
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 55 (2009)

Heft: 1-2

Artikel: Finiteness and constructibility in local analytic geometry

Autor: Garay, Mauricio D.

Bibliographie

DOI: https://doi.org/10.5169/seals-110093

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-110093
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


1 IXITHXESS AND CONSTRUCTIBILITY IN LOCAL ANALYTIC GEOMETRY 29

Denote by £(0) the sheaf of analytic pseudo-differential operators in

T*C" ® C2" — {(()[>)} of order 0. Let £'(0) be a subsheaf of operators which

depend only on some of the variables, say (j\..... qr j)\,.... pi,. We denote

by cco(0). £q(0) tlie stalks of the sheaves £(0), £'(0) at the point Xo G C2"

with coordinates qx — — q„ 0, pi — 1, p2 — 0,..., p„ — 0.

Theorem 6.8 ([3, 33]). For any coherent left £o(0)-module M the

following assertions are equivalent :
1. the Oftf+t-i _0-module M/df^M is of finite type;
2. the £q(0)-left module M is of finite type.

Proof The module M is the stalk at the point Xo (0,..., 0,1,0,..., 0)
of a sheaf M of T0(0)-modules in T* C" ft; C2".

Consider the complex given by a resolution of A4

IC : £{Qy® —ÎU- £(0)"« * 0 T(0)"°/ImStmM.

The support of M coincides with that of AA /<)f1 A4, it is therefore an

analytic subvariety V C C2" ([35] ; see also [33], Proposition 4.2.0).
The restriction of the sheaf £(0) to the complement of the zero section in

T*C" fa C2" is a sheaf of non-commutative Fréchet algebras [4]. Therefore
the argument given in the proof of Proposition 6.7 applies mutatis mutandis

to this situation.
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