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Denote by &(0) the sheaf of analytic pseudo-differential operators in
T*C" = C¥ = {(g,p)} of order 0. Let £'(0) be a subsheaf of operators which
depend only on some of the vanables, say ¢1,...,4;,p1,...,P:. We denote
by &0(0), £/(0) the stalks of the sheaves £(0), £'(0) at the point xo € C*
with coordinates g; = =¢, =0, p1=1,p,=0,...,p, =0.

THEOREM 6.8 ([3, 33]). For any coherent left Eo(0)-module M the
Jollowing assertions are equivalent:

1. the Qi1 g-module M /0, 'M is of finite type;

2. the E((0)-left module M is of finite type.

Proof. The module M is the stalk at the point xo = (0,...,0,1.0,...,0)
of a sheal M of &(0)-modules in T*C" ~ C*.

Consider the complex given by a resolution of M

Koo gy — s g0y —— 0, HKT) = EO)° /Imd, ~ M.
The support of M coincides with that of M/0 M, it is therefore an
analytic subvariety V C C¥" ([35]; see also [33], Proposition 4.2.0).

The restriction of the sheal £(0) to the complement of the zero section in
T*C" = C* is a sheaf of non-commutative Fréchet algebras [4]. Therefore
the argument given in the proof of Proposition 6.7 applies mutatis mutandis
to this situation. [
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