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L’Enseignement Mathématique (2) 55 (2009), 329-357

ON A THEOREM OF RENE THOM IN GEOMETRIE FINIE

by Marc CHAPERON and Daniel MEYER *)

ABSTRACT. We study generalisations of the following fact: a generic compact
curve in the plane intersects every straight line in a finite number of points; moreover,
for each such curve, this number is bounded. Our results develop the first part of René
Thom’s 1968 paper on Géométrie finie (“finite geometry™).

INTRODUCTION

In his article [21], Thom defines the k-degree deg, A of a subset A of RY
to be the supremum over all affine k-planes H of the number of intersections
of H with A. For example, the k-degree of an n-dimensional algebraic subset
A of R ig finite, at most equal to the algebraic degree of A as an affine
variety, unless A contains some affine subspace of positive dimension!).

He then sketches a proof of the following result:

THEOREM (Thom). Let V be a compact smooth manifold of dimension n.
There exists a dense open subset U in C*(V,R"™) such that, for all f € U,
the k-degree of f(V) is finite.

Oddly enough, the present paper provides, it seems, the first complete
proof (and a somewhat better statement, Theorem 1.1). Tt is essentially an
llustration of Thom’s beautiful and now classical ideas founding singularity

*) Expanded version of a previous text by the second author.

1) In the second part of his paper, Thom sketches a deep converse, established later by
W.E. Pohl [18]: for each positive integer m, a compact connected real C* submanifold A of
CP"+* which meets almost every complex projective k-plane in exactly m points is either
complex algebraic of complex dimension #n, or the image of the real projective subspace
RP? C CP?" < CP"t¥ under a complex projective transformation.
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theory [10]; the piece of the puzzle that was missing in [21] is a basic but
apparently not so widely known version of a theorem of Tougeron going back
to the same period [23] and leading to a precise local formulation of Thom’s
theorem, which 1s stated as Theorem 3.1 and proved in the first part of the
present article.

In the second part, the same ideas first yield the following “dual”™ version
of Thom’s theorem (better stated as Theorem 5.1):

THEOREM. Let B be a metrisable, separable k-dimensional manifold.

(i) The Whitney-open subset of CR", B) consisting of all proper maps
contains a dense open subset W such that, for every g € W, the k-degree
of g~Ub) is finite for all b € B.

(ii) Given a point 0 C B, the Whitney-open subset of C**(R"™*,B) consisting
of those maps g for which g='(0) is compact contains a dense open
subset Wy such that, for every g € Wy, the k-degree of g~'(0) is finite.

As before, this follows from a more precise local statement, Theorem 5.2.
After its proof, we show that the estimates provided are sharp for k = 1, and
then give an idea of the geometry hidden behind algebra in low dimensions.

Sections 6 and 7 deal with extensions to differential geometry, where the
affine k-planes are replaced by geodesics or, more generally, by the leaves of
what we call a texture — expressing, we hope, the essence of the problem.
A slight generalisation of Thom’s transversality lemma in jet spaces (in the
easy case where ‘transversality’ means ‘non-intersection’) is needed, whose
proof in Section 8 might introduce non-specialists to such matters.

NOTATION, CONVENTIONS AND DEFINITIONS. We consider only C*° metris-
able, separable, finite-dimensional manifolds. Given two manifolds M, N, we
denote by J°(M,N) (s € N) the manifold of s-th order jets of maps f: M — N
and by jf(x) € J*(M,N) the s-th order jet of f at x € M. We endow
C*®(M,N) with the Whitney C° topology, generated by the open subsets
Uy = {f: jf(M) C U} when U varies among the open subsets of J*(M,N)
and s in N. It has the Baire property [13, 8].

A subset F of C*(M,N) has codimension greater than ¢ € N when,
for every (metrisable, separable) manifold A of dimension c, there exists a
residual subset of C*™(A x M,N) consisting of maps f.: (A, x) — fi(x) such
that every f, lies off F. To put it smoothly, (Baire-)almost every smooth
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family A — fi, € C*(M,N) depending on ¢ parameters avoids F. In that
case, we shall say that C>*(M,N) ~ F 1s c-large.

The subset F has infinite codimension when it has codimension greater
than ¢ for every ¢, in which case we shall say that C*°(M,N) ~ F is huge.
Thus, a subset of C**(M,N) 1s huge when it 1s c-large for every c.

1. THOM’S THEOREM
1. STATEMENT OF THE RESULT; THE LOCAIL k-DEGREE
Here is the version we shall prove:

THEOREM 1.1. Let V be a compact manifold of dimension n. There exists
in C(V,R"%) a huge open subset U such that, for all f €U, the k-degree

of f(V) is finite.

The very definition of a huge subset yields a generalisation (in which
openness will follow at once from our proof of the theorem):

COROLLARY 1.2. Let V be a compact manifold of dimension n and A
a manifold. There exists in C*(Ax V,R") a huge open subset consisting of
maps fo: (A, x) — fr(x) such that the k-degree of f\(V) is finite for all A € A.

The proof of Theorem 1.1 is based upon Thom’s transversality lemma, but
this 1s not a mere affair of transversality in multijet spaces, as the degree of
f(V) 1is not a bounded function of f € I/ : indeed, for each integer m, there
are embeddings f of the unit circle S' into the plane R?> whose image has
no degenerate flat points (and therefore, as we shall see, has finite 1-degree)
and contains the part of the graph y = sinx obtained for 0 < x < mrm.
Hence it meets the x-axis transversally at m+ 1 points, an open condition in
C>~(S',R?).

The following key idea is again in Thom’s article [21]: for each continuous
map f of a topological space V into R"t* and each a € V, we define the
local k-degree of f at a to be

deg; (/) := mf deg, f(U),

where the infimum 1s taken over all open neighbourhoods U of a in V. The
local k-degree of a subset A of R"™* at a € A is the local k-degree at a of
the inclusion map A — R"™¢.
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LEMMA 1.3. For each continuous map f of a compact space V into
R %, the k-degree of f(V) is finite if and only if the local k-degree of f
at every point is. Therefore, the k-degree of a compact subset A of R"* s
finite if and only if its local k-degree at every point is.

Proof. 1f the local k-degree of f at every point is finite, then V admits
a finite covering F by open subsets U such that deg, f(U) is finite. For
cach affine k-plane H C R"™*, as every point of f(V) N H belongs to
some f(U) with U € F, we have #(f(V)NH) < Y - #(f()NH) <

Yver deg f(U), hence deg f(V) < >, rdeg f(U) < co. The “only if”
part 1s obvious.

Thus, Theorem 1.1 will follow if we can prove that there 1s a huge open
subset Zf of C°°(V,R"™*) consisting of maps f whose local k-degree at
every point a is finite.

Denoting by G(k,n+k) the Grassmann manifold of all k-planes H through
the origin in R""* and by py: R*""* — R*"*/H the canonical projection, we
clearly have

(1.1) degy o(f) < mnf S;lg#((PH oH~'B)NU),

where the infimum is taken over all open neighbourhoods U of a in V and
the supremum over all H € G(k,n+ k) and b € R"*/H (of course, equality
holds when f is injective).

To make the problem amenable to transversality arguments in jet spaces,
we now introduce a more algebraic bound for the right-hand side of (1.1).

2. MULTIPLICITIES

DEFINITION.  Given two n-dimensional manifolds M, N, let &, = &,(M)
be the real algebra of all smooth germs (M,a) — R and let M, = M,(M) :=
{f € & : f(a) = 0} denote its maximal ideal. The multiplicity p(F) of a
smooth germ F: (M,a) — (N, b) is the codimension in &,, as a real vector
subspace, of the ideal &£,F* M, generated by the germs F*g := go ' with
g € My. For every integer d, the multiplicity of the d-jet Fy = j%F(a) is
(see below) the codimension u(ﬁ 4) in &, of the ideal &,F* M, + ML as
a real vector subspace, hence

2.1) 1= uFo) < - < pFg) < pFuin) < - < ().
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For each chart germ ¢: (M, a) — (R",0), the map ¢,.: f ++ fop~! of &, onto
& = &E(R™) 1s an isomorphism of algebras and therefore sends the maximal
ideal M, onto M = My(R"). Given chart germs ¢: (M,a) — (R",0) and
1 (N, b) — (R, 0), it follows that, for each smooth germ F: (M, a) — (N, b)
the smooth germ G = ¢y o F oo~ ! satisfies u(G) = u(F) and ,uJ(Gd) ,u(Fd)
for every d. Now,

— since the mean value formula implies that MM is generated by the germs
of the coordinate maps, the ideal £G*M is generated by the components
of G;

— for integer d, as Taylor’s formula implies that the ideal M*!, generated
by the monomials of degree d + 1, is the set of all germs f € £ with
JY(0) = 0, the d-th order jet j9f(0) of each f € £ can be identified o
the image of f in £/ MF!,

It follows that ;L((/}\d) 1s determined by éd = j4G(0) and, therefore, that ,uj(f?\ )
is determined by Fy = j4F(a).
The multiplicity p,(F) of F € C*(M,N) at a € M 1s the muluplicity of

the germ of F at a.

The following result will play an essential role in our arguments (as its
proof is short, we give it even though it can be found, e.g., in [5]):

PROPOSITION 2.1.  For each positive integer m and every smooth germ
F: (R",0) = (R",0), the inequality /J'(F\m) < m implies that p(F) = ,u(ﬁd_l)
for some integer d with 1 < d < m. Thus, by (2.1), the inequalities ,u(ﬁm) <m
and p(F) < m are equivalent.

Proof. For u(Fy) <m, we have 1 = u(ﬁo) <o < p(Fy) < m by (2.1)
and therefore, for some d € {1,...,m}, )u(Fd) ,LL(F d—1) or, in other words,
EF*M + M4 = EF* M + Md, that is

(2.2) M C EFF M + ML,
We claim that this implies
(2.3) M C EF* M,

hence EF*M = EF* M + M and p(F) = w(Fy_1).

Indeed, denoting by xy,...,x, € M the germs of the coordinate maps, (2.2)
implies that every monomial x® with |¢| =d can be written x* = g, + R,
with g, € EF*M and R, € M%"!. Therefore, the g,’s belong to M? and,
by Nakayama’s lemma, they generate it over &£, as the monomials x® with
|a| = d do and have the same projections into M9/ M9+ yielding (2.3).
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Recall that a subset S of a manifold is stratified when it is the disjoint
umon of fimtely many submanifolds called strata, the smallest codimension
of which is the codimension of S. For example, every algebraic subset of a
finite-dimensional real vector space admits a canonical stratification [25, 5, 4].
Apart from Thom’s transversality lemma, the key result used in the sequel 1s
the following variant of a theorem of Tougeron:

THEOREM (Tougeron). For each positive integer n and every positive
integer m, denoting by J"(n,n) the 2n-codimensional vector subspace of
JHR",R") consisting of those ﬁm = j"F(0) such that F(O) = 0, the set
2™(n) of all jMF(0) € J"(n,n) with u(F) > m is a non-empty algebraic
subset, whose codimension

cp(m) := dim J"(n, n) — dim =" (n)
tends to infinity when m — 0.

Proof. Proposition 2.1 implies that Z™(#) 1s the set of those r m € J"(n,n)
which satisfy w(F,) > m. It contains 0 since codim M™' > m+ 1. The
reason why it is algebraic is that it is the set of those F=F, =j"F@O) in
J™(n,n) such that, denoting by Fy,...,F, the components of F, the linear
map Fy: (j"a;(0),...,j"a,(0)) v+ j™@aiFy + -+ + a,F,)(0) of (£/ M1y
into £/M™ ! has corank greater than m. Thus, ="(n) is the inverse image
under the linear map F s F , of the algebraic set of all linear maps
(E/ My — £/ MM with corank greater than m.

To see that c¢,(m) — oo when m — oc¢, first notice that, denoting by
T J(n,n) — J"(n,n) the canonical projection j*F(0) — j™F(0), one has

24) 2'(m) C (=)~ (2" m)

for all positive integers mz, £ with £ > m: indeed, if the smooth map germ
F: (R",0) - (R",0) satisfies F, ¢ Z™(n), i.e. ,u(ﬁm) < m, Proposition 2.1
vields p(F) = u(?m), hence, by (2.1), ,u(ﬁg) = ,u,(ﬁm) <m < ¢, 1e.
Fy ¢ 3tm).

As m}' is a submersion, the codimension of the right-hand side of (2.4)
1s ¢,(m). Therefore, (2.4) implies that c¢,(m) is a non-decreasing function of
m and all we have to prove is the following

LEMMA. For each positive integer m, there exists an integer { > m with

cn(f) > cp(m).
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Given m, let H: R",0) — (R",0) be the smooth germ given by
H(x) = 0t As every x with |o| = mm + 1 must satisfy
oj > m+ 1 for some j, we have

(2.5) ML = M MM

hence m < pu(H) < co. We claim that the lemma holds for ¢ = p(H).

If such were not the case, the highest dimensional stratum S¢ of Z¢(n) and
the highest dimensional stratum $™ of X™(n) would have the same codimension
cp(m), and so would (77)~'($™). Therefore it would follow from (2.4) that
st (ﬁ}f)_l(Sm) 1s a non-empty open subset of (WZ”)_I(S’”).

Now, given a smooth map germ F: (R*,0) — (R",0) satisfying
ﬁy € §tn (71'2”)_1(5’”), the second inclusion in (2.5) yields ﬁm + sﬁm = ﬁm
and therefore F, + sH; € (mM)~H(S™) for every s € R; if SN (xH)~I(S™)
were open in (WZ”)_l(Sm), it would contain F ) +sH ¢ for all small enough s,
whereas we shall now see that there are only finitely many real numbers s
with F, + sH, € =4(n).

It i1s enough to show that the set 7 of those r € R which sausly
(1 —)F; + tH, € =f(n) is finite, as Fy + iﬁg and (1 — OF, + tH, have
the same multiplicity for 7 1. Now, T is algebraic, being the inverse image
of Zf(n) under the affine map ¢ — (1 — r)ﬁ s+ tH,, and it does not contain
1 since we have /J,(ﬁg) < w(H) = ¢ by (2.1); hence, it is indeed finite. [ ]

REMARKS. Stratifications make the proof shorter than in [5], where the
theorem is stated a little differently though all the ingredients are present.

If n =1, both Proposition 2.1 and Tougeron’s theorem are evident since
((F) is the supremum of the integers d such that j9~'F(0) = 0, implying
that £"(n) = {0} and c¢,(m) = m.

The codimension c,(m) does not seem as easy to compute in general
because of moduli: the multiplicity of a jet 1s the codimension of its orbit for
contact equivalence (Mather’s K -equivalence, called V-equivalence in [12])
but, for n > 1, there may exist continuous families of such orbits with the
same codimension, making c,(m) smaller — less than m, to begin with.

We refer to [12], [8] or [5] for a proof of the following consequence of
the Malgrange preparation theorem :

PROPOSITION 2.2. If a smooth map F between manifolds M,N of the
same positive dimension has multiplicity p at a € M, then its local degree
at a is at most p : there exists an open neighbourhood U, of a such that,
for every y € N, the subset F~'(y) N\ Uy contains at most j points.
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COROLLARY 2.3. Let F.: (u,x) — F,(x) be a smooth map of A x V
into B, where A, V, B are three manifolds with dimV = dimB > 0. If F,,
has multiplicity p at a, there exist open neighbourhoods Y of a in V and U
of ug in A such that, for every y € B and every u € U, the subset F'(y)NY
contains at most [i points.

Proof. Setting ﬁ(u ) = (u F (x)) one has p, a)(ﬁ) = pa(Fy,) = p:1n-
deed, one may assume that (A, up) = - (R%,0) and (V,a) = (B, Fy(a)) = (R",0)
since the problem is local. Setting £ = EoRT") and M= MO(RC+") the
ideal EF M of € contains the ideal 7 generated by u1,...,u.; hence, its
codimension is the dimension of (£ /I)/ EF M /I) Wthh is isomorphic to
EJEFEM as @, (0) = o) +u [} Dype(tu, )i+ - - - +u, [ Desp-(iu, x) dt for
all ¢. € £, for example the components of F..

Let us go back to the proof of Theorem 1.1. With the notation of (1.1),
Corollary 2.3 yields

LEMMA 24. Given positive integers n,k and an n-dimensional mani-
fold V, the following inequality holds for all f € C®(V,R"™) and a C V :

degio(N) = sup  pa(prof) = o).
' HEG(kn+-k)

Proof. Recall that the Stiefel manifold St(n,n 4 k) 1s the set of those
= (itg,...,uy) € R such that w;-u; = 1 if i = j and w; - u; = O
for i # j, where the dot stands for the standard scalar product of R"T*. For
(u,y) € St(m,n + k) x R we let u-y:=(uy-y,...,u,-y) €R".

Given a positive integer #, we should prove that f € C*°(V, R"T*) satisfies
deg, (f) < m if we have p,(pyof) < m for all I € G(k,n+ k) or,
equivalently (taking an orthogonal basis u € St(n, n+k) of HY), pa(u-f) < m
for all u € St(n,n+ k).

Then, for uy € St(n, n+k), the hypotheses of Corollary 2.3 are satisfied with
A= St(n, n+k), B:=R" and F,(x) := u-f(x), pt := pa(ug-f) < m. It follows
that there exist open neighbourhoods Y,, C V and U,, C St(n,n+ k) of a
and u, respectively such that, for (y,u) € R" x U,,, the equation u-f(x) =y
has at most m solutions x € Y, . In other words, for every u € U, , the
subset f(Y,,) meets every affine k-plane orthogonal to the linear span of u«
in at most m points. Now, as St(n,n + k) is compact, we can choose values
iy ... Uy of ug so that {Uy,...,U, } is a covering of St(n,n+ k). Setting
Y=Y, N---NY,, we do obtain deg, ,(f) <deg f(¥) <m. L[]
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3. L.OCAL VERSION AND PROOF OF THEOREM 1.1

For all integers n > 1 and p > 0, with the notation of Tougeron’s theorem,
we let

my(p) := min{m : c,(m) > p},

which equals p+ 1 if n =1 since c;(m) = m. The following local version
of Theorem 1.1 provides universal bounds for the local degree:

THEOREM 3.1. For all positive integers n,k and each n-dimensional
manifold V, there exists an increasing sequence (U.).en of dense open subsets
of C®(V,R"™) such that each U, is c-large and consists of maps f whose
local k-degree at every point is at most m,(kn+n+c) (in particular, if n =1,
the local k-degree of f at every point is at most k+ 2+ ¢ ). Thus, the open
set U :=\J,U. is huge and every element of U has finite local k-degree at
every point of V.

This implies Theorem 1.1. For compact V, by Lemma 1.3, every f € U
has finite k-degree.

The proof of Theorem 3.1 uses the following consequence of Tougeron’s
theorem :

LEMMA 3.2. Let n,k be two positive integers. For every n-dimensional
manifold V and every positive integer m, the set EZ™(V,R"™) of all
J™f(a) € J(V, R with tia(f) > m is a closed stratified set whose
codimension, being at least c¢,(m) — nk, tends to infinity when m — co.

Postponing the proof of this lemma until Section 4, let us first deduce
Theorem 3.1 from

THOM’S TRANSVERSALITY LEMMA IN JET SPACES (EASY CASE). Given
manifolds M, N, an integer m and a closed stratified subset 2 of J"(M,N)
whose codimension is greater than the dimension of M, the set of those
f € C®M,N) such that j"f(M)NXZ = & is open and dense?).

As the condition j7f(M)NZ = & reads j"f(M) C J*(M,N)~\. X, openness
follows from the definition of the Whitney topology.

2) A particular case of Lemma 7.4 hereafter, proved in Section 8.
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Proof of Theorem 3.1. For each ¢ € N, if m = m,(kn +-n+c), we have
codim="(V,R"™) > n 4 ¢ by Lemma 32 and the definition of m. Hence,
for each c-dimensional manifold A, the set of those f.: (A,x) — fi(x) in
C>(A x V,R"™™) which satisly j™fi\(a) ¢ Z"(V,R"™) (ie. pq(f) < m)
for all (A,a) is open and dense: this follows from the transversality lemma
with M = A x V and N = R**, taking for X the set of all j™f.(\,x) with
F™MAE) € 2V, R (which is closed, stratified and of codimension greater
than n + ¢ since the map j”f.(A,x) — j"f,(x) 1s a smooth submersion).

It follows that, for each integer ¢, we can define {, to be the set of those
f € C=(V,R"%y such that j"F(V)NZ"(V,R"™) = @ with m = m,(kn+n-+c),
hence deg ,(f) < pualf) < mulkn+n+c) forall @ € V by Lemma 2.4,

REMARKS. The more general case of Thom’s transversality lemma in jet
spaces ([20, 13, 8, 12] and Section 8 hereafter) implies that, generically, j™f
is transversal to T™(V,R"%) even for n > ¢,(m) — kn. Thus, the closed set
G"H™HEV,R)) of those a € V which satisfy fiy.(f) > m, admits
the stratification whose strata are the inverse images under j™f of the strata
of Z™(V,R"™). When n and k are not too large, such stratifications can be
defined explicidy in geometric terms (see the remarks at the end of Section 5).

If n =1, we may [15] assume V = R or R/Z, and the condition
ta(f) > m means that, for some u € S, the function ¢+ u - f(r) (scalar
product) has multiplicity greater than m at a, 1.e. (u . j—;j f (a))1 <i<m = 0.

EXAMPLE. If n =k =1 and f € Uy, we have iy ,(f) <3 for all a.
When the parametrised plane curve f is an immersion, which is generically
the case, this does mean that 1t has no degenerate flat points. However, as we
wish the subsets U/, to be as large as possible, some maps f in our set Uy
are not immersions, e.g. f(f) = (,£).

4. PROOF OF LEMMA 3.2

Given open subsets / C R" and V C R?, each j™f(x) € J”(U,V) can be
written j"f(x) = (x, f(x), (Djf(x))lggm) ; thus, denoting by J™(n,p) the space
of polynomial maps P: (R",0) — (R”,0) of degree at most m (which may be
identified to j”P(0) as in Tougeron’s theorem), setting X’ := (X,...,X) and

N —r
£ times
identifying (D/f(x))1<j<m to the element X — LD'f ()X +- -+ - LD"f(x)X™
of J"(n,p), we can see that J"(U, V)= U X V x J"(n,p).
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By definition, Z"(V,R"tX) is the set of those j”f(a) € J™(V,R"T%) which
satisty po(pmof) > m for some H in G(k,n-+k) ; thus (taking an orthonormal
basis u € St(n,n + k) of the orthogonal HL of H), it is the projection of
the set fm(V,R”"‘") of all (u,jmf(a)) € St(n,n + k) x JY(V,R"*) with
Haltt « ) > m.

Hence, for each chart ¢ of V, the image of Z"™(V,R*™)NJ"(dom ¢, R"%)
under the chart @ ,: j"f(a) — j"(f o gp‘l)(cp(a)) of J™(V,R*™) is the
projection into J™(Im @, R"T*) of the set g’,:’(lm @) of those (u, jmf(a)) in
St(n, n+k) x J"(Im o, R"+*) such that the point j™(u-f)(a) of J"(Im¢,R") =
Imy x R* x J™(n,n) lies in Imp x R* x Z™(n).

Now, the map s, : (u, jmf(a)) — J™(u-f)(a) 1s a submersion of the space
St(n,n + k) x J™Im ¢, R"T%) onto J"(Imp,R") whose restriction to each
fibre of the projection St(n,n + k) X J"(Im p, R"*) 5 (u, j"f(a)) v+ (a.f(a))
onto J'(Im¢g,R"™) is the polynomial submersion (u,P) — u - P of
St(n,n + k) x J™(n,n + k) onto J"(n,n). Thus, E’,Z’(Im @) is the product of
Jo(m ¢, R™™) by the algebraic subset s~ (Z7(n)) of R"™Y" x J™(n,n+k).
It follows that the trivialisations (u,jmf(a)) — (u, @S’Z?id(u7jmf(a))) of the
fibre bundle St(n, n+ k) x J"(V, Ry — JO(V, R**+) make ="(V, R into
a locally trivial bundle with algebraic fibre s—! (Em(n)) and the vector bundle
charts @ ,; of J™(V, R — JO(V, R make ="(V,R"%) into a locally
trivial bundle whose fibre is the image of s‘l(Zm(n)) under the projection of
Ryt J"(n,n + k) onto J"(n,n + k), which image is semi-algebraic by
the Tarski-Seidenberg theorem [4].

Therefore, the following result, which belongs to the toolkit of singularity
theory [25, 14, 7], provides Zm(V,R'H”‘) with a stratification by smooth
bundles over JO(V,R"™):

PROPOSITION 4.1, Let P — M be a smooth fibration whose fibre F is
(smooth) semi-algebraic in a finite-dimensional vector space E, and let =
be a subset of P with the following property : there exist a nonempty semi-
algebraic subset B C F of E, a covering U of M by open subsets and, for
each U € U, a smooth trivialisation ®y of © over U, sending T N7~ Y(U)
onto U X B. Then, = admits a stratification by smooth submanifolds, each of
which is a smooth subbundle of P.

Proof. Call a point @ € B regular when 1t has an open neighbourhood
U in E such that BN U 1s a C*° submanifold. Thus, the set of all regular
points of B is an open subset of B and a C* submanifold, and so is the
union Reg(B) of its connected components of maximal dimension.




340 M. CHAPERON AND D. MEYER

It can be proved [25, 11, 14, 6] that the submanifold Reg(B) is nonempty,
analytic and that, denoting its dimension by dim B, its complement Sing B :=
B~ Reg(B) is semi-algebraic and satisfies?) dim Sing B < dim B. Hence, B is
the disjoint union of finitely many nonempty analytic submanifolds, namely
the nonempty terms of the sequence Reg(B), Reg(Sing B), Reg(Sing Sing B), . ..
This stratification*) is canonical, meaning that it is invariant by C> diffeo-
morphisms preserving B.

For U,U; € U, the smooth diffeomorphism &y, o cI),:_,l of (UNU)XF
onto itsell 1s of the form (x,y) — (x, hx(y)). Each %, extends to a smooth
diffeomorphism between open subsets of FE containing F, implying that
Iy preserves each stratum of B since it preserves B. Thus, for each
stratum § of B, the formulae @U(gﬂ W‘I(ID) ;= U x § define a smooth
subbundle S of P, and the submanifolds S obviously form a stratification
of 3.

The codimension of Z™(V,R""*) equals at least the codimension c,(m)
of s_l(Em(n)), minus the dimension of St(n,n + k). This estimate can be
improved by recalling that the multiplicity of s(u, P) = u- P depends only on
the linear span of uq,...,u,, implying that the fibre of X"(V,R™*) is the
projection of an algebraic subset of G(n, n+k) x J™(n, n+k) with codimension
c,(m), hence codim="(V,R") > ¢,(m) — nk.

Finally, ="(V,R"t%) is closed since its fibre is the image of the closed
subset s‘l(Zm(n)) under the projection of St(n,n + k) x J*(n,n + k) onto
J™(n,n+ k). This projection is proper since St(n,n + k) 1s compact.

REMARK. The Tarski-Seidenberg theorem is necessary only if the “black
box” in the proof of Theorem 1.1 is Thom’s transversality lemma in jet
spaces. The easy case (see Lemma 8.1 hereafter) of Thom’s elementary
transversality lemma [19] could have been used instead to prove that, for
almost every f. € C®(A x V,R"™), the map (u,\,x) — j™(u - fL)(x) of
St(n,n+k) x A x V into J"(V,R") takes its values off {j"F(a) € J"(V,R"):
ta(F) > m}, which is an algebraic subbundle with fibre ="(n) of the bundle
JMV,RY) — J%V,R"). Theorem 7.1 hereafter has to be proved in this
fashion.

3) With the usual convention that dim & = d for every d € Z.

4) With little effort [14], it can be refined into another canonical stratification satisfying
Whitney’s conditions (A) and (B), but this is not needed in the present paper.
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II. RELATED RESULTS AND NOTIONS
5. A DUAL VERSION OF THOM’S THEOREM
Here are analogues of Theorems 1.1 and 3.1 for inverse images:

THEOREM 5.1.  Given a k-dimensional manifold B and a point of B, which
we name 0, let P and Py be the open subsets of C(R", B) consisting
respectively of all proper maps and of those maps g for which g~ (0) is
compact. Then:

(1) There is a huge open subset Wy of Py such that, for g € Wy, the
k-degree of g~ (0) is finite.

(i1) Similarly, there exists a huge open subset W of P such that, for g € W,
the k-degree of g—'(b) is finite for all b € B.

THEOREM 5.2.  For all positive integers n,k, every k-dimensional manifold

B and every point of B, which we name O, there exist two increasing sequences
(Vo,c)een and (Ve)een of dense open subsets of C°°(R”+k,B) such that:

(1) Each Vo is c-large and consists of maps g such that the local k-degree
of g~Y0) at every point is at most my(kn+n+c). In particular, if k=1,
the local k-degree of g=1(0) at every point is at most 2n + 1+ c.

(1) Each V. is c-large and consists of maps g such that, for every b € B, the
local k-degree of g~ '(b) at each of its points is at most my(kn+k-+n-+c).
In particular, if k =1, the local k-degree of g~ (b) at every point is at
most 2n+2+c.
Thus, the open subsets V :=|J. V. and Vo :=|J Vo,. are huge and, for

g€V (resp. g € V), the subset g~1(0) (resp. every g~ (b)) has finite local
k-degree at every point.

REMARK. In these two statements and their analogues, the point 0 € B
could be replaced by a compact submanifold of codimension & in a higher-
dimensional manifold, at the expense of a few additional technicalities.

Theorem 5.1 follows from Theorem 5.2. Indeed, for g € Wy := Py NV
(resp. g € W :=PnNV), Lemma 1.3 and (i) (resp. (ii)) do imply that ¢—1(0)
(resp. every ¢~ !(b)) has finite k-degree.
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Proof of Theorem 5.2. The following analogue of Lemma 2.4 is a particular
case of Lemma 7.2:

LEMMA 5.3. Given positive integers n, k and a k-dimensional manifold B,
the inequality

dege, 07 ') < sup  pa(glorm) = pira(g™h)
’ HEGU,n 1)

holds for all g € C*(R"*,B), b€ B and a € g~ (b).
Now comes the analogue of LLemma 3.2:

LEMMA 54. Let n, k be two positive integers. For every k-dimensional
manifold B and every positive integer m, the set TR B) of all jets
J™g(a) € IR BY with ta(g™) > m is a closed stratified subset whose
codimension is at least ci(m) — nk and therefore tends to infinity when
m — 00. Moreover, given a point 0 € B, the intersection T"(R"T* B),
of T"R" B) with {j™g(a) : gla) = 0} is a stratified set of codimension at
least ci(m) — nk + k.

Proof. The set T"(R"T* B) consists of all j"g(a) € J"(R"T* B) which
satisfy pig(glaym) > m for some H in G(k,n+ k). In other words (taking
an orthonormal basis u# of H and setting u*(t1,...,%) = > tju;), we
see that I"(R™", B) is the projection of the set Z"(R™ B) of those
(u,j"g(a)) € St(k, n+k)x J"(R"* B) such that 11o(go(a+u,)) > m. Hence,
for each chart ¢y of B, the chart (Dﬁ’;’d]: j™g(a) — j™(p o g)(a) of J'R"T* B)
sends (R BYNJ™(R"T*, dom ) onto the projection into J"(R"X Im 1))
of the set EZ’(Im 1) of those (u, jmg(a)) in St(k, n+ k) x J"(R"*, Im ) such
that the point j"{g o (a+ 1.))(0) of JIR*, Ime)) = Imy x J"(k, k) lies in
Imay x Z"(k).

Now, the map sy: (1,j"g(a)} v j"(g o (a + u.))(0) is a submersion of
St(n,n + k) x J*(R" Im1) onto Imyr x J"(k, k) whose restriction to each
fibre of the projection of St(n, 7+ k) x /(R Im 1)) onto JOAR Im 1)) is
the polynomial submersion (i, P) —= Pou, of St(k,n+k) x J™(n+k, k) onto
J"(k, k). Thus, Z"(Im1) is the product of JOR™™* Im) by the algebraic
fibre sl_l(Zm(k)) C R™5 5 J™(n + k,k). As in the proof of Lemma 3.2,
it follows that ="(R"** B) is a sub-bundle of J"(R"* B) — JOR" ™, B)
whose fibre is the semi-algebraic projection of 51_1(2’”(1()) mto J"(n+k,k).
Applying Proposition 4.1, we do get a stratification of Z"(R"*, B).
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For P € J"(n+k, k), the multiplicity po(Pou,) depends only on the linear
span of u. Hence, the codimension of X"(R"* B) (which is closed for the

same reason as in the proofl of LLemma 3.2) 1s at most the codimension cy(m)
of sl_l(Zm(k)) minus the dimension nk of G(k,n + k).

Proof of the theorem. As i the proofl of Theorem 3.1, it follows from
Thom’s transversality lemma, [Lemma 5.4 and the definition of the Whitney
topology that we can take for V, the set of those g € C®R"*,B) such
that, setting m = my(kn +n + k+ ¢), the map j™g takes its values in the
complement of Z"(R"T* B), and apply Lemma 5.3 to conclude. Similarly,
we can take for V. the set of those g & CR"™* B) such that, setting
m = my(kn +n + c), the map j™g takes its values in the complement of
MR, B),.

REMARKS. The choice Wy := Py N}V would be good enough for
Theorem 5.1. However, a sharp bound for the generic local k-degree of
a given fibre of ¢ is an interesting additional piece of information.

For example, if k= 1, the bound 2z + 1 for the local degree is realised
for n > 1 by the polynomial map g: R**! — R given by

901, xum1,3,2) = (0 =2 ) TIOP — ) + 24" — 2

— it belongs to V), because its (algebraic) degree is 2n+1 and the hypersurface
S = g~1(0) does not contain any line (on such a line, absurdly, y should
be constant as well as every x;);

— it satisfies deg, 97 '(0) = 2n + 1 since S has 2n + 1 intersection
points with lines (x,7) = constant in every neighbourhood of the origin:
indeed, if we fix Z and mutually distinct positive X;,...,X, ; and set
G(Y)=Y (¥ -2 X)) [I(Y* - X+ (3 X" — Z) , then Gy has 2n+1
simple real roots; hence, by the implicit function theorem, for ¢ small
enough, G, has 2n+-1 real roots Y(¢) depending analytically on ¢ ; thus, for
£ > 0 small enough, the polynomial g(¢2X,y,e¥Z) = e Go1(c71y)
in y has the 2n+ 1 real roots ¥;(g*"~1).

Even for n+k > c,(m) — kn or ¢,(m) —kn+k, the map j™"g is transversal
to Z"R"* B) or "R, B),, vielding a stratification of the whole of R+
or ¢~'(0). For example, if k = 1, we may assume B =R or R/Z and the
condition fi1,(g~") > m means exactly that, for some u € S", the function
t + g(a + tu) has multiplicity greater than m at 0, i.e. D/g(a)u/ = 0 for
1 < j < m. Thus, the conditions g(a) = 0 and p1,(g~") > m mean that
pita,u) = (D/g(a)ul)o<jcm = 0 for some u € 8", and Thom’s elementary
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transversality lemma can be used to prove that the set YV of those g such
that 0 € R™! is a regular value of py 1s open and dense (this follows from
Lemma 8.2 hereafter); for m = 2n + 1, a regular value is a non-value since
dim(R""' xS8") < m+1, hence V™D =V . For m < 2n and g € V™, the
subset S, := (p?)~10) is a (2n — m)-dimensional submanifold of R*™' x 8",
whose projection into R"! is the set S, of those a in the hypersurface
S := g~ '(0) at which p1,(g™") > m. If O is a regular value of g (i.e. if g
lies in the open and dense subset V@), then S is smooth and S,, is the set
of those a at which S has contact of order at least m with some affine line,
hence S$; = S0 = 5.

EXAMPLE. If n =2 and k =1, then, generically, S is a smooth surface
in R in which S, is a set of isolated points and S5 is a (singular) curve,
called the flecnodal curve. The surface S» just introduced can project badly,
as S, consists of those a € § at which there exists an asymptotic direction
and therefore splits into three parts: the open set S; ¢ of those a € § at which
there are two simple asymptotic directions (hyperbolic points), the parabolic
curve Sy 1, consisting of those points at which there is one double asymptotic
direction, and a set S, of isolated flat points, at which every tangent direction
1s asymptotic (implying that S, is very badly projected).

The following figures correspond to g(x,y,2) := +y°+x(—y’ —y*+y+x)—2z,
which can easily be shown to satisfy all the above transversality conditions.
In that case, Sy = {0} and it is an exercise to verify that deg, ;47 '(0) = 5.

2
\
2 o
_—————/
il
2
-3

FIGURE 1 FIGURE 2 FIGURE 3

Figure 1 represents the surface S near the origin, marked as a dot; the curve
is a section of § by a vertical plane close to {x = 0}. Figure 2 shows
the flecnodal curve S§3. Figure 3 shows the flecnodal and parabolic curves,
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projected in the (x,y)-plane: there are two “godrons” [22, 24], i.e. parabolic
points on the flecnodal curve. See also [1, 9, 17].

Of course, such explicit stratifications become more and more intricate
when the (co)dimension increases, though the theory does imply the existence
of some good stratification(s).

6. A RIEMANNIAN EXTENSION

If Kk = 1, since the lines in R*™" are its Euclidean geodesics, one can
try to replace R”™' by a Riemannian manifold and lines by geodesics. As
geodesics have an unfortunate tendency not to be properly embedded (think
of the irrational lines in the flat 2-torus T?), the definition of the local degree
has to be modified:

DEFINITION.  Let W be a manifold endowed with a linear connection, e.g.
Riemannian. For each continuous map f of a topological space V into W
and each a € V, the local 1-degree of f at a 1is

deg, of := inf sup#(f(U)NL),

where the infimum is taken over all open neighbourhoods U of a in V and
all open neighbourhoods U/; of f(a) in W, and the supremum is over all
— connected — geodesics L of U,. The local 1-degree of a subset A of W
at a € A 1s the local 1-degree at a of the inclusion map A — W.

We can now state a generalisation of Theorem 5.2 for k = 1, a corollary
of Theorem 7.1 in the sequel:

THEOREM 6.1. Under the hypotheses of the definition, if W has dimension
n+ 1, n> 0, then, for every smooth curve B and every point of B, which
we name 0, there exist two increasing sequences (Vo c)een and (Ve)een of
dense open subsets of C°(W,B) such that :

(1) Each Vy. is c-large and consists of maps g such that the local 1-degree

of g~X0) at every point is at most 2n+ 1+ c.

(1) Each V. is c-large and consists of maps g such that, for every b € B,

the local 1-degree of g~'(b) at each of its points is at most 2n+ 2+ c.

In particular, the open subsets V = UC V. and Vy = UC Vo, are huge
and, for g € Vo (resp. g € V), the subset g~ (0) (resp. every g=1(b)) has

fnite local 1-degree at every point.
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REMARKS. An easy compaciness argument shows that for g € Vg (resp.
g€ V), if g7'(0) (resp. g~ (b)) is compact, then it intersects each properly
embedded geodesic L of W in a finite number of points.

For fixed g, this number can be unbounded when L varies, even when
every geodesic is properly embedded: if W is the standard flat cylinder T xR,
the geodesics which are embedded lines through (€, x) can spiral for quite a
while near the closed geodesic T x {x}. To get an analogue of Theorem 5.1,
we need a stronger hypothesis, obvious from the definition of the local degree :

THEOREM 6.2.  Under the hypotheses and with the notation of Theorem 6.1,
assume that there exists a positive integer d with the following property : every
point a of W has a neighbourhood basis N, consisting of open subsets U,
such that, for every geodesic L of W, the intersection LN U, is the union
of at most d geodesics of Uy. Then:

(1) Let Py be the open subset of C(W,B) consisting of those g for which
g~ Y(0) is compact. For all g in the huge open subset Wy := Vo NPy of
Py, the 1-degree of g~ 1(0) is finite.

(11) Let ‘P be the open subset of C°°(W,B) consisting of proper maps. For
all g in the huge open subset W := VNP of P, the 1-degree of g—(b)
is finite for every b € B.

This follows at once from Theorem 6.1 and the following analogue of
Lemma 1.3, a particular case of Lemma 7.5 hereafter:

LEMMA 6.3. Under the hypotheses of Theorem 6.2, the 1-degree of a
compact subset A of W is finite if and only if its local 1-degree at every
point is.

ExampLES. The hypotheses of Theorem 6.2 are satisfied when W is the
standard round sphere >) or a smooth, simply connected, complete Riemannian
manifold with everywhere non-positive curvature. In both cases — as W is
diffeomorphic to R"*! in the second situation — every compact hypersurface
of W is the set of zeros of some g € Py. Thus, almost every compact smooth
hypersurface of W has finite 1-degree.

) Or, more generally, a Riemannian manifold all of whose geodesics are closed: this is a
consequence of Wadsley's theorem: see [3], paragraphs 0.39-0.40 page 9, Theorem A-2 page
214, and Theorem A-32 page 220.
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The reason why we did not take d = 1 in the hypothesis of Theorem 6.2
1s clear in the case of a three dimensional lens space, for example: it is
obtained as a quotient manifold of $* by a cyclic subgroup Z; of SO(4)
acting without fixed point. Most closed geodesics are of length 27. Before
closing, they wind d times around exceptional geodesics of length 27 /d.

7. TEXTURES

DEFINITION.  Given positive integers n, k, a k-texture of corank x on a
manifold W of dimension n+ & 1s a pair (L, p) consisting of :

— a smooth k-dimensional foliation £ of a (x + k)-dimensional manifold X
(we denote by L, the leaf of £ containing x € X);

— a proper smooth map p: X — W such that, for every leaf L of £, denoting
by ¢, the inclusion map (which is an injective immersion), the composed
map p oty 18 an immersion.

The manifold X is the total space of the texture.

FIGURE 4

The role of the k-planes in Theorem 5.2 and of the geodesics in
Theorem 6.1 will be played by the k-dimensional immersed manifolds p(L)
(“leaves” of the texture). Locally, the leaves through @ € W are parametrised
by the fibre p~(a).

THE LOCAL (L, p)-DEGREE. lLet (L,p) be a k-texture on a manifold W.

For each continuous map f of a topological space V into W and each a € V,
the local (L,p)-degree of f at a is




348 M. CHAPERON AND D. MEYER

deg,of = inf sgp#(f(U) NnpL)),

where the infimum 1s over all open neighbourhoods U of a in V and U; of
f(@) in W, and the supremum is over all leaves L of the foliation of p~!(U;)
induced by L. The local (L,p)-degree of a subset A of W at a € A is the
local (L,p)-degree at a of the inclusion map A «— W.

FIRST EXAMPLES ¢). The local k-degree in R*1X is the local (£, p)-degree
if p is the canonical projection of X := R*t* x G(k,n+ k) onto R** and,
for (a,H) € X, the leal L gy is (a + H) x {H}.

Similarly, in Section 6, the local 1-degree is the local (L,p)-degree
defined as follows: if the connection on W is the Levi-Civita connection
of a Riemannian metric, p 1s the projection of the unit tangent sphere bundle
X =8TW onto W and L the foliation of X whose leaves are the orbits of the
geodesic flow; in the case of a general linear connection, p is the projection
of the projectivised bundle X = PTW onto W and the leaves of £ are the
integral curves of the “geodesic line field”.

Hence, the following result generalises both Theorem 5.2 and Theorem 6.1 :

THEOREM 7.1. Given positive integers n,k, a k-texture (L,p) of corank r
on an (n+ k)-dimensional manifold W, a k-dimensional manifold B and a
point of B, named 0, there exist two increasing sequences (Voc)een and
(Vo)een of dense open subsets of C*(W, B) with the following properties :

(1) Each V. is c-large and consists of maps g such that the local
(L, p)-degree of g—1(0) at every point is at most my(x+ ¢). In particular,
if k=1, the local k-degree of g~'(0) at every point is at most x+1-+c.

() Each V. is c-large and consists of maps g such that, for every b € B, the
local (L, p)-degree of g~ (b) at each of its points is at most ny(k-+k-c).
In particular, if k=1, the local k-degree of g~'(b) at every point is at
most k+24c.

Thus, the open subsets V = |J, V. and Vy := |J, Vo, are huge and, for

g €V (resp. g € V), the subset g~Y(0) (resp. every g~'(b)) has finite local

(L,p)-degree at every point.

The proof is along the same lines as before, except that Thom’s transver-
sality lemma cannot be applied in the jet spaces J"(W, B) in general (see the
remark following Lemma 7.4). Here is the analogue of LLemma 5.3:

) More examples are given after the definition of a clean texture.
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LEMMA 7.2. Under the hypotheses of Theorem 7.1, the inequality

degﬁ,p,a g_l(b) < Sull:) t(gopo LLX) = N[l,p,a(g_l)
xep~l@)

holds for all b€ B, g € C*(W,B) and a € g~'(b).

Proof. We endow W with a Riemanman metric and each leaf L of
L with the Riemannian metric induced by the immersion p|;, namely
[v]lx := |Tep(¥)||pcoy» v € TxL. The resulting distance on L is denoted by d.

Given a € W, since p 18 proper, there exist a neighbourhood €2, of @ in
W and a positive number R, such that, for each x € p~1(Q,), the restriction
of poir, to the open ball B.(x,R,) of L, with centre x and radius R, for d.
i1s an (isometric) embedding. For each positive integer m, setting b := g(a),
we should prove that the inequality deg, ,, g~ '(h) < m holds if we have
pgopou) <m for every x € p~la).

Then, for uy € p~'(a), choosing a plaque family ¢, : (X, 1) — R* x RF
of L, the hypotheses of Corollary 2.3 are satisfied for open subsets A of X
and V of R* satisfying ¢, (A) + {0} x V C Im¢,,, with a :== 0, B := B,
F,(y):=gopo ‘79,4_01 (gouo(u) + (0, y)) and therefore p = py(gopor, ) <m.
Hence, there are open subsets [7,40 S up of X (in A) and ¥, 3 0 of R* (in V)
such that, for each u € ﬁun , the equation gopo go,jol (cpuo(u) -+ (O,y)) = b has
at most m solutions y € ¥, .

Now, we may assume that [7“0 is included in p~Y(Q,) and that there
exists a positive number ¢, < R, such that, for every u € [7“0 , the open ball
Br(u,d,,) is contained in go,jol(gouo(u) + {0} x YMO). Thus, for each u € U,,,
the equation g o p(x) = » has at most m solutions in the open ball B, (u,d,,)
of L,.

Choose values u1,...,u¢ € p~'(a) of uy so that {ﬁ,,,l,.. - ﬁue} is
a covering of p~!(a). As p is proper (and therefore closed), the subset
V= W\p(X\ (ﬁu1 U U ﬁue)) 1s an open neighbourhood of a. Moreover,

we have p~1(V}) C fjm u.-- U [7“,3.

Thus, for each u € p~'(Vy), setting & := min{4d,,,...,d,,}. the equation
g o p(x) = b has at most m solutions in the open ball B,(u,d) of L,. Now,
if U; i1s a small enough open neighbourhood of a in Vi, then, for each
u € p~Y(U}), the leaf of the foliation of p~'(U;) induced by £ is contained
in B.(u,d). Taking U = U;Ng~!(b) in the definition of the local degree, we
do obtain deg, ,, g7'(H) <m. L]

The following statement will play the role of Lemma 5.4:
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LemMMmA 7.3. Under the hypotheses of Theorem 7.1, for each positive
integer m, the set J"(L,B) of all j"f(x) with f: (L¢,x) — B is a smooth
manifold, in which the subset X"(L,B) of all j"f(x) with p(f) > m is a
closed stratified subset whose codimension is cy(m) and therefore tends to
infinity when m — 0o. Moreover, Z™(L, B)o := Z"(L, B)N{j"f(x) : f(x) = 0}
is a stratified set of codimension ci(m) -+ k.

Proof. We shall see that J™(L,B) is a smooth fibre bundle over
JUL,B) = X x B with projection 7: j™f(a) — (a,f(a)) and fibre J™(k, k),
admitting Z"(L,B) as a sub-bundle with fibre X"(k), hence Lemma 7.3 by
Proposition 4.1.

An atlas (<I>m ) of smooth fibre bundle can be defined as follows: recall
that a plaque famlly of the foliation £ is a local chart ¢ of X with values
in R” x R¥ such that the leaves of the foliation of dom¢ induced by £ are
sent onto the intersections of Im¢ with the vertical k-planes {b} x R*. For
each such ¢ and each chart ¢ of B, the chart ®7 , is the diffeomorphism
of 7~ !(dom ¢ x dom) onto Im¢p x Im )y x J"(k, k) given by

o F"F(e ' (2,0)) = (B, (Y of o (9™ ) (@)

where (¢~ Yy(y) := ¢~ 1(b,y). As multiplicities are invariant by coordinate
changes, each @ng clearly sends ="(L,B) N 7~ dom ¢ x domz)) onto
Imp x Im2 x Z"(k), so that we just have to check that ((Dgyd)) is indeed an
atlas of algebraic fibre bundle.

Given plaque families ¢, ¢, of £ and charts v,7; of B, the map @001
1s of the form (&,c¢) — (Q(b),Xb(c)) ; for (b,c) € p(dom e N dom ), the
transition map @gh 1 © (6193”/))‘1 , restricted to the fibre of (b, ¢), induces the
polynomial automorphism

(D), <1 = (D@1 007 0 f 0 x5 H(X0()),
of J"(k,k), proving LLemma 7.3.

The following lemma, proved in Section 8, yields Thom’s transversality
lemma in jet spaces (easy case) when p = idy and £ = {M}:

LEMMA 7.4.  Given a texture (L,p) on a manifold M, a manifold N, an
integer m and a closed stratified subset X of J"(L,N) whose codimension
is greater than the dimension of the total space T of the texture, the set of
those f € C°(M,N) which satisfy j™(fopou)) X for all t € T is open

and dense.
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Proof of openness. Write each j"f(x) € J™(M,N) under the form
JIf when 1t 1s viewed as an element of the fibre of x for the “source”
projection J"(M,N) — M. The set p*J"(M,N) of all pairs (r,j;](“t)f) with
t € T and f: (M,p(t)) — N 1s a smooth fibre bundle over 7" for the
projection (t7 Jott f) — t, whose fibre is the manifold JZ(RY, N) of all
JTF0) € JMRY, N), where d := dimM : to each chart ¢ of M is associated
its trivialisation (l‘,j;’(’t)f) > (t,jé”(fo o1 or_w(p(,)))) over p~!(dom ),
where 71,(v) :=v —a.

Each j™(fopou)r) with t €T and f: (N,p(t)) — B is determined by
(r,jj;’g,)f), and the map p: (t,j;&)f) — j"(fopou ) of p*J"(M,N) into
J"(L,N) is continuous. Now,

— as X is closed, so is p~(2);

— as p is proper, so is the map p: (t,j:gt)f) Hjmf(p(t)) of p*J™(M,N)
into J™"(M,N).

Hence, the image of p~!(2) under p is a closed subset C. It does follow

that the set of those f € C™(M,N) which satisly j™f(¢) € J*(M,N)~ C for

all ¢ 1s open.

REMARK. When £ 1s not analytic, 1t does not seem possible to stratify
C and deduce Theorem 7.1 from Thom’s transversality lemma in jet spaces,
as p is only C™.

PROOF OF THEOREM 7.1. We take for V), the set of those g € C*°(W, B)

such that j™(gopou )x) & Z™(L,B) for all x € X, with m = my(k+k+¢):

e if ¢ = 0, the hypotheses of LLemma 7.4 are then sausfied for M = W,
N =B and X = X"(L, B), implying that Vj, is open and dense;

e for ¢ > 0, if A 18 a c-dimensional manifold, the hypotheses of
Lemma 7.4 are satisfied for M = A x W, N =B, T = A x X,
p(A\, x) = ()\, p(x)), taking for new L the foliation of T whose lcaves are
the subsets A x L with L € £ and for Z the set of all j™f.(A,x) with
J™Hx) € Z"(L,B), where f. denotes a map germ (A X Lx,(/\,x)) — B
[note that j7f.(\,x) — j™fi(x) 1s a submersion J"(L, B) — J"(L, B)]; this
guarantees that V. is c-large.

Hence, every g € V, satisfies ,uﬁﬁpya(g_l) < my(k + k 4+ ¢) for all a and
we conclude using Lemma 7.2. Similarly, we can take for Vp . the set
of those g such that j™(g o p o )(x) &€ Z™(L,B) for all x € X, with
m = my(k + ¢).
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THE (L,p)-DEGREE. Given a texture (L,p) on a manifold W, the
(L,p)-degree deg, ,A of a subset A of W 1s supL#(A ﬂp(L)) , where the
supremum is taken over all leaves L of the foliation L.

CLEAN TEXTURES. A texture (L£,p) on W 1s clean when there exists an
integer d with the following property : every point a of W has a neighbourhood
basis N, consisting of open subsets U; such that, for every leal L of L, the
number of connected components of L () p~(U;) is at most 4.

ExampLES. The hypothesis of Theorem 6.2 amounts to assuming that the
geodesic texture 1s clean.

Given positive integers £, n, k, a natural clean texture on W := G({, f+n+k)
is as follows: X is the manifold of all (H, K) € G(£, {+n+k)xG(¢+k, {+n-+k)
with 71 C K, the projection p 1s just (I,K) — H, and the leal through
(Ho, Kp) 1s the set of all (H,Kp) € X. If' £ = 1, one gets the projective
version of Thom’s (clean) original affine situation, as the leaves of the texture
are the projective k-planes in P+,

If we view G({,f + n + k) as the homogeneous space G/H, where
G =0(+n+k) and H is the subgroup O(f,n + k) consisting of those
g € G which preserve RY x {0}, this suggests a larger class of examples
where G is a Lie group, H, K are two closed subgroups with H/(H N K)
compact, W = G/H and X C G/H x G/K is the image — diffeomorphic
to G/(HNK) — of G under the canonical projecion 7 = (rg,7g), with
Ly := m(gK) ; thus, the leaves of the texture are the subsets mx(gK).

As shown by Figure 4 (p.347), there are many non-homogeneous examples
in which p is not a fibration.

LEMMA 7.5. Let (L,p) be a clean texture on a manifold W. For each
continuous map [ of a compact space V into W, the (L,p)-degree of f(V)
is finite if and only if the local (L,p)-degree of f at every point is. Therefore,
the (L, p)-degree of a compact subset A of W is finite if and only if its local
(L,p)-degree at every point is.

Proof. Taking U; € N in the definition of the local (£, p)-degree, we
see that the local (L, p)-degree of a continuous map f: V — W at a € V
1s finite if and only if there exists an open neighbourhood U of a in V
such that the (L, p)-degree of f(U) is finite. We conclude as in the proof of
Lemma 1.3.
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Lemma 7.5 and Theorem 7.1 yield an extension of Theorems 5.1 and 6.2:

THEOREM 7.6. If the texture of Theorem 7.1 is clean, then, denoting by
P and Py the open subsets of C(W,B) consisting respectively of proper
maps and of those g for which g=1(0) is compact:
(1) For all g in the huge open subset Wy := VoN'Po of Po, the (L, p)-degree
of g~ 1(0) is finite.
(i1) For all g in the huge open subset W =V NP of P, the (L,p)-degree
of g~ Y(b) is finite for every b € B.

8. PROOF OF LEMMA 7.4

The following result is (the easy case of) LLemma 3.2 in [13], extracted from
Morlet [16] and expressing the essence of Thom’s original proof [19, 20]:

LEMMA 8.1. Ler § be a submanifold (possibly with boundary) of a
manifold P. Let F be a topological space and j: F — C(T,P) a mapping,
where T is a manifold whose dimension is less than the codimension of S.
Suppose that for each f € F there exists a continuous mapping ¢: E — F,
where E is a manifold and f € o(E), such that the induced mapping
0. Ex T — P defined by o(e,t) = j(cr(e)) (t) is C' and a submersion
at every point of c=1(S). Then {g € F : {(g)(T)NS = @} is dense in F.

Proof. Given f € F, take ¢ and & as in the hypothesis of the lemma.
Then, S := &7 1(S) is a C! submanifold of E x T whose codimension codim S
is greater than dim 7, hence dim S < dimE.

Clearly, {¢ € E : joo(eT)NS # &} is the image of S under the
projection 7: E x T — E and we can apply to w|; the very easy case
of Sard’s theorem: the image of a locally Lipschitzian map of a manifold
into a higher-dimensional manifold has [.ebesgue measure O, implying that
{e € E:joo(eT)NS # @} has Lebesgue measure 0; in particular, its
complement D :={e € E: joo(e)(T)NS = &} is dense. As ¢ is continuous,
for every open subset I/ 3 f of F, the nonempty open subset ¢~ 1(f) of E
contains some ¢ € D, hence o(e) e UN{g € F: jg)(T)NS = &}. L]

End of the proof of Lenuina 7.4. What follows 1s essentially the proof
of Proposition 3.3 in [13]. As openness has already been established, setting
JOO@ = j"(fopou )t) for f € C°°(M,N) and t € T, we should prove that
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T :={f € C¥M,N): j(F )(T)NZ =&}

1s dense. Each stratum V of X is the union of an at most countable set Sy
of compact submanifolds with boundary § whose image under the projection
JML,N) — T x N lies in the product p~!(dom ¢g) x domjs for local charts
g of M and 15 of N with values in RY and R? respectively. Bach 75 with
S €S :=J,Sv is open since S is closed (see the proof of openness after
Lemma 7.4). As X is the union of all § € &, the subset Ts is the intersection
of all the open subsets 75 with § € S. Therefore, since S is countable and
C*(M,N) has the Baire property, all we have to prove is that 7g is dense
in C*°(M,N) forevery SE€S.

To that effect, setting ¢ := ¢g and ¥ := g, we shall apply Lemma 8.1
with F := C®(M,N), P = J"(L,N) and, stll, j(f)(t) :=j"(f op o )).
Let n € C*(dom1, [0, 1]) be a compactly supported function equal to 1 in
a neighbourhood of the image S, of S under the projection of J”(L,N) onto
N, and let # € C*>(dom ¢, [0, 1]) be a compactly supported function equal to
1 in a neighbourhood of the image §; under p of the image of § under the
projection of J"(L,N) onto T.

Denoting by E; the space of all polynomial maps RY — R? of degree at
most m, the space E in Lemma 8.1 will be the open neighbourhood of 0 in
Ey consisting of those e such that ¢( f(x)) + H(x)n( f(x)) e(c,o(x))

(a) lies in Im+4 for all x € suppd Nf~t(suppn),
and (b) lies off 1/(S;) for all x € §; ﬂf‘l(supp(l —mnN suppn) .

The mapping o is well-defined — because of (a) — by

S (E)) = {w—l (W (F) +8@m(F@)e(e®)), if (x,f()) €dom px dom ¢

f(x) otherwise.

Continuity is easy to prove [13, 12, 8].

To check that &: (e, 1) jm(cr(e) o) pOLL,)(t) 1s a submersion at every point
(eo, ty) with jm(a(eo) opo [,LIO)(F()) € S, we should prove that the mapping
e ji (Cr(e) opo LLTO) into the fibre J'(L,N) is a submersion at eq.

As xg 1= p(ty) € S; and o(eg)(xg) € S, we must have f(xg) € dom)
(otherwise, f(xg) = a(eg)(xp) € S» C domr, a contradiction) and therefore,
by (b), f(xo) ¢ supp(l — n) N suppn. As n(f(xo)) = 0 would yield the
contradiction f(xo) = o(eg)(xo) € S C n~1(1), the point f(xo) must lic in the
interior of {n = 1}; since xp lies in the interior of {6 = 1}, it follows that

jg)n(O'(e)OpOLLro) = j ((;b‘l o(@of+ eop)) OpOLLro) for all e € E.
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This implies our result: indeed, p oy, 1s a local diffeomorphism of L,
onto a submanifold V 3 x¢ and the affine map e |—>j$(xO)((¢ofo g +e)|<p(v))
of Ey into Jg(xo)(gp(V), Rq) is a submersion, the underlying linear map
e jg’(x(])(eb(v)) being clearly onto.

If we inject the general Sard theorem into the previous proof via the full
Lemma 3.2 in [13], we get the following generalisation of I.emma 7.4:

LEMMA 8.2, Given a texture (L,p) on a manifold M with total space T,
a manifold N, an integer m and a stratified subset T of J"(L,N), the set of
those f € C(M,N) such that the map T > t — j™(foporr,)(t) is transversal
to X is residual.

The particular case where (L,p) = ({M},idy) is

THOM’S TRANSVERSALITY LEMMA IN JET SPACES. Given manifolds M,N,
an integer m and a stratified subset X of J"(M,N), the set of those
| € C(M,N) such that j"f Is transversal to X is residual.
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NOTE DES REDACTEURS

Le texte qui suit est extrait d’une lettre de René Thom, datée de Strasbourg,
le 14 décembre 1959, adressée a André Haefliger a I'lAS, Princeton, ou celui-ci
entamait un séjour de deux ans comme assistant de Whitney. On voit que Thom
développait déja a cette époque les idées de son article de 1969 [21].

7y Who informed him of the existence of Thom’s paper and communicated to him pages on
géométrie finie extracted from his forthcoming book Géométrie vivante [2].

8) Chenciner not only gave some very useful advice on at least three drafts of the present
work : his encouragements and questions also led to the idea of textures.

?) Whose help with Tougeron’s theorem was especially precious.
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EXTRAIT D’UNE LETTRE DE RENE THOM A ANDRE HAEFLIGER

«Pas grand-chose de neuf de mon cbté; j"ai écrit récemment un petit article de
caractere semi-pédagogique sur la théorie des enveloppes (considérée comme application
de la théorie des singularités). Je m’occupe toujours de la conjecture faible; je suis
intéressé en ce moment par la détermination de 1"“ordre local” d’une variété plongée
(i.e. le nombre maximum de points en lesquels elle est localement coupée par un plan de
dimension complémentaire). [l me semble probable que toute application différentiable
dont le graphe est d’ordre local fini est “algébroide”, topologiquement équivalente a
une application polynomiale. Ceci impliquerait que toute application analytique réelle
est localement algébroide; qu’en pensez-vous ? »

[1]
[2]
3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

REFERENCES

ARNOL'D, V.I., A.N. VARCHENKO et S. M. GOUSSEIN-ZADE. Singularités des
applications différentiables. Editions Mir, Moscou, 1986.

BERGER, M. Géométrie vivante, ’échelle de Jacob du géomeire. Cassini, Paris,
2009.

BESSE, A. L. Manifolds all of Whose Geodesics are Closed. Ergebnisse der
Mathematik und ihrer Grenzgebiete 93. Springer-Verlag, Berlin-New
York, 1978.

BocHNAK, J., M. COSTE and M.-F. RoY. Real Algebraic Geometry. Ergebnisse
der Mathematik und ihrer Grenzgebiete (3. Folge) 36. Springer-Verlag,
Berlin, 1998.

BROCKER, TH. and L. LANDER. Differentiable Germs and Catastrophes. 1.ondon
Math. Soc. Lecture Note Series I7. Cambridge University Press, 1975.
(A few copies of Th. Brocker’s German original were printed by the
University of Regensburg under the title: Der Regensburger Trichter,
Band 3, Differenzierbare Abbildungen, 1972.)

COSTE, M., J.M. Ruiz and M. SHIOTA. Uniform bounds on complexity and
transfer of global properties of Nash functions. J. Reine Angew. Math.
536 (2001), 209-235.

Du Pressis, A. and C. T.C. WALL. The Geometry of Topological Srability.
London Mathematical Society Monographs. New Series 9. The Clarendon
Press, Oxford University Press, New York, 1995.

GOLUBITSKY, M. and V. GUILLEMIN. Stable Mappings and Their Singularities.
Graduate Texts in Mathematics 74. Springer-Verlag, 1973.

LANDIS, E. E. Tangential singularities. Funct. Anal. Appl. 15 (1981), 103-114.

LEVINE, H.L. Singularities of differentiable mappings '*). In: Proceedings of
Liverpool Singularities — Symposium I. (University of Liverpool 1969/70),
WALL, C.T.C. (Ed.), 1-89. Lecture Notes in Mathematics /92. Springer-
Verlag, 1971.

LOIASIEWICZ, S. Ensembles semi-analytiques. Preprint LH.E.S 1969.

10y Following lectures given by Thom at the University of Bonn in 1959.



[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]

[24]

[25]

ON A THEOREM OF RENE THOM IN GEOMETRIE FINIE 357

MARTINET, J. Singularités des fonctions et applications différentiables. Pon-
tificia Universidade Catélica do Rio de Janeiro, Rio de Janeiro, 1974.
English translation: Singularities of Smooth Functions and Maps. Lon-
don Math. Soc. Lecture Note Series 58. Cambridge University Press,
Cambridge-New York, 1982.

MATHER, J.N. Stability of C™ mappings: V, Transversality. Adv. Math. 4
(1970), 301-336.

—— How to stratify mappings and jet spaces. In: Singularités d’applications
différentiables, Burlet, O., Ronga, F (eds.), 128-176. Lecture Notes in
Mathematics 535. Springer-Verlag, 1976.

MONOR, J. W. Topology from the Differentiable Viewpoint. The University
Press of Virginia, Charlottesville, 1969.

MORIET, C. Le lemme de Thom et les théoremes de plongement de Whitney.
Séminaire Henri Cartan, 1961/62, Exp. 4-8.

PrLataNova, O. A. Singularities of the mutual disposition of a surface and a
line. Russian Math. Surveys 36 (1981), 248-249.

Porr, W.F A theorem of géométrie finie. J. Differential Geom. 10 (1975),
435-466.

TooM, R. Quelques propriétés globales des variétés différentiables. Comment.
Math. Helv. 28 (1954), 17-80.

—— Un lemme sur les applications différentiables. Bol. Soc. Mat. Mexicana
(2) 1 (1956), 59-71.

—— Sur les variétés d’ordre fini. In: Global Analysis (Papers in Honor of
K. Kodaira). Spencer, D.C., Iyanaga, S. (Eds.), 397—401. University of
Tokyo Press, Princeton University Press, 1969.

THoM, R. et Y.1.. KERGOSIEN. Sur les points paraboliques des surfaces. C. R.
Acad. Sci. Paris 290, série A (1980), 705-709.

TOUGERON, J.-C. Idéaux de fonctions différentiables 1. Arnn. Inst. Fourier
(Grenoble) 18 (1968), 177-240.

URIBE-VARGAS, R. A projective invariant for swallowtails and godrons, and
global theorems on the flecnodal curve. Moscow Math. J. 6 (2000),
751-768.

WHITNEY, H. Tangents to an analvtic variety. Ann. of Math. (2) 81 (1965),
496-549.

(Recu le 25 novembre 2008)

Marc Chaperon, Daniel Meyer

Institut de Mathématiques de Jussieu

Géométrie et Dynamique

Université Paris 7

UFR de mathématiques

Site Chevaleret, CASE 7012

F-75205 Paris Cedex 13

France

e-mail : chaperon@math.jussiew.fr, dmeyer@math.jussieu.fr




	On a theorem of René Thom in Géométrie finie
	...


