conclude that K¢(G, ATy = 0 while

(43) K§(G, AT) = Ru(G)
as modules over R(G). This isomorphism takes the ring homomorphism

R(G) — KOG(G7 A’H'hv) to the quotient map R(G) — Ri(G), hence (45) i1s
an 1somorphism of rings.

The statement of Theorem 5.3 can be simplified. Indeed, the chain complex
C. breaks up as a direct sum of sub-complexes C.(u), € Aj, given as

Cp(,U;) — @ Z[Waff'k—‘,-h\/,U;]WI_as )
lI|=p+1

Similarly the map e: Co — Ri(G) splits into a direct sum of maps
Z for ¢ A;iigv ,

e: Co(u) = Z[Wagpopnv o]V = .
0 otherwise .
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Finally the chain map R(G) < C. splits into inclusions of Z[Wgreripv o] —2
as the term corresponding to [ = {0}. Clearly, (C.(1),d) depends only on
the open face B*((k +~hY)A;) of B’((k +h¥)A) containing . Indeed, since
Z[Wagrornv it] = Z[War/Wy| we have
C)= P Z[Wur/ W',
[|=p+1

The differential 0 is again given by anti-symmetrization as in (41), but with
c,bl now an element of Z[W,g/ Wr]"—2 . The map €: Cy — Ri(G) translates
into the zero map Co(J) — 0 unless J = {0 .../}, in which case it becomes
a map e: Co(J) — Z, given as the direct sum for i = 0,...,[ of the maps

Z[Waff]W[—as S 7 7 Z Hop Wl > Z nw(_l)length(w) )
W W
The map R(G) — C. is again the inclusion of the summand of Cy(J)
corresponding to I = {0}. Theorem 5.3 is now reduced to the following
simpler statement:

THEOREM 5.6.  The homology H.(J) of the chain complex C.(J) vanishes
in degree p > 0, while

o pr#{0,...,0,
HO(J)_{Z if J=10,....1}.

In the second case, the isomorphism is induced by the augmentation map
e: Co(J) = Z.

5.5 PROOF OF THEOREM 5.6

Throughout this section, we consider a given face A; of the alcove. We may
think of W,g/W; as the Wyg-orbit of a point in the interior of the face Ay,
under the standard action of W,¢ on t. To be concrete, let us take the point %
Denote its orbit by

V= Wa_ff . I/ﬁ .
We introduce a length function length: V — Z, defined in terms of the
function on Wyr as
length(x) = min{length(w) | w € Wy, X = w. yﬁ} , XeV.

Geometrically, length(x) is the number of affine root hyperplanes in the Stefel
diagram, crossed by a line segment {rom any point in the interior of A to the
point Xx.
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For any [ let {; 4 be defined by the inequalities (c,-) + ;o > 0 for
o; € &;. (Equvalently, it 1s the affine cone over A at V}i.) Then t; 4 1s a
fundamental domain for the Wj-action. Let V! C VI C V be the subsects

Vi Vninyy), V =Vnt..
Every W; C Wy -orbit contains a unique point in 7. Thus, if x € V, we
may choose # € W; with u.x € 7. Then
length(u . x) < length(x),

with equality if and only if x € 7' and hence u.x = x.
The elements

(46) B = Sk x), xeV!

form a basis of the Z-module Z[V]"'=2 (Note that if x € VI\VI then
Ski(x) = 0.) Let us describe the differential in terms of this basis. For
Il=p+1 and x € V!, we have:

P
0B(x) = > (1) Sk (x).
r=0

In general, the terms SO (x) are not standard basis elements, since x need
not lie in Vo7, Letting u, € Wy be the unique element such that u,x & Vol
we have

@7 ABr) = _(— 1y 3 ().
r=0
55.1 COMPUTATION OF Hy(J). Consider Cy(J) = LIV,

For all i,j and all x, the element.s. SI/(x), Sk'(x) are homologous. since
they differ by.the boundary of SkY(x) € C(J). Together with Sk/(x) =
(— Dlensth@) Sk/(ax) for w € W;, this implies

Skf(x) ~ (_l)length(?u) Skl(wx)

for w € W;. Since the subgroups W, generate Wy, this holds in fact for all
w € War. Thus

SK(w . 1) ~ Ski(w . by ~ (—1)em2h0) Qi)
for all 7,7, and all w € Wye. If J £ {0,...,1}, the choice of any i ¢ J gives
Sk’(v}i) = 0. This proves that Hy(J) = 0. Suppose now that J = {0,...,[}.
The augmentation map Co(J) — Z is described in terms of the basis by
Bi(x) = (— D™ Tt has a right inverse Z — Co(J), 1 — 60(1/3)‘ Hence the

induced map in homology Z — Hy(J) is injective, but also surjective since
SK'(x) ~ (—1)leneth® ,60(1/3). Thus Hy(J) = Z in this case.
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552 COMPUTATION OF Hy(J). Suppose ¢ € Ci(J) = Z[V]. Then 9¢p =0
if and only if Sko"'?"lgb = 0 for all i. That is, ¢ 1s invariant under every
reflection o; € Wy, hence under the full affine Weyl group Wy . But since ¢
has finite length this is impossible unless ¢ = 0. This shows that H;(J) = 0.

5.53 COMPUTATION OF H,(J), 0 < p < [. To simplify notation, we will
write C. instead of C.(J). (This should of course not be confused with the
chain complex C. considered in previous sections.) Introduce a Z -filtration

O:F_ICICFOCICFICIC--.’

where FyC, is spamned by basis elements (46) with |/| = p + 1 and
length(x) < N. Formula (47) shows that for any basis element 3;(x) € FyC,,

(48) OB = 3 (~1Y Bu() mod Fy_1Cpoy.,

where the sum 1s only over those r for which x € VT viie u, =1 (other
terms lower the filtration degree since length(u,x) < length(x) unless x = u,.x).
In particular, ¢ preserves the filtration. Define operators /;: C, — C,41 on
basis elements, as follows:

(D" Bum if iy <i<ip,
0 if i =i, some 7.

i 3i(x) = {
Note that #; preserves the filtration: h;(FyC,) C FyCpiq. Let
A; =id—h;0 — Oh; .

Then A; 1s a chain map, which is homotopic to the identity map.

LEMMA 5.7. Let p > 0. For any basis element 31(x) € I'yC, we have
A B1(x) € Fy_1C, unless i € I and x ¢ VI=UY . In the latter case,

Aifi(x) = fi(x) mod Fy_1C,.

Proof. Write I = {iy,...,i,} where iy < --- < i,. Using (48) we obtain

(49) BB = S (~ 1 hifsri(x) mod Fy_1Cy,

summing over indices with x € V®7 ¢ V. The calculation of A;5;(x) divides
into two cases:
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CASE 1: i € I. Thus i = i; for some index s, and (—1)"h;85:1(x) = 0
unless # = 5, i which case one obtains Fy(x). Hence all terms in the sum
(49) vanish, except possibly for the term r = s which appears if and only if
x € V¥ = vI={i} | That is,

B0 mod Fy_ G, if x € V=i,

]’lia X) = .
o { 0 mod Fy_iC, if x¢ V/={1,

(using the assumption p > 0). Since #;3;(x) = O this shows A;5;(x) € Fy_,C,
unless x ¢ V=Y in which case A;3(x) = 3;(x) mod Fy_1Cp.

CASE 2: { ¢ I. Exactly one of the terms in 9h;57(x) reproduces [37(x).
The remaining terms are organized 1n a sum similar to (47):

() = 1) = ¥ (~ 1Y hB(9) mod Fy_,C,,

where the sum is over all r such that x € VU=t But x € V¥ =
x € vulit=tit | gince

V&’I - VIU{Z}—{I,—} ﬂ VI .
Hence the sums Z; and Z:’ are just the same. This proves that
A Bi(x) € Fy_1CGy. O

Consider now the product A := Ag---A;. By iterated application of the
lemma, we find that if 0 < p <, then AF;(x) € Fy_1C, (because at least
one index i is not in 7). Thus

A FNCp —& FN—lcp

for 0 < p < I. The chain map A is chain homotopic to the identity, since
each of its factors 1s. Thus, if ¢ € FyC, is a cycle,

O~ AP~ AN = 0.

This proves that H,(J) = 0 for 0 < p < [, and concludes the proof of
Theorem 5.6.

REMARK 5.8. N. Kitchloo pointed out a more elegant proof of Theo-
rem 5.6, along the lines of Kitchloo-Morava [25]. His argument produces
an inclusion of C.(J) as a direct summand of S. @z;w,) Z, where S. is the
simplicial complex with respect to the Stiefel diagram, and Z[W;] acts on
Z. by the sign representation. The acyclicity of C.(J) then follows from the
Wy -equivariant acyclicity of S..
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A. APPENDIX
RELATIVE DIXMIER-DOUADY BUNDLES

For any map f: ¥ — X, let cone(f) be its mapping cone, obtained by
gluing cone(¥) = ¥ x I/¥Y x {0} with X by the identification (v, 1) ~ f(¥).
Let H'(f) = H (cone(f)) denote the relative cohomology of f. Equivalently
H'(f) 1s the cohomology of the algebraic mapping cone C'(f) of the
cochain map C°(Y) — C'(X), i.e. CP(f) = C"~(Y)D CP(X) with differential
d(a,b) = (da—f*b,dc). If f is a smooth map of manifolds, the cohomology
H'(f,R) may be computed using differential forms, replacing the singular
cochains in the above.

The group H?*(f) has a geometric interpretation as isomorphism classes of
relative line bundles, 1.e. pawrs (L,2y), where L 1s a Hermitian line bundle
over X, and ¢y: ¥ x C — f*L 1s a umtary trivialization of its pull-back
to Y. The class of a relative line bundle 1s the Chern class of the line bundle
L — cone( /), obtained by gluing cone(Y) x C with L via ¢y.

Similarly, H>(f) is interpreted in terms of relative Dixmier-Douady bundles,
1.e. pairs (A, Ey), where A — X 1s a Dixmier-Douady bundle, and & — Y
is a Morita trivialization of the pull-back f*.A.

Given such a triple, one can construct a Dixmier-Douady bundle
A cone(f). First stabilize: Let H be a fixed infinite-dimensional Hilbert
space, and K = K(H) = the compact operators. Then &' = &y @ H defines
a Morita trivialization of the pull-back of A* = A @ K. Since the Hilbert
space bundle &' is stable, it is equivariantly isomorphic to the trivial
bundle Y x H. Define A by gluing the trivial bundle cone(}Y) x K with
f*A®, using this identification. We define the relative Dixmier-Douady class
DD(A, &) := DD(A) € H(f).

Tensor products and opposites of relative Dixmier-Douady bundles are
defined in the obvious way. A Morita trivialization (A,Ey) is a Morita
trivialization C ~g A together with an isomorphism &y = f*Ex intertwining
the module structures. From the usual Dixmier-Douady theorem, one deduces
that DD(A,Ey) is the obstruction to the existence of a relative Morita
trivialization.

More generally, one can define relative equivariant Dixmier-Douady bun-
dles; these are classified by an equivariant class DDg(A, &y, ¢¥y) € He(f) =
H3(fs), where f5: Y — X is the induced map of Borel constructions. (For
the stabilization procedure, one replaces H with the stable (-Hilbert space
H; containing all G -representations with infinite multiplicity.)
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B. APPENDIX
REVIEW OF KASPAROV K -HOMOLOGY

In this section we review Kasparov’s definition of K-homology [23, 22]
for C*-algebras. Excellent references for this material are the books by
Higson-Roe [19] and Blackadar [5]. Suppose A is a Z,-graded C*-algebra,
equipped with an action of a compact Lie group G by automorphisms. An
equivariant Fredholm module over A 1s a triple x = (H, 0, F), where H is
a G-equivariant Z,-graded Hilbert space, ¢o: A — L(H) is a morphism of
Z,-graded G-C*-algebras, and F € L(H) 1s a G-invariant odd operator such
that for all g € A,

(F* = Do(a) ~0, (F* —F)o(@ ~0, [F,o@]~0.

Here ~ denotes equality modulo compact operators. There is an obvious
notion of direct sum of Fredholm modules over A. One defines a semi-group
KOG (A), with generators [x] for each Fredholm module over A, and equivalence
relations

[x] + [X'] = [x @ x'] and [xo] = [x11,

provided xg, x; are related by an ‘operator homotopy’ x, = (H,o,F;)
(cf. [5, 19]). One then proves that every element in this semi-group has an
additive inverse, so that KX(A) is actually a group. More generally, for ¢ > 0
one defines KZ(A) = KS(AQCI(RY). This has the mod 2 periodicity property
K?Z(A) = KZ(A), which is then used to extend the definition to all ¢ € Z. The
assignment A — KZ(A) is a homotopy invariant, contravariant functor, depend-
ing only on the Morita 1somorphism class of A. It has the stability property,
KI(A ® Kg) = KL(A), where Kg are the compact operators on a G-Hilbert-
space Hq containing all G-representations with infinite multiplicity. With this
definition, let us now review some basic examples of twisted K-homology
groups KqG(X7 A) = KLTo(X, A)) for Dixmier-Douady bundles A — X.

EXAMPLE B.1. Let A — pt be a G-equivariant Dixmier-Douady bundle
over a point. Disregarding the G-action, we have A =~ K(£) for some Hilbert
space £. As in Section 2.2 the action G — Aut(A) defines a central extension
G of G by U(1). The group G acts on €, in such a way that the ceniral
circle acts with weight 1. L.et V be a G-module where the central circle acts
with weight —1. Then the Hilbert space H = V& £ 1s a G-module. Letting
p: C — L(H) be the action by scalar multiplication, the triple (¥, 0,0) is a
G-equivariant Fredholm module over C(pt) = C. This construction realizes
the isomorphism R(G)_; — KSpt, A).
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ExXAMPLE B.2. Let M be a compact Riemannian G-manifold, and D
an invariant first order elliptic operator acting on a G-equivariant Z,-graded
Hermitian vector bundle & = £t @ £~ . Suppose also that a finite rank
Z,-graded G-Dixmier-Douvady bundle A — M acts on &, where the
action is equivariant and compatible with the grading. Let ‘H be the space
of L?-sections of &, with the natural representation ¢ of I'(M,.A), and
F = D(1 + D¥»™ /2 ¢ L(H). The commutators of F with elements o(a)
for a € T(M, A) are pseudo-differential operators of degree —1, hence are
compact. Thus (#, o, F) is an equivariant Fredholm module over T'(M, A),
defining a class in KZ(M, A).

ExampLE B.3. [24, p. 114] Let M be a compact Riemannian G-manifold,
and A = CI(TM) its Clifford bundle. Take & = AT*M, H its space of
L% -sections, and p the usual action of sections of T'(M,CI(TM)). Let D =
d+d* be the de Rham-Dirac operator. By B.2 above, we obtain a Fredholm
module (H, g, F) over T'(M,CI(TM)), defining a class [M] € K§(M,Cl(TM)).
Thus 1s the Kasparov fundamental class of M. (Actually, CI(TM) 18 a Dixmier-
Douady bundle only if dimM 1s even. If dimAM 1s odd, one can use the
isomorphism Kg(M, CI(TM)) = KlG(M, CIT(IM)) if needed.)

ExampLE B4. Let H be a closed subgroup of G, and B — pt an
H -Dixmier-Douady bundle of finite rank. As explained in B.1, any class in
K(pt, Cl(g/h) ® B) is realized by a Fredholm module of the form (£, p,0),
where £ is a Hilbert space of finite dimension. Let £ = Gx u €. The action of
CI(T(G/H)) defines a Dirac operator, which together with the action of 1%(13)
yields a Fredholm module and hence an element of Kg (G/H,1%(B)). This con-
struction realizes the isomorphism KX (pt, B @ Cl(g/h)) — KJ(G/H, ind%(B))
if B has finite rank. As remarked in Section 2.1, all H-Dixmier-Douady
bundles over pt are Morita isomorphic to finite rank ones.
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